JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 19 15 NOVEMBER 1998

Monte Carlo simulations of electronic excitation transfer in polymer
composites and comparison to theory

D. M. Hussey, S. Matzinger, and M. D. Fayer
Department of Chemistry, Stanford University, Stanford, California 94305-5080

(Received 22 April 1998; accepted 13 August 1998

Monte Carlo(MC) simulations of electronic excitation transféd€ET) among a small number of
chromophores covalently incorporated into copolymer molecules are presented and used to test the
results of previously developed analytical EET theories that are useful for the study of polymer
chain structurdK. A. Peterson and M. D. Fayer, J. Chem. Phg5, 4702 (1986] and phase
separation in polymer blendé. H. Marcus and M. D. Fayer, J. Chem. Ph9d, 5622(1991)]. The
simulations and theory account for EET among chromophores bound to a single chain and among
chromophores attached to different chains. The calculated quaf@y(t)), which is the
probability that an initially excited chromophore is still excited at timis related to time-resolved
fluorescence depolarization experiments. The theories, particularly the treatment of interchain EET,
depend on a series of approximations whose efficacy has not been determined. Close agreement
between the MC simulations and the analytical theory are found for a variety of situations, including
those that mimic real polymer systems. The limits beyond which agreement is weakened provide
specific guidelines for the design of polymer structure and phase-separation experime&98©
American Institute of Physic§S0021-9608)52343-4

I. INTRODUCTION rate of the donor in the absence of acceptors. For common
. chromophoresR, is between 5 and 60 A. The sensitivity of

~ The desire to understand the structures and phase beha¥gster transfer to the distance between chromophores is de-

iors of pglsymer composites has motivated a great deal ofengent upon this single parameter, which can be determined

research3 Because polymeric melts and glasses have a fass'pectroscopicalﬁ} or with transfer experimenfé23Because

cinating array of characteristics that distinguish them fromFbrster transfer is strongly distance-dependent, falling off as

small-molecule liquids and solids, they are of great interesi/re’ wherer is the chromophore separation, EET observ-

both as versatile industrial materials and as model SYSteMgnles contain information about chromophore spatial distri-

for scholarship in physics, chemistry, biology, and engineery i o

ing. In particular, polymer composites have a vast repertoire EET has been modeled such that a calculable quantity,

of phase behaviors which confer upon them a variety of ar'GS(t) emerged.G(t), which is readily compared with ex-
chitectures at the molecular level, corresponding to a wide” .’ ' T . A
range of bulk physical properties perimental observables, is the diagonal, or “self” part of the

The theories developed over a number of years for cal>reen function solution to the Pauli master (_aq_u_a?ré%l.t '
pe probability that an excitation is on an initially excited

culating the time-resolved observables measured in opticé

studies of electronic excitation transf&ET) (Refs. 4—14 chromophore at timé, either because the excitation has not
apply to systems of random copolym&fsiS18 micelle been transferred to another chromophore, or because it has

surface$:1®2 and the micellar, lamellar, and cylindrical been transferred away from and returned to the initially ex-

phases of diblock copolymefé making it possible to probe Citéd chromophore. Since the time-dependence of the ob-
the architecture of a variety of polymer composites at theServable arises from the spatial distributions of_unexcned
molecular level. Since the measurement of EET can involvéhromophores around the ensemble of excited chro-
the detection of single fluorescent photons, EET experimentdiophores, the ensemble-averagei(t) is the quantity of
afford a sensitivity that permits probing the configurations ofinterest.
copolymers which are present in a composite at very low If EET occurs among identical chromophores that can
concentrations. continually transfer excitations, the system is donor—donor,
Random copolymers consisting of optically inert mono-or DD. In a DD experiment, polarized light excites a very
mers and a small number of fluorescent chromophores agmall fraction of the chromophores, preferentially exciting
blended with an optically inert host material to obtain thethose oriented so that the light's electric field has a large
experimental system. Fluorescent chromophores transf@rojection along the absorption dipole. Excitation transport
electronic excitations through nonradiative resonant dipolapccurring among chromophores with randomly oriented di-
interactions between excited and unexcited chromophores, @oles results in loss of the polarization anisotropy of the
described by Fister?! This interaction is parameterized by ensemble of excited chromophores. A time-resolved fluores-
the Faster distanceR,, at which the rate of transfer to cence anisotropy decay(t), which is related to (G5(t)),
unexcited chromophores is equal to the fluorescence decay measured. The experimental determinatioq®f(t) ) pro-
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vides information about the spatial distribution of chro-in a particular distribution be found in the volume occupied
mophores, and therefore about polymer structure. by the distribution is writtenp [ spacal(r)dr=N—1, wherep

The analytical theory fointrachain EET (Ref. 4 de- is the number density of chromophores, is the distance
pends on a series of approximations, including a cumulanbetween chromophores 1 and 2. Chromophores other than
expansion truncated to first order based on a two-particlehromophore 1 are called acceptors, even though they are
approximation that greatly simplifies the numerical calcula-identical to chromophore 1 and can transfer excitations back
tion of observable$!?'3In previous work, the intrachain to chromophore 1 as well as among themselves. The inner
theory allowed the ensemble-average radius of gyration oihtegral is performed over all possible positions of excitation
copolymer molecules present at low concentrations in optiacceptors, and the outer integral is performed over all pos-
cally inert hosts to be determined with time-resolved anisotsible positions of the initially excited chromophore.
ropy decay measuremerfts>1® Equation(1) is based on the work of Hubéf,who de-

When copolymer molecules are in close proximity, as inveloped a treatment of EET among randomly distributed
the process of phase-separation, the theory can also be usglttomophores in an infinite volume using a cumulant expan-
to determine the contribution ointerchain EET to the sion. Use of a two-particle approximation derived by
observablé. The theory for interchain transfer relies on ad- Blumen' allowed truncation of the cumulant expansion after
ditional assumptions, including the independence of intrathe first-order term. Peterson and Fdydemonstrated that
chain and interchain contributions to the total observableHuber's (G>(t)) produced results matching those from the
and the Effective Chromophore Method, which entails ainfinite-order diagrammatic expansion method of Gocha-
renormalization of the problem resulting in the treatment ofnour, Andersen, and FayeiThey modified Huber's method
entire chromophore-bearing copolymers as though they wer® construct expressions fqiGS(t)) for chromophores in
each, effectively, single chromophores. Effective chro-finite-volume, nonrandom geometries, e.g., the Gaussian
mophores have transport dynamics that depend upon the neegment-distributions of polymer chains. They showed that
ture of the copolymer chains they represent, and permit théor a finite number of chromophores in a spherical volume,
reduction of the problem from the interactions of many chro-their model was slightly less accurate than that based on a
mophores on different chains to the pairwise interactions oéecond-order  density — expansion with a Pade
effective chromophores. Experimental systems exist foapproximant

which the interchain transfer theory may be uséftft'8 The cumulant expansion method has a number of advan-
However, the influence of the assumptions on the accuractages over the density expansion method and the infinite-
of the theoretical calculations has not been tested. order diagrammatic theory. The diagrammatic approach re-

The purpose of this paper is to test the assumptions madguires translational invariance of the ensemble average
in the theoretical developments describing both intra- andiround the point of initial excitation as well as the ability to
interchain excitation transport dynamics with the aid of MC pass to the thermodynamic limit. Neither of these conditions
simulations. The results of detailed simulations of EET inis applicable to finite-volume, spatially inhomogeneous sys-
various systems show excellent agreement between simuléems. In contrast to the cumulant treatment, the density ex-
tion and experiment for intrachain EET and reasonablgansion involves equations in Laplace space, making com-
agreement for interchain transport. The simulations providgarisons between experiment and theory more difficult.
insights into the experimental conditions for which EET pro- Furthermore, to achieve reasonable accuracy, it is necessary
vides a useful probe of polymer structure and phase separ& perform the density expansion to second orderee par-

tion. ticles). Obtaining the second-order result for complex geom-
etries is difficult.
Il. OUTLINE OF THE THEORY To test the approximations inherent in the general form

of Peterson and Fayer's expression for EET as distinct from
their specific model of a polymer chain, MC simulations are
first compared to expressions for EET between chro-
mophores randomly distributed in a three-dimensional
Gaussian cloud,

The general expression f@GS(t)) for an initially ex-
cited donor(chromophore LlandN— 1 excitation acceptors
(chromophores Rin an ensemble oN chromophores in a
restricted volume 5

1 N—1
<Gs(t)>=V—J exp{( >V ) 3\ 32 frmax —3r§
1 Jspace 2 (GS(t)y=4m f ex expl m(N—1)
2mwo? 0 2072
—2t\[Rp\®
stpac ex — r_12 —1u(ry)dr, 3 \32 —3r§ —ot
X o2 ex 72 expg | —
Xu(rl)er (1) mTo 0JO g T
6
whereu(r) is a function representing the spatial distribution E _ 2 . 2
of chromophores. For spherical symmetry, the vector nature X Mo 1]radra sin 6,d6; radry, @

of the average is equivalent to having a factor efrddr

with |[r|=r, sou(r)=1 for a random distributionV is the Wherer12=r§+ r§—2rlr2 cosé,, and o is the standard de-
volume spanned by the chromophore distribution. The norviation of the Gaussian. In the three-dimensional Gaussian
malization condition requiring that all of the chromophorescloud problem, the ensemble-average chromophore distribu-
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tion has a maximum at the center and falls off in a threegiven segment im=(N—1)/N, whereN is the number of
dimensional Gaussian manner. The ensemble average is ovgatistical segments per copolymer molecule. The distribu-
all configurations of donor and acceptor chromophores artion of additional chromophores on a segment around the
rayed in this Gaussian manner. The equivalent problem fogenter of that segment ig’, and p; is the configuration-
chromophores randomly distributed in a sphere is examineglveraged radial probability of finding any other polymer seg-
in Ref. 24. ment,j, a distance away from a segment
We also examine the behavior @¢G(t)) for chro- Marcus and Fayértreated the problem of calculating
mophores inside a sphere with the initially excited chro-(GS(t» for EET among chromophores on the surfaces of a
mophore at the center of the sphere. Then, the average ovgindom distribution of spheres, and extended the treatment to
positions of the initially excited chromophore is removed, apply to EET among chromophores on multiple polymer
3 chains modeled as Gaussian clofidghis development de-
(GS(t))=exp{2w(N—1)(4 rg) pends upon the separability ¢GS(t)) into independent
& components{Gg.(t)), which is the result of Eq(5) and
r —2t\(Ry\® represents EET among only those chromophores on the same
X fo ex;{(T) —) }—1)r§dr2}. ©)

copolymer molecule, andGg«(t)), which represents EET
among the initially excited donor and only those acceptors
As the volume becomes very larg&S(t)) should converge which are on neighboring polymer chaitar other types of
to the analytical expression f¢GS(t)) in a random, infinite, chromophore aggregates such as micglleBis separation is
three-dimensional solution of chromophde® mathematically rigorous in the context of the first-order cu-
e (122 1 mulant approximation. Whether it is physically appropriate
(Gs(t))=exp{ 3 (;) RS(Z“Z)F(E)

(4) is an important question discussed in this work.

To calculate{G«(t)) for chains of a given size with a
wherec is the number density of chromophores, dhis the ~ SPecified number of chromophorg&®(t)) must be first cal-
complete gamma function. culated for an |n|t_|aIIy e_xuted donor located on chain 1 and

Peterson and Fayer modeled polymer chains using ase&“ possmle conflgurathns of chromophorgs on a second
mental distribution function related to one described bychain located a fixed distanc&s, from chain 1 with no
Yamakawa which yields a Gaussian distribution of seg- Pack-transfer(donor-trap, or DT EE]J. The two polymer
ment density for the ensemble average. The statistical se§l'ains are approximated by two Gaussian distributions of
ment length,a, is set to the Kuhn lengt® which can be chromophores(Gaussian clouds for the calculation of
determined experimentally with light scatterfigr as de- Gorpr(t). This is averaged over all possible initial positions
scribed in Ref. 4. The distribution of chromophores on thes@n chain 1, yielding a single curve for a particular interchain
chains is identified with that of the chain segments, and &listanceRs. This is repeated for a range @t. Since
factor accounting for the presence of an acceptor chrotGairor(t,Rs)) will provide inputs for the subsequent calcu-
mophore which may be on the same segment as the initiall{tion, it is necessary to choose a range of center-of-mass
excited chromophore is added. EET calculations using thi§eparations for the copolymer pairs from 0 to a distance large
model[Eq. (5)] and the cumulant method are compared withenough that there is no intercluster transfer, i.e., for which

the simulated chromophore-bearing polymer chains below, {Gror(t:Rs))=1 for all t under consideration. In practice,
_ the maximunt is determined by the fluorescence lifetime,

EP)

1 N A (= of the chromophores. It is usually unnecessary to congider
(G()=2 [exq’T f [np'(r12) >3r.
N= ° The result is a distance-dependé@t; or(t,Rs)) which
+(N=1-n)pi(ri)] describes the distance-dependent rate of transfer between
two chains as if they were a pair of “effective chro-
_ _ mophores.” The ensemble-average EET for a spatial distri-
XLexp(=2w12) 1]r12dr12’ } ' 53 bution of any number of chains can then be calculated as the

EET averaged over the spatial distribution of effective chro-
mophores. This approach, developed by Marcus and Féyer,
p’(rlz)dr12=47rrf2dr12, 0<r,,<(a/2); is called the Effectiye Chromophore Meth@CM). For real
chromophores, the Fster rate of transfer from chromophore
=0, rpp>(a2); (5D 1 to chromophore 2 i@q,= (1/7)(Ry/r15)®, wherer 1, is the
chromophore separation. F& chromophores, this is the
3 32 pairwise transfer rate that is used in tNecoupled differen-
27a’li—|] tial equations of the master equation. TRecoupled equa-
tions must be ensemble-averaged over all possible spatial
~3r2, ! configurations of theN chromophores. The cumulant treat-
><exp( m)r 70710, (50 ment is an approximate solution to the ensemble-averaged
Master equation. Equatiofi) contains the pairwise transfer
and w1,=(1/7)(Ry/r15)®. w1, is the transfer rate constant. rate in the exponential. In the ECM; “1#, the probability
The likelihood of having an additional chromophore on aof finding the excitation on the initially excited chromophore

with

>

j=1
j#i

N
dr 4qr
Pi(r2)dry; N-1
I
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at timet,%° should be replaced with the analogous probability<c;gﬁ(t,|\1C 1))
of finding the excitation on the initially excited effective
chromophore. As in the actual chromophore problem, this Ne—1 J' s 2

: - . = G t,R))Y —1]u(r,)drs|.
quantity reflects forward probability flow, without back- 2V pac|e:< oo1(LRs)) lu(rz)dr
transfer. Therefore, it is th&3(t), the probability of find- (6b)
ing the excitation on the initially excited cluster. In the limit _ o
that each cluster reduces to single chromophores each athy IS the number of chromophore-containing copolymer
single location,G2(t) reduces toe™“12. In the original molecules in a nanodomain, aMlis the nanodomain vol-
treatment of the ECMGS,(t) was used rather tha@S.(t). ~ UMe. The first integralEq. (6a)] is an average over all po-
GSo(t) does not correspond to the pairwise transfer rate usetitions of a copolymer molecule bearing the initially excited

for real chromophores because it includes back-transfer, arfdfomophore, and the second intedi. (6b)] is an aver-
it does not reduce te~“12 when the clusters are reduced to @3¢ ©ver all positions of a copolymer molecule bearing a

single chromophores each at a single location. chromophore which accepts an excitation. Equat@®nre-

To use the ECM to calculate the excitation transport Ob_duces to a three-dimensional integral, and the space can be

servable for a system of clusters of chromophores, it is firsgesgﬁ:iix';rl‘esﬂ;%rgagfvgILrj]g]r?oglfgzgtiss' 2 random distri-
necessary to cak_:ulate the DT EET. between “’YO CI.USterBution of copolymer molecules within a spherical volume.
separated by a distand®,. While straightforward in prin- For this distribution, interchain EET is described by

ciple, the calculation can be a difficult problem in geometry '

because it is necessary to specify the distance between every GS(E N = Rdom 3(N.—1)
chromophore on cluster (the cluster containing the initially (Gori(t.Ne)) = Rﬁom ex 4Rd§0m
excited chromophopeand every chromophore on cluster 2 as

a functio_n ofRs, inclu_ding distances for which _the clusters « fRdomfﬁ[<G3ﬁ or(t,R)Y2— 17|52
may be interpenetrating. In the current work, it was found 0 0 '

that the geometry relating the positions of chromophores in

one cluster to those in another cluster was incorrectly sim- X sin gzdr2d02> |rq|2dry, (7)
plified in Ref. 5, such that the set of distances between chro-

mophores in different clusters was not fully represented ir‘NhereRdom is the nanodomain radius. The spherical volume

the resulting four-dimensional integral. A correct treatmenty,as 5 hard cut-off. However. the effective chromophores rep-
of the geometry necessary to calculate intercluster EET igasent Gaussian copolymer chains, and placing them in a
derived in Ref. 24. The final result of the derivation, a ﬁVe'sphere means placing the chains’ centers-of-mass within a
dimensional integral with the DT transfer rate, is given in thesphere. The distribution of chain segments extends beyond

Appendix. The use 063p(t) and the four-dimensional in-  the sphere, falling off as a Gaussian from the surface.
tegral to obtain the effective chromophore distance-

dependent transfer probability in Ref. 5 gave rise to signifi-4||. NUMERICAL METHODS
cant errors in the calculations @fG54(t)) in Refs. 6 and

17-20, although the errors tend somewhat to offset each Equations((jZ)—(4) andhthngnal(())gdous_ll_\/IC simu(liagons alre
other. Because EdA1) is a five-dimensional integral, and Irst computed to test the First-Order Truncated Cumulant

because it is only necessary to calculate donor-trap EET t pproximation; the results of these tests for Gaussian distri-

obtain (G2, or(t,RY)), it actually takes much less computer utions and for uniformly filled spherical distributions with
time to ngé?&G’S;DT,(t R.)) by simulation than by numeri- the donor at the center are presented to demonstrate the be-
off, )

cal integration. MC simulations of intercluster DT EET are havior of the theory independent of the polymer chain

i ; S .
compared with Eq(Al) in Ref. 24, demonstrating the per- model. Then the single-chain theory (1)) [Eq. (5)] is

fect agreement that allows this time-saving substitution. compared to simulations of ensembles of random-flight poly-

In the process of phase separation, copolymer moleculerger chains. I_:lnally, EET in clusters of po!ymgr cha!ns 'S
I P calculated using the ECM and compared with simulations.
initially come together to form nanoscopic aggregates, or
“nanodomains.” The copolymer molecules comprising

these domains are represented by a distribution of effectivd. Theory for intra- and interchain EET

chromophores, each located at the center-of-mass of the co- Equations(2)—(5) and (7) are solved using numerical

polymer molecule it represents. EET among the effectivgnegration with either the Romberg or the Gaussian quadra-
chromophores in a nanodomain is then written in terms of ;e method" with abscissas at the zeros of the Legendre
polynomial orthogonal to the weighting factors for Gaussian

integration®2 P,_3,(x). Since most of the decay happens at
1 early times, time steps of 0.05 ns are used from 0 to 15 ns,
<G§ﬁ(t,Nc)>=vf (Ggir(t,Ng,r)yu(ry)dry, (68  and time steps of 1 ns are used from 15 to 150 ns. For
space integrating uniform functions the Romberg method is used

exclusively.
Ry for an actual chromophore is scaled by the orienta-
with tional parametery, appropriate for the spatial dimensionality
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of the system and the angular distribution of the chro-  When we wish to assign an excitation to a specific chro-
mophores in if° In the glassy polymer systems discussedmophore and watch the excitation hop from chromophore to
here, chromophore orientations are taken to be random archromophore in time{G5(t)) is determined differently. The
static, soR,=y®°R,, where y=0.8452. For chromophores following method is particularly useful for simulations of
inside a sphere, or effective chromophores in a spherical nafeET between chromophores in any of the configurations
odomain, the upper limit ofr| in Egs. (3) and (7) is set  here described when the initially excited chromophore is al-
equal to the sphere or nanodomain radius. The upper integrasays at a particular point in space, such as at the center of a
tion limit on |r| in Eq. (2) is 50, and in Eq.(5) is  uniform or Gaussian distribution, or on the end of a polymer
5><(R§)1’2; increasing these respective limits to dd®r  chain. It is also used to check the results of simulations em-
10><<R5>1’2 does not change the results. ploying the matrix diagonalization formalism. Once the ma-
trix of rate constants for excitation transfer between any two
chromophores has been prepared, the sum of the rate con-
B. Monte Carlo simulations stants for excitation transfer from the initially excited chro-
The validity of the analytical EET theories is tested with Mophore to all other chromophores is calculated and used to
MC simulations. The random numbers on which the simulad€términe the probability of any transfer occurring during
tions depend are prepared as follows: a seed number the first time step. Then a r.a.ndom number is chosen. If it
passed to a random number genefitémg) which selects gxce(_ads the transfer prob_ablhty, no transfer occurs, a_md the
24 values which are in turn used as seeds for a mg using tHne is advanced. Otherwise, a new random number is cho-
algorithm of Marsaglia and Zamafwhich has a very large S€n. and the rate of transfgr from the e>_<C|ted chrorr_lophore to
period (~10°) and passes the DIEHARIRef. 34 battery ~€ach other chromophore is summed in turn, until a chro-
of statistical tests. 10 000 calls to this rng are made and dignophore whose rate constant has caused the sum to exceed
carded before proceeding with simulations, in order to rethe random number is reached. This chromophore accepts
duce any bias that might arise from the 24 seed values. Sul2€ excitation, and the probability of transfer from the newly
sequent calls result in a uniform distribution of values®Xxcited chromophore to any other during the next time step
between 0 and 1. Output of the rng is either used directly, ofs calculated. At each time step, the histogram slot assigned
this uniform distribution of random numbers is mapped ontot0 that time step is incremented by 1 if an excitation was on
a nonuniform distribution as needed. the initially excited chromophore between its start and end
Chromophores are assigned coordinates randomly withiimes. The time is advanced, and this process is repeated
a sphere as follows. A uniform distribution in the radial co- until an entire decay oG(t) from 0 to 2r-10r has been
ordinate is obtained by multiplying the cube of the radius byconstructed. 10 000 or more decays are generated, and the
a random number, and taking the cube root of the result; thigverage value in each histogram slot is reportedGigt)).
prevents over-sampling values ofvhich define a small vol- Freely jointed chains are modeled as array®Ndftatis-
ume, and under-sampling those which delimit a large voliical segments of length, which are set down as non-self-
ume. A random number is picked from O terZor the azi- avoiding random walks in three dimensions. The first seg-
muth angle, and the value of the polar angle is found usingnent of a chain has one endpoint at the origin. To determine
0=acos(1- 2F), whereF is a random number if0,1]. This  the position of its other endpoint in spherical polar coordi-
weighting is needed to account for the fact that there is mor@ates, the radial coordinate is assigned the valugnd the
volume into which the chromophore can be placed at thezimuth and polar angles are chosen as described above. The
equator of the coordinate system than at the ptfl@® ob-  endpoint of the first segment becomes the starting point of
tain the coordinates of chromophores in a three-dimensiondahe next, until all the segments of a single chain have been
Gaussian cloud, a Gaussian distribution is randomly sampleplaced in the coordinate system. The chain’s center-of-mass
along each of the Cartesian axes using the Box-Mulleis calculated, and moved to the origin. If the chain is to be
method®! Chromophore indices and coordinates are stored iplaced in a nanodomain, it is instead moved to a randomly
a matrix, and the distances between them are calculated. Aassigned position in the appropriate distribution about the
excluded volume parameter may be set so that if an overlaprigin.
occurs, the entire chromophore configuration is discarded, Chromophores are now placed along the chain segments.
and the chromophore placement process begins again. A “start” segment is chosen at random, and the initially
When a nonoverlapping chromophore configuration hagxcited chromophore is placed at a random point on the line
been found, a matrix of rate constants for EET between théetween that segment’s endpoints. Each of the remaining
chromophores is constructed. A standard Jacobi méthodchromophores is randomly assigned to any segment. The
can be used to obtain the eigenvectors and eigenvalues ségments are then examined sequentially, and all of the chro-
this real, symmetric matrix. For faster computation, the ratenophores that have been assigned to a segment but not yet
matrix is tridiagonalized using the Householder reductionplaced on it are placed at random along a line between their
method, and the QL algorithm with implicit shiffsis used segment's endpoints. If an overlap occurs, the entire chro-
to yield only the eigenvalues of the Pauli master equationmophore configuration is discarded, and the chromophore
from which values of G5(t)) are determined®**This entire  placement process begins again with the empty chain. When
process is repeated and the results are averaged to yiedd configuration has been found in which there occurs no
(G3(t)). Typically, (G5(t)) converges after 5000—10 000 overlap of chromophores on the same chain, the chro-
repetitions. mophore locations are written into a master matrix. If nan-
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odomains are being simulated, additional chains are created,
placed in the nanodomain, and given each a set of nonover-
lapping chromophores whose locations are sequentially writ-
ten into the matrix. If ever an overlap occurs between chro-
mophores on different chains, the entire set of chains is
discarded, and the process begins again with the construction
of the first empty chain. A matrix of rate constants for EET
between all of the chromophores is constructed from the dis-
tances calculated based on the master matrix of chromophore
locations, and G5(t)) is determined as described above.

For comparison of Eq.Al) with MC simulations,
donor-trap versions of these simulations are used. Only one
chromophore is placed in the initially excited chromophore’s
cluster so that no intracluster transfer can occur, and only
one transfer event is allowed per configuration, because
transfer from the initially excited donor to any other chro-
mophore is irreversible.

Calculations and simulations were performed on IBM
RS6000 Model 3BT and Powerstation 375 workstations, or

an AS-ProDPSII workstation with dual Pentium Il micropro- 0.0 — T T T T
cessors. On the IBM workstations calculations of Ex).for 00 05 1.0 15 20 25 30
a copolymer withN=10 andN =100 out to 230 A and three Time (¢ / 7)

lifetimes (150 ng with 436 time points as described above

required 17.6 min, or 12.7 min on the AS-ProDPSII. SinceriG. 1. (G(t)) calculated for Eq(2) (dashed lingsand simulatedsolid

the amount of time required for the calculation is directly Iines)_for chromophores inthree—dimensiqnal Gaussiar_] clouds ofir_mcreasing
proportional to the number and density of time points useddelnsnyt.hN, the numbzr of chromophores in the Gaussian volume, is shown
this run time can be shortened significantly. The amount oPe oW Ihe corresponding curves.

time required for MC simulations is very sensitiveXp N,

the excluded volume parameter, and the number of timgompared to simulations for the fixed volume of a three-
steps. ObtainingGg(t)) for the same parameters with time dimensional Gaussian distribution, £2%/3)%?, for a variety
steps of 0.05 ns by MC simulation required 53 min for theof number densitiesp. p=3N/4axr3, corresponding to the
hopping simulation, but only 9.6 min for the matrix- reduced concentrationG=(47/3)R3p. N is shown below
reduction method. The density of time points is constant inhe decays. Experiments on polymers have used naphthalene
the simulations, but can be varidd.g., increased for short chromophores withRy=13 A, which is used here. The stan-
times in the calculations. Because of the simplicity of the dard deviation of the Gaussign=34.25 A is comparable

DT simulation and the complexity of EGAL), it is much  to the root-mean-square radius of gyratig(rﬁgg)lfz, of a
quicker to obtain(Gg pr(t,Rs)) by MC simulation than by moderate molecular weight polymer chain. As is clear from
performing the five numerical integrations involved in the the figure, agreement between theory and simulation is very
analytical calculation. However, oncfGgqpr(t,Rs)) has  good for Gaussians with only 2 chromophor€=0.25) to
been obtained, it can be much quicker to obtain the totafhose containing a reduced concentration of 8.00. That the
(G*(t)) for multiple chains using Eq(7) instead of MC  theory with the first-order truncated cumulant approximation
simulations of EET on multiple chains. For example, forcan describe the complex process of excitation transfer in
copolymer molecules wit{R?)">=34 A andN=36, MC finite volumes over such a range of concentrations so well is

simulations have taken 1-2 h for nanodomains composed Qnpressive, especially considering its simplicity and ease of
two chains N.=2), 11-12 h for nanodomains withN. yse.

=7, and 21-22 h foN.= 10, while calculations of Eq(7) Results for spheres whose volume and densities match

take several minutes with run times independenigf those of the clouds in Fig. 1 are given in Ref. 24. They also
demonstrate excellent agreement between theory and simu-

IV. RESULTS AND DISCUSSION lations at all chromophore concentrations. Comparing

(G3(t)) for matched densities reveals that the decays for the
spherical volume are faster than those for the Gaussian vol-
Since ensembles of single polymeric molecules are modume. Although the concentration peaks at the center of a
eled as Gaussian distributions of chain segments, the theofyaussian volume, the influence of the increased local con-
for the simpler restricted geometry of chromophores distrib-centration near the center is reduced by the snfalt vol-
uted randomly in a Gaussian cloud is compared with MCume element there. Because the Gaussian extends well be-
simulations before examining the behavior of the theory foryond the hard cutoff of the sphere, there are many
EET on a polymer chain. In Fig. 1, calculation(@°(t)) for  configurations of chromophores which are more widely sepa-
chromophores in Gaussian clouds with no constraints on theated than in the spherical volume. These configurations are
position of the initially excited chromophoidEqg. (2)] are  important in the ensemble average, slowing the overall rate

A. Tests of the cumulant approximation
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interest. Even with the initially excited chromophore fixed at
the center of the sphere, once there are 4 or more chro-
mophores, the cumulant approximation does a reasonable job
and converges to the infinite solution limit as the volume and
the number of chromophores increase. Therefore, the behav-
ior of the model fort>27 does not compromise its useful-
ness in analyzing experimental data. However, the failure of
the cumulant approximation to go to the correct asymptotic
limit is still evident at long time. The cumulant calculations
approach a value, ekd—N)/2], that is smaller than the cor-
rect asymptotic limit, I, so the calculations begin to fall
below the simulations. This behavior is evident in tNe

=4 andN=8 curves.

When the sphere becomes very larde,becomes so
large that the asymptotic limit becomes indistinguishable
from zero in either the exact calculation or the cumulant
approximation. The infinite-order theory of Gochanour,
Andersen, and FayeiGAF) (Ref. 9 for infinite solutions
[Eg. (4)] was also tested with simulations by Engstro

Time (¢ /1) et al,*® who found excellent agreement when they used pe-

_ _ _ _ . riodic boundary conditions and the minimum image conven-
FIG. 2. (;alculanonidashgd linesand smulatlons{sqlld Imeg) of <Gs(t)> tion in their simulations. However, if they used a simple
for a series of spheres with constant density but increasing[Eige(3)], . - ! A - -
demonstrating convergence to He). C=1. At smallN, the effect of the  SPherical volume, they found discrepancies. The simulations
incorrect asymptotic behavior of the theoretical calculation is strongestconducted in this study for very large spheres show discrep-
when the sphere radius approachesRy, the excitation that began at its ancies identical to those of Engatneet al. Since this study is
center no longer shov_vs the effects of encountering the edge of the Qis_tr?erocused on the behavior of the theory and simulations for
tion, and the calculations for the spheres converge to that for the infinite-,” .
solution limit. finite-volume systems, the necessary procedures to make the
simulations converge for an infinite system were not imple-
mented. Analysis of Gaussians with the initially excited

of excitation transfer in a Gaussian compared to that in &hromophore at the center gives similar restflts.
sphere of the same volume.

Under a variety of circumstances, the cumulant approxiB. Theory and simulations of EET on polymer chains
mation does not behave as well as in the situation shown in
Fig. 1. Figure 2 displays results of calculations and simula-l- /ntramolecular EET
tions in which the initially excited chromophore is fixed at Freely jointed chains have an ensemble-average spatial
the center of a sphefi&q. (3)] and the other chromophores istribution which is approximately Gaussian. However,
are distributed randomly. The figure shows a comparison fothere are important differences between a freely jointed chain
a series of spheres with constant densi§/~1.0) but in-  model and a Gaussian cloud. The coordinates of points in the
creasing size. Also shown is the calculation{G(t)) fora  cloud are independent, i.e., the location of one chromophore
random distribution of chromophores in an infinite solutiondoes not change the probability distribution for another chro-
[Eq. (4)]. The infinite solution result has been demonstratedmophore. However, for a chain, the upper limit on the dis-
to be very accuratd.Because the initially excited chro- tance between the chain’s end points means that the combi-
mophore is fixed at the center, the average distance betweeation of the squares of any two chromophores’ coordinates
it and other chromophores is smaller than for the case igannot exceed the square of the length of the stretched chain.
which the initially excited chromophore can be located any-Thus, the Gaussian chain-segment density distribution is
where in the sphere. Thus, the concentration is effectivelynore compact than the Gaussian cloud with the samso
higher than in a randomly distributed system with the samehat (G5(t)) for the chain will decay more quickly than
C. (G3(t)) for the cloud. Furthermore, as discussed below,

The curves in Fig. 2 go out to X0While measurements there are significant correlations among the locations of
of such a long decay are experimentally unrealizable, thesehromophores on a chain which do not exist for a cloud.
results provide insight into the source of error in the cumu-Comparisons of simulations of EET on chains with simula-
lant approximation. At smalN, the effect of the incorrect tions and cumulant calculations for the Gaussian cloud dis-
asymptotic behavior in the theoretical calculatioq Gf(t)), tribution confirm that the differences between the two spatial
which was recognized by Peterson and Fdyisrstrongest; distributions of chromophores are significft.
the calculated curve fo=2 reaches 0.6067 by t0while The distribution function given in Eq(5¢) was em-
the simulation reaches the correct probability of 0.5000 byployed to describe the spatial distributions of chromophores
87. As the sphere becomes larger with respedR§oandN  on a polymer chain. Equatigic) is based on the probability
increases, agreement between theory and simulation infunction for finding a particular segmejt distance away
proves for times up to 2 the time scale of experimental from the segmenit which contains the initially excited chro-
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FIG. 4. Calculationgdashed linesand simulationgsolid lines of EET on
0.0000 F——T—T—T——T T o polymer chains with 55 statistical segments of length 11[E4. (5)]. The
0 20 40 60 80 100 120 140 root-mean-square radius of gyration of this molecule is 33.8&he num-
. : . ber of chromophores on a chain, is shown above the curves. The agreement
Distance from Segment 1 (A) is very good, but the accuracy decreaseN axreases. FAl= 16, the error

corresponds te-3 A error in the determination ofR3)*2
FIG. 3. The probability of finding a segmepta distancex from a given
segmenti for a chain of 55 segments, from E¢bc) (dashed linesand
simulations (solid lines. (a) i=1 (end segment (b) i=14; (c) i=28 . . . .
(middle segment The agreement is almost perfect, so that over most of thed€Neously mixed with optically inert host polymers and
range the lines are indistinguishable. annealed to form composite glasses. The copolymer guest

behaved as if ing-conditions when blended with a PMMA
host, and collapsed in an incompatible polyvinylacetate

mophore. A sum is then performed over alto give the (PVAc) host. The statistical segment length used for the co-
probability of finding any segment a distanc@way from  polymer in PVAc isa=11.2 A; the model chain is com-
the initially excited segmerit An average is also performed posed of 55 statistical segments, and (Rg)m: 33.9A.
overi [Eq. (5)]. The chromophore distribution used in the theory places the

To determine whether the non-self-avoiding randominitially excited chromophore at the center of a statistical
walk used to model the chain for the MC simulations of EETsegment. For comparison, the initially excited chromophore
corresponds to the chain-segment density distribution funcwas also placed at the center of the segment in the simula-
tion used in the EET calculations, profiles of the probabilitytions. Whether the initially excited chromophore is placed at
of finding chain segments at various distances from a parthe midpoint of its segment or randomly along it makes neg-
ticular segment were constructed both from simulations and ligible difference in simulations ofG3(t)).
Eq. (5¢). Figure 3 displays the results. The calculations are  Figure 4 displays the results of the cumulant calculations
for a 55 segment chain, with=1, 14, and 28. These are pair and the simulations for several choicesNfthe number of
correlation functions. Since the chromophores are on thehromophores per chain. Whe (the tagging fractionis
chain segments, the distributions represent the probability afiot too large, the agreement is excellent. Similar results were
finding a chromophore a distanceaway from the initially — obtained for a variety of chain sizes. The agreement between
excited chromophore on thith segment. The agreement be- theory and simulation is clearly not as good as for the curves
tween the simulated and calculated distribution functions iglisplayed in Fig. 1, which shows results for chromophores
essentially perfect. Therefore, any differences between theandomly distributed in a Gaussian cloud. However, if the
EET simulations and calculations do not arise from differ-(l?@l’2 in the theory is used as an adjustable parameter and
ences in theairwise spatial distribution of chromophores. fit to the simulated curve foN=16, the(Ré)l’2 needs to be

For the comparison between the cumulant theory andhcreased by-3 A to bring the curves into good agreement.
the simulations, specific parameters were selected td@hus, even for a high tagging fraction, the error is not great.
resemble those that have been used in previously reported The reduction in the accuracy of the chain calculations
experiments® The experiments involved copolymeriza- compared to the simulations does not arise from the incorrect
tion of methylmethacrylate and a small amount ofasymptotic behavior of the cumulant theory, since none of
2-vinylnaphthalene which yielded polymers of polymethyl- the decays are displayed at long enough times to be ap-
methacrylatd PMMA) lightly tagged with naphthalene chro- proaching the asymptotic limit of Bl the extent of the de-
mophores. Small amounts of the tagged PMMA were homoeays toward their asymptotic limits is similar to that in the
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sphere and Gaussian cloud calculations for which there are 1.0
virtually no deviations between theory and simulation. Fur-

thermore, as shown in Fig. 3, the pair distribution functions

used in the cumulant calculations and the simulations are 0.9 7
essentially identical.

The reduced quality of the agreement for the polymer
chain whenN is large can be attributed to the correlations
that exist among chain segments, and the fact that the cumu- o~
lant theory is sensitive only to the pair correlation function w@ 0.7 -

&)
S

and not to higher-order correlations. In the Gaussian cloud,
the location of one chromophore does not influence the pos-
sible locations of other chromophores. For a chain with chro- 0.6
mophores on its segments, the chromophores have the same

correlations as the segments. These correlations go beyond

pair correlations. Chain configurations can produce clusters 057
of neighboring chromophores. An excitation can leave the
initially excited chromophore, loop through two or three

- . 0.4 +— : . . . .
other chromophores and return to the initially excited chro- 00 05 10 15 20 25 30
mophore. The first-order cumulant approximation does not
account for such paths. These paths are not of great impor- Time (¢ / 1)

tance when the chromophore concentration is low, and the
P ¥IG. 5. Calculationgdashed lingsand simulationgsolid lineg of (a) Eq.

play almost no role when the chromophore locations are nogs) for copolymers withN— 10 andN—122: (b) Eq. (7) for an ensemble of

highly qorrelated- . o o o spherical domains containing 2 such copolymer chains,(eniq. (7) for
An important consideration in designing polarization ex- domains of the same size, each containing 7 chains.

periments is that the orientational distribution of the chro-
mophores must be known. The easiest way to meet this
stipulation is to ensure that their orientational distribution 'Spolymeb maintain a constant volume, while the density of

random. This requires that there be fewer than one Chroguest copolymer inside them increases. Curi@spresent
mophore per statistical segment of the copolymer NAig-

G: (1)) for single guest copolymer chains of molecular
on

creases it becomes less likely that this stipulation is meR‘/veight 55000 with 10 chromophores per chain. Curi®s
Thus, we find that for parameters that are appropriate f%lre calculations and simulations of EET for nanodomains

experiment, agreement betweep theory and Sir.nwation_'éontaining two of these chainsl{=2), and curvegc) show
quite good. For the range of tagglng fractions that is qgeful Nhe same forN,=7. The agreement between theory and
experiments, the cumulant theory is capable of providing aninjation s reasonable, demonstrating that the theory,

accurate determination dfRg)"% The accuracy has been \picy depends upon the first-order cumulant approximation,
tested experimentafty and shown to be very good. the separability of G (1)) and(GS(t)) and on the effec-
tive chromophore method, is a good description of EET
among chromophore-bearing polymers. Given the number of
Extension of the theory to EET between the chro-approximations in the analytical theory, the results are re-
mophores on different copolymer chains depends upon thmarkable. While the quality of the agreement varies, similar
combined utility of the cumulant approximation and the Ef- agreement can be found for a variety of domain sizes and
fective Chromophore Method. The ECM depends on thehain sizes.
separability of(GS(t)) into contributions to the total EET Curves(a) demonstrate that the intrachain EET theory
from excitation transfers among chromophores on the sameith the cumulant approximation works well for this system.
chain and contributions from transfers among chromophorem the interchain EET theory, polymer molecules are mod-
on different molecules, i.e{G%(t))=(G5(t)}{G5x(t)). Be-  eled not as chains of statistical segments, but as Gaussian
cause the cumulant expansion is truncated at first of@er clouds. Chains are more compact than clouds. This means
pair approximatiopy the separation is formally allowed. that EET for isolated clouds is slower than that for isolated
However, the question is open as to how accurate the anghains, but also that there is significant overlap between
lytical treatment is. clouds for a greater range &t than for chaing* These
The Peterson and Fayer calculation provid€s,(t)), differences may give rise to the differences between simula-
which, as shown above, provides an accurate description afon and theory shown in curveb) and (c). Unlike simula-
transfer on a single chain under the proper conditionstions of nanodomains with large numbers of chains, the ana-
(Gyu(t)) is obtained using the ECM with Ed7) as de- lytical theory is rapidly implemented on a fast workstation
scribed above. for any number of chains. Therefore, it can be used to fit
Figure 5 shows the results of calculations(@®(t)) for ~ experimental data, providing a powerful method for the
ensembles of spherical nanodomains. The onset of phasstudy of nanophase separation.
separation is modeled as spinodal decomposition, in which  The theory is also useful in optimizing experimental de-

nanodomaingwith radius equal t((RS}”Z of the guest co- sign. We can examine various combinations of parameters

2. Intermolecular EET
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and predict the time-resolved anisotropy decays for the polyfor fitting data from systems with large numbers of chains.
mer systems they represent. For this case we find that the
growth of nanodomains from;=2 toN.=7 will be detectt ACKNOWLEDGMENTS
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mers. The change in the observable is large enough to monkPPENDIX

tor nanodomain formation in experimental systems of guest

polymers of this molecular weight. If the range of physically ~ The general form and derivation ¢G5 pr(t,Rs)) for
allowed N, for a particular composite material is broad donor-trap EET between an initially excited donor in one
enough that a distribution if, should be considered, it is chromophore cluster and a groupMf- 1 chromophores in a
straightforward to weight the contributions to the observabledifferent cluster is presented in Ref. 24, which includes fig-
from nanodomains with differeril, accordingly. We have ures detailing the correct coordinate system for describing
examined a Poisson distribution M, with a weighting by intercluster transfer. For the specific case of EET between
the number of chromophores per nanodomain, since thosghromophores on copolymer molecules modeled as Gaussian
with more chromophores are more likely to capture an excidistributions of polymer segments,

tation and subsequently contribute ¢&3(t)). Such treat- s or(t,RY)

ment further reduces the differences between theoretical and °™PT """

simulated decays. If the disagreement is large, the simula- ( 3 )3/2J’rmaXJw ( 3 )3/2
. . . =277 ———— -

tions are still very useful for data analysis. 27T<Rg2;> 0 0 2’T<RS>

V. CONCLUDING REMARKS ;{ —SrE) J'rmaXwazw [{ —3r§)
) Xexp == exp ==

2(R5)) Jo oJo 2(R3)

We have shown that the MC simulations for EET in

. . ) —t\/R 6 N-1
polymer sy;tems compares favoraply with previously devel_ Xex;{(— _0) }r%drz sin 6,d0,de,
oped analytical theory, demonstrating excellent agreement in T )\rp
the realm of experimentally appropriate parameters. Lower- 5 .
Xridry sin 6,d6;. (A1)

ing the reduced concentration, which slows the approach to
the asymptoti_c Iimit_, diminishes the discrepancie_s betweein brief, 0< 6,<, measured from the positive half of the
theory and simulation. The reduced concentration can bgaxis for each cluster. The separation between the clusters’
lowered by decreasinly, and also by decreasimy /I sphere  centers-of-mass lies along tizeaxis. 0< ¢;<2, which is
Since decreasingN maximizes the difference between in clusteri’s xy-plane and measured from its positivaxis,
exf(1-N)/2] and 1N, decreasindRo /T spheredoes the most  and O<r;<c, measured from the origin of cluster
to improve agreement. This can be achieved by selecting a
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