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Monte Carlo~MC! simulations of electronic excitation transfer~EET! among a small number of
chromophores covalently incorporated into copolymer molecules are presented and used to test the
results of previously developed analytical EET theories that are useful for the study of polymer
chain structure@K. A. Peterson and M. D. Fayer, J. Chem. Phys.85, 4702 ~1986!# and phase
separation in polymer blends@A. H. Marcus and M. D. Fayer, J. Chem. Phys.94, 5622~1991!#. The
simulations and theory account for EET among chromophores bound to a single chain and among
chromophores attached to different chains. The calculated quantity,^Gs(t)&, which is the
probability that an initially excited chromophore is still excited at timet, is related to time-resolved
fluorescence depolarization experiments. The theories, particularly the treatment of interchain EET,
depend on a series of approximations whose efficacy has not been determined. Close agreement
between the MC simulations and the analytical theory are found for a variety of situations, including
those that mimic real polymer systems. The limits beyond which agreement is weakened provide
specific guidelines for the design of polymer structure and phase-separation experiments. ©1998
American Institute of Physics.@S0021-9606~98!52343-4#
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I. INTRODUCTION

The desire to understand the structures and phase be
iors of polymer composites has motivated a great dea
research.1–3 Because polymeric melts and glasses have a
cinating array of characteristics that distinguish them fr
small-molecule liquids and solids, they are of great inter
both as versatile industrial materials and as model syst
for scholarship in physics, chemistry, biology, and engine
ing. In particular, polymer composites have a vast repert
of phase behaviors which confer upon them a variety of
chitectures at the molecular level, corresponding to a w
range of bulk physical properties.

The theories developed over a number of years for
culating the time-resolved observables measured in op
studies of electronic excitation transfer~EET! ~Refs. 4–14!
apply to systems of random copolymers,4,6,15–18 micelle
surfaces,5,19,20 and the micellar, lamellar, and cylindrica
phases of diblock copolymers,7,8 making it possible to probe
the architecture of a variety of polymer composites at
molecular level. Since the measurement of EET can invo
the detection of single fluorescent photons, EET experime
afford a sensitivity that permits probing the configurations
copolymers which are present in a composite at very
concentrations.

Random copolymers consisting of optically inert mon
mers and a small number of fluorescent chromophores
blended with an optically inert host material to obtain t
experimental system. Fluorescent chromophores tran
electronic excitations through nonradiative resonant dipo
interactions between excited and unexcited chromophore
described by Fo¨rster.21 This interaction is parameterized b

the Förster distance,R0 , at which the rate of transfer to
unexcited chromophores is equal to the fluorescence dec
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rate of the donor in the absence of acceptors. For comm
chromophores,R0 is between 5 and 60 Å. The sensitivity o
Förster transfer to the distance between chromophores is
pendent upon this single parameter, which can be determ
spectroscopically21 or with transfer experiments.22,23Because
Förster transfer is strongly distance-dependent, falling off
1/r 6, where r is the chromophore separation, EET obse
ables contain information about chromophore spatial dis
butions.

EET has been modeled such that a calculable quan
Gs(t), emerges.9 Gs(t), which is readily compared with ex
perimental observables, is the diagonal, or ‘‘self’’ part of t
Green function solution to the Pauli master equation.9,10 It is
the probability that an excitation is on an initially excite
chromophore at timet, either because the excitation has n
been transferred to another chromophore, or because it
been transferred away from and returned to the initially
cited chromophore. Since the time-dependence of the
servable arises from the spatial distributions of unexci
chromophores around the ensemble of excited ch
mophores, the ensemble-average ofGs(t) is the quantity of
interest.

If EET occurs among identical chromophores that c
continually transfer excitations, the system is donor–don
or DD. In a DD experiment, polarized light excites a ve
small fraction of the chromophores, preferentially exciti
those oriented so that the light’s electric field has a la
projection along the absorption dipole. Excitation transp
occurring among chromophores with randomly oriented
poles results in loss of the polarization anisotropy of t
ensemble of excited chromophores. A time-resolved fluor

11 s
ay
cence anisotropy decay,r (t), which is related to ^G (t)&,
is measured. The experimental determination of^Gs(t)& pro-

8 © 1998 American Institute of Physics
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vides information about the spatial distribution of chr
mophores, and therefore about polymer structure.

The analytical theory forintrachain EET ~Ref. 4! de-
pends on a series of approximations, including a cumu
expansion truncated to first order based on a two-part
approximation that greatly simplifies the numerical calcu
tion of observables.4,12,13 In previous work, the intrachain
theory allowed the ensemble-average radius of gyration
copolymer molecules present at low concentrations in o
cally inert hosts to be determined with time-resolved anis
ropy decay measurements.4,15,16

When copolymer molecules are in close proximity, as
the process of phase-separation, the theory can also be
to determine the contribution ofinterchain EET to the
observable.5 The theory for interchain transfer relies on a
ditional assumptions, including the independence of in
chain and interchain contributions to the total observab
and the Effective Chromophore Method, which entails
renormalization of the problem resulting in the treatment
entire chromophore-bearing copolymers as though they w
each, effectively, single chromophores. Effective ch
mophores have transport dynamics that depend upon the
ture of the copolymer chains they represent, and permit
reduction of the problem from the interactions of many ch
mophores on different chains to the pairwise interactions
effective chromophores. Experimental systems exist
which the interchain transfer theory may be useful.6,17,18

However, the influence of the assumptions on the accur
of the theoretical calculations has not been tested.

The purpose of this paper is to test the assumptions m
in the theoretical developments describing both intra- a
interchain excitation transport dynamics with the aid of M
simulations. The results of detailed simulations of EET
various systems show excellent agreement between sim
tion and experiment for intrachain EET and reasona
agreement for interchain transport. The simulations prov
insights into the experimental conditions for which EET pr
vides a useful probe of polymer structure and phase sep
tion.

II. OUTLINE OF THE THEORY

The general expression for^Gs(t)& for an initially ex-
cited donor~chromophore 1! andN21 excitation acceptors
~chromophores 2! in an ensemble ofN chromophores in a
restricted volume is4

^Gs~ t !&5
1

V1
E

space
expH S N21

2V2
D

3E
space

H expF S 22t

t D S R0

r 12
D 6G21J u~r2!dr2J

3u~r1!dr1 , ~1!

whereu(r ) is a function representing the spatial distributi
of chromophores. For spherical symmetry, the vector na
of the average is equivalent to having a factor of 4pr 2dr
with ur u5r , so u(r )51 for a random distribution.V is the

J. Chem. Phys., Vol. 109, No. 19, 15 November 1998
volume spanned by the chromophore distribution. The no
malization condition requiring that all of the chromophores
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in a particular distribution be found in the volume occupi
by the distribution is written,r*spaceu(r )dr5N21, wherer
is the number density of chromophores.r 12 is the distance
between chromophores 1 and 2. Chromophores other
chromophore 1 are called acceptors, even though they
identical to chromophore 1 and can transfer excitations b
to chromophore 1 as well as among themselves. The in
integral is performed over all possible positions of excitati
acceptors, and the outer integral is performed over all p
sible positions of the initially excited chromophore.

Equation~1! is based on the work of Huber,12 who de-
veloped a treatment of EET among randomly distribu
chromophores in an infinite volume using a cumulant exp
sion. Use of a two-particle approximation derived b
Blumen13 allowed truncation of the cumulant expansion af
the first-order term. Peterson and Fayer4 demonstrated tha
Huber’s ^Gs(t)& produced results matching those from t
infinite-order diagrammatic expansion method of Goch
nour, Andersen, and Fayer.9 They modified Huber’s method
to construct expressions for̂Gs(t)& for chromophores in
finite-volume, nonrandom geometries, e.g., the Gauss
segment-distributions of polymer chains. They showed t
for a finite number of chromophores in a spherical volum
their model was slightly less accurate than that based o
second-order density expansion with a Pa´
approximant.11,14

The cumulant expansion method has a number of adv
tages over the density expansion method and the infin
order diagrammatic theory. The diagrammatic approach
quires translational invariance of the ensemble aver
around the point of initial excitation as well as the ability
pass to the thermodynamic limit. Neither of these conditio
is applicable to finite-volume, spatially inhomogeneous s
tems. In contrast to the cumulant treatment, the density
pansion involves equations in Laplace space, making c
parisons between experiment and theory more diffic
Furthermore, to achieve reasonable accuracy, it is neces
to perform the density expansion to second order~three par-
ticles!. Obtaining the second-order result for complex geo
etries is difficult.

To test the approximations inherent in the general fo
of Peterson and Fayer’s expression for EET as distinct fr
their specific model of a polymer chain, MC simulations a
first compared to expressions for EET between ch
mophores randomly distributed in a three-dimensio
Gaussian cloud,7

^Gs~ t !&54pS 3

2ps2D 3/2E
0

rmax

expS 23r 1
2

2s2 D expH p~N21!

3S 3

2ps2D 3/2E
0

pE
0

rmax

expS 23r 2
2

2s2 D S expF S 22t

t
D

3S R0

r 12
D 6G21D r 2

2dr2 sin u2du2J r 1
2dr1 , ~2!

wherer 125r 1
21r 2

222r 1r 2 cosu2, ands is the standard de

8709Hussey, Matzinger, and Fayer
r-viation of the Gaussian. In the three-dimensional Gaussian
cloud problem, the ensemble-average chromophore distribu-
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tion has a maximum at the center and falls off in a thr
dimensional Gaussian manner. The ensemble average is
all configurations of donor and acceptor chromophores
rayed in this Gaussian manner. The equivalent problem
chromophores randomly distributed in a sphere is exami
in Ref. 24.

We also examine the behavior of^Gs(t)& for chro-
mophores inside a sphere with the initially excited ch
mophore at the center of the sphere. Then, the average
positions of the initially excited chromophore is removed

^Gs~ t !&5expH 2p~N21!S 3

4pr 3D
3E

0

r S expF S 22t

t D S R0

r 12
D 6G21D r 2

2dr2J . ~3!

As the volume becomes very large,^Gs(t)& should converge
to the analytical expression for^Gs(t)& in a random, infinite,
three-dimensional solution of chromophores25,26

^Gs~ t !&5expF24pc

3 S t

t D 1/2

R0
3~21/2!GS 1

2D G , ~4!

wherec is the number density of chromophores, andG is the
complete gamma function.

Peterson and Fayer modeled polymer chains using a
mental distribution function related to one described
Yamakawa,27 which yields a Gaussian distribution of se
ment density for the ensemble average. The statistical
ment length,a, is set to the Kuhn length,28 which can be
determined experimentally with light scattering29 or as de-
scribed in Ref. 4. The distribution of chromophores on th
chains is identified with that of the chain segments, an
factor accounting for the presence of an acceptor ch
mophore which may be on the same segment as the init
excited chromophore is added. EET calculations using
model@Eq. ~5!# and the cumulant method are compared w
the simulated chromophore-bearing polymer chains belo

^Gs~ t !&5
1

N̄
(
i 51

N̄ H expH 4p

2 E
0

`

@np8~r 12!

1~N212n!pi~r 12!#

3@exp~22v12t !21#r 12dr12J J , ~5a!

with

p8~r 12!dr1254pr 12
2 dr12, 0<r 12<~a/2!;

50, r 12.~a/2!; ~5b!

pi~r 12!dr125
4p

N̄21
(
j 51
j Þ i

N̄ S 3

2pa2u i 2 j u D
3/2

3expS 23r 12
2

2a2u i 2 j u D r 12
2 dr12, ~5c!

6

8710 J. Chem. Phys., Vol. 109, No. 19, 15 November 1998
and v125(1/t)(R0 /r 12) . v12 is the transfer rate constant.
The likelihood of having an additional chromophore on a
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given segment isn5(N21)/N̄, whereN̄ is the number of
statistical segments per copolymer molecule. The distri
tion of additional chromophores on a segment around
center of that segment isp8, and pi is the configuration-
averaged radial probability of finding any other polymer se
ment, j, a distance away from a segmenti.

Marcus and Fayer5 treated the problem of calculatin
^Gs(t)& for EET among chromophores on the surfaces o
random distribution of spheres, and extended the treatme
apply to EET among chromophores on multiple polym
chains modeled as Gaussian clouds.6 This development de-
pends upon the separability of^Gs(t)& into independent
components,̂ Gon

s (t)&, which is the result of Eq.~5! and
represents EET among only those chromophores on the s
copolymer molecule, and̂Goff

s (t)&, which represents EET
among the initially excited donor and only those accept
which are on neighboring polymer chains~or other types of
chromophore aggregates such as micelles!. This separation is
mathematically rigorous in the context of the first-order c
mulant approximation. Whether it is physically appropria
is an important question discussed in this work.

To calculatê Goff
s (t)& for chains of a given size with a

specified number of chromophores,^Gs(t)& must be first cal-
culated for an initially excited donor located on chain 1 a
all possible configurations of chromophores on a sec
chain located a fixed distance,Rs , from chain 1 with no
back-transfer~donor-trap, or DT EET!. The two polymer
chains are approximated by two Gaussian distributions
chromophores~Gaussian clouds! for the calculation of
Goff,DT

s (t). This is averaged over all possible initial position
on chain 1, yielding a single curve for a particular intercha
distanceRs . This is repeated for a range ofRs . Since
^Goff,DT

s (t,Rs)& will provide inputs for the subsequent calcu
lation, it is necessary to choose a range of center-of-m
separations for the copolymer pairs from 0 to a distance la
enough that there is no intercluster transfer, i.e., for wh
^Goff,DT

s (t,Rs)&51 for all t under consideration. In practice
the maximumt is determined by the fluorescence lifetime,t,
of the chromophores. It is usually unnecessary to considt
.3t.

The result is a distance-dependent^Goff,DT
s (t,Rs)& which

describes the distance-dependent rate of transfer betw
two chains as if they were a pair of ‘‘effective chro
mophores.’’ The ensemble-average EET for a spatial dis
bution of any number of chains can then be calculated as
EET averaged over the spatial distribution of effective ch
mophores. This approach, developed by Marcus and Faye5,6

is called the Effective Chromophore Method~ECM!. For real
chromophores, the Fo¨rster rate of transfer from chromophor
1 to chromophore 2 isv125(1/t)(R0 /r 12)

6, wherer 12 is the
chromophore separation. ForN chromophores, this is the
pairwise transfer rate that is used in theN coupled differen-
tial equations of the master equation. TheN coupled equa-
tions must be ensemble-averaged over all possible sp
configurations of theN chromophores. The cumulant trea
ment is an approximate solution to the ensemble-avera
Master equation. Equation~1! contains the pairwise transfe

2v t

Hussey, Matzinger, and Fayer
rate in the exponential. In the ECM,e 12 , the probability
of finding the excitation on the initially excited chromophore

P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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at timet,30 should be replaced with the analogous probabi
of finding the excitation on the initially excited effectiv
chromophore. As in the actual chromophore problem,
quantity reflects forward probability flow, without back
transfer. Therefore, it is theGDT

s (t), the probability of find-
ing the excitation on the initially excited cluster. In the lim
that each cluster reduces to single chromophores each
single location,GDT

s (t) reduces toe2v12t. In the original
treatment of the ECM,GDD

s (t) was used rather thanGDT
s (t).

GDD
s (t) does not correspond to the pairwise transfer rate u

for real chromophores because it includes back-transfer,
it does not reduce toe2v12t when the clusters are reduced
single chromophores each at a single location.

To use the ECM to calculate the excitation transport
servable for a system of clusters of chromophores, it is fi
necessary to calculate the DT EET between two clus
separated by a distanceRs . While straightforward in prin-
ciple, the calculation can be a difficult problem in geome
because it is necessary to specify the distance between e
chromophore on cluster 1~the cluster containing the initially
excited chromophore! and every chromophore on cluster 2
a function ofRs , including distances for which the cluste
may be interpenetrating. In the current work, it was fou
that the geometry relating the positions of chromophores
one cluster to those in another cluster was incorrectly s
plified in Ref. 5, such that the set of distances between c
mophores in different clusters was not fully represented
the resulting four-dimensional integral. A correct treatme
of the geometry necessary to calculate intercluster EET
derived in Ref. 24. The final result of the derivation, a fiv
dimensional integral with the DT transfer rate, is given in t
Appendix. The use ofGDD

s (t) and the four-dimensional in
tegral to obtain the effective chromophore distan
dependent transfer probability in Ref. 5 gave rise to sign
cant errors in the calculations of^Goff

s (t)& in Refs. 6 and
17–20, although the errors tend somewhat to offset e
other. Because Eq.~A1! is a five-dimensional integral, an
because it is only necessary to calculate donor-trap EE
obtain ^Goff,DT

s (t,Rs)&, it actually takes much less comput
time to obtain̂ Goff,DT

s (t,Rs)& by simulation than by numeri
cal integration. MC simulations of intercluster DT EET a
compared with Eq.~A1! in Ref. 24, demonstrating the pe
fect agreement that allows this time-saving substitution.

In the process of phase separation, copolymer molec
initially come together to form nanoscopic aggregates,
‘‘nanodomains.’’ The copolymer molecules comprisin
these domains are represented by a distribution of effec
chromophores, each located at the center-of-mass of the
polymer molecule it represents. EET among the effect
chromophores in a nanodomain is then written in terms

^Goff
s ~ t,Nc!&5

1

V E
space

^Goff
s ~ t,Nc ,r1!&u~r1!dr1 , ~6a!

J. Chem. Phys., Vol. 109, No. 19, 15 November 1998
with
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^Goff
s ~ t,Nc ,r1!&

5expS Nc21

2V E
space

@^Goff,DT
s ~ t,Rs!&

221#u~r2!dr2D .

~6b!

Nc is the number of chromophore-containing copolym
molecules in a nanodomain, andV is the nanodomain vol-
ume. The first integral@Eq. ~6a!# is an average over all po
sitions of a copolymer molecule bearing the initially excit
chromophore, and the second integral@Eq. ~6b!# is an aver-
age over all positions of a copolymer molecule bearing
chromophore which accepts an excitation. Equation~6! re-
duces to a three-dimensional integral, and the space ca
described with spherical volume elements.

One simple model of a nanodomain is a random dis
bution of copolymer molecules within a spherical volum
For this distribution, interchain EET is described by

^Goff
s ~ t,Nc!&5

3

Rdom
3 E

0

Rdom
expS 3~Nc21!

4Rdom
3

3E
0

RdomE
0

p

@^Goff,DT
s ~ t,Rs!&

221#ur 2u2

3 sin u2dr2du2D ur 1u2dr1 , ~7!

whereRdom is the nanodomain radius. The spherical volum
has a hard cut-off. However, the effective chromophores r
resent Gaussian copolymer chains, and placing them
sphere means placing the chains’ centers-of-mass with
sphere. The distribution of chain segments extends bey
the sphere, falling off as a Gaussian from the surface.

III. NUMERICAL METHODS

Equations~2!–~4! and the analogous MC simulations a
first computed to test the First-Order Truncated Cumul
Approximation; the results of these tests for Gaussian dis
butions and for uniformly filled spherical distributions wit
the donor at the center are presented to demonstrate th
havior of the theory independent of the polymer cha
model. Then the single-chain theory for^Gon

s (t)& @Eq. ~5!# is
compared to simulations of ensembles of random-flight po
mer chains. Finally, EET in clusters of polymer chains
calculated using the ECM and compared with simulation

A. Theory for intra- and interchain EET

Equations~2!–~5! and ~7! are solved using numerica
integration with either the Romberg or the Gaussian quad
ture method31 with abscissas at the zeros of the Legend
polynomial orthogonal to the weighting factors for Gauss
integration,32 Pn532(x). Since most of the decay happens
early times, time steps of 0.05 ns are used from 0 to 15
and time steps of 1 ns are used from 15 to 150 ns.
integrating uniform functions the Romberg method is us
exclusively.

8711Hussey, Matzinger, and Fayer
R0 for an actual chromophore is scaled by the orienta-
tional parameter,g, appropriate for the spatial dimensionality
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of the system and the angular distribution of the ch
mophores in it.30 In the glassy polymer systems discuss
here, chromophore orientations are taken to be random
static, soR085g1/3R0 , whereg50.8452. For chromophore
inside a sphere, or effective chromophores in a spherical n
odomain, the upper limit onur u in Eqs. ~3! and ~7! is set
equal to the sphere or nanodomain radius. The upper inte
tion limit on ur u in Eq. ~2! is 5s, and in Eq. ~5! is
53^Rg

2&1/2; increasing these respective limits to 10s or

103^Rg
2&1/2 does not change the results.

B. Monte Carlo simulations

The validity of the analytical EET theories is tested w
MC simulations. The random numbers on which the simu
tions depend are prepared as follows: a seed numbe
passed to a random number generator33 ~rng! which selects
24 values which are in turn used as seeds for a rng using
algorithm of Marsaglia and Zaman,34 which has a very large
period (;108) and passes the DIEHARD~Ref. 34! battery
of statistical tests. 10 000 calls to this rng are made and
carded before proceeding with simulations, in order to
duce any bias that might arise from the 24 seed values. S
sequent calls result in a uniform distribution of valu
between 0 and 1. Output of the rng is either used directly
this uniform distribution of random numbers is mapped o
a nonuniform distribution as needed.

Chromophores are assigned coordinates randomly wi
a sphere as follows. A uniform distribution in the radial c
ordinate is obtained by multiplying the cube of the radius
a random number, and taking the cube root of the result;
prevents over-sampling values ofr which define a small vol-
ume, and under-sampling those which delimit a large v
ume. A random number is picked from 0 to 2p for the azi-
muth angle, and the value of the polar angle is found us
u5acos(122F), whereF is a random number in@0,1#. This
weighting is needed to account for the fact that there is m
volume into which the chromophore can be placed at
equator of the coordinate system than at the poles.20 To ob-
tain the coordinates of chromophores in a three-dimensio
Gaussian cloud, a Gaussian distribution is randomly sam
along each of the Cartesian axes using the Box-Mu
method.31 Chromophore indices and coordinates are store
a matrix, and the distances between them are calculated
excluded volume parameter may be set so that if an ove
occurs, the entire chromophore configuration is discard
and the chromophore placement process begins again.

When a nonoverlapping chromophore configuration
been found, a matrix of rate constants for EET between
chromophores is constructed. A standard Jacobi meth31

can be used to obtain the eigenvectors and eigenvalue
this real, symmetric matrix. For faster computation, the r
matrix is tridiagonalized using the Householder reduct
method, and the QL algorithm with implicit shifts31 is used
to yield only the eigenvalues of the Pauli master equati
from which values of̂ Gs(t)& are determined.20,35This entire
process is repeated and the results are averaged to

s s

8712 J. Chem. Phys., Vol. 109, No. 19, 15 November 1998
^G (t)&. Typically, ^G (t)& converges after 5 000–10 000
repetitions.
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When we wish to assign an excitation to a specific ch
mophore and watch the excitation hop from chromophore
chromophore in time,̂Gs(t)& is determined differently. The
following method is particularly useful for simulations o
EET between chromophores in any of the configuratio
here described when the initially excited chromophore is
ways at a particular point in space, such as at the center
uniform or Gaussian distribution, or on the end of a polym
chain. It is also used to check the results of simulations e
ploying the matrix diagonalization formalism. Once the m
trix of rate constants for excitation transfer between any t
chromophores has been prepared, the sum of the rate
stants for excitation transfer from the initially excited chr
mophore to all other chromophores is calculated and use
determine the probability of any transfer occurring duri
the first time step. Then a random number is chosen. I
exceeds the transfer probability, no transfer occurs, and
time is advanced. Otherwise, a new random number is c
sen, and the rate of transfer from the excited chromophor
each other chromophore is summed in turn, until a ch
mophore whose rate constant has caused the sum to ex
the random number is reached. This chromophore acc
the excitation, and the probability of transfer from the new
excited chromophore to any other during the next time s
is calculated. At each time step, the histogram slot assig
to that time step is incremented by 1 if an excitation was
the initially excited chromophore between its start and e
times. The time is advanced, and this process is repe
until an entire decay ofGs(t) from 0 to 2t–10t has been
constructed. 10 000 or more decays are generated, and
average value in each histogram slot is reported as^Gs(t)&.

Freely jointed chains are modeled as arrays ofN̄ statis-
tical segments of lengtha, which are set down as non-sel
avoiding random walks in three dimensions. The first s
ment of a chain has one endpoint at the origin. To determ
the position of its other endpoint in spherical polar coor
nates, the radial coordinate is assigned the valuea, and the
azimuth and polar angles are chosen as described above
endpoint of the first segment becomes the starting poin
the next, until all the segments of a single chain have b
placed in the coordinate system. The chain’s center-of-m
is calculated, and moved to the origin. If the chain is to
placed in a nanodomain, it is instead moved to a rando
assigned position in the appropriate distribution about
origin.

Chromophores are now placed along the chain segme
A ‘‘start’’ segment is chosen at random, and the initial
excited chromophore is placed at a random point on the
between that segment’s endpoints. Each of the remain
chromophores is randomly assigned to any segment.
segments are then examined sequentially, and all of the c
mophores that have been assigned to a segment but no
placed on it are placed at random along a line between t
segment’s endpoints. If an overlap occurs, the entire ch
mophore configuration is discarded, and the chromoph
placement process begins again with the empty chain. W
a configuration has been found in which there occurs

Hussey, Matzinger, and Fayer
overlap of chromophores on the same chain, the chro-
mophore locations are written into a master matrix. If nan-
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odomains are being simulated, additional chains are crea
placed in the nanodomain, and given each a set of nono
lapping chromophores whose locations are sequentially w
ten into the matrix. If ever an overlap occurs between ch
mophores on different chains, the entire set of chains
discarded, and the process begins again with the constru
of the first empty chain. A matrix of rate constants for EE
between all of the chromophores is constructed from the
tances calculated based on the master matrix of chromop
locations, and̂ Gs(t)& is determined as described above.

For comparison of Eq.~A1! with MC simulations,
donor-trap versions of these simulations are used. Only
chromophore is placed in the initially excited chromophor
cluster so that no intracluster transfer can occur, and o
one transfer event is allowed per configuration, beca
transfer from the initially excited donor to any other chr
mophore is irreversible.

Calculations and simulations were performed on IB
RS6000 Model 3BT and Powerstation 375 workstations
an AS-ProDPSII workstation with dual Pentium II micropr
cessors. On the IBM workstations calculations of Eq.~5! for
a copolymer withN510 andN̄5100 out to 230 Å and three
lifetimes ~150 ns! with 436 time points as described abo
required 17.6 min, or 12.7 min on the AS-ProDPSII. Sin
the amount of time required for the calculation is direc
proportional to the number and density of time points us
this run time can be shortened significantly. The amoun
time required for MC simulations is very sensitive toN, N̄,
the excluded volume parameter, and the number of t
steps. ObtaininĝGon

s (t)& for the same parameters with tim
steps of 0.05 ns by MC simulation required 53 min for t
hopping simulation, but only 9.6 min for the matrix
reduction method. The density of time points is constan
the simulations, but can be varied~e.g., increased for shor
times! in the calculations. Because of the simplicity of th
DT simulation and the complexity of Eq.~A1!, it is much
quicker to obtain̂ Goff,DT

s (t,Rs)& by MC simulation than by
performing the five numerical integrations involved in t
analytical calculation. However, oncêGoff,DT

s (t,Rs)& has
been obtained, it can be much quicker to obtain the to
^Gs(t)& for multiple chains using Eq.~7! instead of MC
simulations of EET on multiple chains. For example, f
copolymer molecules witĥRg

2&1/2534 Å and N536, MC
simulations have taken 1–2 h for nanodomains compose
two chains (Nc52), 11–12 h for nanodomains withNc

57, and 21–22 h forNc510, while calculations of Eq.~7!
take several minutes with run times independent ofNc .

IV. RESULTS AND DISCUSSION

A. Tests of the cumulant approximation

Since ensembles of single polymeric molecules are m
eled as Gaussian distributions of chain segments, the th
for the simpler restricted geometry of chromophores dist
uted randomly in a Gaussian cloud is compared with M
simulations before examining the behavior of the theory
EET on a polymer chain. In Fig. 1, calculation of^Gs(t)& for

J. Chem. Phys., Vol. 109, No. 19, 15 November 1998
chromophores in Gaussian clouds with no constraints on th
position of the initially excited chromophore@Eq. ~2!# are
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compared to simulations for the fixed volume of a thre
dimensional Gaussian distribution, (2ps2/3)3/2, for a variety
of number densities,r. r53N/4pr 3, corresponding to the
reduced concentrationsC̄5(4p/3)R0

3r. N is shown below
the decays. Experiments on polymers have used naphtha
chromophores withR0>13 Å, which is used here. The stan
dard deviation of the Gaussian~s534.25 Å! is comparable
to the root-mean-square radius of gyration,^Rg

2&1/2, of a
moderate molecular weight polymer chain. As is clear fro
the figure, agreement between theory and simulation is v
good for Gaussians with only 2 chromophores (C̄50.25) to
those containing a reduced concentration of 8.00. That
theory with the first-order truncated cumulant approximat
can describe the complex process of excitation transfe
finite volumes over such a range of concentrations so we
impressive, especially considering its simplicity and ease
use.

Results for spheres whose volume and densities m
those of the clouds in Fig. 1 are given in Ref. 24. They a
demonstrate excellent agreement between theory and s
lations at all chromophore concentrations. Compar
^Gs(t)& for matched densities reveals that the decays for
spherical volume are faster than those for the Gaussian
ume. Although the concentration peaks at the center o
Gaussian volume, the influence of the increased local c
centration near the center is reduced by the smallr 2dr vol-
ume element there. Because the Gaussian extends wel
yond the hard cutoff of the sphere, there are ma
configurations of chromophores which are more widely se

FIG. 1. ^Gs(t)& calculated for Eq.~2! ~dashed lines! and simulated~solid
lines! for chromophores in three-dimensional Gaussian clouds of increa
density.N, the number of chromophores in the Gaussian volume, is sho
below the corresponding curves.

8713Hussey, Matzinger, and Fayer
erated than in the spherical volume. These configurations are
important in the ensemble average, slowing the overall rate
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of excitation transfer in a Gaussian compared to that i
sphere of the same volume.

Under a variety of circumstances, the cumulant appro
mation does not behave as well as in the situation show
Fig. 1. Figure 2 displays results of calculations and simu
tions in which the initially excited chromophore is fixed
the center of a sphere@Eq. ~3!# and the other chromophore
are distributed randomly. The figure shows a comparison
a series of spheres with constant density (C̄51.0) but in-
creasing size. Also shown is the calculation of^Gs(t)& for a
random distribution of chromophores in an infinite soluti
@Eq. ~4!#. The infinite solution result has been demonstra
to be very accurate.9 Because the initially excited chro
mophore is fixed at the center, the average distance betw
it and other chromophores is smaller than for the case
which the initially excited chromophore can be located a
where in the sphere. Thus, the concentration is effectiv
higher than in a randomly distributed system with the sa
C̄.

The curves in Fig. 2 go out to 10t. While measurements
of such a long decay are experimentally unrealizable, th
results provide insight into the source of error in the cum
lant approximation. At smallN, the effect of the incorrec
asymptotic behavior in the theoretical calculation of^Gs(t)&,
which was recognized by Peterson and Fayer,4 is strongest;
the calculated curve forN52 reaches 0.6067 by 10t, while
the simulation reaches the correct probability of 0.5000
8t. As the sphere becomes larger with respect toR0 and N

FIG. 2. Calculations~dashed lines! and simulations~solid lines! of ^Gs(t)&
for a series of spheres with constant density but increasing size@Eq. ~3!#,
demonstrating convergence to Eq.~4!. C̄51. At small N, the effect of the
incorrect asymptotic behavior of the theoretical calculation is strong
when the sphere radius approaches 63R0 , the excitation that began at it
center no longer shows the effects of encountering the edge of the dist
tion, and the calculations for the spheres converge to that for the infin
solution limit.

8714 J. Chem. Phys., Vol. 109, No. 19, 15 November 1998
increases, agreement between theory and simulation im
proves for times up to 2t, the time scale of experimental
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interest. Even with the initially excited chromophore fixed
the center of the sphere, once there are 4 or more c
mophores, the cumulant approximation does a reasonable
and converges to the infinite solution limit as the volume a
the number of chromophores increase. Therefore, the be
ior of the model fort.2t does not compromise its usefu
ness in analyzing experimental data. However, the failure
the cumulant approximation to go to the correct asympto
limit is still evident at long time. The cumulant calculation
approach a value, exp@(12N)/2#, that is smaller than the cor
rect asymptotic limit, 1/N, so the calculations begin to fa
below the simulations. This behavior is evident in theN
54 andN58 curves.

When the sphere becomes very large,N becomes so
large that the asymptotic limit becomes indistinguisha
from zero in either the exact calculation or the cumula
approximation. The infinite-order theory of Gochanou
Andersen, and Fayer~GAF! ~Ref. 9! for infinite solutions
@Eq. ~4!# was also tested with simulations by Engstro¨m
et al.,36 who found excellent agreement when they used
riodic boundary conditions and the minimum image conve
tion in their simulations. However, if they used a simp
spherical volume, they found discrepancies. The simulati
conducted in this study for very large spheres show discr
ancies identical to those of Engstro¨m et al.Since this study is
focused on the behavior of the theory and simulations
finite-volume systems, the necessary procedures to make
simulations converge for an infinite system were not imp
mented. Analysis of Gaussians with the initially excite
chromophore at the center gives similar results.24

B. Theory and simulations of EET on polymer chains

1. Intramolecular EET

Freely jointed chains have an ensemble-average sp
distribution which is approximately Gaussian. Howev
there are important differences between a freely jointed ch
model and a Gaussian cloud. The coordinates of points in
cloud are independent, i.e., the location of one chromoph
does not change the probability distribution for another ch
mophore. However, for a chain, the upper limit on the d
tance between the chain’s end points means that the co
nation of the squares of any two chromophores’ coordina
cannot exceed the square of the length of the stretched ch
Thus, the Gaussian chain-segment density distribution
more compact than the Gaussian cloud with the sames, so
that ^Gs(t)& for the chain will decay more quickly than
^Gs(t)& for the cloud. Furthermore, as discussed belo
there are significant correlations among the locations
chromophores on a chain which do not exist for a clou
Comparisons of simulations of EET on chains with simu
tions and cumulant calculations for the Gaussian cloud
tribution confirm that the differences between the two spa
distributions of chromophores are significant.24

The distribution function given in Eq.~5c! was em-
ployed to describe the spatial distributions of chromopho
on a polymer chain. Equation~5c! is based on the probability

t;

u-
e-

Hussey, Matzinger, and Fayer
-function for finding a particular segmentj a distancer away
from the segmenti, which contains the initially excited chro-
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mophore. A sum is then performed over allj to give the
probability of finding any segment a distancer away from
the initially excited segmenti. An average is also performe
over i @Eq. ~5!#.

To determine whether the non-self-avoiding rando
walk used to model the chain for the MC simulations of EE
corresponds to the chain-segment density distribution fu
tion used in the EET calculations, profiles of the probabil
of finding chain segments at various distances from a p
ticular segmenti were constructed both from simulations a
Eq. ~5c!. Figure 3 displays the results. The calculations
for a 55 segment chain, withi 51, 14, and 28. These are pa
correlation functions. Since the chromophores are on
chain segments, the distributions represent the probabilit
finding a chromophore a distancer away from the initially
excited chromophore on theith segment. The agreement b
tween the simulated and calculated distribution functions
essentially perfect. Therefore, any differences between
EET simulations and calculations do not arise from diff
ences in thepairwisespatial distribution of chromophores.

For the comparison between the cumulant theory
the simulations, specific parameters were selected
resemble those that have been used in previously repo
experiments.16 The experiments involved copolymeriza
tion of methylmethacrylate and a small amount
2-vinylnaphthalene which yielded polymers of polymeth

FIG. 3. The probability of finding a segmentj a distancex from a given
segmenti for a chain of 55 segments, from Eq.~5c! ~dashed lines! and
simulations ~solid lines!. ~a! i 51 ~end segment!; ~b! i 514; ~c! i 528
~middle segment!. The agreement is almost perfect, so that over most of
range the lines are indistinguishable.

J. Chem. Phys., Vol. 109, No. 19, 15 November 1998
methacrylate~PMMA! lightly tagged with naphthalene chro-
mophores. Small amounts of the tagged PMMA were homo
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geneously mixed with optically inert host polymers a
annealed to form composite glasses. The copolymer g
behaved as if inu-conditions when blended with a PMMA
host, and collapsed in an incompatible polyvinylacet
~PVAc! host. The statistical segment length used for the
polymer in PVAc isa511.2 Å; the model chain is com
posed of 55 statistical segments, and its^Rg

2&1/2533.9 Å.
The chromophore distribution used in the theory places
initially excited chromophore at the center of a statistic
segment. For comparison, the initially excited chromoph
was also placed at the center of the segment in the sim
tions. Whether the initially excited chromophore is placed
the midpoint of its segment or randomly along it makes n
ligible difference in simulations of̂Gs(t)&.

Figure 4 displays the results of the cumulant calculatio
and the simulations for several choices ofN, the number of
chromophores per chain. WhenN ~the tagging fraction! is
not too large, the agreement is excellent. Similar results w
obtained for a variety of chain sizes. The agreement betw
theory and simulation is clearly not as good as for the cur
displayed in Fig. 1, which shows results for chromopho
randomly distributed in a Gaussian cloud. However, if t
^Rg

2&1/2 in the theory is used as an adjustable parameter
fit to the simulated curve forN516, the^Rg

2&1/2 needs to be
increased by;3 Å to bring the curves into good agreemen
Thus, even for a high tagging fraction, the error is not gre

The reduction in the accuracy of the chain calculatio
compared to the simulations does not arise from the incor
asymptotic behavior of the cumulant theory, since none
the decays are displayed at long enough times to be

e

FIG. 4. Calculations~dashed lines! and simulations~solid lines! of EET on
polymer chains with 55 statistical segments of length 11.2 Å@Eq. ~5!#. The
root-mean-square radius of gyration of this molecule is 33.9 Å;N, the num-
ber of chromophores on a chain, is shown above the curves. The agree
is very good, but the accuracy decreases asN increases. ForN516, the error
corresponds to;3 Å error in the determination of̂Rg

2&1/2.

8715Hussey, Matzinger, and Fayer
-
proaching the asymptotic limit of 1/N; the extent of the de-
cays toward their asymptotic limits is similar to that in the
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sphere and Gaussian cloud calculations for which there
virtually no deviations between theory and simulation. F
thermore, as shown in Fig. 3, the pair distribution functio
used in the cumulant calculations and the simulations
essentially identical.

The reduced quality of the agreement for the polym
chain whenN is large can be attributed to the correlatio
that exist among chain segments, and the fact that the cu
lant theory is sensitive only to the pair correlation functi
and not to higher-order correlations. In the Gaussian clo
the location of one chromophore does not influence the p
sible locations of other chromophores. For a chain with ch
mophores on its segments, the chromophores have the
correlations as the segments. These correlations go be
pair correlations. Chain configurations can produce clus
of neighboring chromophores. An excitation can leave
initially excited chromophore, loop through two or thre
other chromophores and return to the initially excited ch
mophore. The first-order cumulant approximation does
account for such paths. These paths are not of great im
tance when the chromophore concentration is low, and t
play almost no role when the chromophore locations are
highly correlated.

An important consideration in designing polarization e
periments is that the orientational distribution of the ch
mophores must be known. The easiest way to meet
stipulation is to ensure that their orientational distribution
random. This requires that there be fewer than one ch
mophore per statistical segment of the copolymer. AsN in-
creases it becomes less likely that this stipulation is m
Thus, we find that for parameters that are appropriate
experiment, agreement between theory and simulation
quite good. For the range of tagging fractions that is usefu
experiments, the cumulant theory is capable of providing
accurate determination of̂Rg

2&1/2. The accuracy has bee
tested experimentally15 and shown to be very good.

2. Intermolecular EET

Extension of the theory to EET between the ch
mophores on different copolymer chains depends upon
combined utility of the cumulant approximation and the E
fective Chromophore Method. The ECM depends on
separability of^Gs(t)& into contributions to the total EET
from excitation transfers among chromophores on the s
chain and contributions from transfers among chromopho
on different molecules, i.e.,^Gs(t)&5^Gon

s (t)&^Goff
s (t)&. Be-

cause the cumulant expansion is truncated at first orde~a
pair approximation!, the separation is formally allowed
However, the question is open as to how accurate the
lytical treatment is.

The Peterson and Fayer calculation provides^Gon
s (t)&,

which, as shown above, provides an accurate descriptio
transfer on a single chain under the proper conditio
^Goff

s (t)& is obtained using the ECM with Eq.~7! as de-
scribed above.

Figure 5 shows the results of calculations of^Gs(t)& for
ensembles of spherical nanodomains. The onset of ph

8716 J. Chem. Phys., Vol. 109, No. 19, 15 November 1998
separation is modeled as spinodal decomposition, in whic
nanodomains~with radius equal tô Rg

2&1/2 of the guest co-
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polymer! maintain a constant volume, while the density
guest copolymer inside them increases. Curves~a! present
^Gon

s (t)& for single guest copolymer chains of molecul
weight 55 000 with 10 chromophores per chain. Curves~b!
are calculations and simulations of EET for nanodoma
containing two of these chains (Nc52), and curves~c! show
the same forNc57. The agreement between theory a
simulation is reasonable, demonstrating that the the
which depends upon the first-order cumulant approximati
the separability of̂ Gon

s (t)& and ^Goff
s (t)& and on the effec-

tive chromophore method, is a good description of E
among chromophore-bearing polymers. Given the numbe
approximations in the analytical theory, the results are
markable. While the quality of the agreement varies, sim
agreement can be found for a variety of domain sizes
chain sizes.

Curves~a! demonstrate that the intrachain EET theo
with the cumulant approximation works well for this system
In the interchain EET theory, polymer molecules are mo
eled not as chains of statistical segments, but as Gaus
clouds. Chains are more compact than clouds. This me
that EET for isolated clouds is slower than that for isolat
chains, but also that there is significant overlap betwe
clouds for a greater range ofRs than for chains.24 These
differences may give rise to the differences between sim
tion and theory shown in curves~b! and ~c!. Unlike simula-
tions of nanodomains with large numbers of chains, the a
lytical theory is rapidly implemented on a fast workstatio
for any number of chains. Therefore, it can be used to
experimental data, providing a powerful method for t
study of nanophase separation.

FIG. 5. Calculations~dashed lines! and simulations~solid lines! of ~a! Eq.
~5! for copolymers withN510 andN̄5122; ~b! Eq. ~7! for an ensemble of
spherical domains containing 2 such copolymer chains, and~c! Eq. ~7! for
domains of the same size, each containing 7 chains.

Hussey, Matzinger, and Fayer
h The theory is also useful in optimizing experimental de-
sign. We can examine various combinations of parameters
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and predict the time-resolved anisotropy decays for the p
mer systems they represent. For this case we find that
growth of nanodomains fromNc52 to Nc57 will be detect-
able for a number of chromophores,N, that is low enough to
be appropriate for measuring^Gon

s (t)&. Furthermore, just as
the desire for a random orientational distribution stipula
that N be small, the densities of polymeric materials und
study place an upper bound onNc . The range ofNc in Fig.
5 is that allowed for polymers of 55 000 molecular weig
and bulk density 1.19 g/cm3, modeled after common poly
mers. The change in the observable is large enough to m
tor nanodomain formation in experimental systems of gu
polymers of this molecular weight. If the range of physica
allowed Nc for a particular composite material is broa
enough that a distribution inNc should be considered, it i
straightforward to weight the contributions to the observa
from nanodomains with differentNc accordingly. We have
examined a Poisson distribution inNc with a weighting by
the number of chromophores per nanodomain, since th
with more chromophores are more likely to capture an ex
tation and subsequently contribute to^Gs(t)&. Such treat-
ment further reduces the differences between theoretical
simulated decays. If the disagreement is large, the sim
tions are still very useful for data analysis.

V. CONCLUDING REMARKS

We have shown that the MC simulations for EET
polymer systems compares favorably with previously dev
oped analytical theory, demonstrating excellent agreemen
the realm of experimentally appropriate parameters. Low
ing the reduced concentration, which slows the approac
the asymptotic limit, diminishes the discrepancies betw
theory and simulation. The reduced concentration can
lowered by decreasingN, and also by decreasingR0 /r sphere.
Since decreasingN maximizes the difference betwee
exp@(12N)/2# and 1/N, decreasingR0 /r spheredoes the most
to improve agreement. This can be achieved by selectin
chromophore with an appropriate value ofR0 . The distinc-
tion between smallN and low reduced concentration is ther
fore important to bear in mind in the process of experimen
design.

The discrepancies between simulation and theory
are large generally occur for situations that fall outside
combined range of parameters for experimental tractab
or prudent design, e.g., at long times and highN. This is also
the case when higher-order terms not contained in the fi
order cumulant approximation can contribute significantly
the description of EET on polymer chains. Situations
which agreement is compromised are readily identifiab
For volumes which are small with respect toR0 , exactly
how large or smallN can become if the theory is to be usef
for interpreting experimental data can be determined
looking at calculations and simulations for the set of para
eters in question. For analysis of data from phase-separa
polymer blends, nanodomain size and shape can be varie
fit ^Gs(t)& to experimental data. The net result is that t

J. Chem. Phys., Vol. 109, No. 19, 15 November 1998
theory is well suited for analysis of experimental data. Th
calculations are significantly more efficient than simulation
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for fitting data from systems with large numbers of chain
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APPENDIX

The general form and derivation of^Goff,DT
s (t,Rs)& for

donor-trap EET between an initially excited donor in o
chromophore cluster and a group ofN21 chromophores in a
different cluster is presented in Ref. 24, which includes fi
ures detailing the correct coordinate system for describ
intercluster transfer. For the specific case of EET betw
chromophores on copolymer molecules modeled as Gaus
distributions of polymer segments,

^Goff,DT
s ~ t,Rs!&

52pS 3

2p^Rg
2& D

3/2E
0

rmaxE
0

pF S 3

2p^Rg
2& D

3/2

3expS 23r 1
2

2^Rg
2& D E0

rmaxE
0

pE
0

2p

expS 23r 2
2

2^Rg
2& D

3expF S 2t

t D S R0

r 12
D 6G r 2

2dr2 sin u2du2dw2GN21

3r 1
2dr1 sin u1du1 . ~A1!

In brief, 0<u i<p, measured from the positive half of th
z-axis for each cluster. The separation between the clust
centers-of-mass lies along thez-axis. 0<w i<2p, which is
in clusteri’s xy-plane and measured from its positivex-axis,
and 0<r i<`, measured from the origin of clusteri.
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