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Abstract

Optical heterodyne detected optical Kerr effect (OHD-OKE) experiments are used to study the orientational dy-

namics of the liquid crystal 40-octyl-4-biphenylcarbonitrile (8CB) in the isotropic phase near the isotropic to nematic

phase transition. The results are compared to those for three other liquid crystals. The 8CB data display a short time

scale temperature independent power law decay and a long time scale exponential decay with a temperature dependence

described by Landau–de Gennes theory. The power law exponent is )0.56. Combining this result with previous results

for three other liquid crystals [J. Chem. Phys. 116 (2002) 6339; J. Chem. Phys. 116 (2002) 360], it is found that the power

law exponent depends linearly on the aspect ratio of the liquid crystal.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The orientational relaxation dynamics of ne-

matogens in the isotropic phase of liquid crystals is

complex. Recent experiments have shown that the
dynamics can be divided roughly into two time

scales [1,2]. On a long time scale, the orientational

relaxation is exponential and highly temperature

dependent. The exponential relaxation is well de-

scribed by the Landau–de Gennes theory [3]. In

the isotropic phase, a liquid crystal sample is

macroscopically isotropic but microscopically an-

isotropic. On a distance scale short compared to a
correlation length, n, the local structure is like that
of a nematic liquid crystal. As the temperature is

lowered toward the nematic–isotropic phase tran-

sition temperature, TNI, the correlation length

diverges. Below TNI, the liquid crystal is macro-

scopically ordered. The long time scale exponential

orientational relaxation is caused by the decay of
the local nematic structure. The decay slows as the

correlation length increases, diverging as TNI is

approached from above.

The local order can be thought of as pseudo-

nematic domains, that is, regions that are nemat-

ically ordered on a distance scale < n. Landau–de
Gennes (LdG) theory predicts that the domain

randomization in the isotropic phase is described
by an exponential decay function with the relaxa-

tion time sLdG, which diverges at a transition

temperature T � as [3]

sLdG / V �
effgðT Þ
T � T � ; ð1Þ
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where gðT Þ is the viscosity, T is the temperature,

and V �
eff is the nematogens effective volume. T � is

generally about one degree below TNI for the weak

first order isotropic to nematic transition [3].

(Properties scale as T � is approached rather than
TNI because the phase transition has both first- and

second-order character.) LdG theory has been

confirmed experimentally using techniques such as

optical Kerr effect [4–6], depolarized light scatter-

ing [7], dynamic light scattering [8], magnetic [9],

and electric birefringence, [10] and dielectric re-

laxation [11,12]. The influence of the pseudo-

nematic domains on the long time scale dynamics
continues up to �50 K above the N–I phase

transition temperature [6].

On a time scale short compared to sLdG, the

orientational dynamics occur for nematogens that

have pseudo-nematic order. As will be shown be-

low for 8CB, and has been observed previously

[1,2,13–15], on the shortest time scale the observed

decay of the signal is a power law, t�p. While sLdG
is highly temperature dependent, p is temperature

independent. The question arises, what determines

the value of p? It is known that the aspect ratio of

a molecule determines whether a molecule is a

nematogen [16]. MD simulations show that for

aspect ratios below �2.5, liquid crystalline be-

havior is not observed [16]. In previous studies of

liquid crystal dynamics, there was some indication
that the value of p depends on the aspect ratio of

the nematogen. Here we will provide evidence that

p does indeed depend on the aspect ratio and that

the dependence is approximately linear.

2. Experimental procedures

Optical heterodyne-detected optical Kerr effect

(OHD-OKE) spectroscopy [17] was used to mea-

sure the liquid crystal orientational relaxation. A

pump pulse creates a time-dependent optical

anisotropy that is monitored via a heterodyne

detected probe pulse with a variable time delay.

The OHD-OKE experiment measures the system�s
impulse response function, which is the time
derivative of the polarizability–polarizability (ori-

entational) correlation function. The methods for

the analysis of OHD-OKE data have been de-

scribed in detail [18]. The Fourier transform of the

OHD-OKE signal is directly related to data ob-

tained from depolarized light scattering [19], but

the time domain OHD-OKE experiment can pro-

vide better signal-to-noise ratios over a broader

range of times for experiments conducted on very
fast to moderate time scales.

To observe the full range of liquid dynamics,

at each temperature several sets of experiments

were performed with different pulse lengths and

delays. For times t < 30 ns, a mode-locked 5 kHz

Ti:sapphire laser/regenerative amplifier system

was used (k ¼ 800 nm) for both pump and

probe. The pulse length was adjusted from 100 fs
to 1 ps to improve S/N. The shortest pulses were

used for times 100 fs to a few tens of ps. For

longer times, a few ps to 600 ps, the pulses were

lengthened to 1 ps. The longer pulses produce

more signal for the longer time portions of the

data. For intermediate times, the pulse compres-

sion was bypassed, and a 100 ps pulse was used

with a long delay line to obtain data from 100 ps
to 30 ns. Because the experiments are non-reso-

nant optical Kerr effect measurements, a fre-

quency chirp on the pulse does not influence the

data. For even longer times, a CW diode laser

was used for probing, and a fast digitizer (2 ns

per point) recorded the data. The scans taken

over various time ranges always overlapped sub-

stantially permitting the data sets to be merged
by adjusting only their relative amplitudes. Ad-

ditional experimental details have been published

recently [2,20].

8CB was purchased from Aldrich and used

without further purification except for filtration

through a 0.2 lm disc filter to reduce scattered

light. The sample was sealed under vacuum in 1 cm

glass cuvettes. The cuvettes were held in a constant
flow cryostat where the temperature was con-

trolled to 	0:1 K.

3. Results and discussion

Fig. 1 displays OHD-OKE 8CB data on a log

plot at 15 temperatures (316–358 K) in the iso-
tropic phase. The data sets have been offset along

the vertical axis for clarity of presentation. The
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temperatures are given in the figure caption. Also

shown in Fig. 1 is a fit to each data set using the

function discussed below. On the log plot, the
decay is initially relatively gradual but becomes a

steeper exponential decay at long time. At the

lowest temperature, the displayed portion of the

data spans the time range from 2 ps to 700 ns.

The short time portion of the data decays as a

power law, and the long time portion decays ex-

ponentially. Between these two regimes is a cross-

over time range that is akin to the Von Schweidler
region observed in equivalent data taken on su-

percooled liquids [20,21].

Recently, a model function was introduced to

describe the broad time range of the decay of the

liquid crystal data (� 2 ps through the exponential

decay) [1,2]

f ðtÞ ¼ e�t=sLdG a
�

þ e�t=c b
�

þ t
td

� ��p��
: ð2Þ

sLdG is the decay constant of the LdG single ex-

ponential decay with an amplitude of a. All other
terms apply to the intradomain relaxation. The

exponential term contained inside the square

brackets with a decay constant of c is an inter-

mediate time scale exponential decay that is only

important in the crossover regime between the

short time power law and the long time LdG ex-

ponential. The power law term with an exponent

of �p is scaled by the constant td to give a unitless
quantity. td determines the amplitude of the power

law decay. The time dependent terms inside the

square brackets describe the intradomain non-

LdG dynamics. The intradomain decay leaves a

residual anisotropy of amplitude a, which then

decays via the domain randomization with time

constant sLdG.
The fits to the data shown in Fig. 1 are obtained

using Eq. (2). The function given in Eq. (2) works

at all temperatures, and it describes the 8CB data

extremely well. The fitting function also provides

equally good fits to data taken previously on three

other liquid crystals [1,2]. While there are a large

number of parameters in Eq. (2), they can be de-

termined quite accurately because most of them

are relatively independent of the others. The long
time portion of the data is a single exponential,

which makes it possible to determine sLdG and a

independent of the other parameters. The short

time behavior is dominated by the power law,

which makes it possible to determine p and td. The
intermediate time scale exponential is the most

difficult to determine accurately because it is

sandwiched between the short time scale power
law and the long time scale LdG exponential de-

cay, and it has small amplitude. The data cannot

be fit well without the intermediate term.

Fig. 2 displays the results of the fits for the long

time LdG portion of the data. The line through the

data was calculated using Eq. (1). The values of

the viscosity were obtained from the literature [22].

The agreement with the predictions of LdG theory
is very good. According to LdG theory

Fig. 1. Temperature dependent OHD-OKE 8CB data dis-

played on a log plot. The data sets have been offset along the

vertical axis for clarity. The temperature for each curve (top to

bottom) is 316, 319, 322, 325, 328, 331, 334, 337, 340, 343, 346,

349, 352, 355 and 358 K. Also shown are calculated curves for

each set of data using Eq. (2). Because of the high quality of the

data, in some portions of the curves it is difficult to distinguish

the fit from the data.

84 H. Cang et al. / Chemical Physics Letters 366 (2002) 82–87



gðT Þ
sLdG

/ T � T �: ð3Þ

A plot of g=sLdG should be linear with an inter-

cept of T �. The inset in Fig. 2 shows this type of

plot. We obtain the transition temperature, T � ¼
313	 1, which is close to NI transition tempera-

ture 313.5 K [22].

The intermediate time scale exponential decay

constant, c, is temperature independent within ex-

perimental error and has a value of 60	 15 ns.
Variations in this value do not have a significant

influence on either the values of sLdG or the power

law exponents discussed below. At higher temper-

atures, sLdG is approximately the samemagnitude or

shorter than the intermediate time constant c, and it
becomes very difficult to distinguish the two time

constants. The difficulty is compounded by the fact

that the amplitude, a, associated with the LdG term
in Eq. (2) is generally five to six times larger than b,

the amplitude associated with the intermediate ex-

ponential. In Eq. (2), multiplying through by the

outer exponential, expð�t=sLdG), causes the inner

exponential to have the decay constant,

K ¼ 1

sLdG
þ 1

c
:

At the higher temperatures, effectively K ¼ 1=sLdG.

The most important feature of the data is the

short time scale power law decay. Fig. 3 displays

the power law portion of the data at 316 K with

the contributions from the exponential terms re-

moved. The power law spans almost four decades

in time, from �2 ps to �10 ns and �2 decades of
signal decay. The inset in Fig. 3 shows the power

law exponent as a function of temperature from

just above TNI to well above the phase transition

temperature. Within experimental error, the power

law exponent is temperature independent and has

a value of �0:56	 0:01.
Previous experiments on liquid crystal samples

40-(phentyloxy)-4-biphenylcarbonitrile (5-OCB),
40-phentyl-4-biphenylcarbonitrile (5-CB) and 1-iso-

thiocyabato-(4-propylcyclohexyl)benzene (3-CH-

BT) display essentially identical behavior [1,2]. For

all four liquid crystals, the long time behavior is

described well by the LdG theory. On the shorter

time scale, all four exhibit temperature indepen-

dent power law decays with a crossover region at

intermediate time that can be modeled as an ex-
ponential. Eq. (2) fits data from all four liquid

crystals very well. The long time exponential decay

Fig. 3. A log plot of the short time portion of the 316 K data

with longer time scale exponential contributions removed. A

straight line on a log plot shows that the decay is a power law.

The power law decay spans almost four decades in time and

over two decades in signal. The inset shows the power law ex-

ponent, )p, vs. temperature. Within experimental error, p is

temperature independent and has a value of 0:56	 0:01.

Fig. 2. The temperature dependent LdG relaxation times, sLdG,
for the long time exponential part of the data plotted vs. tem-

perature. The solid line through the points is the LdG theo-

retical curve. The inset shows the liner relation predicted by

LdG theory.
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is produced by the randomization of the pseudo-

nematic domains. The short time scale dynamics

are the collective orientational relaxation of the

nematogens in an environment that is locally ne-

matic. The lack of temperature dependence sug-

gests that the local pseudo-nematic structure is
virtually temperature independent. The size of the

domains grow (increasing correlation length) as

the temperature is decreased toward the phase

transition, but the data demonstrate that the dy-

namics at relatively short time are temperature

independent (see inset in Fig. 3).

While all four liquid crystals exhibit power law

decays of the signal at short time, the values of the
exponents differ from one liquid crystal to another.

The aspect ratio of a molecule is important in

determining whether a molecule will form liquid

crystals. MD simulations show that for an aspect

ratio of < 2:5, liquid crystal phases will not occur

[16]. Does the aspect ratio influence the nature of

the dynamics of liquid crystals? Table 1 lists the

aspect ratios and the power law exponents for
the four liquid crystals that have been studied. The

data are shown in Fig. 4. While there are only four

points, the data clearly demonstrate that there is a

strong dependence of the power law exponent on

the aspect ratio. The line in Fig. 4 is the best linear

fit to the data. For the power law t�p, p ¼ mAþ b
where A is the aspect ratio. The line through the

data gives m ¼ �0:16	 0:02 and b ¼ 1:25	 0:09,
that is, the power law exponent, p, is given by

p ¼ �0:16Aþ 1:26: ð4Þ

If A is taken to be 2.5, the smallest aspect ratio for

a liquid crystal, Eq. (4) gives p ¼ �0:9, which is

still a reasonable value. The linear relationship in
Eq. (4) cannot hold for very large values of A

because p should always be a positive number.

The short time dynamics of the isotropic phase

of liquid crystals arise from the collective motions

of the nematogens in the pseudo-nematic domains
[1,2,15]. On a distance scale short compared to the

correlation length n, there is a local director and a

local order parameter. The dynamics that are ob-

served on a time scale short compared to sLdG are

fluctuations of the local pseudo-nematic structure.

The OKE perturbs the local nematic structure, and

the power law decay reflects the relaxation of the

perturbed structure. The results show that as the
aspect ratio increases, the relaxation of the local

pseudo-nematic structure slows through a change

in the functional form of the decay, that is, a de-

crease in the power law exponent.

The OHD-OKE experiment measures the time

derivative of the polarizability–polarizability cor-

relation function, which is directly related to the

orientational relaxation dynamics of the system

Table 1

Aspect ratios and power law exponents for liquid crystals

Length Width Aspect ratio Power law exponent, �p
(nm) (nm)

8CB 2.05 0.45 4.56 0:56	 0:01

5OCB(1) 1.79 0.45 3.98 0:63	 0:01

5CB(1) 1.67 0.45 3.71 0:65	 0:01

3CHBT(2) 1.53 0.47 3.26 0:76	 0:03

Fig. 4. The power law exponent p vs. the aspect ratios A of four

liquid crystals (see Table 1). The exponent shows a pronounced

dependence on A that is well approximated as linear. The line

through the data is a linear fit.
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[23–26]. The model function for the decay given in

Eq. (2) describes the data well. By integrating Eq.

(2) and normalizing the function at t ¼ 0, an em-

pirical correlation function is obtained [1,2]. Using

mode coupling theory, a preliminary theoretical

development of the short time collective orienta-
tional dynamics of the pseudo-nematic domains

has been presented [2]. Comparison to the experi-

mental results is made possible by taking the time

derivative of the theoretical correlation function.

The theoretical treatment was able to qualitatively

reproduce the nature of the short time behavior.

However, important physical details, particularly

the nematogen aspect ratio are not part of the
development. The dependence of the power law

exponent on the aspect ratio gives insight into the

nature of liquid crystal dynamics, and the rela-

tionship in Eq. (4) provides an important bench-

mark for future theoretical treatments of the

dynamics.
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