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We present a theory for the temperature and density dependence of the vibrational lifetimeT1 and
the vibrational line positionn of a solute in a supercritical solvent, both close to and far from the
critical point. The theory is based on the relation between a classical force correlation function and
T1 andn. The force correlation function is determined from density functional theory, and can be
expressed in terms of the solvent structure factor and the solute–solvent direct correlation function,
thereby allowing physical properties in the region of large critical fluctuations to be described by
various phenomenological scaling laws. The theory has been used to investigate recent experiments
on the density dependence of the lifetimes and frequencies of the asymmetric CO stretching mode
of W~CO!6 in supercritical ethane. Near the critical point, the experimental data are essentially
independent of the density over a fairly broad range of densities. This behavior is ascribed to the
existence of long-range correlations in the fluid mixture near the critical point. Such correlations,
manifested in the divergence or vanishing of thermodynamic quantities, are shown to essentially
eliminate the density dependence in the static and dynamic correlation functions that enter the
theory. Because it is the anomalous thermodynamics near the critical point that ultimately governs
changes inT1 andn, the results are not dependent on specific intermolecular interactions. The lack
of a theoretical dependence on specific intermolecular interactions is supported by experiments that
display the same behavior for various solute/solvent systems. ©1997 American Institute of
Physics.@S0021-9606~97!52443-3#
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I. INTRODUCTION

Vibrational relaxation—the loss of vibrational energ
from an initially excited vibrational mode of a molecule—
of fundamental importance to solution phase chemis
Among other things, it can influence the rates of chemi
reactions, and it is involved in processes such as elec
transfer.1 The development of infrared picosecond las
sources has made it possible to measure the vibrationa
laxation of molecules in liquids directly.2 Such studies have
recently demonstrated that the temperature dependenc
vibrational relaxation can be strongly influenced, not only
thermal fluctuations, but also by the change in liquid dens
that accompanies a temperature change.3 An understanding
of vibrational relaxation, therefore, requires knowing how
depends both on density at fixed temperature and on t
perature at fixed density. Supercritical fluids~SCF’s! are
probably the ideal environment in which to explore su
questions, since their temperature and density can be va
independently. Because SCF’s have widespread applica
in industry, their study is also important in its own right.4

Although there have been experimental and theoret
studies of vibrational energy transfer in supercritical flu
~I2 in Xe, for instance5!, such studies have, until recentl
been confined to temperatures and/or densities distant
the corresponding critical values. Since vibrational relaxat
is driven by the fluctuations of the medium, and since
neighborhood of the critical point is highly nonuniform, th
possibility of observing novel vibrational phenomena in th
a!On leave from the Department of Inorganic and Physical Chemistry, India
Institute of Science, Bangalore-560012, India.
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region of the phase diagram is especially strong.
These expectations are borne out by recent infrared

brational experiments from this laboratory on the vibration
dynamics of carbonyl moieties dissolved in supercritical s
vents, which have produced some intriguing results.6 One set
of experiments records the absorption frequenciesn of the
asymmetric CO stretching mode of dilute W~CO!6 in SCF
solvents such as carbon dioxide, ethane, and fluoroform.
other monitors the lifetimes,T1 , of the same mode under th
same conditions. Bothn and T1 are measured over a wid
range of densitiesr at fixed temperaturesT of the solvent.
The measurements are made close to and away from
critical point of the solvent (rc ,Tc). For values ofr andT
distant fromrc and Tc , n and T1 decrease smoothly with
density at fixed temperature. This is the behavior that o
might have anticipated: increasing the density increases
contributions to the vibrational potential from attractiv
solute–solvent interactions, which tend to shift absorpt
frequencies toward the red.7 Increasing the density also in
creases the magnitude and frequency of the fluctuating fo
experienced by the CO stretch, which increases the proba
ity of dissipative exchange of excess vibrational energy, a
so decreases lifetimes.

Something rather unexpected occurs in the neighborh
of the critical point, however; whenT'Tc and r ranges
between about 0.73 and 1.2rc ~these ranges vary somewh
from solvent to solvent: the quoted value refers to ethan!,
bothn andT1 cease to change with density. On the face of
there is no obvious reason why this should happen. If a
thing, given the anomalous thermodynamics near the crit

8
point, rather more dramatic changes to these properties
might have been expected. To be sure, there are extended

n
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regions of uniform density near the critical point that cou
in principle, provide the kind of constant solvent enviro
ment necessary to eliminate the density dependence ofn and
T1 . But such regions fluctuate across a wide range of len
scales, so themeasuredvalues ofn andT1 , which represent
spatial and temporal averages of local properties, are lik
to be quite different.

One possible rationalization of these observations is
something akin to condensation takes place, in which m
ecules of the solvent form stable, relatively long-lived she
around the solute. Thus, changing the bulk density at c
stant temperature would have essentially no effect on
solute’s immediate surroundings. This is essentially
‘‘clustering’’ phenomenon often invoked in the literature o
supercritical mixtures.4 Whether a clustering mechanism
necessary to explain the experimental data, or other me
nisms can be responsible for the lack of density depende
near the critical point, is the question we shall attempt
answer theoretically in this paper.

As discussed in the following section, our approach
elaborated around a model of vibrational relaxation t
starts from a forced harmonic oscillator representation of
vibrational mode of W~CO!6. An important ingredient of the
theory is the evaluation of a time-dependent force correla
function using density functional methods. This approach
useful in immediately allowing the measurable properties
the system to be expressed in terms of thermodynamic fu
tions that can be studied in both critical and noncritical li
its. The objective here is less to achieve quantitative ag
ment with the experimental data than to provide a framew
for identifying the physical phenomena that might be resp
sible for anomalous behavior. To this end, the method
sures that the effects of critical fluctuations can be incor
rated into the theory through well-known thermodynam
scaling relations. The results are rather surprising. Near
critical point, as a result of the divergence of the correlat
length of the density fluctuations, all of the factors that co
potentially lead to density-dependent frequencies and
times, including the direct correlation function, scale out
the problem. Thus, despite the expected importance of s
distance effects in controlling vibrational relaxation, it is t
universal critical properties of the medium that seem u
mately to be responsible for what is observed. Experime
with other solute/solvent combinations, which exhibit t
same behavior, suggest that this may, in fact, be the ca6

Specific solute–solvent clustering need not be invoked
order to reproduce the observed vibrational anomalies n
the critical point.

The details of the above formalism are presented in S
II, while Sec. III discusses the results and conclusions.

II. THEORY

A. Lifetimes

Fermi’s golden rule of time-dependent perturbati
theory is the standard starting point for relating excited s

9

B. J. Cherayil and M. D. Fayer: Vibr
lifetimes to various quantum mechanical averages.In par-
ticular, the vibrational lifetime,T1 , can be shown to be in-
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versely proportional to a dynamic force correlation functio
as discussed, for instance, in Refs. 10 and 11. In this sec
we sketch an alternative route to this result, based on p
integrals, which we believe is somewhat more transpar
and possibly more easily extended to other situations.

We begin by representing the vibrational mode of t
carbonyl by a harmonic oscillator of massm and natural
frequencyv, and its interactions with the solvent by a flu
tuating forceF(t). This leads to the following Hamiltonian
H for the system:

H5
p2

2m
1

1

2
mv2x21F~ t !x, ~1!

wherep is the momentum of the oscillator andx its displace-
ment from equilibrium.~For a molecule like W~CO!6, x rep-
resents the displacement of the normal coordinate.! The
quantity of interest is the probabilityPmn that the oscillator
makes a transition from themth excited vibrational state o
the molecule to itsnth excited state in the timet. This is
proportional to the absolute square of the transition am
tudeGmn for this process, which can be written as12

Gmn5eiEmt/\E dxaE dxbfm~xb!K~xb ,t;xa,0!fn~xa!,

~2!

whereEm is themth oscillator energy eigenvalue,fm(x) is
the corresponding eigenfunction, defined by

fm~x!5
1

A2mm!
S mv

p\ D 1/4

Hm~xAmv/\!e2mvx2/2\, ~3!

Hm is the Hermite polynomial of orderm, \ is Planck’s
constant divided by 2p, and K(xb ,t;xa,0) is the Feynman
propagator, which has been determined exactly for
Hamiltonian of Eq.~1! as12

K~xb ,t;xa,0!5A mv

2ip\ sin~vt !
exp~ iScl /\!, ~4!

whereScl is the classical action, given by

Scl5
mv

2 sin~vt !
@~xa

21xb
2!cos~vt !

22xaxb1xbI a1xaI b2I ab#, ~5a!

with

I a5
2

mv E
0

t

dt1F~ t1!sin~vt1!, ~5b!

I b5
2

mv E
0

t

dt1F~ t1!sin~v~ t2t1!!, ~5c!

and

I ab5
2
2 2 E t

dt1E t1
dt2F~ t1!F~ t2!sin~v~ t2t1!!sin~vt2!.

7643onal relaxation in supercritical fluids
m v 0 0

~5d!
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In the experiments described earlier,6 vibrational relax-
ation occurs from the first excited state of the carbo
stretching mode, so for this case the required probability
be shown to be

P10}uG10u25
1

m\v
expH 2

1

m\v E
0

t

dt1E
0

t1
dt2

3F~ t1!F~ t2!cos~v~ t12t2!!J
3E

0

t

dt1E
0

t1
dt2F~ t1!F~ t2!cos~v~ t12t2!!.

~6!

We shall assume that the coupling between the oscillator
reservoir is sufficiently weak that Eq.~6! can be approxi-
mated by

uG10u2'
1

m\v E
0

t

dt1E
0

t1
dt2F~ t1!F~ t2!cos~v~ t12t2!!. ~7!

This expression is now averaged over the quantum mech
cal states of the bath, and the result rewritten in terms o
time-symmetrized anticommutator,11 which yields

^uG10u2&5
2

m\v

1

11e2b\v E
0

t

dt1E
0

t1
dt2

3 K 1

2
@F~ t1!,F~ t2!#1L cos~v~ t12t2!!, ~8!

whereb51/kBT. Because of time translational invarianc
Eq. ~8! in turn becomes

^uG10u2&5
2

m\v

1

11e2b\v E
0

t

dt1~ t2t1!

3K 1

2
@F~ t1!,F~0!#1L cos~vt1! ~9a!

[
2

mb\v

1

11e2b\v

3E
0

t

dt1~ t2t1!z~ t1!cos~vt1!, ~9b!

where Eq.~9b! defines a time-dependent quantum mecha
cal friction coefficient.11 The rate of transitionk10 between
the excited and ground states can now be obtained as

k105
2

mb\v

1

11e2b\v

3 limt→`

1

t E
0

t

dt1~ t2t1!z~ t1!cos~vt1!

5
2

mb\v

1

11e2b\v z̃8~v!, ~10!

˜

7644 B. J. Cherayil and M. D. Fayer: Vibr
wherez8(v) is the real part of the Fourier transform ofz(t)
evaluated at the frequency of the oscillator.
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The vibrational lifetimeT1 is related to the rate o
change of the average energy of the oscillator, which
pends onk10 and the upward transition ratek01. As shown
by Bader and Berne,11 this relationship is given byT1

21

52 tanh(b\v/2)z̃8(v)/mb\v. The quantum mechanica
friction coefficient is not easily determined, but for rela
ation processes that proceed by the emission or absorptio
a single reservoir phonon, it can be expressed in terms
classical friction coefficient. For such processes,z̃8(v)
5b\v coth(b\v/2)z̃cl8 (v)/2, where z̃cl8 (v) is the classical
counterpart ofz̃8(v).13 Now in general, the excess vibra
tional energy of a high frequency mode of a polyatomic s
ute in a polyatomic solvent is most easily dissipated if it
transferred to other relatively high frequency vibration
modes on the solute or solvent. The relaxation to th
modes ~which typically are not thermally populated, an
which consequently contribute little to the overall tempe
ture dependence of vibrational relaxation! will, in addition,
require the excitation of a small number of low frequen
reservoir phonons to conserve energy overall. In the simp
case, only a single phonon is required for energy conse
tion. We shall assume, for convenience, that this is the
evant case for the experiments described here.@Our focus in
this paper is primarily on the density dependence of lifetim
and frequencies, so the precise form of the temperature p
actor in Eq.~10! and related expressions is not of cent
importance. But it should be noted that multiphonon exci
tion can modify the temperature dependence ofT1

significantly—its study is currently under investigation.13#
Within the one-phonon approximation,T1 can be determined
using the above expression for the friction coefficient, wh
in terms of a classical force autocorrelation function no
becomes

T1
215

b

m E
0

`

dt^F~ t !F~0!&cl cos~vt !. ~11!

The calculation of the lifetime is thus reduced to t
problem of calculatinĝ F(t)F(0)&. This is a problem that
immediately raises a number of difficult technical issues. F
instance, it is clear from the experimental data that there
significant degree of coupling between the slowly varyin
long wavelength density fluctuations of the solvent and
high frequency, short distance oscillations of the solute,
spite the apparently fundamental differences in characte
vibrational and critical phenomena. It is far from clear, ho
ever, how this coupling occurs. Nor is it clear how, from
theoretical perspective, these two processes can be tre
together when their characteristic time and length scales
so widely separated. Projection operator techniques or in
ence functional methods would seem to provide the nat
framework within which to consider the problem, but neith
is likely to be easy to implement here. Even if that were n
the case, the results of such analyses would very likely
volve parameters whose relationship to the actual prope
of the system remained obscure.

onal relaxation in supercritical fluids
On the other hand, molecular processeshavebeen suc-
cessfully described in terms of bulk properties. For instance,
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the translational and rotational diffusion of individual mo
ecules, which depend on local fluctuating forces, can be
lated to the viscous properties of the surrounding med
~represented as a continuum! using hydrodynamics. Suc
treatments lead to results such as the Stokes–Einstein an
Debye–Stokes–Einstein equations for translational and r
tional diffusion, respectively. Indeed, vibrational relaxati
itself has been studied by such methods, notably
Zwanzig14 in an early critique of the isolated binary collisio
model, in which he showed that the rate of transition o
molecule from its first excited vibrational states to t
ground state can be described in terms of the solvent’s s
diffusion coefficient. Related hydrodynamic models ha
been surveyed by Oxtoby15 in his review of vibrational
population relaxation. Furthermore, it is often possible
extend the range of validity of relations that are expresse
terms of equilibrium structural or transport coefficients
replacing them with wave vector or frequency depend
analogs. In the context of vibrational relaxation, extensio
of this kind have been developed by Metieuet al.,16 building
upon the work of Zwanzig and Bixon17 on a hydrodynamic
calculation of the velocity autocorrelation function. The
considerations suggest that a fruitful approach to the ca
lation of ^F(t)F(0)& might be~at least initially! to develop a
largely thermodynamic or hydrodynamic description of t
correlation function, and then subsequently~as needed! to
include more and more molecular detail by the means
cussed above.

To this end, we will regardF in Eq. ~11! as a thermo-
dynamic force, and determine it using density function
methods,18 the starting point of which is the following den
sity functional expansion of the Helmholtz free energy:19,20

bA@r i~r !#5(
i
E drr i~r !@ ln r i~r !/r i

021#

2
1

2 (
i , j

E drE dr 8Ci j ~r2r 8!

3dr i~r !dr j~r 8!1... , ~12!

wherer i(r ) is the local density of thei th component at the
point r , r i

0 is the mean density of that component,dr i(r ) is
the density fluctuation atr , i.e., dr i(r )5r i(r )2r i

0, and
Ci j (r2r 8) is the two-particle direct correlation function be
tween componentsi and j located at positionsr andr 8. The
right-hand side of Eq.~12! represents the first two terms o
an infinite expansion in powers of the density fluctuation,
coefficients of which are multiparticle direct correlatio
functions. This expression for the free energy is most of
used in studies of dense fluids,21 where density fluctuations
are typically small, and the series may be safely truncate
second order. If density fluctuations are large, as is the c
near a critical point, it is not entirely clear whether cubic a
quartic contributions to~12! are important. However, sinc
these contributions are associated with three- and four-b

B. J. Cherayil and M. D. Fayer: Vibr
direct correlation functions, which are likely to be small,~12!
may well be an adequate approximation even near the critic
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Downloaded 31 Jul 2002 to 171.64.123.74. Redistribution subject to AI
e-

the
a-

y

a

lf-
e

in

t
s

u-

s-

l

e

n

at
se

dy

point. In the absence of any definite information that wou
resolve this issue one way or the other, we use Eq.~12! as it
stands.

The effective potentialV( i )(r ) that determines the equi
librium density distributionr i(r ) of the i th component is
obtained from the requirement of the vanishing of the lo
chemical potential, which is the functional derivative of th
free energy with respect tor i(r ). This yields

r i~r !5r i
0 exp~2bV~ i !~r !!, ~13!

where

bV~ i !~r ![2(
j
E dr 8Ci j ~r2r 8!dr j~r 8!. ~14!

If i 51 denotes the solvent andi 52 the solute, and if, fur-
ther, the solution is assumed to be infinitely dilute@as is the
case in the experiments with W~CO!6#, then the potential
acting on the fixed solute atr is simply

bV~2!~r !52E dr 8C21~r2r 8!dr1~r 8!, ~15!

and the corresponding force@which we shall denote
dF(2)(r )# is 2]V(2)(r )/]r . The generalization of these re
sults to time t involves the replacement ofdr1(r ) by
dr1(r ,t). We now make the identification

^F~ t !F~0!&[
1

3V E dr ^dF~2!~r ,t !•dF~2!~r ,0!&, ~16!

whereV is the volume of the system, and the integral over
represents an average over all spatial locations of the fi
solute. Rewriting this expression in Fourier space, and s
stituting the result into Eq.~11!, we can now show that

T1
21}TE

0

`

dt cos~vt !E dkk2uĈ21~k!u2Ŝ1~k,t !, ~17!

where constants independent of density and tempera
have been omitted. HereĈ21(k) is the Fourier transform of
the two-particle direct correlation function between solu
and solvent, andŜ1(k,t) is the dynamic structure factor o
the solvent, defined by

Ŝ1~k,t !5^dr̂1~k,t !dr̂1~2k,0!&, ~18!

with

dr̂1~k,t !5
1

~2p!3 E dre2 ik•rdr~r ,t !. ~19!

Equation~17! is the key relation between the excited sta
lifetime and measurable properties of the system. The in
gral over k in this relation has the range 0<k<`, so it
would seem that both long and short distance contributi
to T1 have been incorporated into the theory. However, si
the relation has been derived on the basis of a force tha
thermodynamic in origin, there would probably be some
consistency in allowingk to assume very large values. Ac

7645onal relaxation in supercritical fluids
al
cordingly, we introduce a cutoffL on thek integral, so that
Eq. ~17! is essentially restricted to relatively long wavelength

o. 19, 15 November 1997
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regimes. We shall later assign a definite value to lam
using information about the thermodynamic properties of
system, specifically its correlation length.

In this context, we determineŜ1(k,t) from hydrodynam-
ics as the solution to the coupled equations for the conse
tion of mass, momentum, and energy, which leads to8

Ŝ1~k,t !5Ŝ1~k!e2DTk2tF12
1

g
$12cos~cskt!e2~G2DT!k2t%G .

~20!

HereŜ1(k) is the equilibrium structure factor of the solven
which we approximate by the Ornstein–Zernike express
given by8

Ŝ1~k!5
r1kT /kT

0

11k2j2 , ~21!

where r1 is the number density of the solvent,kT is its
isothermal compressibility,kT

0 is the isothermal compress
ibility of the ideal gas, andj is the correlation length o
density fluctuations. Further,g[Cp /CV is the ratio of spe-
cific heats,DT is the thermal diffusivity,cs is the adiabatic
sound velocity, andG is the sound attenuation constan
which in turn is given by G5DT(g21)1(4hs/3
1hb)/rm , wherehs is the shear viscosity,hb is the bulk
viscosity, andrm is the mass density. The second term in E
~20! accounts for acoustic phonons in the medium, and
light scattering experiments, it is associated with spec
peaks at frequencies ofv6csk. In ethane,v for the CO
stretching frequency is on the order of 2000 cm21, so at long
wavelengths it can be shown thatcsk!v. As a simplifica-
tion, therefore, we set the term cos(cskt) in Eq. ~20! to unity,
which allows the dynamic structure factor to be written a

Ŝ1~k,t ![X2
1

g
~X2Y!, ~22!

where

X5Ŝ1~k!exp@2t/t1~k!#, ~23a!

with 1/t1(k)[k2DT , and

Y5Ŝ1~k!exp@2t/t2~k!#, ~23b!

with 1/t2(k)5k2G.
We shall first consider the limitkj!1, which corresponds to
the noncritical regime. The direct correlation function for
two-component mixture is not known in general, so in the
calculations it is approximated by the direct correlation fun
tion of the binary hard sphere mixture, for which an analy
expression is available22 ~although it is too lengthy to repro
duce here!. Hard sphere models are commonly used to r
resent dense liquids~where packing fractions are typicall
greater than about 0.3!, but they have been successfully a
plied to less dense fluids as well.23 Such models are therefor
expected to provide a useful first approximation toĈ21(k)
for the entire range of experimental solvent densities~except,

7646 B. J. Cherayil and M. D. Fayer: Vibr
of course, near the critical point, where attractive interaction
are important!. We further approximateĈ21(k) by Ĉ21(0),
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since Ĉ21(k) at largek is small ~it varies as 1/k2 when k
@1!. No serious error appears to result from th
approximation.24

When these approximations are introduced into Eq.~17!,
the integrals there can be evaluated exactly, and the lifet
is found to be

T1
21}Tr1

kT

kT
0 Ĉ21~0!2L3S QA2

1

g
QA1

1

g
QBD , ~24a!

wherer1 is the solvent number density, and

QA5
L̄2

DT~11v1
2!

@R11R22R3#. ~24b!

Here L̄5Lj, v15vj2/DT , and

R1512
5

3L̄2 F11
3

L̄2 H tan21 L̄

L̄
21J G , ~24c!

R25
5

3L̄2 F11
3

4&
v2

3/2$ ln S122 tan21 S2%G , ~24d!

R35125v2
21

5

4&
v2

5/2@ ln S112 tan21 S2#, ~24e!

with v25v/L2DT , and the functionsS1 andS2 defined by
S15(11A2v21v2)/(12A2v21v2), and S25A2v2/(v2

21). QB is identical toQA except thatG replacesDT every-
where. Equation~24! determinesT1 for all r and T away
from the critical point once the temperature and density
pendence of quantities likekT , DT , j, etc., are specified
~For the hard sphere model, the density dependence of
direct correlation function is, of course, known analytically!
As it turns out, there are no simple expressions for th
thermodynamic functions, which must instead be descri
by phenomenological equations—typically involving 20
more parameters obtained by fits to experimental data—
apply to individual solvents. Such equations have been
tained for the equilibrium and transport properties of etha
by Friend et al.25 ~similar equations are also available fo
CO2, but they are considerably more complicated26!. The
calculations that lead to the equations for the equilibriu
properties of the system typically begin by expressing
Helmholtz free energy of the systemA as a series expansio
in the density and temperature. The coefficients in the exp
sion are initially unknown, but they are later determined
fitting the properties derived fromA to experimental data
Once the equation forA is established, all thermodynami
information about the system is immediately known. It th
becomes possible to obtain, say, the compressibility, by
ing derivatives ofA with respect to the density at consta
temperature. Knowledge of the compressibility in turn
lows the correlation lengthj to be calculated, sincekT}j2.
A similar approach is taken in calculating transport prop
ties ~viscosity, diffusivity, etc.!, although here no genera
prescriptions are available for determining all such prop

onal relaxation in supercritical fluids
sties. The values ofkT , DT , j, etc., that are used in Eq.~24!
at given values of the density and temperature have been
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obtained in this way. However, the shear viscosity is o
transport property that is not determined in these calc
tions, so we write it ashs53hb/2, an approximation that is
sometimes used in the theory of liquids.27

Several assumptions and approximations go into the
termination of the above empirical equations, but the eq
tions are deemed to be accurate across a wide range of
peratures and densities. The frequencyv is assigned the
value 3.831014 s21 ~corresponding to an absorption ener
of 2000 cm21!. From the calculated values ofj, the cutoffL
is chosen to have the value 23108 m21, which ensures tha
Lj,1 at all relevant temperatures and densities away fr
the critical point. The solvent diameter is taken to be 4.36
~based on the Lennard-Jones parameter of Ref. 25!, and the
solute diameter is estimated to be 6.00 A.

Equation ~24! is shown in Fig. 1 for the temperature
34 °C and 50 °C and for densities in the range 1–5 mo
~For reference, the critical point of ethane occurs atT
532 °C andr56.9 mol/L.! The plots in this figure are nor
malized so that at the lowest value of the solvent den
used in the experiments~1 mol/L!, the experimental and the
oretical curves are roughly coincident.

The predicted decay curves of Fig. 1 are in gene
agreement with experimental trends observed for W~CO!6 in
ethane and CO2 in the range of densities below the critic
density.6 As anticipated, the lifetimes decrease as the den
is increased. However, the decrease with density is
steeper~by a factor of about 5 at 5 mol/L on the critica
isotherm! than is seen experimentally. Possible reasons
this difference will be discussed later. If Eq.~24! is applied
to the near critical region~T'Tc , 5,r,10 mol/L!, and to
higher densities (r.10 mol/L), the results are as shown
Fig. 2 for the two isotherms considered earlier. Expected
Eq. ~24! breaks down in the immediate vicinity of the critic
point, where it shows extrema that are reminiscent of
maximum and minimum seen in theP-V isotherms of the
van der Waal’s equation in the two-phase region of ga
liquid coexistence. Beyondr'11– 12 mol/L, T1 decreases

FIG. 1. The lifetimeT1 in picoseconds versus solvent concentration
mol/L for the temperaturesT534 °C andT550 °C and densities between
and 5 mol/L. The curve with higher initial lifetime corresponds to theT
534 °C isotherm.

B. J. Cherayil and M. D. Fayer: Vibr
again, as in the experimental curve. The higher temperatu
isotherm falls essentially monotonically with density over
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the entire density range 1–15 mol/L. At higher densiti
away from the critical density, the two calculated isother
decrease and have almost the same values. This is als
accord with experimental observations.6

To probe the critical region using our hydrodynamic a
proach, it is necessary to pass to the limitk!1, kj→`. Near
the critical point, because of the divergence of the heat
pacityCp ~and hence ofg!, the second and third terms in Eq
~22! are small, so as a further simplification, they are n
glected altogether. The resulting equation can be exten
formally to the limit kj@1 by using Kawasaki’s mode
coupled expression fort1(k):28

1

t1~k!
5

kBT

8phj3 F11k2j21S k3j32
1

kj D tan21~kj!G ,
~25!

whereh is the viscosity. Related ‘‘extended’’ hydrodynam
descriptions of the structure factor are known~e.g., Refs. 29
and 30!. It is easy to show that whenkj!1, Eq.~25! reduces
to the expression defined after Eq.~22!.

Again, we approximateĈ21(k) by its k50 value ~near
the critical point, this is likely to be a less severe approxim
tion than the corresponding approximation in the noncriti
region!, but we no longer evaluate it with the hard sphe
model, which is inadequate near the critical point. Furth
Eq. ~25! shows that in the critical limit 1/t1(k);DTjk3,
while Ŝ1(k);r1kT /kT

0k2j2, so that the lifetime becomes

T1
21}T

r1kT /kT
0

j2 Ĉ21~0!2E
0

`

dt cos~vt !

3E dk exp~2DTjk3t !. ~26!

~More accurate representations of the structure factor
known near the critical point,31 but these do not alter the
qualitative features of our model.! Without actually evaluat-
ing the integral in Eq.~26!, we can draw the following con-
clusions: the correlation lengthj2 is proportional to8

r1kT /kT
0, so the density dependence ofT1 resides inĈ21(0)

FIG. 2. The same two isotherms as in Fig. 1, with densities in the ra
5–15 mol/L. The curve with the maximum and minimum in the critic
region corresponds to theT534 °C isotherm.

7647onal relaxation in supercritical fluids
reand the variableDTj. In general,DT is defined asl/rCP ,
wherel is the thermal conductivity andCP is the constant
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pressure heat capacity. On the critical isochore, both the
and experiment suggest that32 l;t2g1n and CP;t2g,
where t[uT2Tcu/Tc , andg and n are universal exponent
that have the values 1.24 and 0.63, respectively. On the c
cal isotherm, these relations are equivalent tol
;(Dr)2(g2n)/b and CP;(Dr)2g/b, where Dr[ur
2rcu/rc , andb is another universal exponent (50.324).32

HenceDT;(Dr)n/b alongT5Tc . Sincej also varies ast2n

on the critical isochore, and therefore as (Dr)2n/b on the
critical isotherm,DTj is either independent of the density,
at most weakly dependent on it~through a weak critical
anomaly in the viscosity that is manifested asymptotica
close to the critical point32!. Thus, in spite of the fact that th
correlation length, the isothermal compressibility, and
thermal diffusivity all change rapidly with density near th
critical point, the changes are mutually counterbalanci
with the result that they contribute very little to the dens
dependence ofT1 .

The direct correlation function at zero wave vector c
be related rigorously to the thermodynamic properties of
infinitely dilute binary mixture. For instance, if the correl
tion function integralC̄21 is defined as

C̄215E drC21~r ![Ĉ21~0!, ~27!

then from the fluctuation theory of Kirkwood and Buff,33

using the results of McGuigan and Monson,34 it is readily
demonstrated that

C̄21
` 512

V̄2
`

kBTkT
, ~28!

where theV̄2 is the partial molar volume of the solute,kT is
the isothermal compressibility of the solvent, and the sup
script ` denotes the limit of infinite dilution. Now it is
known thatV̄2 diverges askT near the critical point,35 so
from Eqs.~27! and ~28! it follows that

Ĉ21~0!→c, T→Tc , r1→rc , ~29!

where c is some function that is expected to be at m
weakly dependent on the density.

Thus, the lifetime is finally seen to be essentially dens
independent. Further, because the effect is attributed to
long-range correlations in the density fluctuations, sim
behavior is expected of other solute–solvent combinatio
irrespective of the character of their microscopic molecu
interactions. In particular, no distinctions can be drawn
tween what have been referred to in the literature as att
tive, repulsive, or weakly attractive mixtures,36 since for all
of them, V̄2 diverges in exactly the same way, aside fro
differences of sign. Indeed, at least two other syste
W~CO!6 /carbon dioxide and W~CO!6 /fluoroform, show
qualitatively the same changes with density near the crit
point as W~CO!6 /ethane.6 Moreover, within the present den
sity functional formalism based on Eq.~12!, the only differ-
ence between a one-component system and an infinitely

ˆ ˆ

7648 B. J. Cherayil and M. D. Fayer: Vibr
lute mixture is thatC11(k), rather thanC21(k), is used in the
expressions for the lifetime. At zero wave vector, the limit-
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ing form of this function near the critical point is also likel
to be largely density independent. Thus the critical proper
of pure fluids are also expected to be similar.

B. Frequency shifts

As stated earlier, the absorption frequencyn of the CO
stretching mode of W~CO!6 in ethane changes with densit
in much the same way as the lifetimes: near the critical i
thermn first decreases, then remains constant, then decre
again. At higher temperatures,n simply decreases monoton
cally. The lack of density dependence ofn near the critical
point has also been observed in supercritical CO2 and super-
critical fluoroform.6 The CO stretching mode of the solu
rhodium dicarbonylacetoacetonate in these solvents also
haves similarly.6 If the changes inn with density are reex-
pressed in terms of the shiftsDn of the fluid phase frequen
cies from a putative gas phase frequencyng ~which could be
identified, for instance, with the extrapolated zero dens
fluid frequency!, the trends mentioned above are revers
That is to say, along the critical isotherm,Dn first increases
with density, then remains constant, then increases ag
while at higher temperatures, it simply increases monoto
cally.

From general considerations, it is clear thatDn must
depend on the average force along the vibrational coo
nates of interest.7 The nature of this connection is hard
define when these coordinates involve collective motions
is the case for polyatomics. Nevertheless, we shall ass
that the fluctuating forcedF(2)(r ) on the solute located atr is
related to the shift in frequency of the CO mode as a resul
interactions with its surroundings. The average of this fo
is, of course, 0, so we define the frequency shift as

~Dn!2}E dr ^dF~2!~r !•dF~2!~r !&. ~30!

Following the sequence of steps outlined earlier, Eq.~30! can
be reduced to

~Dn!2}T2E dkk2uĈ21~k!u2Ŝ1~k!, ~31!

which in turn becomes

~Dn!2}T2r1

kT

kT
0

Ĉ21~0!2
1

L̄2 S 12
3

L̄2
1

3

L̄3
tan21 L̄D

~32!

in the noncritical (kj!1) limit, with L̄[Lj as before, and
which becomes

~Dn!2}T2
r1kT /kT

0

j2 Ĉ21~0!2 ~33!

in the critical (kj@1) limit.
Equation ~32! is shown in Fig. 3 for densities in the

range 1–15 mol/L with the various thermodynamic a
structural parameters of the model calculated as before.
general trends in the behavior ofDn in the noncritical region

onal relaxation in supercritical fluids
are in qualitative agreement with the experimental data at
low and high densities. In particular, they correctly predict
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the magnitude of the total shift in frequency between
highest and lowest densities. However, the breakdown of
equation near the critical point is far more dramatic here t
was the case for the lifetimes. Moreover, the higher temp
ture isotherm, which should have increased smoothly w
density across the entire range of densities, does not d
whenr is centered around the critical density. The tempe
ture must be considerably higher (.175 °C) before the
change ofDn with r is monotonic. These results suggest th
Eq. ~32! accurately describes some, but not all, the contri
tions to the frequency shift from the various forces in t
medium.

The study of the critical region requires the use of E
~33!. As before,r1kT /kT

0 scales asj2, andĈ12(0) becomes
nearly constant in the critical region. The equation, therefo
predicts~as observed! thatDn is density independent near th
critical point.

III. DISCUSSION

The foregoing results suggest that the changes inT1 and
n near the critical point~or lack of change, to be more pre
cise! are ultimately governed by the growth of critical flu
tuations in the medium. Specific solute/solvent cluster f
mation, an appealing alternative scenario~discussed in the
Introduction!, is not required by the current theory to expla
the observed trends in the vibrational data. At the same ti
however, it is probably important to emphasize that the te
cluster is not very well defined. Cluster is often taken to re
to the extended regions of uniform density that are und
stood to exist in the critical domain. Such clusters, stric
speaking, are not antithetical to our theory. But they do
seem to be quite the same objects that are often spoken
the engineering and chemistry literature,4,36 which actually
seem to be persistent structures with well-characterized
metric properties, like shape and average spatial extent
this list of attributes should probably be added a reside
time of the molecules in the cluster, since otherwise o
would classify as clusters the coordination shells that s

FIG. 3. The frequency shiftDn in cm1 versus solvent density in mol/L for
the isothermsT534 °C andT550 °C. The upper curve corresponds to t
lower temperature isotherm and the lower to the higher temperature
therm.

B. J. Cherayil and M. D. Fayer: Vibr
round individual molecules in a bulk fluid and whose exis
tence is detected as peaks in a radial distribution function.
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While the theoretical results presented here demonst
that persistent structures are not required to explain the
brational lifetime and line position experiments, they do n
rule out the existence of such structures. Clusters may
involved in the explanation of other experimental obse
ables, e.g., fluorescence peak shift measurements by Be
and Johnston, which are also characterized by density in
pendent properties near the critical point.37 It should be pos-
sible to adapt the present density functional formalism
treat fluorescence problems, but the central quantity of in
est there is a transition dipole moment correlation functi
and not a force correlation function. So our present res
have no direct bearing on the fluorescence data.

The structural integrity of persistent clusters is depe
dent on the attractive or repulsive character of the interm
lecular interactions; indeed, so-called repulsive binary m
tures are not expected to form clusters. Therefore, repul
mixtures, as well as pure fluids, would differ, spectrosco
cally, from attractive binary mixtures. But our theory su
gests that such differences are unlikely to be observed
vibrational experiments because the lack of dens
dependent vibrational observables near the critical point d
not require the existence of solute/solvent clusters. Unfo
nately, there appear to be few systems~other than rare gas
mixtures! that qualify as true repulsive mixtures, and the
do not exhibit the kinds of vibrational transitions that can
probed with vibrational spectroscopy. Pure fluids are diffic
to study for other reasons, but a deutero-substituted p
atomic in a large excess of the normal compound is v
nearly a single-component system, so its critical behav
may provide a valuable test of the above ideas.

If hydrodynamics is found to provide a reasonable d
scription of the process of vibrational relaxation near t
critical point, this would suggest that the short distan
events that must occur during the process are coupled to
modes of the medium, which are themselves influenced o
large distances. In this view, the correlated regions in
solvent that surround isolated molecules of the solute can
thought of, crudely, as being solidlike38—they are therefore
expected to support low and high frequency oscillations. T
intermolecular spacing within these regions determines
highest frequency~quasi-Debye! translational modes, as we
as high frequency hindered rotations, or librations. Over d
tances up to the correlation length, translational and ro
tional modes may be highly extended instantaneous nor
modes,39 somewhat akin to the phonons of an amorpho
solid, making the fluctuations experienced by the solute
herently different from those in a fluid far from the critica
point, where the correlation length is small.

Away from the critical point, it seems clear that a hydr
dynamic theory of vibrational relaxation is not wholly rel
able, although there is nothing at present to indicate that
calculation of the dynamic force correlation function by de
sity functional methods is necessarily a po
approximation—what appears to be needed are more a
rate representations of both the two-particle direct correla

o-

7649onal relaxation in supercritical fluids
- function and the dynamic structure factor. Such representa-
tions can be formulated~through memory function methods,
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for instance38!, but they are unlikely to lead to analytica
results. A microscopic theory of vibrational relaxation that
valid in the highk, short time limit may make our predicte
lifetimes in the range 1–5 mol/L more quantitative.~It is
possible that a quantum mechanical treatment is actu
necessary to account properly for the participation of disc
high frequency modes of the solute and solvent.9,40! Despite
the shortcomings of the present approach away from
critical point, we have found that its predictions for the te
perature dependence of the lifetime along a critical isoch
are reasonably consistent with recently acquired experim
tal data. These results will be discussed in a subseq
publication.40
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