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Abstract

Ž . Ž .Vibrational lifetime T data for the asymmetric CO stretching mode of W CO in supercritical ethane and carbon1 6
w xdioxide as a function of temperature at various fixed densities are compared to a recent extended hydrodynamic theory 1 . In

ethane at the critical density, as the temperature is raised, T initially becomes longer, reaching a maximum ;70 K above1

the critical temperature. T decreases with further increase in temperature. The theory is able to reproduce this behavior1

nearly quantitatively without free parameters. At high density in ethane and in CO , the inverted temperature dependence is2

not observed, in agreement with theoretical calculations. q 2000 Published by Elsevier Science B.V.

1. Introduction

Vibrational relaxation of a solute in a supercritical
Ž .fluid SCF can be studied at fixed temperature as a

function of density and at fixed density as a function
w xof temperature 1–3 . Therefore, studies of vibra-

tional relaxation in SCFs provide unique opportuni-
ties for investigating relaxation phenomena. Vibra-
tional relaxation, which is highly dependent on the

) Corresponding author. Fax: q1-650-723-4817; e-mail:
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nature of solute–solvent interactions, can also serve
as a probe of such interactions in SCFs. Near the
critical point, the properties of SCFs change dramati-
cally with temperature and density. Therefore, it is a
challenge to incorporate the SCF properties into a

w xtheory of vibrational relaxation 1,4 .
In this Letter, vibrational relaxation experiments

as a function of temperature at constant density,
conducted on the asymmetric CO stretching mode of
Ž . Ž y1 .W CO ;1990 cm , in supercritical ethane and6

CO are compared to theoretical calculations using a2

recently developed density functional extended hy-
drodynamic theory of vibrational relaxation. The na-
ture of the temperature dependence of the vibrational

w xrelaxation in ethane is unusual 3 . With the density

0009-2614r00r$ - see front matter q 2000 Published by Elsevier Science B.V.
Ž .PII: S0009-2614 00 00682-5



( )D.J. Myers et al.rChemical Physics Letters 325 2000 619–626620

Ž y1 .fixed at the critical density r s6.88 mol l ,c
Žbeginning just above the critical temperature T sc

.305 K, T s1.006 , as the temperature is increased,r

T becomes longer. T continues to increase with1 1

increasing temperature until ;70 K above T . Atc

still higher temperatures, T decreases. In contrast,1

the lifetime decreases with increasing temperature
over the entire range in CO at any density or if the2

Ždensity in ethane is raised substantially above r 12c
y1 .mol l .

In several recent studies, the density dependences
Ž .of vibrational lifetimes of a probe molecule, W CO ,6

Žin various supercritical fluids ethane, carbon diox-
. w xide, and fluoroform 1,5 were measured along two

isotherms, one at 2 K above the critical temperature
Ž .T , which corresponds to a reduced temperaturec

T f1.006, and one significantly higher. A hydrody-r

namic theory of vibrational relaxation of solutes in
w xSCF solvents 6 that was recently extended and

w xmade quantitative 1,5 , showed very good agree-
ment with the experimental data in ethane and fluo-
roform and reasonable agreement in carbon dioxide.
The purpose of this Letter is to compare theoretical
predictions of the temperature dependence of vibra-
tional lifetimes at various fixed densities with experi-

w xmental data 3 .

2. Experimental procedures

Infrared vibrational pump–probe experiments
Ž .transient absorption measurements were conducted

Ž .to measure T of the asymmetric stretch of W CO1 6

as a function of temperature at constant density. The
experimental procedures have been discussed in con-

w xsiderable detail previously 1 . The doubled output of
a mode-locked, Q-switched Nd:YAG laser is used to
pump a dye laser. The dye laser output and a 532 nm
pulse from the doubled YAG laser pump a LiIO3

OPA. The frequency of the IR OPA is tuned by
tuning the dye laser to the peak of the Õs0™1 CO

Ž .T mode absorption of the solute, W CO . The1u 6

OPA output is ;1 mJ and has a bandwidth of 0.8
cmy1. The pulse duration is ;30 ps. The fre-
quency, which depends on the temperature and den-
sity of the solvent, is ;1990 cmy1. FT-IR spectra
were taken of the sample at all temperatures and

densities, and the laser was tuned to the peak of the
absorption in all cases.

The sample is contained in a high pressure, high
temperature cell and sealed with sapphire or calcium

w xfluoride windows 1 . An enclosure was constructed
with heaters and fans to produce a uniform tempera-
ture. The sample cell, the valves, the pressure trans-
ducer, and connecting tubes were all contained within
the enclosure, and all were maintained at the same
constant temperature within "0.18C. Great care was
taken to assure temperature and density uniformity in

w xthe SCF sample 1 .

3. Theory

The theory employs the standard relationship be-
tween the vibrational lifetime, T , and a classical1

description of the force–force correlation function,

k r ,T sTy1Ž . 1

`Q
² :s d t F t F 0 cos v tŽ . Ž . Ž .H cl2m"v y`

1Ž .

where m is the reduced mass of the oscillator and v

is the Fourier transform frequency associated with
w xenergy deposited into the solvent 7 . Q is called the

quantum correction factor. Q corrects for the use of
w xthe classical force–force correlation functions 8,9 .

w xAs discussed in earlier papers 1,6 , the force–
force correlation function can be determined approx-
imately using the methods of density functional the-
ory. There it was shown that

` 2y1 2 ˆ ˆT AQ d t cos v t dk k C k S k,tŽ . Ž . Ž .H H1 21 1
0

2Ž .

ˆ Ž .where C k is the Fourier transform of the direct21
Ž .correlation function between solute component 2

ˆŽ . Ž .and solvent component 1 and S k,t is the dy-1

namic structure factor of the solvent. Vibrational
relaxation has been related to the dynamic structure

w xfactor previously 10,11 . The above expression for
T is particularly useful for investigating vibrational1

relaxation in SCFs as it permits known density-de-
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pendent solvent properties to be used in the calcula-
tions of the lifetimes. The proportionality constant,
which includes parameters like the oscillator mass, is
independent of temperature and density and is ne-
glected.

Ž .Eq. 2 contains two k-dependent functions, the
Fourier transform of the solute–solvent direct corre-
lation function and the dynamic structure factor. A
hard sphere direct correlation function is employed.
Hard sphere models have proven useful in discussing
many aspects of liquids, but they exclude the possi-
bility of solute–solvent attractive interactions. The

w xhard sphere expression derived by Lebowitz 12
yields a direct correlation function dependent on
solute and solvent densities and effective hard sphere
diameters. It can be used to obtain an exact expres-

ˆ Ž .sion for C k , the form of which has been given21
w xpreviously 1,5 .

The dynamic structure factor can be written as the
product of the equilibrium static structure factor of

ˆ Ž .the solvent, S k , multiplied by a time-dependent1

term. For small wave vectors, this leads to a form
that satisfies the Navier–Stokes hydrodynamics

w xequations 13 . The time-dependent piece contains
two terms: one that is associated with diffusive

Ž .motion Rayleigh peak and one that describes prop-
Ž .agating waves Brillouin peaks . As discussed in
w xdetail previously 1 , careful numerical analysis at all

wave vectors shows that the calculation of T in-1

volves large wave vectors only. For large wave
vectors, the dynamic structure factor takes the form

1
Ž .ytrt k1ˆ ˆS k,t sS k 1y e , 3Ž . Ž . Ž .1 1 ž /g

ˆ Ž .where S k is approximated by the Ornstein–1
w xZernike expression 13 ,

r k rk 0
1 T T

Ŝ k s 4Ž . Ž .1 2 21qk j

with r the number density of the solvent, k its1 T

isothermal compressibility, k 0 is the isothermalT

compressibility of the ideal gas, j is the correlation
length of density fluctuations, and g'C rC is thep V

ratio of specific heats.

For the decay constant in the exponential, we
w xemploy an expression by Kawasaki 14

1 k TB
s 3t k 8phjŽ .1

=
1

2 2 3 3 y11qk j q k j y tan kj ,Ž .ž /kj

5Ž .

where h is the viscosity. For small k, this expression
reduces to the hydrodynamic limit D k 2, where DT T

is the thermal diffusivity. In the small k limit, the
time-dependent factor would contain two terms: a
term describing diffusive motion and wave propaga-

Ž .tion. The single time-dependent term in Eq. 3 is the
generalization of the diffusive term to include large

ˆ Ž .k. Numerical analysis of S k,t shows that contri-1
Ž .butions to the k integral in Eq. 2 are overwhelm-

ingly dominated by the function at large k, i.e.,
˚ y1kf1 A . The propagating wave term is dropped. It

is negligible at large k, which is born out by both
w x w xexperiment 15–17 and theory 18,19 . Because the

Ž .contributions to the k integral in Eq. 2 are sharply
peaked at large k, the numerical evaluation was
carried out for large k only.

The nature of Q, the quantum correction factor, is
w xa topic of considerable recent interest 8,9 . The

w xliterature shows that one of the better choices 9 is
w xthe form put forward by Egelstaff 20 . The Egelstaff

correction is given by a prefactor

Qse" v r2 k BT , 6Ž .

and the time variable t is replaced as

22(t™ t q "r2k T 7Ž . Ž .B

in the classical force–force correlation function. The
quantum correction factor has a significant effect on
the calculated temperature dependence and a small,
almost negligible, effect on the density dependence.
The time integral can be performed analytically,
though the Egelstaff correction factor complicates
the final form. A discussion of the functional form of
the force–force correlation function that arises from

w xthis theory has been given previously 1 .
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A number of density and temperature-dependent
physical parameters are required to evaluate the the-
oretical expressions. These include r , the number1

density of the solvent, k , the isothermal compress-T

ibility, j , the correlation length of density fluctua-
tions, g'C rC , the ratio of specific heats, and h,p V

the viscosity. Very accurate equations of state and
other experimental information provide the necessary

w x w xinput parameters for ethane 21,22 and CO 22 .2

The thermodynamic parameters that enter the the-
ory build in a detailed description of the SCF sol-
vent. All of the input parameters vary substantially
with density and temperature. In the near critical
region, the variations of the parameters are enor-
mous. In comparing the theory with experiment in

Ž .the next section, the zero density T 1.28"0.10 ns1
w xis removed from the data 23 , and the resulting

density and temperature-dependent lifetimes,
Ž .T r,T , are compared to the theory. The theoretical1

curves are scaled to match the data at one particular
temperature and density point. The aim is to examine
the density and temperature dependences of vibra-
tional relaxation, not the absolute value of the rate of
vibrational relaxation.

4. Results and discussion

Fig. 1 displays experimental data and theoretical
Ž .calculations of the density dependence of T r,T1

Ž .data for W CO in supercritical ethane at 307 K6
Ž .top curve , which is 2 K above the critical tempera-

w xture and at 323 K 1 . The solute hard sphere diame-
˚ter, 6.70 A, was determined from the crystal struc-

w xture 24 . Three parameters were varied to obtain the
theoretical fit in Fig. 1a. A multiplicative scaling
parameter shifts the theoretical curve up and down,
but does not change its shape. The theory was scaled
to match the data at the critical density, 6.88 mol
ly1. The solvent hard sphere diameter was varied

˚Ž .somewhat, with the optimal value 3.94 A being a
Ž .slight ;7% reduction from the literature value

w x25 . The frequency v is the parameter that has the
major influence on the shape of the calculated curve.
It was varied to give the best agreement, which was
obtained for vs150 cmy1. Fig. 1a shows that the
theory does a very creditable job of reproducing the

Ž .Fig. 1. a The density dependence of the vibrational lifetime of
Ž .the asymmetric CO stretch of W CO with the zero density6

Ž .contribution removed, T r,T , for the solvent ethane at 307 K1

and the theoretically calculated curve. The theory was scaled to
match the data at the critical density, 6.88 mol ly1. The best

˚agreement was found for solvent diameter 3.94 A and v s150
cmy1 , the energy deposited directly into the solvent upon relax-

Ž . Ž .ation. b T r,T versus density for the solvent ethane at 323 K1
Ž r .and the theoretically calculated curve T ,T . The scaling factor,1

frequency v, and the hard sphere diameters are the same as those
used in the fit of the 307 K data. The agreement is very good
without free parameters.

density dependence of the data. Fig. 1b displays the
323 K data for the ethane solvent and the theoreti-
cally calculated curve. In this calculation the parame-
ters determined by the fit to the data in Fig. 1a are
employed; no further adjustments are made. As
shown by Myers et al., the parameters that go into
the calculation change substantially in going from
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Ž . w x307 K near critical temperature to 323 K 1 .
Nonetheless, the theory is able to reproduce the data,
and the agreement is very good given the lack of free
parameters.

The calculations are quite sensitive to the choice
of v. It was found that the same value of v gave the
best agreement with the data in ethane, fluoroform,
and CO . The fact that the same v arises in the fits2

to data in all three solvents suggests that this is not
an arbitrary value, but rather reflects the energy
deposited into the solvent in the course of the vibra-
tional relaxation. Calculations were also performed

w xin which a distribution of v was used 1 . It is found
that v need not be a single frequency to produce the
curves shown in Fig. 1. For instance, relaxation
times calculated by averaging over a Gaussian distri-
bution of frequencies with a 150 cmy1 mean and a
standard deviation of 20 cmy1 are identical to the
results shown in the figures. This frequency is most
likely located in the single ‘phonon’ density of states
Ž .DOS of the continuum of low frequency modes of
the solvents. Instantaneous normal mode calculations
in CCl , CHCl , and CS show cut-offs in the DOS4 3 2

at ;150 cmy1, ;180 cmy1, and ;200 cmy1,
w xrespectively 26,27 . The higher frequency portions

of the DOS are dominated by orientational modes.
Since ethane, fluoroform and CO are much lighter2

than the liquids cited above, it is expected that their
DOS will extend to higher frequency.

w xStandard theories of vibrational relaxation 7,28
take a variety of approaches. However, one almost
universal trait is that the vibrational lifetime of an
oscillator decreases with an increase in temperature
at constant density. In the simplest isolated collision

w xtheories 7 , as one increases the temperature of a
system at fixed density, the collision frequency will

Žincrease leading to faster relaxation. This assumes
that the collision diameters of the particles do not

w xchange significantly 25,29
Ž .Fig. 2 shows the vibrational lifetime T r,T1

as a function of temperature in ethane at the criti-
Ž y1 .cal density 6.88 mol l . Between 307 K and

;375 K, as the temperature increases the lifetime
becomes longer. We refer to this temperature depen-
dence as inverted. Above ;375 K, the lifetime
decreases with further increases in temperature. An
inverted temperature dependence in vibrational re-
laxation has been observed in a few liquid systems

Fig. 2. The temperature dependence of the vibrational lifetime of
Ž .the asymmetric CO stretch of W CO with the zero density6

Ž .contribution removed, T r,T , for the solvent ethane at fixed1

density, the critical density, r s6.88 mol ly1 , and the theoreti-c

cally calculated curve. Note the presence of an inverted tempera-
ture regime, i.e., the lifetime initially becomes slower as the
temperature is increased. The theoretical calculation uses the

Ž .parameters obtained from the density dependence Fig. 1a with-
out further adjustment. The theory does a very respectable job of
predicting the shape, including a near quantitative match with the
amplitude and temperature at the maximum. At higher tempera-
tures the calculated slope drops somewhat faster than the data.
Ž .The scale is greatly expanded relative to Fig. 1.

w x30,31 , but in liquids, as the temperature is in-
creased the density of the liquid decreases. There is a
trade trade-off in liquids between increasing temper-
ature and decreasing density that can influence the

w xform of the temperature dependence 27 . The behav-
ior of the vibrational relaxation in water near its
freezing point is probably caused by changes in
hydrogen bonding that occur near the phase transi-

w xtion 31 . The mechanisms responsible for inverted
temperature dependences in liquids do not occur at
fixed density.

The calculated temperature-dependent curve in
Fig. 2 was obtained using known solvent parameters
at each temperature and the parameters determined
by the fit to the density-dependent data in Fig. 1a,
without adjustment. Thus, there are no free parame-
ters in the calculation. While the agreement between
the calculation and the data is not perfect, the calcu-
lation does a good job of capturing the essential
features of the data. The theory predicts the existence
of the inverted region, and matches nearly quantita-
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tively the amplitude and temperature at which the
lifetime reaches a maximum. However, the theoreti-
cal curve drops too rapidly with temperature above
;400 K.

At densities below and somewhat above the criti-
w xcal density, the data are still inverted 3 . However,

at sufficiently high density, the data do not display
an inverted region. Fig. 3 shows temperature-depen-
dent data at 12 mol ly1. The solid line is the
calculated curve using the temperature-dependent
solvent parameters at 12 mol ly1 and the parameters
determined from the density-dependent data in Fig.
1a. While the agreement is not quantitative, the most
important feature, the lack of an inverted temperature
dependence, is reproduced. Furthermore, changing

Ž y1 .from the critical density 6.88 mol l to 12 mol
ly1 drastically changes all of the input parameters to
the theory. Given the lack of free parameters, the
theory does a respectable job of reproducing the
data.

Ž .Fig. 4 displays T r,T data as a function of1
Žtemperature in CO at the critical density 10.6 mol2

y1 .l . The data do not display an inverted temperature
dependence at the critical density or any other den-

w xsity investigated 3 . The solid line is the theoretical
calculation, using parameters obtained from fitting

Ž .Fig. 3. T r,T versus temperature for the solvent ethane along1

the 12 mol ly1 isochore. The data no longer show an inverted
temperature dependence. The theory, with no free parameters,
captures the essential feature of the data, the lack of an inverted

Žtemperature regime, though it overestimates the slope. The scale
.is greatly expanded relative to Fig. 1.

Ž .Fig. 4. T r,T versus temperature for the solvent carbon dioxide1
Ž y1 .along the critical isochore r s10.6 mol l . Unlike the tem-c

Ž .perature dependence in ethane Fig. 2 , the temperature depen-
dence in CO at the critical density does not have an inverted2

region. The theory properly displays the lack of an inverted
temperature region, and, away from the critical temperature, has

Žapproximately the correct slope. The scale is greatly expanded
.relative to Fig. 1.

Žthe CO density dependence fixed temperature, Ts2
˚. Ž306 K solute diameter s6.70 A, solvent diameter

˚ y1 . w xs3.60 A, and frequency vs150 cm 1 . Like
the data, the calculation does not have an inverted
region, although there is a change in slope at low
temperature. Again, the theory is able to capture the
essential nature of the temperature-dependent data
without free parameters.

5. Concluding remarks

In this Letter, the the extended hydrodynamic
theory of vibrational relaxation in SCFs was com-
pared to measurements of the temperature-dependent

Ž .lifetime of the asymmetric CO stretch of W CO in6

ethane and CO . The theory, which was shown2

previously to be able to describe the density depen-
w xdence of T at fixed temperature 1 , does a good job1

of reproducing the temperature dependence without
free parameters. In particular, the inverted tempera-
ture dependence observed in ethane at the critical
density is reproduced nearly quantitatively and the
lack of inverted temperature dependences in high
density ethane and in CO are also reproduced.2
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Egorov and Skinner have used a theory that in-
Ž .volves Lennard-Jones LJ spheres and a breathing

sphere model to calculate the density and tempera-
w xture dependence 4 of some of the data presented

w xhere and previously 1 . By adjusting a number of
parameters, including the LJ parameters, their theory
is able to reproduce the density-dependent data in
ethane and the temperature-dependent data in ethane
at the critical density only. The agreement of the
Egorov–Skinner theory with the data is comparable
to that obtained with the hydrodynamic theory. It is
not known if the Egorov–Skinner theory can repro-
duce the lack of an inverted region at high density in
ethane or at all densities in CO . Their calculations2

involve mild solute–solvent clustering.
The extended hydrodynamic theory discussed here

contains important details of the solvent by employ-
ing a variety of the solvent’s hydrodynamic and
thermodynamic properties as input parameters. The
spatial distribution of the solvent about the solute
comes in through the Fourier transform of the so-

ˆ Ž .lute–solvent direct correlation function, C k . The21
ˆ Ž .fluid’s C k is approximated using an exact hard21

sphere expression. The fact that the theory can repro-
duce the observed diverse temperature and density

w xtrends 1,5 suggests that the theory is capturing the
essential features of vibrational energy relaxation.

ˆ Ž .Using a hard sphere C k means that the theory21

does not involve solute–solvent attractive interac-
tions that could give rise to local density enhance-

Ž .ment of the solvent around the solute clustering
w x32–34 . Such attractive clustering is distinct from
local density augmentation that can arise from criti-

w xcal phenomena 35 . Clustering arising from specific
solute–solvent attractive interactions has been in-
voked to explain a variety of experimental observ-

w xables 32–34 . The results presented here and previ-
w xously 1 indicate that even near the critical point,

observables measured in SCFs may not require so-
lute–solvent clustering as part of their explanation.
Critical phenomena can be important, and they are
brought into the extended hydrodynamic theory via
the input of detailed solvent parameters. The proper-
ties of an SCF solute–solvent system change sub-
stantially as the system is moved away from the
critical point. The theory presented above can repro-
duce substantial features of vibrational relaxation in
the systems studied.
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