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Accidental degeneracy beats: A distinct type of beat phenomenon in nonlinear optical spectroscop
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A type of beat in nonlinear optical spectroscopy that is distinct from quantum beats~QB’s! and polarization
beats, is described. Like a quantum beat, this beat, which we refer to as an accidental degeneracy beat~ADB!,
can only be seen in multilevel systems. However, unlike quantum beats, which are the result of intramolecular
interferences, ADB’s are interferences between different subensembles of molecules in the sample. They
require multilevel systems with spectral overlap. ADB’s can appear as separate frequencies or as phase and
amplitude contributions with the same frequency as that of quantum beats. A procedure for distinguishing
between quantum beats and ADB’s is outlined, and criteria under which ADB’s are expected to be observed are
delineated. Calculations of the spectrally resolved stimulated vibrational echo signal from an inhomogeneously
broadened coupled anharmonic oscillator system are presented to illustrate the differences between the two
types of beats. ADB’s carry information about the anharmonicity of a system, while QB’s carry information
about intramolecular correspondence of transition frequencies in a multilevel system.
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I. INTRODUCTION

There are an increasing number of experiments that
coherence to probe the structure and dynamics of molec
systems@1–9#. The common feature in all these experimen
is the generation of superpositions of states that evolve
herently. When more than two levels are involved, the p
sibility of interference between these coherent proces
arises. The effects of such interferences have been seen
wide variety of optical experiments, including fluorescen
spectroscopy@10,11#, photon-echo techniques@12–17#, tran-
sient grating experiments@12,18,19#, pump-probe spectros
copy @20–22#, and Raman spectroscopy@23,24#, Regardless
of the technique, multistate interferences inevitably lead
oscillations in the amplitude of the detected signal. Quant
beats~QB’s! are one class of interferences that can prod
these oscillations@10,14#. These beats are due to quantu
mechanical interference between the different syste
evolution pathways that lead to the same final state. H
ever, not all interference effects that have been observe
coherence experiments are due to quantum beats. Ano
class of interference effects, which we will refer to as ac
dental degeneracy beats~ADB’s!, has recently been observe
in ultrafast infrared vibrational echo experiments@25–27#.
These are a different type of beat, distinct from both QB
and polarization beats@28# that have been reported in oth
systems. ADB’s are similar in appearance to QB’s, but
the result of a very different microscopic mechanism and
such, have different information content than QB’s. Thus
becomes necessary to have a clear understanding of
ADB’s occur, when they are present, and what informat
they carry.

The similarities and differences between polarizat
beats, QB’s and ADB’s can be illustrated by comparing
nature of signals that can be generated in a vibrational e
experiment@29#. The stimulated vibrational echo@30# is the
infrared analog of the three-pulse spin echo in nuclear m
netic resonance@31# and the three-pulse photon echo@4# in
electronic excited state spectroscopy. The stimulated ech
1050-2947/2002/65~2!/023817~16!/$20.00 65 0238
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used to extract information contained in the dynamical lin
width of a transition. In principle, this information is prese
in a linear absorption spectrum@32,33#. However, in transi-
tions that are inhomogeneously broadened, it is difficult
impossible to extract meaningful dynamical informatio
Stimulated echo techniques remove inhomogeneous br
ening and permit the observation of dynamical line sha
@33#.

In this technique, three pulses with wave vectorskW1 , kW2 ,
andkW3 and variable delayst ~between pulses 1 and 2! andTw
~between pulses 2 and 3! are crossed in a sample. In a ma
sively inhomogeneously broadened sample, a new field
generated at a time 2t1Tw in the kW s5kW21kW32kW1 direction
@34#. Consider an inhomogeneously broadened two-le
system with center frequencyvo . After the interaction with
kW1 , a macroscopic polarization is created in the sample as
oscillators in the system are brought into a coherent su
position of the ground and excited states. As each oscilla
evolves in time at its natural transition frequencyv i , which
denotes its frequency relative to the line centervo , the mac-
roscopic polarization undergoes a free induction decay~FID!
at frequencyvo as each oscillator dephases relative to
rest of the oscillators in the inhomogeneous system. Afte
time t, the system interacts with the second pulse, driv
the system from the coherence state into either the groun
excited population states~see Fig. 1, type-I diagrams!. After
another timeTw , the third pulse interacts with the system
taking it from either the ground or excited state back into
coherent superposition. Once again, each oscillator evo
at its natural transition frequency, but the sign of the coh
ence is opposite. The system now rephases at the frequ
2vo . As the entire ensemble of molecules rephase, a m
roscopic polarization is recreated in the sample. This mac
scopic polarization is responsible for the generation of
echo signal. At a timet after the third pulse, the inhomoge
neous dephasing that occurred for each oscillator during
period t between the first pulse and second pulse is co
pletely undone, and the intensity of the echo pulse is ma
©2002 The American Physical Society17-1
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mum. At this point, the system undergoes another FID. Th
back-to-back FID’s give rise to the temporally narrow ec
wave packet. Over the course of the temporal evolution
the system, interactions between the oscillators and their
vironments give rise to processes that cause both exc
state relaxation and small stochastic phase variations in
oscillator’s frequency. The excited-state relaxation redu
the amplitude of the echo wave packet by reducing the n
ber of oscillators that generate the signal, and the accum
tion of irreversible phase differences prevents perfect rep
ing of the oscillators. As the delay timest or Tw are
increased, more of these decay events occurs, which g
rise to a decay in the echo signal as a function of th
delays.

Consider a sample that has two possible inhomogeneo
broadened transition frequencies; for example, the sam
could be an impurity molecule in a molecular crystal that c
occupy two different crystal sites with similar transition fr
quencies, or a molecule with two uncoupled transitions w
similar frequencies, or a sample containing two different s
cies but with similar transition frequencies. Now consider
results of performing an echo experiment on this sample.
the sake of clarityTw50, that is, the second and third puls
are time coincident. Upon coherent excitation of the sam
with a pulse having sufficient bandwidth to drive both tra

FIG. 1. Feynman diagrams that are involved in the calculat
of the echo signal. The times after the first, second, and third in
actions aret, Tw , andts , respectively. For a two-level system, th
type-I diagrams describe the echo response. For a three-level
tem that generates QB’s, type-I and type-II diagrams must be c
sidered together. For a three-level system that produces ADB’s
cause of vibrational anharmonicity, type-I and type-III diagra
contribute to the total signal. For a coupled anharmonic oscilla
@coupled vibrational local modes that give rise to two norm
modes,S ~symmetric! andA ~antisymmetric!, the anharmonic oscil-
lator being one of them#, types I–IV all participate in the generatio
of the overall echo response. These Feynman diagrams give
response from a single manifold. For example, for theS manifold,
i 5S, j 5A. For theA manifold, i 5A, j 5S. The total echo signa
for coupled anharmonic oscillators~SandA! contains 14 diagrams
7 from theS manifold and 7 from theA manifold.
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sitions simultaneously, an echo wave packet is generate
the sample that is the sum of the echo wave packets f
each transition. If a fast photodetector capable of time res
ing the envelope function of the wave packet is used, fo
given delayt, the detector will see an envelope functio
width that is related to the linewidths of the transitions a
modulations at the difference frequency between the
transitions@28#. The signal is the result of the sum of the tw
individual contributions to the total polarization, and th
modulations in the envelope of the echo wave packet
from the interference at the detector of the two distinct f
quencies generated by the sample. This is what is comm
called a polarization beat@28#, because it is a beat betwee
the electric fields produced by the two polarizations gen
ated in the sample. If a slow photodetector is used for de
tion ~or equivalently, if the signal from the fast detector
integrated! and the signal is plotted as a function of the del
t, then the echo curve will decay monotonically with n
oscillations, regardless of the difference in transition f
quency energy, the extent of inhomogeneous broadening
overlap of the spectral lines. In a two-level system, the f
quency at which an oscillator dephases is equal to the
quency at which it rephases. Therefore, the phase differe
that accumulated between individual oscillators in t
sample after the first pulse are undone during the time a
the third pulse, and every oscillator has the same phase
tionship when the echo wave packet is generated. The e
decay curve, therefore, shows no oscillations. If a fast p
todetector is used to detect the echo signal at a single
quency by dispersing the signal with a monochromator, th
the echo pulse envelope shows no oscillations; the integr
signal from each transition decays monotonically with
creasingt, consistent with a description of the oscillation
seen in the time-resolved nonspectrally dispersed signa
an interference between two frequencies on the detector.
beat on the echo envelope~not spectrally resolved! is a po-
larization beat.

Now consider a different type of sample that is compos
of a molecule with a ground state and two excited states
have similar energies and are both radiatively coupled to
ground state with transition frequenciesv i and v j . The
type-I and type-II Feynman diagrams in Fig. 1 describe
echo signal from such a system. If the transition frequenc
and transition probabilities of this second type of sample le
to an absorption spectrum that is the same as the absor
spectrum from the first sample type, then~except for abso-
lute amplitude! the temporally resolved echo envelop fro
the second sample type will be the same as from the fi
However, if the integrated signal is plotted as a function
the delayt, oscillations at the transition frequency diffe
ence,Dv5uv i2v j u are observed in the echo decay curve
t is increased. If one of the transitions is detected throug
monochromator, then the temporally resolved envelope
single t position shows no modulations, but the integrat
detector response as a function oft shows oscillations atDv
@3,35#. The same holds true if the other transition is detec
through the monochromator. The interference between
different frequencies on the detector cannot apply in
spectrally resolved situation. Rather, the signal amplitude
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each frequency in the sample is being modulated as a f
tion of the delayt and at a frequencyDv. This is a quantum
beat.

The explanation for the quantum-beat oscillations lies
the manner in which the coherent states are prepared
evolve. For the spectrally resolved signal, the detector s
signal from all oscillators that have their emission frequen
~i.e., the coherence frequency after the third pulse! equal to
the detection frequency of the monochromatorvd . In gen-
eral, the ‘‘state’’ of a time-evolving system is a superpositi
of all the quantum pathways that a particular system
follow. In the case of the coupled oscillator, there are m
tiple quantum pathways that lead to the same final cohere
state with the coherence frequency equal tovd ~see Fig. 1,
type-I and -II diagrams!. Assume that the monochromator
tuned to the transition with the transition frequencyv i , so
that vd5v i . In the quantum pathways represented by
type-I diagrams, the coherence frequency after the first in
action isv i and after the third interaction it is2v i . In a
two-level system, these are the only quantum pathways
need be considered. However, in the coupled oscillator c
the quantum pathways represented by the type-II diagr
must also be included in the final signal. These diagra
have a final coherence frequency of2v i , but initially
dephased atv j . Because the type-I and type-II quantu
pathways have different initial coherence frequencies, th
is a relative phase difference between them equal to~Dv!•t.
Since the type-I and type-II diagrams rephase at the s
frequency, the phase difference~Dv!•t acquired during the
first coherence period is not reversed after the third inte
tion. As t is increased, the systematic phase difference
tween the type-I and type-II diagrams grows, and the fi
coherence states from the two sets of diagrams move in
out of the phase with each other. Thet-dependent phas
difference gives rise to QB oscillations in the echo decay
frequencyDv as a function oft, giving rise to oscillations in
both the spectrally resolved and nondispersed echo d
curves.

To illustrate the nature of accidental degeneracy be
consider a third type of sample composed of an inhomo
neously broadened weakly anharmonic oscillator@17#. In
such a system, each energy level is strongly coupled by
radiation field only to adjacent energy levels. We define
transition frequencies between levels 0 and 1 asv i and be-
tween levels 1 and 2 asv2i , and the anharmonicity of the
overtone asD05uv i2v2i u. There is no direct radiative cou
pling between the ground state and second excited state
relevant quantum pathways for the generation of echo sig
are given in Fig. 1, type-I and type-III Feynman diagram
The echo signal is spectrally resolved through a monoch
mator tuned to the detection frequencyvd . If the extent of
inhomogeneous broadening is sufficient to cause overlap
tween the 0–1 and 1–2 lines, then it is possible for a sub
semble of the molecules ‘‘A’’ to have v iA5vd and a differ-
ent subensemble of molecules ‘‘B’’ to have v2iB5vd . For
the subensemble of molecules withv2iB5vd , the corre-
sponding fundamental vibrational frequency isv iB5vd
1D0 . The B subensemble has its 0–1 transition frequen
D0 to the blue ofvd , therefore, its 1–2 transition frequenc
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is shifted to the red by the anharmonicity,D0 , and is atvd .
~See Fig. 2.! The type-I quantum pathway dephases a
rephases at the same frequency. The type-I pathway of
subensembleA dephases atvd and rephases at2vd . The
type-III quantum pathway dephases and rephases at diffe
frequencies. The type-III pathway of subensembleB
dephases atvd1D0 and rephases at2vd . Since the type-I
pathway of the subensembleA and type-III pathway of the
subensembleB both rephase at the same frequency, they e
at the same frequency,vd . Relative to the type-I pathway o
the subensembleA, the type-III pathway of the subensemb
B has a phase difference equal toD0•t. Similar to quantum
beats, this systematic phase difference advances ast is in-
creased and gives rise to amplitude modulations in the i
grated intensity of individual frequencies as a function of t
delay time@26#. However, unlike quantum beats, which in
volve intramolecular interferences that occur within eve
oscillator in the sample, ADB’s occur due to interferenc
between distinct subensembles that follow different quant
pathways and that have overlapping emission lines. A pre
ous explanation of this type of oscillation in echo decays
attributed the modulations to interference between two
ferent frequencies on the detector@36#. Clearly, this explana-
tion cannot apply in the spectrally resolved situation. Rath
the signal amplitude of each emission frequency for wh
spectral overlap occurs, is being modulated as a function
the delayt and at a frequencyD0 @26#. In this example,
inhomogeneous broadening is the process that gives ris
the emission frequency overlap. Other possible mechani
can lead to ADB’s. These will be discussed below.

Accidental degeneracy beats are a type of beat that
distinct from both polarization beats and quantum bea
Similar to polarization beats, they are the result of an int
ference between different subensembles within the sam
However, while polarization beats do not produce modu
tions at the difference in transition frequencies in echo de

FIG. 2. A schematic illustration of the inhomogeneously broa
ened envelopes of a vibration’s 0–1 transition and the anharm
cally shifted 1–2 transition as a function of the transition frequen
The vertical lines represent the 0–1 transition frequencies of
two distinct subensembles that contribute to the echo at the n
detection frequencyvd . Anharmonic ADB’s arise because th
type-I quantum pathway from subensembleA, which originates and
emits on the red side~left side! of the 0–1 band atvd , interferes
with the type-III quantum pathway of subensembleB that originates
on the blue side of the 0–1 band atvd1D ~D is the vibrational
anharmonicity! and emits from the blue side of the 1–2 band atvd .
7-3
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curves, ADB’s do produce such modulations. Like quant
beats, ADB’s present even when the echo signal is dispe
in a monochromator and an arbitrarily narrow bandwidth
detected.

Despite their similarities, ADB’s are distinct from quan
tum beats, and they carry different information content th
quantum beats. Aquantum beatis defined to be anintramo-
lecular interference effectwhere an oscillator can evolv
along different quantum pathways with different coheren
frequencies butthe termini of the pathways are the sam
final state with the same final coherence frequency. This in-
terference effect occurs in each oscillator in the ensembl
quantum beat is an intramolecular process. Anaccidental
degeneracy beatis defined to be an interference effectbe-
tween distinct subensemblesof the system, which evolve
along different quantum pathways with different coheren
frequencies andthe termini of the pathways are different fi
nal states but have the same final coherence frequency. Ow-
ing to the spectral line overlap caused by inhomogene
broadening or other mechanisms, the subensembles hav
same final coherence frequency~same emission frequency!.
The ADB interference effect does not occur in every osci
tor in the system. Rather, only those subensembles of m
ecules that have an emission frequency that overlaps
other spectroscopic lines will produce an ADB. For bo
ADB’s and QB’s, it is incorrect to think of the observe
beats as interference between different frequencies on
detector.

In this paper, a model inhomogeneously broaden
coupled anharmonic oscillator system is used to examine
difference between QB’s and ADB’s as manifested in a sp
trally resolved stimulated vibrational echo experiment. C
culations are presented that illustrate the influence of AD
on decays when eithert or Tw is scanned. While the calcu
lations pertain explicitly to vibrational echo experiments, t
differences between QB’s and ADB’s and the conclusio
that can be drawn about these two types of beats are q
general and apply to a wide variety of spectroscopies.

II. THEORY

In vibrational systems, pulses with durations that are sh
enough to extract dynamical information from a system f
quently have bandwidths that exceed the anharmonicity
the vibrational transition and the splitting between coup
modes. This can lead to complex oscillatory patterns in e
decay curves, since coherences between many different
els are possible, with many possible quantum pathways
lead to the same final emission frequency. As the delay tim
t or Tw are scanned, systematic phase differences betwe
multitude of quantum pathways arise and advance leadin
the complicated oscillatory patterns that have been obse
in vibrational echo experiments@3,15#.

The coupled anharmonic oscillator presented here has
levels that can be accessed at third order. An energy l
diagram for such a system is shown in Fig. 3. There i
ground state, two vibrational fundamentals~which will be
referred to as a symmetricS and antisymmetricA stretch
@37#!, an overtone for each fundamental, and a combina
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band. The double-headed arrows indicate allowed transiti
In a linear absorption spectrum, the overtone and comb
tion band absorptions for such a system appear as small
tures at approximately twice the frequency of the fundam
tal transitions. These are due to weakly allowed dir
transitions between the ground state and the overtone
combination band levels. In nonlinear experiments, the e
tation pulses do not usually have sufficient bandwidth
drive both the fundamental and overtone transitions direc
Instead, the overtone and combination band levels are
cessed from the fundamental excited states. These transi
are all strongly allowed and appear at approximately
same energy in the spectrum.

Fourteen Feynman diagrams must be considered in c
puting the echo signal for this system. Each diagram rep
sents one contribution to the final state of the molecule a
the interactions with the field. The state of each molec
after the third interaction with the field is the superpositi
of all the final states of the diagrams. Seven Feynman
grams, shown in Fig. 1, describe the evolution of the syst
as it emits from the symmetricSvibrational state, and seve
diagrams describe the pathways that lead to an emis
from the antisymmetricA vibrational state. These sets o
seven diagrams can be further categorized into four typ
Type I are diagrams that involve only the ground and fi
excited state of one manifold. Type II are diagrams that
volve the first excited states of theSandA manifolds. Type-
III diagrams involve the three lowest levels~v50, 1, and 2,
with v the vibrational quantum number! of one manifold;
and type-IV diagrams are diagrams that involve both ma
folds and the combination band. There are two diagrams
each type with the exception of type III. It is important
note that in the absence of both coupling and anharmoni
type-II and type-IV diagrams will destructively interfere

FIG. 3. Energy-level diagram for a coupled anharmonic osci
tor system. The lowest six energy levels are shown. The arr
indicate allowed transitions. The transition frequencies are indica
next to each arrow.vS andvA are the symmetric and antisymmetr
transition frequencies.DC , DS , andDA are the combination band
shift, symmetric overtone anharmonicity, and antisymmetric ov
tone anharmonicity, respectively. Designations of the energy le
are given in parentheses next to the level name.
7-4
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ACCIDENTAL DEGENERACY BEATS: A DISTINCT TYPE OF . . . PHYSICAL REVIEW A 65 023817
all times, and in the absence of anharmonicity, type I a
type III will destructively interfere at all times, resulting i
no nonlinear signal@38,39#.

There are three time periods during which the syst
evolves. These are the periodst after the first interaction
~first pulse!, the periodTw after the second interaction~sec-
ond pulse!, and the detection periodts after the third inter-
action ~third pulse!. In a traditional stimulated echo exper
ment, the integrated signal is recorded while one of the
time periods,t or Tw , is held fixed and the other is scanne
@40#. This gives control over two of the three coheren
times. Information about the detection periodts is obtained
by measuring the spectrum of the generated signal. The
quency spectrum of the signal pulse gives the amplitude
formation about each frequency, but the relative phase
each frequency is not resolved by the square-law detecto
obtain complete information about the evolution of the s
tem during the third time period, it is necessary to mix t
generated field with a local oscillator as a function of tim
~heterodyne detection@4,41#! or to mix the signal with a
local oscillator in a monochromator~spectral interferometry
@42,43#!. However, for the purposes of understanding
ADB phenomena, the absolute phase of the generated s
is not needed, and it is sufficient to spectrally resolve
generated signal. Because there are two distinct time per
that can be scanned, beats that are observed ast is scanned
~t-dependent beats! and beats that are observed asTw is
scanned~Tw-dependent beats! are treated separately. This is
useful distinction because the number and type of beats
are produced in each situation is different, and, depending
the process of interest, has implications for the design
experiments.

The behavior of the three-pulse vibrational echo signal
a t-dependent scan will be analyzed first. To simplify t
explanation, consider the beats that are on theS manifold
only ~the analysis of theA manifold is completely equiva
lent!. Because the vibrational echo signal is spectrally
solved, only a narrow band of frequencies is measured at
given time. Therefore, theemission frequenciesve , which
are the same as the third coherence frequency of each
gram, are all required to be identical~within the monochro-
mator detection bandwidth!. ~Note that this does not nece
sarily place a restriction on the final state.! The emission
frequency is equal to the detection frequency of the mo
chromator,ve5vd . The four types of diagrams give rise t
four distinct coherence states during thet coherence period
that lead to the emission frequencyve : r0S

I , r0A
II , r0S

III , and
r0A

IV , where the subscript indicates the states involved in
coherence~see Fig. 3!, and the superscript refers to the qua
tum pathway~see Fig. 1!. Each density matrix element ha
associated with it a coherence frequency, which we deno
the same way. They are, respectively,v0S

I , v0A
II , v0S

III , and
v0A

IV . The emission frequency~i.e., the rephasing frequency!
of all of these pathways is the same. Any beats that
observed are the result of differences in the dephasing
quencies. Taking all possible combinations of the abso
value of differences between these frequencies g
4!/(2!2!)56 combinations of frequencies
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vA5uv0S
I 2v0A

II u, ~1a!

vB5uv0S
I 2v0S

III u, ~1b!

vC5uv0A
II 2v0S

III u, ~1c!

vD5uv0S
I 2v0A

IV u, ~1d!

vE5uv0A
II 2v0A

IV u, ~1e!

vF5uv0S
III 2v0A

IV u. ~1f!

The next step is to determine which frequencies arise fr
quantum beats and which arise from accidental degene
beats. The test is straightforward. Examine each pair of
herence frequencies in Eqs.~1!. If the diagrams that each pa
belong to have the same final state, then the resulting o
lation at the frequency difference is a quantum beat. Of th
six equations, only Eq.~1a! meets this requirement. The re
maining five equations can give rise to accidental degene
beats. For these equations, the final states of the two con
uting diagrams are different, but if there is overlap betwe
the different transitions, then these oscillators can dephas
different coherence frequencies and rephase at the same
producing a t-dependent oscillation in the signal eve
though the signal is spectrally resolved. Similar to a quant
beat, the accidental degeneracy beats are produced in
sample and are not the result of interference on the dete
In general, not all five ADB frequencies will be observed
an echo experiment. In order to observe an ADB, there m
be spectral overlap between the two different transitions
are responsible for the emission. Without spectral overlap
is not possible to have subensembles that dephase at diff
frequencies and rephase at the same frequency. In con
quantum beats do not depend on spectral line overlap,
cause QB’s are an intramolecular process. In a quantum b
each individual oscillator produces a modulation in emiss
frequency as a function oft. This fundamental distinction
between the two mechanisms of the beats has important
plications for the information content contained in their i
terferences.

Now consider the case for aTw scan in which the delay
between the first and second pulse is held fixed and the d
between the second and third pulses is varied. The proce
is the same as that used to analyze thet-dependent beats
Listing all density matrix elements and their associated f
quencies that evolve during the time periodTw and that lead
to the emission frequencyve givesrSS

I , r00
I , r00

II , rSA
II , rSS

III ,
rAA

IV , andrSA
IV with associated frequenciesvSS

I , v00
I , vSA

II ,
vSS

III , vAA
IV , andvSA

IV . Of the seven density matrix elemen
listed here, onlyvSA

II andvSA
IV have nonzero frequencies a

sociated with them. The remaining five frequencies are as
ciated with population states that have zero frequency
undergo no phase evolution.~While these states do not hav
an associated frequency, they do have an initial phase, w
can play an important role in the behavior of the observ
oscillations. This is discussed in detail below.! Taking com-
7-5
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binations of the absolute value differences betweenvSA
II ,

vSA
IV , and a zero frequency term gives3!/(1!2!)53 beat

frequencies

vG5uvSA
II 20u5uvSA

II u, ~2a!

vH5uvSA
II 2vSA

IV u, ~2b!

v I5uvSA
IV 20u5uvSA

IV u. ~2c!

Equations~2a! and~2c! are quantum beats at the frequenc
expected in the type-II and type-IV quantum pathways
Fig. 1. @While the frequencies in Eqs.~2a! and ~2c! are the
true quantum-beat frequencies, the amplitude and phas
the oscillations in Eqs.~2a! and ~2c! can be influenced by
ADB phase and amplitude contributions to these oscillatio
and it is, therefore, not correct to treat them as pure quan
beats. This is discussed further below.# The beats in Eqs.~2a!
and ~2c! are referred to as pseudo quantum beats. Equa
~2b! is an ADB at the difference frequency between the t
pseudo quantum-beat frequencies. Population state de
matrix elements have zero frequency. Because they do
evolve in phase asTw is changed, they do not give rise t
systematic phase differences among coherence states a
emission frequency. Thus, there are fewer beat frequencie
the Tw-dependent scan than in thet-dependent scan.

The above discussion is completely general, and ma
no assumptions about the functional form of the energies
the coupled levels or the nature of inhomogeneous broa
ing. The only requirement has been the nonzero coupling
anharmonicity. To calculate the expected beat frequencie
a system, it is necessary to invoke a model of coupling
inhomogeneous broadening to determine the value of the
herence frequencies that lead to a particular emission
quency. We choose a bilinearly coupled harmonic oscilla
system, and graft on anharmonicity phenomenologica
This model has been used successfully previously to desc
two dimensional ultrafast vibrational echo experime
@3,44#. Starting with degenerate harmonic oscillators,
system is taken to have the following Hamiltonian:

HI 5HI a1HI b1HI ab1HI aS1HI bS, ~3!

whereHI a andHI b are the harmonic oscillator Hamiltonian
for the two local modes that will combine to produce theS
andA states.HI ab represents the Hamiltonian that couples t
two local modes to each other, andHI aS andHI bS are Hamil-
tonians representing the coupling of the local modes to
solvent. The coupling between the local modes is mode
with bilinear coupling

HI ab5gxI axI b , ~4!

where xI i is the position operator andg is the coupling
strength between the modes. The coupling of the local mo
to the solvent is not treated explicitly, but taken to give ide
tical Gaussian distributions of local mode energies cente
at the frequencyvo and with the widths. Ignoring terms that
couple states that differ by two or more quanta of ene
@45#, and diagonalizing a 16316 matrix to compute the low
est six eigenstates that enter into this discussion, leads to
following expressions for the energies:
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E05
1

2
\~va1vb!, ~5a!

EA5\~va1vb!2
\

2
d, ~5b!

Es5\~va1vb!1
\

2
d, ~5c!

E2A5
3

2
\~va1vb!2\d, ~5d!

EA1S5
3

2
\~va1vb!, ~5e!

E2S5
3

2
\~va1vb!1\d, ~5f!

with

d5Ag2/~m2vavb!1~va2vb!2, ~6!

whereva andvb are the local mode frequencies andm is the
reduced mass of a local mode. These eigenenergies c
spond to the ground, antisymmetric, symmetric, antisymm
ric overtone, combination band, and symmetric overtone
ergies, respectively~Fig. 3!. Because the basis functions us
in this diagonalization are harmonic, the resultant eigenst
and eigenenergies are also harmonic. Real molecular vi
tional oscillators are anharmonic, and it is necessary to
clude anharmonicity to produce a nonlinear signal. We
this below phenomenologically by introducing anharmon
and combination band shift values to Eqs.~5c! and ~5f!.

Equations~5c!–~5f! allow the computation of all transi
tion frequencies for a molecule with a given set of loc
mode parameters. This allows us to correlate the transi
frequency in one spectroscopic line to the transition f
quency in another line@46#. However, a model for the inho
mogeneous distribution of transition frequencies within
spectroscopic line is still needed. There are three varia
input parameters for the eigenenergies in Eqs.~5! that can be
used to broaden the spectroscopic lines:g, va , and vb .
Fluctuations ing will produceS andA inhomogeneous lines
that have equal width, and transition frequencies that
anticorrelated, that is, as theS transition frequency for a mol-
ecule increases, theA frequency decreases@3,44#. Another
possible mechanism for the inhomogeneous broadenin
variations in local mode frequenciesva andvb . If solvent
perturbations to the local mode oscillator produce local
fects,va andvb will vary independently in an uncorrelate
manner@3#. Alternatively, if solvent perturbations cause gl
bal changes in the molecule, the frequency of the lo
modesva and vb will vary in a correlated fashion@3,44#.
For the sake of simplicity, we take the local mode freque
cies va and vb to be completely correlated, namelyva
5vb5v, and assume that the inhomogeneous broadenin
due to variations in the local mode frequencyv. ~This model
is consistent with previously reported experimental resu
@3,44#.! Then, the final expressions for the eigenenergies a
function of local mode parameters are
7-6
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TABLE I. Beat frequency expressions and values for an inhomogeneously broadened bilinearly c
anharmonic oscillator with perfectly correlated local mode energies. The beats are from Eqs.~1! and ~2!. d,
DS , andDC are defined in Eqs.~8!, ~7f!, and~7e!, respectively.

Beat Type Range Expression Value~cm21!

vA QB 0–1 2d ;160a

vB ADB 0–1/1–2 overlap DS 30
vC ADB 0–1/1–2 overlap 2d1DS ;190a

vD ADB 0–1/C band overlap 2d2DC ;90a

vE ADB 0–1/C band overlap DC 70
vF ADB 1–2 C band overlap 2d2DC1DS ;120a

vG pseudo-QB 0–1 2d ;160d

vH ADB 0–1/C band overlap vC2v I ;6a

v I pseudo-QB 0–1 2d b ;166a

aThe exact value of the beat depends on the detection frequency.
bThe d in this expression has a different value ofv compared to thed in the expressions forvA andvG .
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E05\v, ~7a!

EA52\v2
\

2
d, ~7b!

ES52\v1
\

2
d, ~7c!

E2A53\v2\d2\DA , ~7d!

EA1S53\v2\DC , ~7e!

E2S53\v1\d2\DS , ~7f!

with

d5g/mv, ~8!

whereDA , DC , andDS are the antisymmetric overtone a
harmonicity, the combination band shift, and the symme
overtone anharmonicity, respectively. This is all that
needed to calculate actual beat frequencies for the m
system. The emission frequencies for each diagram
required to be equal to each other. Next, Eqs.~7! and ~8!
are used to calculate the frequencies of the rest of the de
matrix elements. All possible beat frequencies in t
t-dependent andTw-dependent delay scans can then
calculated using Eqs.~1! and ~2!. The expressions for the
beat frequencies expected in a system with correlated l
mode frequencies are listed in Table I and are derived
Appendix A.

III. CALCULATIONS

To better see the differences between quantum beats
accidental degeneracy beats, and the magnitude of their
tributions, the vibrational echo signal was calculated for ec
scans in whicht andTw are varied. The calculation employ
d-function excitation pulses and exponential dephasing
relaxation kinetics. The nature of the results does not dep
on the duration of the excitation pulses or the form of t
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dephasing. The triple integral over the excitation fields w
done analytically for each diagram. The responses of e
diagram were added, and the integral over the distribution
local mode energies was evaluated numerically. The res
ing vibrational echo wave packet was Fourier transform
and the power spectrum computed to calculate the spect
resolved signal.

One complication that occurs in calculations wi
d-function pulses is that signals that would otherwise ha
smooth rising edges begin abruptly. If one performs a Fou
transform on a signal with such a discontinuity, then t
sharp edge introduces spurious frequencies into the spec
that are an artifact of the Fourier transform. In the context
stimulated echo calculations, there are two places where
abrupt rising edge causes spectral contamination of the
culated signal. One place is in the calculation of the vib
tional echo wave packet at fixed values oft and Tw . The
other is in the integrated echo signal decay. In ad-function
pulse calculation, the rising edge of each Fourier compon
in the echo wave packet begins abruptly. In an exact ca
lation using realistic pulse durations for the excitation field
this rising edge is related to the pulse duration. W
d-function pulses, at short times when the echo signal is
well separated from the free induction decay, this edge in
ences the shape of the echo wave packet. The contribu
from a single diagram is a time-ordered triple integral th
has the form@33#

P~3!~ ts!}E
2`

t3
dt3G3~ ts2t3!E3~ ts2t2Tw!E

2`

t3
dt2G2

3~ t32t2!E2~ t22t!E
2`

t2
dt1G1~ t22t1!E1~ t1!

~9a!

with

Ei~ t !5d~ t ! ~9b!

and
7-7
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Gi~ t !5exp@2 iv i t2G i t#, ~9c!

wherev i is the transition frequency of the oscillator,Gi is
the material Green’s function propagator for the system,
G i is the damping rate constant for a particular Green’s fu
tion. Integrating over the excitation fields yields

P~3!~ ts!`u~ ts2t2Tw!G3~ ts2t2Tw!G2~Tw!Gl~t!
~10a!

or writing G3 explicitly

P~3!~ ts!}u~ ts2t2Tw!exp@2 iv3~ ts2t2Tw!

2G3~ ts2t2Tw!#G2~Tw!G1~t!, ~10b!

where u~t! is the Heaviside step function and reflects t
causality of the system. The heaviside step function ma
the signal turn on abruptly, which introduces spurious F
rier components that obscure the important features of
data. This artifact is only present at values oft andTw that
are short compared to the FID time. This artifact can
prevented at all times by modifyingG3 in Eq. ~10! slightly to
go smoothly from zero to its maximum value atts5t1Tw
by replacing the time multiplying the damping rate by t
absolute value of time and eliminatingu, allowing ts to take
on any value. With these modifications

P~3!~ ts!}exp@2 iv3~ ts2t2Tw!

2G3uts2t2Twu#G2~Tw!G1~t!. ~11!

At short times, this slightly modifies the decay of the ec
signal. However, the feature of prime interest here are
beat frequencies that are present in the decay, not the s
of the decay at very short times. Because the extent of
error is limited only to short times, Eq.~11! is used in the
calculations of the echo decay.

The two-dimensional~2D! vibrational echo spectrum wa
calculated as a function of delay line position. Wi
d-function pulses, the signal is zero for negative values ot
andTw , and begins abruptly at zero. We wish to measure
beat frequencies present in the echo decay curve at a va
of frequencies by Fourier transforming slices along the ti
axis in the echo decay curves. The edge at zero time
removed by reflecting the signal at positive time back
negative time. Symmetrizing the data in this way remov
the sharp rising edge in the decay curves, and gives accu
line shapes for the beat frequencies in the Fourier spectr
This technique has an advantage over techniques usi
windowing function@41,47# because the transformed data
not influenced by a convolution of the spectrum with t
window function.

IV. RESULTS AND DISCUSSION

Figure 4 is an illustration of the three spectroscopic lin
that compose one manifold and that overlap due to the in
mogeneous broadening. Underneath each spectrum is
type and range of each kind of beat seen in at-dependent
scan@Fig. 4~a!# andTw-dependent scan@Fig. 4~b!#. The vA
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range in Fig. 4~a! is a quantum beat that extends over t
entire 0–1 line, and corresponds to the quantum beat in
~1a!. The range spanned byvB andvC are ADB’s seen only
where the 0–1 and 1–2 line overlap. They correspond
Eqs. ~1b! and ~1c!. vD and vE are ADB’s that occur only
where the 0–1 and combination band overlap. These b
will typically have the smallest amplitude and will be th
hardest to see because the amplitude of the inhomogen
lines where the 0–1 and combination bands overlap is l
They correspond to Eqs.~1d! and~1e!. The range spanned b
vF is the region of overlap between the 1–2 and combi
tion band and corresponds to the ADB in Eq.~1f!. In the
places where several beat frequencies are present, the d
takes on a complex oscillatory pattern that is the result
these multiple beat frequencies. For example, all six b
frequencies are expected in the region where the 0–1, 1
and combination bands overlap.

Now consider the case for theTw-dependent scan, illus
trated in Fig.~4b!. Overall, there are only three frequenci
expected. Three beat frequencies will occur simultaneou
only in the region where the 0–1 line overlaps with com
nation band. ThevG range extends over the 0–1 line an

FIG. 4. The type of beats observed and the range of detec
wavelengths for which they will be observed for the symmet
manifold. The three peaks are the 0–1 transition, the 1–2 transi
and the combination band. The beat frequencies listed here c
spond to thevA throughv1 in Eqs. ~1! and ~2!. ~a! t-dependent
scan. OnlyvA is a true quantum beat. The remaining beats
accidental degeneracy beats.~b! Tw-dependent scan.vG andv1 are
pseudo-quantum-beats.vH is an accidental degeneracy beat.
both thet-dependent andTw-dependent cases, quantum beats w
always be present in the data. Accidental degeneracy beats are
seen where there is spectral overlap. If there is no spectral ove
then ADB’s are not observed.
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ACCIDENTAL DEGENERACY BEATS: A DISTINCT TYPE OF . . . PHYSICAL REVIEW A 65 023817
corresponds to the pseudo-quantum-beat in Eq.~2a! the vH
range corresponds to the ADB in Eq.~2b! and thev I range
corresponds to the pseudo-quantum-beat in Eq.~2c!. While
the beats in thevG range andv I range are not necessari
pure QB’s, they are a single frequency.

Figures 5 and 6 present the results of calculations of
vibrational echo response for the signal generated in thS
emission manifold of the coupled oscillator. In these cal
lations, the anharmonic shift is 30 cm21, the combination
band shift is 70 cm21, and the splitting between the symme
ric and antisymmetric lines is 160.4 cm21. Calculations were
run for Gaussian local mode energy distributions with f
width at half maxima of 70 cm21 @Figs. 5~a! and 6~a!# and 15
cm21 @Figs. 5~b! and 6~b!#. Figures 5~a! and 5~b! present the
results of at-dependent scan for theS line in the case of
large and small inhomogeneous broadening, respectiv
The contributions from the 0–1, 1–2, and combination ba
are not well resolved in the case of large inhomogene
broadening, and the signal decay exhibits a complicated
cillatory pattern. In the case of nonoverlapping peaks,
contribution from each peak is well resolved and oscillatio
are only seen on the 0–1 transition. In the absence of spe
overlap, there are no ADB’s, and only the single QB occu
Figures 6~a! and 6~b! present the results of aTw-dependent

FIG. 5. Calculated spectrally resolved 2D vibrational echo s
nal for at-dependent scan (Tw50). ~a! Strongly overlapping 0–1,
1–2, and combination bands. The signal displays a complex o
latory pattern composed of multiple frequencies over the entire l
~b! Well separated 0–1, 1–2, and combination band. Quantum
oscillations are observed on the 0–1 line; there are no accide
degeneracy beats.
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scan for theS line with large and small inhomogeneou
broadening. As is the case for at scan, when the inhomoge
neous broadening is large@Fig. 6~a!#, the three bands tha
contribute to the signal are not well resolved, but the nat
of the decay is very different from thet-dependent scan
Only one frequency is seen in the decay. In the case wh
the peaks are well resolved and do not overlap@Fig. 6~b!#,
oscillations are seen on both the 0–1 and combination ba

Time slices through the curves in Figs. 5~a! and 6~a! at
selected frequencies were extracted and Fourier transfor
in the manner discussed above. These results are presen
Figs. 7 and 8, respectively. In Figs. 7~a!–7~e! the Fourier
transforms of the time slices from Fig. 5~a! at 2120, 2100,
2050, 2040, and 2010 cm21 show that there are numerou
frequencies present, and that particular beat frequencies
only present at certain detection wavelengths. The quan
beat only appears on the 0–1 line. ADB’s between diagra
that involve the 0–1 and 1–2 lines only appear at those
quencies where both the 0–1 and 1–2 lines overlap. A si
lar restriction is seen for all the ADB’s. The amplitude of a
ADB is related to the extent of overlap between two lines
the lines do not overlap, then the amplitude of that ADB
zero. As can be seen in the calculations in Fig. 7,

-

il-
e.
at
tal

FIG. 6. Calculated spectrally resolved 2D vibrational echo s
nal for aTw-dependent scan (t50). ~a! Strongly overlapping 0–1,
1–2, and combination bands. The signal displays a single osc
tory pattern over the entire line.~b! Well separated 0–1, 1–2, an
combination band. Quantum beat oscillations are observed on
the 0–1 and combination band line.
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quantum-beat frequencyvA is not constant throughout th
inhomogeneous line. The way in which the QB frequen
changes with detection wavelength can be used to study
mechanism of inhomogeneous broadening@3#. Variations in
the QB frequency with position in the inhomogeneous l
have been observed experimentally@3#.

There is a great deal of information contained in the

FIG. 7. Fourier transform of time slices at various detect
frequencies from Fig. 5~a! ~t scan!. The beat frequencies listed he
correspond to thevA throughvF in Eq. ~1!. Detection frequencies
are~a! 2120 cm21. Only one beat frequency is seen.~b! 2100 cm21.
This region has the 0–1 and 1–2 lines strongly overlapping. Th
frequencies are seen.~c! 2050 cm21. All three spectroscopic lines
are strongly overlapping. As predicted, six beat frequencies
seen.~d! 2040 cm21. Six frequencies are still seen, but the relati
amplitude of each frequency is different than in~c!. This is due to
the different amplitudes of the inhomogeneous lines at this
quency.~e! 2010 cm21. Only the combination band ADB is seen
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cillations seen in the data. In principle, there are four aspe
of a beat that can provide information on molecular pheno
ena. These aspects are the frequency of the beat@10#, the
amplitude of the beat@48#, that is, the depth of modulation
the initial phase of the beat@49#, and the damping rate of th
beat@3,46#. Quantum beats and accidental degeneracy b

e

re

-

FIG. 8. Fourier transform of time slices at various detecti
frequencies from Fig. 6~a! ~Tw scan!. The beat frequencies liste
here correspond to thevG throughv1 in Eq. ~2!. Frequency slices
are the same as in Fig. 7. Detection frequencies are~a! 2120, ~b!
2100,~c! 2050,~d! 2040, and~e! 2010 cm21. ~a!, ~b!, and~e! show
only one beat frequency. In~c! and ~d! where both the 0–1 and
combination band overlap, pseudo-quantum-beats from the 0–1
and the combination band can be seen. In addition, an ADB at;6
cm21 @vH in Eq. ~2b!# is also present, but it is not discernable
this presentation of the data.
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ACCIDENTAL DEGENERACY BEATS: A DISTINCT TYPE OF . . . PHYSICAL REVIEW A 65 023817
encode different types of information in these aspects o
beat. In a QB, the beat frequency measures the corresp
ing transition frequency in another line@3,10#. For example,
if a quantum-beat frequency of 160.4 cm21 is measured
on the S line at a detection frequency of 2080 cm21, the
corresponding A transition frequency is 20802160.4
51919.6 cm21. A single detection frequency does not ha
to correspond to a single frequency in another line@3#. The
damping rate of the beat is related to the dephasing of
levels involved in the coherence and to the distribution
frequencies in other lines that map back to the detected t
sition frequency@3,46#. The amplitude of the QB is related t
the coupling strength between the two transitions and
relative orientations between the transition dipole mome
@50#. Quantum beats can, therefore, be used as a struc
tool by comparing the relative orientations of different loc
oscillators within a molecule@20,48,51#.

Accidental degeneracy beats can be used to extract di
ent information from a system than quantum beats. Quan
beats can only be generated between states that can be
pared simultaneously and coherently@10#. Often, this is not
possible. For example, suppose one wished to measure
anharmonicity of a vibrational transition with a quantu
beat. In a third-order nonlinear experiment, laser pulse ba
widths that could couple both the 0–1 states and the 0
states directly would be required. For a typical vibration, t
is ;2000–4000 cm21. Even if excitation pulses with suffi
cient bandwidth were available, the 0–2 transition is o
weakly allowed, and such an experiment would give alm
no signal intensity.~A fifth-order experiment is required to
measure the anharmonicity with a QB@36#.! However, the
anharmonicity of both theS andA transitions and the com
bination band shift, as well as the excited state line sha
can be determined in a spectrally resolved vibrational e
experiment. If the 0–1, 1–2, and combination band tran
tions are well resolved@Fig. 5~b!#, the anharmonicities and
spectral line shapes can be measured directly with a s
trally resolved vibrational echo experiment@52#. In the case
where the spectral lines are not well resolved, the vari
anharmonic parameters can be determined from the bea
quencies@17#. The modulation depth of an ADB is a functio
of the amplitudes of the inhomogeneous lines of overlapp
transitions at a particular frequency. By comparing t
modulation depth of a particular ADB at a number of dete
tion frequencies, it should be possible to reconstruct
shape and amplitude of the inhomogeneous lines of over
ping transitions.

Now consider theTw scan calculated data in Fig. 8. Th
time slices in this figure are at the same frequencies as in
7. As shown previously, there are fewer beat frequencie
the Tw scan than in thet scan. Two frequencies are easi
resolvable in the regions where the 0–1 and combina
bands overlap. These are the two pseudo-quantum-bea
quencies from Eqs.~2a! and ~2c!. In this particular system
these beat frequencies produce an ADB at;6 cm21. This is
an ADB at the difference frequency between the two pseu
quantum-beats in Eq.~2b!. Because it is a low-frequenc
beat, it is not clearly resolvable in this presentation of
data. In places where the 0–1 and combination bands do
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overlap, there is only one frequency present. Like the
seen in thet-dependent scan, the pseudo-QB frequencies
not constant as a function of the detection frequency. T
change in QB frequency as a function of the detection f
quency is an indicator of the mechanism of inhomogene
broadening.@3# The Tw-dependent scan is a good experime
to extract QB frequencies, because the number of differ
beat frequencies is reduced compared to at-dependent scan
Only in the spectral region where the 0–1 and combinat
band overlap are there multiple beat frequenci
Tw-dependent scans are a complementary technique
t-dependent scans. For example, in a system where the
spectral overlap between the 0–1, 1–2, and combina
bands,Tw-dependent scans can be used to accurately m
sure QB frequencies to determine correlations between t
sition frequencies, and the results can be combined w
t-dependent scans to extract anharmonicities.

As mentioned already, the beats in Eqs.~2a! and ~2c! in
the Tw scan are not necessarily pure quantum beats. W
the population states in theTw scan do not undergo phas
evolution, each state does have an initial phase that is rel
to its previous coherence frequency on that particular qu
tum pathway. Because these pathways can have differen
tial coherence frequencies, the phases of each popula
state are not necessarily the same. The phase variations
influence the amplitude and phase of the observed bea
one wishes to use the amplitude and phase of beats
measure of the coupling strength and relative orientation
the coupled oscillators, then it is important to understa
how these are influenced by spectral line overlap.

When computing the expected beat frequencies in E
~2! in the Tw scan, the focus was on knowing how much
particular quantum pathway advanced in phase relative
another pathway. Because population states do not hav
associated frequency, all population states were treate
zero-frequency states and the phase difference was comp
between states that did evolve in frequency~rSA

II and rSA
IV !

and states that did not evolve in frequency~rSS
I , r00

I , r00
II ,

rSS
III , andrAA

IV !. Because all population states were assigne
zero frequency, the frequency differences betweenvSA

II and
all population states, andvSA

IV and all population states wer
the same. However, the initial phases of these popula
states were not considered.

The phase differences between each diagram can be
culated explicitly as they evolve in time. Since the echo s
nal is detected through a monochromator, the final cohere
frequencies of all states are required to be equal to a par
lar detection frequency, and thus, only the phase beha
during the first two evolution periods needs to be consider
We denote the phases of each quantum pathway at the e
the second evolution periodF Ia , F Ib , F IIa , F IIb , F II , F IVa
andF IVb , where the subscript refers to the type of diagra
in Fig. 1:

F Ia5e2 iv0S
I te2 ivSS

I Tw, ~12a!

F Ib5e2 iv0S
I te2 iv00

I Tw, ~12b!
7-11
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F IIa5e2 iv0A
II te2 ivSA

II Tw, ~12c!

F IIb5e2 iv0A
II te2 iv00

II Tw, ~12d!

F III 5e2 iv0S
III te2 ivSS

III Tw, ~12e!

F IVa5e2 iv0A
IV te2 ivSA

IV Tw, ~12f!

F IVb5e2 iv0A
IV te2 ivAA

IV Tw. ~12g!

Consider the terms that contribute to the pseudo-quant
beat on the combination band. Interference between
terms in Eqs.~12f! and ~12g! leads to a quantum beat, be
cause these two quantum pathways end in the same
state. Interferences between Eq.~12f! and all the other popu
lation states lead to ADB’s that have the same frequenc
the QB in Eq.~2c!, but are not QB’s because these quant
pathways end in different final states than the quantum p
ways in Eqs.~12f! and ~12g!. The observed beat is the di
ference between the coherence state Eq.~12f! and the sum of
all the zero-frequency population states, Eqs.~12a!, ~12b!,
~12d!, ~12e!, and ~12g!. Performing the vector summatio
yields the zero-frequency term

(
i

AiF i5~AIa1AIb!e2 iv0S
I t1AIIbe2 iv0A

II t1AIIIe
2 iv0S

III t

1AIVbe2 iv0A
IV t, ~13!

whereAi is the amplitude of the beat component. In the ca
of ADB’s, Ai is the amplitude of the inhomogeneous line
the initial coherence frequency of each transition. In the c
of QB’s Ai is a function of the coupling strength and th
orientation of the oscillators. The overall expression for
combination band pseudo-QB is

v I5F IVa2(
i

AiF i . ~14!

There are two ways to see how this expression can give
to different beat amplitudes and phases. The first way is to
the subtraction betweenF IVa and each term in the sum. Th
produces five oscillatory terms with the same frequency
different initial phases and amplitudes. Addition of these
cillatory terms leads to either the constructive or the destr
tive interference and changes the overall initial phase of
beat. Changing the value oft changes the initial phases o
each oscillatory component, and, because each quan
pathway has a different initial coherence frequency, the m
ner in which all these terms interfere changes witht, leading
to overall changes in the amplitude and the phase. Alte
tively, ( iAiF i can be thought of as the phase and amplitu
of a local oscillator thatF IVa beats against as a function o
Tw . Adjusting t changes the phase and amplitude of
local oscillator, thereby changing the phase and depth
modulation of the observed beat.

Not all of the terms in Eq.~13! are present in all situa
tions. With the exception ofAIVa , all of the Ai belong to
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ADB beat contributions, and accordingly, their amplitud
depend on the overlap of spectral lines. If there is no spec
line overlap, the value of theseAi is zero. In the case wher
the combination band is spectrally well resolved from
other peaks@Fig. 8~b!#, Eq. ~13! reduces to

(
i

AiF i5AIVae
2 iv0A

IV t. ~15!

For this case, the pseudo-quantum-beat in Eq.~2c! becomes
a true quantum beat. The modulation depth in the spectr
resolved case is independent of the value oft, becauseF IVa
andF IVb have the same dependence ont, and therefore al-
ways have the same initial phase.

Figure 9 presents a slice along the time axis for aTw scan
with the detection frequency set for the combination band
two values oft and two levels of inhomogeneous broade
ing. In the case of extensive inhomogeneous broadening
overlapping spectral transitions on the combination ba
~bottom curve,t50.0 ps; top curve,t51.663 ps!, the modu-
lation depth of the beat depends strongly on the value oft in
the calculation. In contrast, the modulation depth is the sa
at two different values oft in the case where the spectr
lines are well separated~middle curves, t50.0 and t
51.663 ps!. These calculations illustrate that the modulati
depth of a beat can be affected by spectral line over
Therefore, the modulation of the beat depth is not
quantum-beat effect. Rather, it is the result of an ADB w
degenerate frequency but different initial phase. These ca
lations show that care must be taken when analyzing
modulation depth of beats to extract the coupling strength
relative orientation of local oscillators. A qualitatively sim
lar analysis can be performed on the pseudo-quantum-be
Eq. ~2a!. This is done in Appendix B.

FIG. 9. Accidental degeneracy beat contribution to the modu
tion depth on the combination band. Accidental degeneracy b
with the same frequency as quantum beats but a different phase
influence the modulation depth seen in the signal in the case of w
inhomogeneous lines. The effect on the modulation depth ist de-
pendent. The bottom curve (t50.0 ps) and the top curve (t
51.663 ps) are for wide inhomogeneous lines. When the comb
tion band is well separated from the 0–1 and 1–2 line because
inhomogeneous lines are narrow~middle curves,t50.0 and t
51.663 ps!, the modulation depth of the beat is insensitive tot.
7-12
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So far, accidental degeneracy beats have only been
cussed in the context of spectral overlap in nearby li
caused by inhomogeneous broadening. While this type
situation has been observed in a variety of experime
@3,17,26,30,53#, ADB’s are not restricted to such system
Any system in which multiple dephasing frequencies c
lead to a single rephasing frequency can exhibit ADB’s.
an example, consider a homogeneously broadened uncou
vibrational oscillatorX that has a 0–1 transition frequency
2000 cm21, a homogeneous linewidth of 5 cm21, and an
anharmonicity of 45 cm21. An echo decay curve from such
system will show no oscillations, because the 0–1 and 1
lines are well separated and do not overlap. It is not poss
for subensembles that have the same rephasing~and hence,
emission! frequency to have different dephasing frequenci
because the 0–1 and 1–2 spectral lines do not overlap. I
same experiment is performed on a different moleculeY with
a 0–1 transition frequency of 1955 cm21, homogeneous line
width of 5 cm21, and anharmonicity of 45 cm21, again, no
oscillations will be seen in the echo decay. However, i
solution containing bothX andY is used as the sample, th
echo decay curve would show oscillations that correspon
a frequency of 45 cm21. In the mixture, it is possible for
subensembles of molecules that have different dephasing
quencies to emit at the same frequency. At a detection
quency of 1955 cm21, the type-I quantum pathway of mo
eculeY dephases and rephases at 1955 cm21, while the type-
III quantum pathway of moleculeX dephases at 2000 an
rephases at 1955 cm21. The fact that these are chemical
different species makes no difference. The two different s
cies act as the distinct ‘‘subensembles’’ that dephase at
ferent frequencies but rephase at the same frequency.

ADB’s of this kind have recently been observed in biom
acromolecules@54#. Certain proteins, such as carbonmo
oxymyoglobin ~MbCO! are known to exist in a number o
conformational substates@55,56#. These conformational sub
states are conformers of the same protein that have slig
different secondary and tertiary structure@57,58#, and that
interconvert with each other@55,59#. Because they have
slightly different structure, these conformational substa
can have different spectroscopic properties. While a sin
conformational substate may not have the required spec
scopic properties to exhibit ADB’s, ADB’s can be generat
between different conformational states. ADB’s have be
observed between theA1 and A3 substates of MbCO@54#.
The anharmonicity of the CO stretch in this system exce
the inhomogeneous linewidths of the transitions, but in
region where the 1–2 line of theA1 level overlaps with the
0–1 line of theA3 line, beats at the frequency of the anha
monicity are observed.

V. CONCLUDING REMARKS

We have described in detail the nature of ADB’s, whi
are a type of beat that can be seen in nonlinear spectrosc
ADB’s have many of the properties of quantum beats,
because ADB’s result from an interference effect betwe
different subensembles in the sample, their information c
tent differs from that of quantum beats. A procedure has b
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outlined that allows one to distinguish between acciden
degeneracy beats and quantum beats. It has also been s
under what circumstances one expects to see ADB’s. AD
can manifest themselves as unique frequencies or as p
and amplitude contributions to quantum beat oscillatio
ADB’s are a direct consequence of spectral overlap in m
tilevel systems.

While this work has focused on the ADB’s as they appe
in vibrational echo experiments, ADB’s can occur in a
system where different quantum pathways with differe
phase evolution can lead to a single emission frequency
experiments where the beat frequency is of primary inter
t-dependent scans andTw scans can be used in a compl
mentary fashion to measure accurately all beat frequen
that are present in the system. Correlations between tra
tion frequencies for coupled oscillators can most easily
measured in a spectrally resolved three-pulse stimulated
ton echo experiment if the delay between the first two pul
is fixed and the delay between the second and third puls
scanned~Tw scan!. While ADB’s can provide unique infor-
mation about molecular systems, they can also complic
the nature of vibrational echo and other echo experime
Therefore, it is important to consider their possible influen
on observables when analyzing data from non-linear opt
experiments.
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APPENDIX A

In this appendix, expressions for the expected beat
quencies on theS manifold are derived from a system o
inhomogeneously broadened anharmonic oscillators w
correlated local mode frequencies. As discussed alread
the text, it is necessary to have expressions for the ener
of each level, and a model for the mechanism of spec
overlap. The eigenenergies used in the model system
listed in Eqs.~7! and ~8!, and the mechanism of spectr
overlap is assumed to be inhomogeneous broadening ca
by correlated variations in the local mode oscillator freque
cies. First, considert-dependent beats. Only those dens
matrix elements with a final coherence frequency equa
the detection frequencyvd are detected through the mono
chromator. The associated coherence frequencies for the
sity matrix elementsrS0

I , rS0
II , r2S,S

III , andrA1S,A
IV arevS0

I ,
vS0

II , v2S,S
III , andvA1S,A

IV , respectively. These are the repha
ing frequencies of the diagrams, and as suchvd5vS0

I

5vS0
II 5v2S,S

III 5vA1S,A
IV . Beats are produced at the diffe

ences between dephasing frequencies. The rephasing
quency of each diagram must be related to its correspon
dephasing frequency. Given the definition of a coherence
quency@33#

v i j 5
Ei2Ej

\
, ~A1!
7-13
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whereEi andEj are the energies of the states involved in t
coherence and 2ph is Planck’s constant, and Eqs.~1!, the
dephasing frequencies for each diagram can be written
function of the rephasing frequency

v0S
I 5

E02ES

\
52

ES2E0

\
52v0S

I , ~A2a!

v0A
II 5

E02EA

\
5

E02~ES22d\!

\
52

~ES2E0!22d\

\
5

2~vS0
II 22d!, ~A2b!

v0S
III 5

E02ES

\
5

E02~E2S1\DS2E02ES!

\
5

2
E2S2ES1\DS

\
52~v2S,S

III 1DS!, ~A2c!

v0A
IV 5

E02EA

\
5

E02~EA1S1\DC2ES2E0!

\

52
EA1S1\DC2~EA12\d!

\

52
~EA1S2EA!22\d1hDC

\

52~vA1S,A
IV 22d1DC!. ~A2d!

Substituting the above expressions for the first associ
coherence frequencies into Eqs.~1! and remembering tha
vS0

I 5vS0
II 5v2S,S

III 5vA1S,A
IV yields

vA5u~2vS0
I !2@~vS0

II 22d!#u52d, ~A3a!

vB5u~2vS0
I !2@2~v2S,S

III 1DS!#u5DS , ~A3b!

vC5u@2~vS0
II 22d!#2@~v2S,S

III 1DS!#u52d1DS ,
~A3c!

vD5u~2vS0
I !2@2~vA1S,S

IV 22d1DC!#u52d2DC ,
~A3d!

vE5u@2~vS0
II 22d!#2@2~vA1S,A

IV 22d1DC!#u5DC ,
~A3e!

vF5u@2~v2S,S
III 1DS!#2@2~vA1S,A

IV 22d1DC!#u

52d2DC1DS . ~A3f!

These are the expressions for the beat frequencies exp
at a particular detection frequency. However,d is a function
of the detection frequencyvd . Therefore, asvd is varied,d
varies, which changes the values of the beat frequencie
Eq. ~A3!.

For the beats in theTw-dependent scan, the situation
more straightforward. The beat frequencies of the pseu
QB’s in Eqs.~2a! and ~2c! are equal to the coherence fr
quencies of the second density matrix elements in the typ
02381
a

ed

ted

in

o-

-II

and type-IV quantum pathways. These frequencies can
computed from the definition in Eq.~A1!. For the
pseudo-QB in Eq.~2c!, one should remember that the emi
sion frequency is shifted byDC from the 0–1 transition of
the S line involved in the coherence of the second dens
matrix element in diagram type IVa. Once the beat frequ
cies in Eqs.~2a! and ~2c! have been computed, taking th
difference between the two gives the beat frequency for
~2b!.

APPENDIX B

In this appendix, the phase and amplitude behavior of
pseudo-QB on the 0–1 line in aTw-dependent scan is de
scribed. The phase and amplitude changes in QB’s have b
observed experimentally in a variety of systems includ
nanocrystals@60# and solvated dyes@61#. However, possible
ADB contributions to the behavior of these beats was
discussed. The overall description of the pseudo-QB on
0–1 line is similar to that of the pseudo-QB on the com
nation band, but there are a few significant differences in
actual behavior between the pseudo-QB on the 0–1 line
the pseudo-QB on the combination band.

Equation~2a! can be rewritten to explicitly include eac
phase contribution to the zero frequency term

vG5F IIa2(
i

AiF i ~B1a!

with

(
i

AiF i5~AIa1AIb!e2 iv0S
I t1AIIbe2 iv0A

II t1AIIIe
2 iv0S

III t

1AIVbe2 iv0A
IV t. ~B1b!

As in the case of the pseudo-QB on the combination ba
the difference betweenF IIa and each term in the sum give
five beats with the same frequency but different init
phases. Changing the value oft in the experiment change
the initial phases of each term, giving a different over
phase and amplitude tovG as each term interferes with th
others. The behavior of bothvG andv I ast is changed is the
same in the case where there is large spectral overlap
tween the 0–1, 1–2, and combination bands. However,
behavior of the two beats is different when the various sp
troscopic lines are well resolved. Unlike the combinati

band pseudo-QBv I where( iAiF i5AIVae
2 iv0A

IV t in the well-
resolved spectroscopic line case, when the 0–1 line is w
separated from other lines, Eq.~B1b! reduces to

(
i

AiF i5~AIa1AIb!e2 iv0S
I

1AIIbe2 iv0A
II t. ~B2!

All three of these terms come from diagrams that end w
the same final state as in diagram IIa. As such, they
influence the phase and amplitude of the QB on the 0–1 l
even when there is no spectral overlap. Despite the fact
Eq. ~B1a! is a true QB when there is no spectral overl
7-14
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between the 0–1 and other lines, the value oft can still
affect the amplitude of the beat. Substituting Eq.~B2! into
Eq. ~B1a! gives

vG5F IIa2~AIa1AIb!e2 iv0S
I t2AIIbe2 iv0A

II t

5AIIae
2 iv0A

II te2 ivSA
II Tw2~AIa1AIb!e2 iv0S

I t2AIIbe2 iv0A
II t

5e2 iv0A
II t~AIIae

2 ivSA
II Tw2~AIa1AIb!e2 i ~v0S

I
2v0A

II
!t2AIIb!.

~B3!

As can be seen in Eq.~B3!, the frequency of the beat in
Tw-dependent scan is the frequency difference between tS
M

m

a,

n

K.

.

f-

J.

f,

J

.

, J

J

02381
andA states, and the maximum depth of the beat change
a function oft and at the frequency difference between theS
and A states. Whether the combination band beat is
pseudo-QB or a true QB can be tested by seeing if the mo
lation depth of the beat is independent oft. In the case of the
beat on the 0–1 line, whether the pseudo-QB is a true
can be tested by comparing the frequency of the beat w
the frequency of the change in maximum modulation de
as a function oft. If the two frequencies are not the sam
then the beat on the 0–1 line has ADB contributions. Eq
tion ~B3! shows that one must be careful when using the
amplitude to extract coupling information, because the b
depth is sensitive to the value oft used in the experiment.
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