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The orientational correlation functions measured in the time-resolved second-harmonic generation
�TRSHG� and time-resolved sum-frequency generation �TRSFG� experiments are derived. In the
laboratory coordinate system, the �Yl

m��lab�t��Y2
m��lab�0��� �l=1,3 and m=0,2� correlation

functions, where the Yl
m are spherical harmonics, describe the orientational relaxation observables of

molecules at interfaces. A wobbling-in-a-cone model is used to evaluate the correlation functions.
The theory demonstrates that the orientational relaxation diffusion constant is not directly obtained
from an experimental decay time in contrast to the situation for a bulk liquid. Model calculations of
the correlation functions are presented to demonstrate how the diffusion constant and cone
half-angle affect the time-dependence of the signals in TRSHG and TRSFG experiments.
Calculations for the TRSHG experiments on Coumarin C314 molecules at air-water and
air-water-surfactant interfaces are presented and used to examine the implications of published
experimental results for these systems. © 2010 American Institute of Physics.
�doi:10.1063/1.3442446�

I. INTRODUCTION

Interfaces and surfaces play an important role in hetero-
geneous catalysis,1,2 electrochemistry,3 nanoscience,4 atmo-
spheric chemistry,5,6 and biology.7,8 Therefore, it is important
to understand the special physical and chemical properties of
such interfaces at the molecular level. Static and dynamic
molecular properties of interfaces cannot be derived or esti-
mated from bulk phase measurements, and techniques have
been developed to determine the interfacial composition and
orientation of molecules at interfaces.

Some of the most powerful tools for spectroscopic inves-
tigation of interfaces are second-harmonic generation �SHG�
and sum-frequency generation �SFG� spectroscopies.9,10

These techniques rely on the second-order nonlinear proper-
ties of interfaces. In contrast to most bulk phases, interfaces
are noncentrosymmetric. Because of this fact, SHG and SFG
can provide nearly interference-free measurements of inter-
facial spectroscopic properties.11,12 One of the useful proper-
ties measured with these techniques is the equilibrium orien-
tation of molecules at interfaces and surfaces.11–14 SFG was
also successfully used for in situ identification of reaction
intermediates on nanoparticle catalysts both at atmospheric
and high pressure.11–13,15–17

Although static measurements give invaluable insights
into the structure of molecular interfaces, surface reactivity
and transport phenomena cannot be described without under-
standing of the dynamical behavior. Molecular orientational
relaxation affects the SFG and SHG signals and limited in-
formation can be obtained through the time-independent
variations in signal intensities with respect to electric field
polarizations.18 To obtain detailed dynamical information,
time-dependent versions of SFG and SHG spectroscopies
have been developed in which either SFG or SHG are used

as probes subsequent to an incident pump pulse.19–23 These
techniques are typically referred to as time-resolved second-
harmonic generation �TRSHG� and time-resolved sum-
frequency generation �TRSFG� spectroscopies. In any time-
resolved method such as TRSHG or TRSFG, molecular
orientational relaxation contributes to the measured time-
dependence of the signals.19,22,24,25 Such experiments are
analogous to measurements of orientational relaxation dy-
namics of molecules in bulk liquids. The time-dependence of
the interfacial molecular reorientation signal can provide in-
formation on the nature of orientational motions of mol-
ecules at an interface and permit comparison to the behavior
of molecules in bulk liquids. In recent years, measurements
have been made of the time scales of molecular reorientation
and excited state population relaxation at the air-water inter-
face with different pumping schemes.23–28 The various
pumping schemes typically differ in the polarization and fre-
quency of the pump laser.

McGuire and Shen23 applied an infrared pump to the OH
stretch of interfacial water molecules, which was subse-
quently probed by SFG. Eisenthal and co-workers24,25 dem-
onstrated that electronic excitation causes a depletion in both
the SHG and the SFG signals, and that reorientation of the
molecules can be observed by following the recovery of the
signal. The time-dependent signal is caused by the reorienta-
tion of the molecules at the interface and the electronic or
vibrational lifetime relaxation. If the electronic or vibrational
lifetime is long enough, the initial fast decay time constant
can be assigned to the reorientation of the interfacial mol-
ecule. In many cases, the reorientational time constant is
compared to the time constant measured in the bulk phase.25

Eisenthal and co-workers24 have performed studies of
the orientational relaxation of Coumarin 314 �C314� at the
air-water interface using both TRSHG and TRSFG experi-
ments. They assigned the extracted time constants to thea�Electronic mail: fayer@stanford.edu.
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“in-plane” and “out-of-plane” reorientation of the molecules
at the interface. Their findings can be summarized in a few
points: �1� the orientational dynamics can be isolated from
the population relaxation due to a separation of timescales
for the coumarin system and �2� the SHG signal recovery
caused by the reorientational motion of the molecules is
single exponential and there is a remaining bleach once the
reorientation is complete. In principle, the recovery of the
SHG signal should be biexponential if both the in-plane
�change in the azimuthal angle� and the out-of-plane �change
in the polar angle� motions are observed. Eisenthal and
co-workers27 stated that the two motions happen on a very
similar time scale and they measure almost identical time
constants. They directly compared the measured exponential
decay time constants with the bulk phase orientational relax-
ation time constants. As will be derived in detail below, such
a direct comparison is invalid due to a different relationship
between the decay times and the orientational diffusion con-
stants. In contrast to bulk liquids, observed interfacial orien-
tational decay times are not directly related to the inverse of
the orientational diffusion constant.

Recently, Nienhuys and Bonn28 developed a numerical
method for assigning rotational diffusion constants for the
reorientation of molecules at the air-liquid interface studied
by TRSFG experiments. For the hypothetical situation in
which orientational relaxation is only allowed in the azi-
muthal angle �a one-dimensional random walk with cyclic
boundary condition�, the dynamic nonlinear susceptibilities
are expressed analytically as exponential decays. However,
for the physically realistic situation in which reorientation is
allowed in both the azimuthal and polar angles, a number of
specific cases are considered and the results are reported as
numerical solutions. In their model, they assume a harmonic
potential that governs the “out-of-plane motion” �change in
the polar angle� of the molecules, while they treat the in-
plane motion �change in the azimuthal angle� as a free rota-
tion about the surface normal. The two types of motions are
assumed to be decoupled, that is, the in-plane rotational dif-
fusion constant does not depend on the out-of-plane orienta-
tion angle. The in-plane and out-of-plane reorientational dy-
namics can only be fully separated when the out-of-plane
angle is restricted to a very narrow range.28 In addition, be-
cause the framework for analyzing the out-of-plane motion
in the TRSFG and TRSHG experimental data is numerical, it
is difficult to obtain a broad understanding of the factors that
influence the experimental observables.

None of the above studies determine which correlation
functions are measured in the TRSHG and TRSFG experi-
ments. Without knowledge of the correlation functions asso-
ciated with a particular experiment, experimental observ-
ables cannot be calculated or simulated. Previously, there
have been no analytical treatments of the spectroscopic ob-
servables of molecules undergoing orientational relaxation at
interfaces that relate the observables to the orientational dif-
fusion constants.

In the present paper, we analyze polarization selective
TRSFG and TRSHG experimental observables in a compre-
hensive manner. First we will discuss which correlation func-
tions are measured in these experiments. The electric-field-

matter interactions differ in number and type from those in
bulk phase polarization selective pump-probe experiments,
and they include both resonant and nonresonant interactions.
The correlation functions will be obtained in general for a
well defined molecular symmetry. Then the results are made
specific for a wobbling-in-a-cone model,29–31 in which the
orientational motion is restricted to a cone of angles. The
wobbling-in-a-cone model allows us to express the time con-
stant of the observed exponential decay as a function of the
half-cone angle and to extract the orientational diffusion con-
stant. The tilt angle of the cone relative to the interface nor-
mal is also included in the treatment. This general tilt angle
permits the theory to treat cases in which the interfacial mol-
ecules can diffuse within a range of angles that is not cen-
tered on the surface normal. Model calculations are pre-
sented to illustrate the theoretical results.

The theory presented below shows that the observed ori-
entational decays for surface selective nonlinear experiments
are not directly related to the orientational diffusion constant.
Therefore, the time constants of decays observed at inter-
faces cannot be directly compared to the time constant of
decays measured in the bulk. The results presented here not
only permit interfacial orientational diffusion constants to be
obtained, but they also make it possible to extract informa-
tion about the range of angles over which orientational re-
laxation occurs from the time-dependent measurements.

Data from the literature on C314 at the air-water24,22 and
air-water-surfactant25,27 interfaces are analyzed and reinter-
preted. While the orientational relaxation time constants at
the air-water interface and in bulk water differ substantially,
it is shown that the orientational diffusion constants are in
fact the same within a small error. In addition, although the
relaxation time constants at the air-water interface and the
air-water-surfactant interface are almost the same, the surfac-
tant reduces the orientational diffusion constant by a factor
of approximately three. These results demonstrate that it is
possible to extract detailed information on the influence of
interfaces on molecular orientational dynamics by obtaining
the orientational diffusion constants from the data.

II. THEORETICAL FRAMEWORK

Since one of the goals of this work is to relate interfacial
orientational relaxation correlation functions to those mea-
sured for the bulk, we briefly review the observable for bulk
orientational relaxation. Orientational dynamics of molecules
in the isotropic liquid phase can be studied with pump-probe
and fluorescence anisotropy experiments. The theory of these
experiments is well understood.32 The anisotropy of the ori-
entational relaxation in the bulk phase is given by

r�t� =
I��t� − I��t�

I��t� + 2I��t�
=

2

5
C2�t� , �1�

where r�t� is the orientational anisotropy and I��t� and I��t�
are the components of the observable �probe pulse and fluo-
rescence� measured parallel and perpendicular to the pump
pulse, respectively.33,34 C2�t� is the second-order Legendre
polynomial orientational correlation function,35
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C2�t� = �P2��̂�t��̂�0��� , �2�

where �̂ is the transition dipole. For isotropic orientational
diffusion of an ensemble of spherical rotors, the correlation
function is a single exponential decay with time constant �
=1 /6Dor and rotational diffusion constant Dor, specifically

C2�t� = e−6Dort. �3�

This is a well known formula that can be derived by solving
the isotropic diffusion equation.36,37 Treatment has been pre-
sented for other molecular shapes such as oblate and prolate
spheroids.33,32

Molecules can also undergo restricted rotational diffu-
sion if the local environment is anisotropic, for example, in
glassy materials,31,38 macromolecules,39,40 membranes,41 and
reverse micelles.42 A model that has been widely used to
describe these systems is wobbling-in-a-cone. The model in-
volves a rigid rod with cylindrical symmetry whose cylindri-
cal axis is confined within a conical volume, and the poten-
tial is uniform within the cone and infinite outside of the
cone. This is referred to as the hard-wall cone model. The
C2�t� correlation function can be expressed analytically and
gives a single exponential decay to a nonzero constant. The
magnitude of the constant is determined by the cone half-
angle. Combining the decay time constant and the cone angle
yields the orientational diffusion constant for motion within
the cone. Szabo33,43 presented comprehensive discussions of
the wobbling-in-a-cone problem for probes embedded in
macromolecules, and macroscopically oriented samples,
such as uniaxial liquid crystals.43 Pecora and Wang ex-
pressed the orientational correlation function in terms of
spherical harmonics and gave a general and mathematically
rigorous derivation of the �Yl

m���t��Yl
m���0��� �l=1,2; m

=0,1 ,2� correlation functions, which can be used as a tem-
plate for employing the wobbling-in-a-cone-model in differ-
ent types of experiments.30 The wobbling-in-a-cone model
has been extended to a “harmonic cone” in which the cone is
a two-dimensional parabolic potential.44

Below, the necessary formalism for solving for the ori-
entational relaxation component of TRSHG probe and
TRSFG probe experiments will be derived. As this derivation
is long and intricate we will begin with a brief outline. First,
in Sec. II A, the electric-field-matter interactions which give
rise to pump-SHG probe and pump-SFG probe signals will
be formalized via diagrammatic perturbation theory. In Sec.
II B, the tensorial nature of these interactions will be consid-
ered, resulting in general expressions for the orientational
response functions. Given experimental conditions, the ori-
entational correlation functions can be expanded in time cor-
relation functions of spherical harmonics. The remainder of
the work in Sec. II will be directed toward finding analytical
expressions for the spherical harmonic correlation functions
which contribute to the orientational response. Section II C
will construct the angular coordinates for the problem and
Sec. II D will solve the model of restricted rotational diffu-
sion in a cone. In Sec. III, the orientational response func-
tions will be expanded in terms of spherical harmonics and
solved for in terms of the correlation functions derived in
Sec. II D. The general theory applied here is used to describe

the TRSHG and TRSFG observables in detail in Sec. III and
model calculations and analysis of experimental data are pre-
sented in Sec. IV.

A. Electric-field-matter interactions

The TRSHG and TRSFG experiments include the elec-
tronic or vibrational excitation of the molecules under study,
followed by a time-delayed second SHG probe or SFG
probe. The pump laser may be either an infrared laser or a
visible laser and the probe may be either SHG or SFG. Com-
bination of the pumping and probing schemes results in four
experiments, three of which are likely to provide molecular
information. These three experiments are visible-pump-SHG
probe, visible-pump-SFG probe, and infrared-pump-SFG
probe. The visible laser �with frequency denoted �vis� is of-
ten a near-IR laser with wavelength 800 nm. For performing
a SHG probe experiment it is advantageous for this laser to
be two-photon resonant with an electronic excited state. This
allows for efficient pumping via frequency-doubled laser
light and efficient probing via two-photon-resonance en-
hancement. The IR laser should be resonant with a vibration
of interest; typical wavelengths are 3–5 �m.

Both the pump-SHG probe and pump-SFG probe experi-
ments are fourth-order nonlinear optical experiments, which
are described by tensorial nonlinear response functions.
Here, the physical origin of the signals will be discussed
while in Sec. II B, the tensorial nature will be addressed. For
such processes, it is useful to expand the response functions
using diagrammatic perturbation theory.45,46 Within this
treatment, the total response function is found to consist of a
sum of multiple, independent, double-sided Feynman dia-
grams. Each diagram represents the contribution of a time
correlation function to the measured signal. Formally, each
time correlation function, and therefore diagram, is a single
term expanded from the nested commutator that results from
the perturbation theory treatment.45 The full response func-
tion also includes the complex conjugates of the diagrams
shown.

Each double-sided Feynman diagram consists of a series
of density matrix elements drawn vertically, one above the
previous. The axis of time increases from the bottom to the
top of the diagram. Each interaction is separated by a time �n

as shown along side of Fig. 1�a�. The period between the two
pump fields and the SHG or SFG probe is referred to as the
population period. During the population period, electronic
or vibrational relaxation occurs simultaneously with orienta-
tional relaxation �the topic of this paper�. In between any two
density matrix elements, an arrow is drawn indicating an
interaction with an electric field. Arrows pointing toward the
density matrix elements indicate an absorption process; ar-
rows pointing away from the density matrix elements indi-
cate an emission process. Absorption or emission can occur
on either the bra or ket side of the density matrix element.
The final signal emission is, by convention, always on the
ket side of the diagram. The final signal wave vector is a
signed sum of the excitation field wave vectors kn, where
each wave vector is added when it corresponds to absorption
on the ket side �or emission on the bra side� and subtracted
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when it corresponds to emission on the ket side �or absorp-
tion on the bra side�. Such wave vector addition �phase
matching� permits spatial filtering of different nonlinear sig-
nals. The emission frequency is calculated in an identical
fashion; only the excitation frequencies �n are summed. The
sign of the diagram is �−1�n where n is the number of bra
side interactions. The time ordering of the pulses is indicated
by the relative vertical position of their corresponding arrows
on the diagram. For a more detailed explanation of the un-
derlying theory of the diagrams, we refer the reader to the
standard texts.45,46

The diagrams for pump-SHG probe and pump-SFG
probe �both visible and IR pump� are shown in Fig. 1. Only
phase-matched diagrams are included. Generally, the dia-
grams share a similar structure in that two pump fields bring
the system into a population state. The population state is

then probed via two electric fields resulting in a coherence
which emits the signal to form another population state. In
both SFG and SHG experiments the probe process is the
result of both a dipole and polarizability interaction. For
SFG, the visible wave is scattered inelastically off of the
vibrational coherence. For SHG, the two electric fields of the
polarizability interaction bring the system into an electronic
coherence which radiates via dipole radiation. When the non-
resonant interaction is the final interaction �as in SFG� the
emitted signal and excitation field are always on the same
side of the density matrix element.

Specifically referring to Fig. 1�a�, two visible electric
fields interact with the bra side of the diagram, creating
population in the ground state �g�. This population is then
excited by two electric fields through a virtual electronic
state �v� to create a coherent superposition state between the
ground electronic state and the first excited electronic state
�e�. This excited superposition state then oscillates at the
electronic resonance frequency emitting dipole radiation in
the phase matched direction, ksig=+2kvis. The other diagrams
in Fig. 1�a� may be interpreted similarly. Including the sign
convention discussed above, it is seen that the Feynman
paths that proceed through ground and excited electronic
population states differ by a negative sign. This indicates that
the visible-pump-SHG signal is related to the difference in
electronic polarizability upon excitation. For Fig. 1�a�, it has
been assumed that the system is a two-level electronic sys-
tem. Other diagrams can be included if it is possible for
higher electronic excited states to be probed.

The diagrams for the visible-pump-SFG probe experi-
ment are shown in Fig. 1�b� and can be interpreted in the
same manner. In this experiment, the signal not only depends
on the change in the polarizability upon electronic excitation
but also any changes in vibrational oscillator strength or fre-
quency induced by electronic excitation. The SFG probe step
proceeds via a dipole interaction and subsequent Raman in-
teraction which is of opposite time ordering compared to the
SHG probe experiment. In Fig. 1�c�, the diagrams for the IR
pump-SFG probe experiment are shown. Here, the system is
assumed to be a three level vibrational system with only
virtual electronic states accessible via the visible upconver-
sion laser. The signal depends on ground state bleaching,
stimulated emission, and excited state absorption signals.
These signals are analogous to those studied by traditional
infrared-pump-probe and two-dimensional infrared
spectroscopy.34,47,48

As the underlying matter-field interactions involve non-
resonant polarizability interactions, the symmetry of the mo-
lecular polarizability tensor must be known in order to cal-
culate the polarization dependence of the signal. To simplify
further calculations, the molecules being probed spectro-
scopically are assumed to be symmetric tops, which permits
the use of a diagonal polarizability tensor of the form

�̄ = ��1 0 0

0 1 0

0 0 1
	 + ��− 1/3 0 0

0 − 1/3 0

0 0 2/3
	 , �4�

where � and � are the isotropic and anisotropic parts of the
polarizability, respectively. This form imposes some restric-

FIG. 1. Double-sided Feynman diagrams for the �a� VIS-pump-SHG, �b�
VIS-pump-SFG, and �c� IR-pump-SFG experiments. g, v, and e denote the
electronic ground, virtual, and excited states, respectively. 0, 1, and 2 denote
the vibrational ground and excited states, respectively. For a discussion of
the interpretation of such diagrams, please refer to the text �Sec. II A�. The
time evolution of the population state formed in the pump field-matter in-
teraction is considered extensively in the text.
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tion on the model, but it is a sound physical model that can
be used for a wide variety of probes at interfaces and sur-
faces.

Although not denoted in the diagrams, each field can
possess its own polarization which affects the signal strength
and the orientational properties that are probed during the
population period. The projections of the interactions onto
the laboratory Cartesian coordinates and their spherical har-
monic representations are shown in Table I. In one special
case, the pump beam is taken to propagate along the labora-
tory Z axis and circularly polarized in the XY plane.
This polarization scheme was extensively applied in the
literature.19,24,25

B. The tensorial nonlinear polarization and the
material response function

The SHGs and SFGs are nonlinear responses to multiple
applied electric fields. In the perturbative limit, the material
polarization arising in the nonlinear processes is given by

P� = ���
�1�E� + ����

�2� E�E� + ��	��
�3� E	E�E�

+ ��
	��
�4� E
E	E�E� + . . . , �5�

where ��n� is the nth-order susceptibility. The susceptibility is
a tensor function of the frequency and polarization of the
fields Ei �denote with Greek subscripts in the general case�.
In a regular SHG or SFG experiment, only the second term is
considered.10 Not every polarization combination of the in-
teracting fields is allowed. At azimuthally symmetric sur-
faces and interfaces �C�v symmetry�, only the following
second-order nonlinear susceptibilities are nonzero:
�ZZZ

�2� ,�ZXX
�2� =�ZYY

�2� ,�XZX
�2� =�YZY

�2� ,�XXZ
�2� =�YYZ

�2� , where the polar-
izations are given in the laboratory frame. The material po-
larization in TRSHG probe and TRSFG probe experiments is
equal to the fourth term of the perturbative expansion in Eq.
�5�. The pump field polarization can be any linear combina-
tion of the X, Y, and Z coordinates. A circularly polarized
pump beam can also be applied that usually propagates along

the Z axis.19,24,25 Although the dynamics of the molecular
system is contained in ��n� in the frequency domain, the
knowledge of the time-domain material response function
R�n� is more practical for time-resolved experiments. The
time-domain material response function is the inverse
Fourier-transform of the nonlinear susceptibilities46,45

R�. . .�
�n� �tn, . . . ,t1� =

1

�2��n

−�

�

d�n. . .

−�

�

d�1��. . .�
�n�


exp�− i��1 + . . . + �n�tn� . . .


exp�− i�1t1� . �6�

In Eq. �6�, R�n� is the �n+1�-time correlation function that
describes the system for a given time ordering. It is a tensor
function that retains the symmetry properties of the nonlinear
susceptibility ��n�. Generally, it is a valid assumption that the
orientational motions are decoupled from the vibronic modes
of the system, and the time-domain material response func-
tion can be separated into contributions from the vibrational
and orientational degrees of freedom,

R�. . .�
�n� �tn, . . . ,t1� = R�. . .�

�n� �tn, . . . ,t1�RV�tn, . . . ,t1� , �7�

where R�. . .�
�n� �tn , . . . , t1� is the orientational response function

and RV�tn , . . . , t1� is the vibrational response function.49 Only
the effect of R�. . .�

�n� �tn , . . . , t1� on the nonlinear material polar-
ization will be discussed here.

The pump interactions are taken to be instantaneous. The
time-dependences of the emission coherence for the SHG
probe case or the vibrational coherence for the SFG case do
not influence the orientational relaxation observables during
the population period, and will not be considered. Within
these conditions, the orientational correlation function can be
greatly simplified and expressed as a two-time correlation
function,

TABLE I. Resonant and nonresonant interactions projected onto the laboratory frame and expressed with
spherical harmonics. For the nonresonant interactions, a diagonal polarizability tensor is assumed.
��=�+2� /3, �� =�−� /3 �see Eq. �4��.

Interaction Projection onto the laboratory frame Spherical harmonic representation

Resonant interactions
��̂i�̂Z� cos �i 2�� /3�1/2Y1

0��i�
��̂i�̂Y� sin �i sin �i i�2� /3��1/2�Y1

−1��i�+Y1
1��i��

��̂i�̂X� sin �i cos �i �2� /3�1/2�Y1
−1��i�−Y1

1��i��
��̂i�̂CIRC� sin �i �1− �4 /3���Y1

0��i��2�1/2

Nonresonant interactions
��̂Z�̄�̂Z� �� cos2 �i+�� sin2 �i �+ �4 /3��� /5��Y2

0��i�
��̂Y�̄�̂Y� ��+ ��� −���sin2 �i sin2 �i �−���2 /3��� /5�1/2Y2

0��i�+ �2� /15�1/2�Y2
−2��i�+Y2

2��i���
��̂X�̄�̂X� ��+ ��� −���sin2 �i cos2 �i �+��−�2 /3��� /5�1/2Y2

0��i�+ �2� /15�1/2�Y2
−2��i�+Y2

2��i���
��̂Y�̄�̂Y� ��� −���cos �i sin �i sin �i i��2� /15�1/2�Y2

−1��i�+Y2
1��i��

��̂Z�̄�̂Y�
��̂X�̄�̂Z� ��� −���cos �i sin �i cos �i ��2� /15�1/2�Y2

−1��i�−Y2
1��i��

��̂Z�̄�̂X�
��̂X�̄�̂Y� ��� −���sin �i sin �i cos �i i��2� /15�1/2�Y2

−2��i�−Y2
2��i��

��̂Y�̄�̂X�
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R�
	��
SHG �t1� =
 d�1
 d�0��̂1�̂��̂
�̂1�̂	�G��1,t1��0���̂0�̂��2,

�8�

R�
	��
SFG �t1� =
 d�1
 d�0��̂��̂1�̂
�̂1�̂	�G��1,t1��0���̂0�̂��2,

�9�

where G��1 , t ��0� is a time propagator or Green’s function
�see below�. A shorthand notation can be introduced to write
the above equations in an abbreviated form as

R�
	��
SHG �t1� = ���̂��̂
	�1��̂��̂��0� �10�

and

R�
	��
SFG �t1� = ���̂�
�̂	�1��̂��̂��0� . �11�

The simultaneity of the final three interactions imposes ad-
ditional symmetry conditions on the correlation functions
and permits the interchange of certain pulse pairs, similar to
the Kleinman symmetry �see Sec. III A�.10

The physical interpretation of the above equations is in-
tuitive: after the electronic or vibrational excitation with the
pump pulse, the population state �see Fig. 1� evolves in time.
The time evolution is given by the G��1 , t ��0� operator,
which is the joint probability of finding the probe at orienta-
tion �1 at time t1, provided it was at orientation �0 at t=0.
Then, at t1, the state of orientation is projected onto the probe
and signal polarizations. In the general description, the time-
evolution operator �the Green’s function� depends on the
model of reorientation. In the free rotation, for example, it
can be expanded as a series of spherical harmonics32,50

G��i,ti��0� = �
n=0

�

�
m=−n

n

cn
m�ti�Yn

m�

��0�Yn
m��i� , �12�

where the expansion coefficients are given by

cn
m�ti� = exp�− n�n + 1�Dorti� �13�

and the spherical harmonics are defined over the angular co-
ordinates � in the laboratory frame �see below�. For re-
stricted rotational diffusion within a particular solid angle or
cone, the time-evolution operator has a different form, and
the integration is taken only over the restricted angular vol-
ume.

C. Definition of angular variables

As mentioned above, the molecules will be treated as
rigid, cylindrically symmetric rods although the formalism
can be extended to other shapes. For the nonresonant inter-
actions, the molecules are taken to be symmetric tops, which
is consistent with a cylindrical shape. A symmetric top sim-
plifies the results because the polarizability tensor is diago-
nal. The IR and electronic transition dipoles lie along the
symmetry axis of the polarizability of the rod. The procedure
can be generalized to any other polarizability tensor symme-
try.

The measured correlation functions will be calculated as
a two-time correlation function. If the orientation of the mol-

ecule is given in the polar coordinates by �= �� ,��, and the
interactions are represented with spherical harmonics, the po-
larization dependent components of the tensorial correlation
function will be obtained in the form of dynamic ensemble
averages of spherical harmonics: �Yl

m���t��Yl
m���0���. After

obtaining the correlation functions in this general form, the
wobbling-in-a-cone model will be applied to express them as
exponential decays.

Figure 2 illustrates the relevant angular variables for the
surface experiments. The excitation and output beams propa-
gate in the XZ plane. Their incident angle is measured from
the Z axis and denoted by �i. The beams are polarized from
the vertical with the angle �i. This gives the projection of the
electric field onto the Cartesian axes as

�̂i = ��̂i��cos �i cos �i�̂Z + cos �i�̂Y + cos �i cos �i�̂X� .

�14�

The orientation of a molecule in the laboratory frame at any
time can be given by the polar and the azimuthal angles
�LM�t�= ��LM�t� ,�LM�t��.

It is practical to define a coordinate system that is fixed
to the conical volume in which the orientational diffusion of
the molecules is restricted. The Z axis of the conical frame is
the symmetry axis of the cone, and if it is tilted from the
laboratory Z axis by the angle �LC, the Euler angles that
transform the laboratory frame into the conical frame are
��LC,�LC,�LC�. The Euler angles are not functions of the
time and can be factored out from the laboratory frame cor-
relation functions.

Within the conical frame, the orientation of the molecule
is given by the polar and the azimuthal angles �CM�t�

ε̂
iΩ

iϕ

LMφ

LMθ

μ̂

ZL

XL

YL

Ei

CMθ

ZC

XC

YC

μ̂

LMφ

0θ

FIG. 2. Angular variables in the laboratory frame �upper� and the conical
frame �lower�. The sample surface is in the XY plane. The probe and signal
beams propagate in the XZ plane incident from the ZL axis by the angle �i

and polarized from the vertical by the angle �i. �o denotes the cone half-
angle and the orientation of a molecule is given by the polar and azimuthal
angles �LM�t�= ��LM�t� ,�LM�t�� and �CM�t�= ��CM�t� ,�CM�t�� in the labora-
tory and conical frames, respectively.
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= ��CM�t� ,�CM�t��. In the cone model, the polar angle is re-
stricted to 0��CM�t���o, where �o denotes the half-cone
angle.

Using SFG �or SHG�, it is possible to measure the aver-
age angle of orientation of a molecule. Within the tilted cone
model the average angle can be expressed as

��� =

�LC−�o

�LC+�o� sin �d�


�LC−�o

�LC+�osin �d�
, �15�

which is equivalent to

�cos �� =
1 + cos �o

2
, �16�

when �LC=0.18,51

D. Orientational correlation functions for restricted
rotational diffusion

As mentioned above, the orientational relaxation of the
molecules at a surface or interface cannot be described as
isotropic diffusion as is the case in bulk liquids. Instead, we
adopt the model of wobbling-in-a-cone that has proved to be
useful in a numerous of previous problems.31,42,52–55 To sim-
plify the problem, molecules are assumed to be rigid rods
that diffuse freely within a given angular volume, the cone.
This model was also suggested by Shen and co-workers51 for
interfacial OH bonds. The orientation of a molecule at a
given time can be specified by its polar coordinates within
the cone �CM�t�= ��CM�t� ,�CM�t��.

The diffusion in a cone model was first solved by War-
chol and Vaughan.29 Later Wang and Pecora obtained the
�Yl

m���t��Yl
m���0��� �l=1,2 and m=0,1 ,2� correlation func-

tions within this model.30

With conical boundary conditions and with initial condi-
tion

c��,0� = 
�� − ��0�� = 
�cos � − cos ��0��
�� − ��0�� ,

�17�

the general solution of the rotational diffusion equation is

c��,t� = �
n=1

�

�
m=−�

�

exp�− �n
m��n

m + 1�Dort�Y�n
m

m�

���0��Y
�n

m
m ���t�� ,

�18�

where c�� , t� is the probability density for finding the rod in
orientation � at time t, Dor is the diffusion constant Y

�n
m

m

denotes the associated spherical harmonics, �n
m depends on

the cone half-angle and can be fractional unlike in the free
diffusion model, and the � indicates the complex conjugate
of the associated spherical harmonic.56,57

The joint probability of finding a rod with orientation
��0� in solid angle d��0� at time t=0 and orientation ��t�
in solid angle d��t� at time t is then,

Gs���t�,t���0�,0�

=
1

2��1 − cos �o��n=1

�

�
m=−�

�

exp�− �n
m��n

m + 1�Dort�


Y
�n

m
m�

���0��Y
�n

m
m ���t�� , �19�

where the Green’s function satisfies the normalization condi-
tion


 
 Gs���t�,t���0�,0�d��t�d��0� = 1. �20�

The angular integrals are taken only over the conical volume
accessible to the molecule through diffusion.

These results lead to the orientational correlation func-
tions that can be written as ensemble averages of spherical
harmonics

�Yl
m�

���t��Yl�
m����0���

=
 d��0�
 d��t�Yl
m�

���t��Gs���t�,t���0��Yl�
m����0�� .

�21�

In general, the ensemble averages have the following form:

�Yl
m�

���t��Yl�
m����0���

=

mm�

4�
��2l + 1��2l� + 1��l − m�!�l� − m�!

�l + m�!�l� + m�!


�
n=1

�

Cn
m exp�− �n

m��n
m + 1�Dort� �22�

and

�Yl
m�

���t��Yl�
m����0��� = �Yl

−m�

���t��Yl�
−m����0��� , �23�

i.e., the orientational correlation function is an infinite sum
of exponential decays.

The Cn
m coefficients are calculated as

Cn
m =

1

Hn
m�1 − cos �o�



0

�o

d� sin �Pl
m�cos ��P

�n
m

m �cos ��




0

�o

d�� sin ��Pl�
m��cos ���P

�n
m�

m� �cos ��� , �24�

where

Hn
m = 


0

�o

d� sin �P
�n

m
m �cos ��P

�n
m

m �cos ��� . �25�

Using the integrals from Eqs. �24� and �25� in Eq. �22�,
the orientational correlation functions for any l and m can be
calculated. Unfortunately, most of these integrals can only be
calculated numerically. However, for each l and m, it is
shown in Appendix A that the summation can be truncated
after the first decaying exponential term because the combi-
nation of all of the other terms is negligible for cone half-
angles that will be encountered in the vast majority of sys-
tems. In addition, Appendix A also shows that for the SHG
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and SFG experimental observables, the necessary coeffi-
cients Cn

m can be obtained analytically in terms of the cone
half-angle. Furthermore, while the �n

m coefficients can only
be calculated numerically, they can be well approximated by
analytical formulae for �o�170°, which is a half-angle that
is larger than expected for most surface and interfacial sys-
tems. The net result is that Eq. �22� reduces to a tractable
expression that can be accurately calculated analytically. The
necessary terms are either a single exponential or a constant
plus a single exponential.

We will also need to calculate both �Yl
m�

���t��� and
�Yl

m���0���. The average value of these single spherical har-
monics is

�Yl
m�

���t��� = �Yl
m���0���

=

m0

1 − cos �o
�2l + 1

4�



0

�o

Pl�cos ��sin �d� ,

�26�

where Pl is the lth order Legendre polynomial.33,58

For the isotropic case, Wang and Pecora30 calculated the

�Yl
m�

���t��Yl
m���0��� �l=1,2� correlation functions. How-

ever, for TRSHG and TRSFG experiments, different correla-
tion functions are needed and are derived below in a manner
similar to the l=1,2 cases. In the end, the necessary corre-
lation functions are obtained as exponential decays.

Armed with expressions for the time correlation func-
tions of spherical harmonics, it will now be possible to cal-
culate the exact orientational response given the experimen-
tal polarization conditions for a TRSHG or TRSFG
experiment. In Sec. III, we will first demonstrate the proper
expansion of the orientational response into spherical har-
monics and then plug in the results from the above section.

III. RESULTS FOR TRSHG AND TRSFG
EXPERIMENTS

A. The orientational correlation functions in the
laboratory frame

First the orientational correlation functions R�
	��
SHG and

R�
	��
SFG will be calculated in the laboratory frame. It requires

the evaluation of the integrals in Eqs. �8� and �9�. The time-
evolution operator G��1 , t ��0� is not evaluated in this step
and the orientational correlation functions will be obtained in
a general form as a sum of the dynamic ensemble averages

of spherical harmonics �Yl
m�

���t��Yl
m���0���.

The electric-field-dipole and electric-field-polarizability
interactions are transformed into the laboratory frame and
represented with spherical harmonics in Table I. When the
fields are temporally and spatially overlapped, the spherical
harmonic representations of the interactions can always be
written as the sums of a constant and spherical harmonics of
the order from one to three. The purely algebraic transforma-
tions of the spherical harmonic representations are given in
detail in Appendix B for completeness.

Symmetry relations can reduce the number of correlation
functions that need to be calculated. The simultaneity of the
final three interactions �see Eq. �4�, Table I, and Fig. 1� per-

mits the interchange of certain pulse pairs, and one can ob-
tain the following symmetry relationships �the electric field
is either linearly polarized along the Cartesian axes X, Y, and
Z or circularly polarized in the XY plane denoted by C in the
subscript�:

RZZZZZ
SHG = RZZZZZ

SFG ,RZZZYY
SHG = RZZZXX

SHG = RZZZYY
SFG = RZZZXX

SFG , �27�

RZYYZZ
SHG = RYYZZZ

SFG ,RZYYYY
SHG = RYYZYY

SFG ,RZYYXX
SHG = RYYZXX

SFG , �28�

RZXXZZ
SHG = RXXZZZ

SFG ,RZXXYY
SHG = RXXZYY

SFG ,RZXXXX
SHG = RXXZXX

SFG , �29�

RYYZZZ
SHG = RYZYZZ

SHG = RYZYZZ
SFG = RZYYZZ

SFG ,RYYZYY
SHG = RYZYYY

SHG

= RYZYYY
SFG = RZYYYY

SFG ,

�30�
RYYZXX

SHG = RYZYXX
SHG = RYZYXX

SFG = RZYYXX
SFG ,

RXXZZZ
SHG = RXZXZZ

SHG = RXZXZZ
SFG = RZXXZZ

SFG ,RXXZYY
SHG = RXZXYY

SHG

= RXZXYY
SFG = RZXXYY

SFG

�31�
RXXZXX

SHG = RXZXXX
SHG = RXZXXX

SFG = RZXXXX
SFG ,

RZZZCC
SHG = RZZZCC

SFG ,RZYYCC
SHG = RYYZCC

SFG ,RZXXCC
SHG = RXXZCC

SFG , �32�

RYYZCC
SHG = RYZYCC

SHG = RYZYCC
SFG = RZYYCC

SFG ,RXXZCC
SHG = RXZXCC

SHG

= RXZXCC
SFG = RZXXCC

SFG . �33�

It is sufficient to calculate the orientational correlation func-
tions with the SHG time ordering. The correlation functions
with the SFG time ordering can be obtained by using the
above symmetry relations. At the azimuthally symmetric
�C�v symmetry� interfaces, the number of the unique orien-
tational correlation functions is further reduced

RZZZYY
SHG = RZZZXX

SHG , �34�

RZYYZZ
SHG = RZXXZZ

SHG ,RZYYYY
SHG = RZXXXX

SHG ,RZYYZZ
SHG

= RZXXZZ
SHG ,RZYYCC

SHG = RZXXCC
SHG , �35�

RZYYYY
SHG = RZXXXX

SHG ,RZYYXX
SHG = RZXXYY

SHG , �36�

RYYZZZ
SHG = RYZYZZ

SHG = RXZXZZ
SHG = RXXZZZ

SHG ,RYYZCC
SHG = RYZYCC

SHG

= RXZXCC
SHG = RXXZCC

SHG , �37�

RYYZYY
SHG = RYZYYY

SHG = RXZXXX
SHG = RXXZXX

SHG ,RYYZXX
SHG = RYZYXX

SHG

= RXZXYY
SHG = RXXZYY

SHG . �38�

Therefore, the unique orientational correlation functions that
need to be calculated are

RZZZZZ
SHG , RZZZYY

SHG , RZYYZZ
SHG , RZYYYY

SHG , RZYYXX
SHG , RYYZZZ

SHG ,

RYYZYY
SHG , RYYZXX

SHG , RZZZCC
SHG , RZYYCC

SHG ,

and

RYYZCC
SHG .
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Now, taking the spherical harmonic representations of
the field-matter interactions listed in Table I, the orientational
correlation functions can be calculated. The detailed deriva-
tion is given here for the RZZZZZ

SHG tensor element only. For the
other tensor elements, the derivations are similar and the
results are listed in Table II.

Using the shorthand notation introduced in Eqs. �10� and
�11�,

RZZZZZ
SHG �t1� = ���̂Z�̂ZZ�1��̂Z�̂Z�0� . �39�

Substituting the spherical harmonic representations of the in-
teractions from Table I and Appendix B, one can obtain

RZZZZZ
SHG �t1� = �� 2

15
��

3
�15� + 4��Y1

0���t1��

+
4

5
��

7
Y3

0���t1����1

3
+

4

3
��

5
Y2

0���0���� ,

�40�

which yields

2

4725
��15� + 4���28�15��Y1

0Y2
0� + 35�3��Y1

0��

+ 9�7��8�5��Y3
0Y2

0� + 10���Y3
0��� , �41�

where the following notation is used:

�Yl
mY2

m� = �Yl
m�

��lab�t��GS��lab�t�,t;�lab�0�,0�Y2
m��lab�0��� .

�42�

The averaging is over the polar and azimuthal angles at time
t1 and t=0.

Without applying any orientational diffusion model, the
correlation functions are listed in Table II. One can see that
the C1�t� and C2�t� correlation functions do not appear in the
equations. Instead, the

�Yl
mY2

m�

=
 d��0�
 d��t�Yl
m�

���t��Gs���t�,t���0��Y2
m���0��

�l = 1,3; m = 0,2� �43�

correlation functions are measured in the TRSHG and
TRSFG experiments. The integrals are performed only over
the volume in which the orientational diffusion occurs. The
time-evolution operator Gs���t� , t ���0�� depends on the
model of the orientation relaxation and the potential within
the volume of diffusion. In certain cases, the operator can be
represented by spherical harmonics, which permits the deri-
vation of analytical forms of the correlation functions. If the
time-evolution operator cannot be represented in such a way,
the correlation functions can be evaluated numerically.

TABLE II. The orientational correlation functions for tensor elements of the fourth-order polarization for the
TRSHG experiments calculated from Eq. �8�. For simplicity, the following notation is used: �Yl

mY2
m�

= �Yl
m�

��lab�t��GS��lab�t� , t ;�lab�0� ,0�Y2
m��lab�0���. � and � are the isotropic and anisotropic part of the polar-

izability tensor �see Eq. �4��.

RZZZCC
4

4725
��15� + 4���− 14�15��Y1

0Y2
0� + 35�3��Y1

0�� − 9�7��4�5��Y3
0Y2

0� − 10���Y3
0���

RZYYCC
4

4725
��15� − 2���− 14�15��Y1

0Y2
0� + 35�3��Y1

0�� + 9�7��2�5��Y3
0Y2

0� − 5���Y3
0���

RYYZCC
4

1575
��− 14�15��Y1

0Y2
0� + 35�3��Y1

0� + 6�35��Y3
0Y2

0� − 15�7��Y3
0��

RZZZZZ
2

4725
��15� + 4���28�15��Y1

0Y2
0� + 35�3��Y1

0�� + 9�7��8�5��Y3
0Y2

0� + 10���Y3
0���

RZZZYY
2

4725
��15� + 4���− 14�15��Y1

0Y2
0� + 35�3��Y1

0�� − 9�7��4�5��Y3
0Y2

0� − 10���Y3
0���

RZYYZZ
2

4725
��15� − 2���28�15��Y1

0Y2
0� + 35�3��Y1

0�� − 9�7��4�5��Y3
0Y2

0� + 5���Y3
0���

RZYYYY

2

4725
��15� − 2���− 14�15��Y1

0Y2
0� + 35�3��Y1

0�� + 9�7��2�5��Y3
0Y2

0� + 10��Y3
2Y2

2�

− 5���Y3
0���

RZYYXX
2

4725
��15� − 2���− 14�15��Y1

0Y2
0� + 35�3�Y1

0� + 9�7��2�5��Y3
0Y2

0� − 10��Y3
2Y2

2� − 5���Y3
0���

RYYZZZ
2

1575
��28�15��Y1

0Y2
0� + 35�3��Y1

0� − 12�35��Y3
0Y2

0� − 15�7��Y3
0��

RYYZYY
2

1575
��− 14�15��Y1

0Y2
0� + 35�3��Y1

0� + 6�35��Y3
0Y2

0� + 30�7��Y3
2Y2

2� − 15�7��Y3
0��

RYYZXX

2

1575
��− 14�15��Y1

0Y2
0� + 35�3��Y1

0� + 6�35��Y3
0Y2

0� − 30�7��Y3
2Y2

2� − 15�7��Y3
0��
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B. The ŠYl
mY2

m
‹ correlation functions in a tilted

restricted cone

In Sec. III A, the spherical harmonic correlation func-
tions for a restricted cone model were found. However, to
properly represent any molecular orientation at the interface,
it is necessary to allow for the cone to be tilted with respect
to the surface normal. Here we incorporate this “tilted” frame
of reference into the model.

In an empty cone whose symmetry axis is the surface
normal, the polar coordinates of the molecules within the
laboratory �LM� are equal to the coordinates in the cone
�CM� frame, i.e., �LM�t�=�CM�t�. If the symmetry axis of
the cone is tilted from the surface normal, the correlation
function written in the laboratory frame has to be trans-
formed into the conical frame. This case corresponds to a
molecule which reorients within the polar angle interval
��a ,�b�.

According to the addition theorem of spherical
harmonics,58

Yl
m��LM���t��,�LM���t���

= �
m�

Dm�m
l ��LC,�LC,�LC�Yl

m���CM���t��,�CM���t��� ,

�44�

where ��LM,�LM� are the polar coordinates of the molecule
in the laboratory frame, ��LC,�LC,�LC� are the Euler angles
that transform the laboratory frame into the conical frame,
and ��CM,�CM� are the polar coordinates of the molecule in
the conical frame. Dm�m

l denotes the lth order Wigner D ma-
trix.

The Euler angles that connect the laboratory frame with
the conical frame are constant, while the polar angles in the
conical frame evolve in time. Because the interface and the
cone are taken to have a C�v symmetry, �LC=0. Every �LC

angle is equally probable; therefore, one can average over the
azimuthal angles, and only the tilt angle from the surface
normal matters.

Using the orthogonality properties of the ensemble aver-
ages of spherical harmonics

�Yl
m� = 
m0�Yl

0� �45�

and

�Yl
mYl�

m�� = 
mm��Yl
mYl�

m� , �46�

the correlation functions derived in the laboratory frame can
be transformed into the conical frame. The laboratory frame
correlation functions expressed in the conical frame are listed
in Table III.

To illustrate how to transform the correlation functions
from the laboratory frame to the conical frame, we examine
the RZZZZZ

SHG tensor element derived above. According to Eq.
�41�, it consists of the �Yl

0Y2
0� �l=1,3� correlation functions

and the �Yl
0� ensemble averages, which can be transformed

into the tilted frame individually by using the equations
listed in Table III. The Wigner small d matrices can be found
in handbooks58 and the correlation functions in the rotated
frame are the following:

�Y1
0Y2

0�L = �3�Y1
1Y2

1�Csin2 �LC cos �LC

+ 1
2 �Y1

0Y2
0�Ccos �LC�3 cos2 �LC − 1� , �47�

�Y3
0Y2

0�L =
3�5

4
�Y3

2Y2
2�Ccos �LC sin4 �LC +

3

4�2
�Y3

1Y2
1�C


�3 + 5 cos�2�LC��cos �LC sin2 �LC

+
1

16
�Y3

0Y2
0�C�3 cos �LC + 5 cos�3�LC��


�3 cos2 �LC − 1� , �48�

where the subscript C denotes an ensemble average in the
conical frame.

It can be seen that when �LC=0, the �Yl
mY2

m� �m=1,2�
correlation functions vanish in the sums and the correlation
functions expressed in the laboratory frame and in the coni-
cal frame are identical.

The ensemble averages are obtained as

�Y1
0�L = �Y1

0�Ccos �LC, �49�

and

�Y3
0�L = 1

8 �Y3
0�C�3 cos �LC + 5 cos�3�LC�� . �50�

Substituting these expressions into Eq. �41�, one can get
the RZZZZZ

SHG tensor element for the tilted cone case as

TABLE III. Rotating correlation functions into the tilted cone frame. The symmetry axis of the cone is tilted
from the surface normal by the angle �LC, which does not evolve in time. The relationship between the
correlation functions in different frames are given by the addition theorem of spherical harmonics in Eq. �44�.
dj,k

i denotes the small Wigner d-matrix �see Sec. IV B�.

�Y1
0Y2

0� = �
j=−1

1

�Y1
j���CM�t�,�CM�t��Y2

j ��CM�0�,�CM�0���d0j
1 ��LC��− 1�0−jd0�−j�

2 ��LC�

�Y3
0Y2

0� = �
j=−2

2

�Y3
j���CM�t�,�CM�t��Y2

j ��CM�0�,�CM�0���d0j
3 ��LC��− 1�0−jd0�−j�

2 ��LC�

�Y3
2Y2

2� = �
j=−2

2

�Y3
j���CM�t�,�CM�t��Y2

j ��CM�0�,�CM�0���d2j
3 ��LC��− 1�2−jd�−2��−j�

2 ��LC�

�Y1
0�= �Y1

0��CM�t� ,�CM�t���d00
1 ��LC�

�Y3
0�= �Y3

0��CM�t� ,�CM�t���d00
3 ��LC�
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RZZZZZ
SHG =

2

675
�15� + 4��cos �LC��5��Y1

0Y2
0�C


�6 + �3 + 3��3 − 2�cos�2�LC��� +
45

4
��7��Y3

0�C


�3 cos �LC + 5 cos�3�LC�� +
9

2
�7����5�Y3

0Y2
0�C


�3 cos2��LC� − 1��3 cos �LC + 5 cos�3�LC���

+
9

2
�7���6 cos �LC sin2 �LC��10�Y1

1Y2
1�C


�3 + 5 cos�2�LC�� + 10�Y3
2Y2

2�Csin2 �LC�� . �51�

C. The correlation functions as exponential decays

Within the conical frame, the dynamic ensemble aver-
ages �Yl

mY2
m� �l=1,3 , m=0,1 ,2� have to be calculated to

describe the orientational relaxation of the molecules. Wang
and Pecora30 solved the �Yl

mYl
m� �l=1,2 , m=0,1 ,2� orien-

tational correlation functions for restricted diffusion and we
follow their procedure to obtain the correlation functions to
describe the TRSHG and TRSFG experiments. The details of
the mathematics are given in Appendix A and here we show
only the resulting equations. We used the model of restricted
diffusion in a conical volume as outlined in the Sec. II D �see
above�. According to Eq. �23�, it is sufficient to solve the
problem for positive m values only, and the correlation func-
tions can be written as an infinite sum of exponential decays.
The coefficients of the exponentials can be calculated nu-
merically and it is shown in Appendix B that the sums can
always be truncated after the first decaying exponential term.

Table IV shows the results. It can be seen that the cor-
relation functions can be written in the following general
form:

�Yl
0�

���t��Y2
0���0��� = A��o� + B��o�exp�− �2

0��2
0 + 1�Dort�,

�l = 1,3� �52�

and

�Yl
m�

���t��Y2
m���0��� = A��o�exp�− �1

m��1
m + 1�Dort�,

�l = 1,3 and m � 0� . �53�

It is important to point out that the �2
0 and �1

m constants de-
pend on the cone half-angle �o. While they can only be cal-
culated exactly numerically, for a very wide range of cone
half-angles �o�170°, they can be very well approximated by
the following formulae:31,38,56,57

�2
0 = �1

2 = 100.496�o
−1.122 �54�

and

�1
1 = 100.237�o

−1.122, �55�

where �o is in radian. The �1
1 coefficient appears only in the

tilted cone cases. When the tilt of the cone is not significant,
the correlation functions in the conical frame are given as a
constant plus a single exponential decay that depend on the
half-cone angle. The offset in the tilted case is also nonzero
and depends on the ensemble averages of certain spherical
harmonics �see Table III�.

At this point, we have derived the correlation functions
for the restricted diffusion in a cone and the nonzero orien-
tational correlation functions in the laboratory frame. Using
the optical beam geometry, the observed pump-SHG probe
and pump-SFG probe orientational correlation functions can
be constructed from the equations that were derived.

To summarize, to calculate the time correlation func-
tions, one projects the excitation and signal beams onto Car-
tesian coordinates in the laboratory frame �Table V� and the
laboratory frame correlation functions onto the tilted conical
frame �Table III�. Then, the polarization selective orienta-
tional correlation functions in the laboratory frame can be

TABLE IV. Correlation functions in the conical frame. For transforming the correlation functions from the
conical frame into the laboratory frame, see Table III.

�Y1
0Y2

0� =
�15

4�
�1

4
cos �o�1 + cos �o�2 +

1

4
sin2��o

2
�sin2 �oe

−�2
0��2
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�Y1

�1Y2
�1� =

3�5

32�

sin4��o�
1 − cos��o�

e−�1
1��1

1+1�Dort
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0Y2
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�35

4�
� 1
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1

4
cos2��o

2
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0��2
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�Y3
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64��2
��7 + 5 cos�2�o��sin4��o�

1 − cos��o�
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1��1
1+1�Dort
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�2� =
5�7 sin6 �o

64��1 − cos �o�
e−�1

2��1
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4
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16
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calculated according to Table II. In Sec. IV, calculations are
presented to demonstrate the dependence of the signal on the
orientational diffusion constant and the cone half-angle.

IV. MODEL CALCULATIONS AND ANALYSIS OF
EXPERIMENTS

A. Dependence of the observables on the cone
half-angle

The effects of varying the diffusion constant and the
cone half-angle will be demonstrated by calculating the ori-
entational correlation function for a particular polarization
combination, that is, the tensor elements for the circularly
polarized pump scheme. Here, for simplicity, we will take
the excited state life time to be long compared to the orien-
tational relaxation, and leave it out of the calculations. Be-
cause the orientational motion is decoupled from the vi-
bronic degrees of freedom �see Eq. �7��, the effect of the
vibrational or electronic relaxation can be included by mul-
tiplying by the exponential population decay

R�
	��
L �t� = exp�− kRt�R�
	���t� , �56�

where kR is the excited state relaxation rate and the super-
script L indicates that the population decay is included. An
excited state lifetime much longer than the orientational re-
laxation time scale commonly occurs in a TRSHG
experiment.25

The simplest experimental scheme has the pump beam
incident normal to the sample surface and circularly polar-
ized in the plane of the surface.19,25 The pump pulse elec-
tronically excites the molecules through an allowed one-
photon absorption. The conical volume of the diffusion is
assumed to be a cone whose symmetry axis is aligned along
the surface normal. The lifetime decay is not included. When
this approximation is invalid, it is necessary to measure de-
cays at multiple pump-probe polarization conditions to sepa-

rate the orientational decay from the population decay. For
TRSHG and TRSFG experiments there is no analog to the
anisotropy r�t� �Eq. �1��.

To perform the model calculations, we use the equations
that were derived for the orientational correlation functions
and are listed in Table II. For the calculations, the input
parameters are the cone half-angle, the orientational diffu-
sion constant, and the molecular polarizability. All the calcu-
lations are for the case when the probe beam is two-photon
resonant with an electronic excited state of the molecule. For
example, the pump pulse is at 400 nm and the probe pulse is
at 800. The electronic transition is both one-photon and two-
photon resonant.

Figure 3 shows the simulated RZYYCC tensor component
of the orientational correlation function. The diffusion con-
stant is set to a value of 10−3 ps−1, which is a realistic value

TABLE V. Polarization dependence of the TRSHG and TRSFG experiments. The beams are incident on the
sample surface at the angle � from normal and polarized at � from the vertical

P�4� = RZZZZZ cos �SHG cos2 �VIS cos2 �pump sin �SHG sin2 �VIS sin2 �pump

+RZZZYY cos �SHG cos2 �VIS sin2 �pump sin �SHG sin2 �VIS

+RZZZXX cos �SHG cos2 �VIS cos2 �pump sin �SHG sin 2 �VIS cos 2�pump

+RZYYZZ cos �SHG sin2 �VIS cos2 �pump sin �SHG sin2 �pump

+RZYYYY cos �SHG sin2 �VIS sin2 �pump sin �SHG

+RZYYXX cos �SHG sin2 �VIS cos2 �pump sin �SHG cos2 �pump

+RZXXZZ cos �SHG cos2 �VIS cos2 �pump sin �SHG cos2 �VIS sin2 �pump

+RZXXYY cos �SHG cos2 �VIS sin2 �pump sin �SHG cos2 �VIS

+RZXXXX cos �SHG cos2 �VIS cos2 �pump sin �SHG cos2 �VIS cos2 �pump

+RYZYZZ sin �SHG cos �VIS sin �VIS cos2 �pump sin �VIS sin2 �pump

+RYZYYY sin �SHG cos �VIS sin �VIS sin2 �pump sin �VIS

+RYZYXX sin �SHG cos �VIS sin �VIS cos2 �pump sin �VIS cos2 �pump

+RXZXZZ cos �SHG cos2 �VIS cos2 �pump cos �SHG sin �VIS cos �VIS sin2 �pump

+RXZXYY cos �SHG cos2 �VIS sin2 �pump cos �SHG sin �VIS cos �VIS

+RXZXXX cos �SHG cos2 �VIS cos2 �pump cos �SHG sin �VIS cos �VIS cos2 �pump

+RYYZZZ sin �SHG sin �VIS cos �VIS cos2 �pump sin �VIS sin2 �pump

+RYYZYY sin �SHG sin �VIS cos �VIS sin2 �pump sin �VIS

+RYYZXX sin �SHG sin �VIS cos �VIS cos2 �pump sin �VIS cos2 �pump

+RXXZZZ cos �SHG cos �VIS cos �VIS cos2 �pump sin �SHG cos �VIS sin �VIS sin2 �pump

+RXXZYY cos �SHG cos �VIS cos �VIS sin2 �pump sin �SHG cos �VIS sin �VIS

+RXXZXX cos �SHG cos �VIS cos �VIS cos2 �pump sin �SHG cos �VIS sin �VIS cos2 �pump
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FIG. 3. The RYYZCC
SHG tensor element is calculated for different cone semi-

angles and shown as a decay. The bleach in the visible-pump-SHG experi-
ment is shown. The diffusion constant is set to an arbitrary but realistic
value �D=10−3 ps−1�, while the cone semiangle is varied between 30° and
80°. The SHG/SFG signal always recovers exponentially to an equilibrium
value. The exponential time constant of each decay is indicated in the figure;
it is clear that the apparent time constant and the offset both depend strongly
on the cone half-angle.
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for molecules like Rhodamine 6G �Ref. 19� or C314 �Ref.
27�, for example. The isotropic part of the polarizability is
set to 1, and the anisotropic part is set to 1/3, that is, the
anisotropic-isotropic ratio is one third. The cone semiangle is
varied between 30° and 80°. Before t=0, the SHG signal of
the sample is recorded. When the pump beam is turned on,
the SHG signal decreases, and it recovers to the equilibrium
value over time. As an example, the RYYZCC

SHG response func-
tion is plotted as a function of the pump-probe delay time in
Fig. 3. Each of the signal decay curves is a single exponen-
tial that decays to an offset. Both the decay constant and the
offset depend both on the orientational diffusion constant and
the cone half-angle. In Fig. 3, all of the curves are calculated
for the same diffusion constant, Dor=10−3 ps−1. The cone
half-angles are varied as shown in the figure. To obtain a feel
for how much the cone half-angle influences the experimen-
tally observed decay time, the curves were fit to exponential
decays to an offset. The results are dramatic. Although Dor is
the same for all curves, the apparent decay time constants
range from 21 ��o=30°� to 147 ps ��o=80°�. It is clear from
these model calculations that the decay constant alone cannot
provide microscopic information on the orientational dynam-
ics. However, as discussed in Sec. IV B, if the cone half-
angle is known from time-independent measurements,11 then
measurement of the decay does permit the determination of
the orientational diffusion constant.

The theory shows that it is not necessary to make a sepa-
rate static measurement of the cone half-angle. It is possible
to obtain both the orientational diffusion constant and the
cone half-angle from the time-dependent experiment alone.
In Fig. 3, the initial amplitude of the signal varies with the
cone half-angle. In addition, the ratio of the initial value
�t=0� and the long time plateau amplitude is sufficient to
determine the cone half-angle. With the cone half-angle and
the decay constant, the orientational diffusion constant can
be determined.

Figure 4 shows three decay curves for the same cone
half-angle 45°, but with diffusion constants varying by two
orders of magnitude 10−2–10−4 ps−1. The figure shows sev-
eral important points. First, for the same cone half-angle, the
initial value of the signal is the same independent of the

diffusion constant. Furthermore, the plateau level is the same
for all three curves, although the slowest decay in the figure
has not reached this plateau in the time range displayed. As
discussed in connection with Fig. 3, the initial value and the
plateau value are sufficient to determine the cone half-angle.
With the cone half-angle and the decay time constant, the
orientational diffusion constant Dor can be determined.

If the decays in Fig. 4 are fit to an exponential decaying
to a constant, and the decay time constant is taken to be �
=1 /6D, as it would be in a bulk liquid, the diffusion con-
stants are always a factor of 3.5 larger than the diffusion
constant used to calculate the decays. For other cone half-
angles, the factor is different as is clear from Fig. 3. As with
Fig. 3, Fig. 4 shows that it is not possible to determine the
orientational diffusion constant from a measurement of the
decay time. Furthermore, Figs. 3 and 4 demonstrate that de-
cay times measured on different systems, which can have
different cone half-angles, cannot be directly compared.

B. A realistic example: TRSHG measurements
on the C314 monolayer

Above, calculations were presented with several diffu-
sion constants and half-cone angles to illustrate how the ob-
servables depend on both of these physical parameters. Here
we examine a system that has been examined experimentally.
Eisenthal and co-workers studied C314 at the air/water inter-
face of an aqueous solution by TRSHG24,25 and TRSFG �Ref.
22� experiments as well as in bulk water.59 In bulk water, the
orientational relaxation time constant was found to be 106
ps.60 The surface relaxation time constant was also measured
at the air/water interface, and it was found to be 350 ps.24

From the comparison of the measured time constants, the
authors concluded that the orientational diffusion is signifi-
cantly slower at the interface.

Nguyen et al.25 modified the surface by adding the sur-
factant sodium dodecyl sulfate �SDS� to the C314 solution.
SDS forms a monolayer at the air-water interface. At the
surface, the C314 orientational time constant was found to be
very similar to the interface without the surfactant, only in-
creasing 15% to 383 ps. From the time constants, it was
concluded that modifying the surface changes the C314 ori-
entational diffusion only slightly.

By using Eq. �3�, the diffusion constant in the bulk phase
can be obtained, and it is 1.6
10−3 ps−1. To obtain the dif-
fusion constants at the interfaces, we use the equations de-
rived above. In the analysis, we employ the previously pub-
lished experimental data24,25 to demonstrate how the
orientational correlation functions along with the wobbling-
in-a-cone model can be used to obtain the orientational dif-
fusion constants at the air-water interface and the air-water-
surfactant interface. Eisenthal and co-workers25 measured
the SHG signal using the �XZX

�2� and �ZXX
�2� susceptibility tensor

elements, and found identical reorientational dynamics for
both tensor elements. They report that after excitation, the
SHG signal decreases and it recovers exponentially to an
equilibrium value. The time-dependent signal can be fit with
a single exponential decay plus a constant. At the air-water
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FIG. 4. The RYYZCC
SHG tensor element calculated for different diffusion con-

stants. The bleach in the visible-pump-SHG experiment is shown. The cone
half-angle is set to �o=45°, while the diffusion constant is varied
10−4–10−2 ps−1. The SHG/SFG signal always recovers to the same equilib-
rium value independently of the diffusion constant. If it is assumed that �
=1 /6Dor, the obtained diffusion constant is larger by a factor of 3.5 from
what was used in the simulations.
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interface, the time constant of the single exponential decay is
350 ps, and the remaining bleach is approximately 20%. The
exact number of the offset was not reported.

To use the equations derived above, one needs the cone
half-angle through which restricted diffusion occurs. In prin-
ciple, the cone half-angle can be obtained from the offset of
the exponential decay �see Figs. 3 and 4�. In this case, only
an approximate value of the offset was reported. The cone
half-angle can also be obtained from the average orienta-
tional angle which was determined in static experiments.25 In
Eqs. �15� and �16�, we show that the average orientational
angle of the molecules at the surface can be related to the
cone half-angle by an orientational average. At the air-water
interface, the measured average polar angle of the C314 mol-
ecules is 67°,25 which corresponds to a cone half-angle of
102°, a reasonable value. In molecular dynamics studies, it
was found that at the air-water interface the C314 molecules
can lie in the plane of the surface and also that the less polar
end of the molecule can rotate to penetrate into the bulk
phase.61,62

From the equations in Table II, one can see that the
combination of the �Y1

0Y2
0� and �Y3

0Y2
0� correlation functions

are measured by the experiment. We assume that the symme-
try axis of the cone of the diffusion is the surface normal and
the dipole moment of C314 lies in the molecular plane.
Therefore, the correlation functions decay as single exponen-
tials in every combination as observed. The decay rate is
�2

0��2
0+1�Dor. The coefficients in the time constant can be

calculated from the cone half-angle by Eq. �54�. For the cone
half-angle of 102° determined from the static measurements
and time constant of 350 ps determined from the dynamical
measurements, the diffusion constant is Dor=6.6

10−4 ps−1. This diffusion constant for the air-water inter-
face should be compared to the one measured in bulk water
of 1.6
10−3 ps−1. This result shows that the reorientation of
the C314 molecules slows down at the air-water interface by
a factor of 2.5.

Now, we examine the surface modified with SDS. SDS
forms a monolayer at the air-water interface. The rotational
time constant was found to increase only by 15% to 383 ps at
the air-water-surfactant interface compared to the time con-
stant measured for the pure air-water interface. However, the
static measurements showed that the equilibrium orienta-
tional angle of the C314 molecules with the surfactant
changed substantially to 45° compared the 67° in the absence
of the surfactant.25 As shown in Fig. 3, the cone angle plays
an important role in the observed orientational decay time.
Using the method outlined above, the orientational diffusion
constant of C314 is found to be 2.6
10−4 ps−1 at the air-
water-surfactant interface compared to 6.6
10−4 ps−1 at the
air-water interface. This is almost a threefold decrease that is
not reflected in the measured time constants. Here, we fol-
lowed the literature and have assumed that the tilt angle does
not change upon surface modification, that is, the axis of the
cone is still normal to the surface. These results are also
physically intuitive. In the case of the SDS modified surface,
the molecular orientational response decays with an experi-
mental rate similar to that for the unmodified interface; how-
ever, the chromophore traverses a smaller solid angle. This

suggests intuitively that the measured diffusion constant
should be smaller, which is exactly what the formal theoret-
ical treatment proves.

The net result of the analysis that yields the orientational
diffusion constants is to come to conclusions that are very
different from those obtained by only comparing the time
constants. We have determined that the addition of the sur-
factant substantially reduces the interfacial diffusion con-
stant.

V. CONCLUDING REMARKS

TRSHG and TRSFG experiments have proven to be use-
ful tools in investigating the orientational dynamics of mol-
ecules at interface. However, little was known about the spe-
cific correlation functions measured in the experiments.
Some authors interpreted data without accounting for the ef-
fects of the restricted rotational diffusion. Others used nu-
merical simulation methods that do not permit a general
analysis of the experiments.

In the work presented here, we calculated the orienta-
tional correlation functions for the TRSHG and TRSFG ex-
periments. The derivations were performed in general, and
then specific results were obtained for interfacial molecules
that can be approximated as rigid rods with cylindrical sym-
metry. The derivations are valid for resonant experiments,
when the probe beam is either in one-photon or two-photon
resonance with the electronic or vibrational transition of the
molecules under investigation.

The theoretical results show that TRSHG and TRSFG
experiments measure a linear combination of the
�Yl

m��lab�t��Y2
m��lab�0��� �l=1,3 and m=0,1 ,2� orienta-

tional correlation functions. To evaluate the correlation func-
tions, we applied the wobbling-in-a-cone model, which de-
scribes the reorientational motion of the molecules diffusing
in a restricted range of angles, the cone. This model was
successfully applied to a number of systems in the bulk
phase.31,42,52–55 For the case when the C�v symmetry axis of
the cone is not the surface normal, the correlation function
written in the laboratory coordinates was transformed into
the coordinate system fixed to the conical volume of the
diffusion. This transformation permits the general treatment
of any spectroscopic probe at an interface regardless of its
mean orientation angle.

The analytical treatment presented here can be extended
to incorporate any model of diffusion including diffusion
models with explicit potential functions. As long as a
Green’s function can be solved for analytically or numeri-
cally, the correlation functions that have been derived can be
calculated and compared to experimental data. Given an ex-
perimental configuration, it is now possible to choose the
proper correlation functions to calculate and to calculate
them with an appropriate Green’s function.

The general correlation functions derived in this work
are also useful for those simulating interfacial molecular sys-
tems. Now there exists a clear link between the TRSHG and
TRSFG experiments and correlation functions which can be
readily calculated with molecular dynamics simulations.
Even when diffusion and other dynamic models fail, molecu-
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lar dynamics simulations can be linked directly to experi-
mental data through the correlation functions. This linkage
enables the validity of simulation models to be tested.

The application of the wobbling-in-a-cone model lead to
analytical expressions of the orientational correlation func-
tions, and it was found that they can always be expressed as
a single exponential decay to an offset, which is in agree-
ment with the experimental findings.25 The analytical expres-
sions were used to analyze the results of experiments from
the literature for a chromophore at the air-water interface and
at the air-water-surfactant interface.25 By using both the ex-
perimentally determined decay time and cone half-angle, the
interfacial orientational diffusion constants were obtained.
The diffusion constants showed that the diffusion constant of
C314 at the air-water is smaller than its bulk value. Adding
an interfacial layer of the surfactant SDS reduced the diffu-
sion constant by about a factor of 3, which is in contrast to
the conclusions obtained by comparing the experimentally
observed decay time constants. As illustrated in Figs. 3 and
4, the determining the orientational diffusion constant re-
quires both the decay time and the cone half-angle in addi-
tion to the use of the detailed theory.

It is important to emphasize that a direct comparison of
the orientational time constants of TRSHG or TRSFG ex-
periments to bulk orientational decay constants, or orienta-
tional decay constants from interfaces with different mean
orientation angles, will not result in a valid comparison of
orientational dynamics. We examined uniform angular distri-
bution functions in confined solid angles for mathematical
simplicity. Other models can be used within the same theo-
retical framework. The theoretical results also demonstrate
the utility of using dynamics as a probe of the angular dis-
tribution of chromophores. A significant problem in interfa-
cial spectroscopy is the independent determination of both
mean angle and angular distribution. Dynamical measure-
ments and their proper interpretation via diffusion models
can enable information to be gathered not only about the
motion of molecules at interfaces but also their average
structure. Such measurements can provide detailed insights
into the chemistry and physics of interfacial systems.

Note added in proof. As discussed in the text, for TRSFG
the results are obtained when the transition polarizability ten-
sor �the derivative of the polarizability tensor taken at the
equilibrium geometry� is diagonal. The results apply if the
vibrational mode is totally symmetric and the transition di-
pole moment is along the principle axis of the polarizability
ellipsoid. The results can be readily generalized to vibrations
with symmetries other than totally symmetric by choosing a
transition polarizability tensor with the appropriate symme-
try. For totally symmetric vibrations, the symmetry of the
polarizability tensor and its derivative are the same.
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APPENDIX A: THE CORRELATION FUNCTIONS
IN THE WOBBLING-IN-A-CONE MODEL

In this Appendix, we derive the �Yl
m�

���t��Y2
m���0���

�Yl
m�

���t��Y2
m���0��� correlation functions and show that

they are well represented by keeping terms only to the first
decaying exponential. Using the equations

�Yl
m�

���t��Yl�
m����0���

= �Yl
−m�

���t��Yl�
−m����0���

=

mm�

4�
��2l + 1��2l� + 1��l − m�!�l� − m�!

�l + m�!�l� + m�!


�
n=1

�

Cn
m exp�− �n

m��n
m + 1�Dort� �A1�

and

Cn
m =

1

Hn
m�1 − cos �o�



0

�o

d� sin �Pl
m�cos ��P

�n
m

m �cos ��




0

�o

d�� sin ��Pl�
m�cos ���P

�n
m

m �cos ��� , �A2�

the Cn
m coefficients can be easily calculated. Hn

m denotes the
overlap integrals of the associated Legendre polynomials

Hn
m = 


0

�o

d� sin �P
�n

m
m �cos ��P

�n
m

m �cos ��� . �A3�

We can use that for all �o

�1
0 = 0 �A4�

and

P
�1

0
0 �cos �o� = 1. �A5�

This leads to

H1
0 = 1 − cos �o. �A6�

At t=0, the correlation function is given as

�Yl
m�

���0��Yl�
m����0��� =

1

2��1 − cos �o�
0

2�

d�

0

�o

d�


sin �Yl
m�

���0��Yl�
m��

���0�� ,

�A7�

which is equal to the infinite sum of the exponential coeffi-
cients

�Yl
m�

���0��Yl�
m���0��� = �

n=1

�

Cn
m. �A8�
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1. The ŠY1
m�

„Ω„t……Y2
m
„Ω„0……‹ correlation functions

From Eqs. �A1� and �A2�, the dynamic ensemble aver-
ages can be written as

�Y1
0�

���t��Y2
0���0��� =

�15

4�
�
n=1

�

An
0 exp�− �n

0��n
0 + 1�Dort�

�A9�

and

�Y1
1�

���t��Y2
1���0��� =

�5

8�
�
n=1

�

An
1 exp�− �n

1��n
1 + 1�Dort� .

�A10�

The sum rules can be obtained by setting t=0.

�Y1
0�

���0��Y2
0���0��� =

�15

4�
�
n=1

�

An
0

=
�15

4�

�5 + 3 cos�2�o��sin2 �o

16�1 − cos �o�

�A11�

and

�Y1
1�

���0��Y2
1���0��� =

�5

8�
�
n=1

�

An
1 =

�5

8�

3 sin4 �o

4�1 − cos �o�
.

�A12�

From Eqs. �A4�–�A6�, A1
0 can be calculated analytically

A1
0 = 1

4cos �o�1 + cos �o�2, �A13�

while the An
m�m�0 or n�2� coefficients can be calculated

only numerically. In Fig. 5, plots of �n=1
� An

0, A1
0, A2

0, �n=1
� An

1,
and A1

1 are shown.
Figure 5 shows that for �o�120°,

A2
0 � �

n=2

�

An
0 = �

n=1

�

An
0 − A1

0 =
1

4
sin2�o

2
sin2 �o �A14�

and

A1
1 � �

n=1

�

An
1 =

3 sin4 �o

4�1 − cos �o�
. �A15�

Because �1
0=0 and exp�−�1

0��1
0+1�Dort�=1, only the first two

terms in Eq. �A9� contribute meaningfully, and the correla-
tion functions can be written as

�Y1
0�

���t��Y2
0���0��� =

�15

4�
�A1

0 + A2
0�exp�− �2

0��2
0 + 1�Dort�

�A16�

and

�Y1
1�

���t��Y2
1���0��� =

�5

8�
A1

1 exp�− �1
1��1

1 + 1�Dort� .

�A17�

2. The ŠY3
m�

„Ω„t……Y2
m
„Ω„0……‹ correlation

functions

Let us write the dynamic ensemble averages as

�Y3
0�

���t��Y2
0���0��� =

�35

4�
�
n=1

�

Bn
0 exp�− �n

0��n
0 + 1�Dort� ,

�A18�

�Y3
1�

���t��Y2
1���0��� =

�35

24�2�
�
n=1

�

Bn
1 exp�− �n

1��n
1 + 1�Dort� ,

�A19�

and

�Y3
2�

���t��Y2
2���0��� =

�7

96�
�
n=1

�

Bn
2 exp�− �n

2��n
2 + 1�Dort� .

�A20�

Following the above applied procedure, first we find the sum
rules are

�Y3
0�

���0��Y2
0���0���

=
�35

4�
�
n=1

�

Bn
0 =

1

32
cos2�o

2
�12 cos 2�o + 5�3 + cos 4�o�� ,

�A21�

�Y3
1�

���0��Y2
1���0��� =

�35

24�2�
�
n=1

�

Bn
1

=
3

8

�7 + 5 cos 2�o�sin4 �o

1 − cos �o
, �A22�

and
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m

FIG. 5. The An
m parameters of the �Y1

m�
���t��Y2

m���0��� correlation func-
tions. The solid lines are calculated from Eqs. �A11� and �A12� for the sum
rules. The dashed lines are calculated for A1

0+A2
0 and A1

1 numerically. See
details in text.
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�Y3
2�

���0��Y2
2���0��� =

�7

96�
�
n=1

�

Bn
2 =

15

2

sin6 �o

1 − cos �o
.

�A23�

Again, from Eqs. �A4�–�A6� B1
0 can be calculated analyti-

cally

B1
0 =

1

16
cos �o�1 + cos �o�2�5 cos2 �o − 1� , �A24�

while the Bn
m�m�0 or n�2� coefficients can be calculated

only numerically. In Fig. 6, plots of �n=1
� Bn

0, B1
0, B2

0; �n=1
� Bn

1,
B1

1, B2
1; and �n=1

� Bn
2, B1

2 are shown. Figure 6 shows that for
�o�110°,

B2
0 � �

n=2

�

Bn
0 = �

n=1

�

Bn
0 − B1

0

=
1

4
cos2�o

2
�9 + 10 cos �o + 5 cos 2�o�sin4�o

2

�A25�

and

B1
2 � �

n=1

�

Bn
1 =

15

2

sin6 �o

1 − cos �o
. �A26�

Using that �1
0=0 and exp�−�1

0��1
0+1�Dort�=1 and approxima-

tions above, the correlation functions can be written as

�Y3
0�

���t��Y2
0���0��� =

�35

4�
�B1

0 + B2
0�exp�− �2

0��2
0 + 1�Dort� ,

�A27�

�Y3
1�

���t��Y2
1���0��� =

�35

24�2�
B1

1 exp�− �1
1��1

1 + 1�Dort�,

�for �o � 70 ° only� , �A28�

and

�Y3
2�

���t��Y2
2���0��� =

�7

96�
B1

2 exp�− �1
2��1

2 + 1�Dort� .

�for �o � 110 ° only� . �A29�

APPENDIX B: ALGEBRAIC TRANSFORMATIONS
OF THE SPHERICAL HARMONIC FUNCTIONS

The evaluation of the orientational correlation functions
requires algebraic transformation of the spherical harmonic
representations of the field-matter interactions. Using simple
relationships between spherical harmonics of different order,
those representations can always be written as the sum of a
constant and spherical harmonics of the order of one to three.
The pump field can be polarized along any of the Cartesian
coordinate axis, and we also consider the case when it propa-
gates along the Z axis and is circularly polarized in the XY
plane. Because the pump interaction is approximated as in-
stantaneous, the pump field-matter interaction can be written
for different polarizations as

��i�̂Z�2 =
1

3
+

4

3
��

5
Y2

0���ti�� , �B1�

��̂i�̂Y�2 =
1

3
−

2

3
��

5
Y2

0���ti�� −�2�

15
�Y−2

2 ���ti��

+ Y2
2���ti��� , �B2�

��̂i�̂X�2 =
1

3
−

2

3
��

5
Y2

0���ti�� +�2�

15
�Y−2

2 ���ti��

+ Y2
2���ti��� , �B3�

and

��̂i�̂CIRC�2 =
2

3
−

4

3
��

5
Y2

0���ti�� . �B4�

In the probe interactions, only the polarization combinations
that are allowed by the symmetry of the surface are consid-
ered.

��̂i�̂Z�̂Z�̂i�̂Z� = ��̂Z�̂i�̂Z�̂i�̂Z�

=
2

15
��

3
�15� + 4��Y1

0���ti��

+
4

5
��

7
�Y1

0���ti�� , �B5�
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FIG. 6. ��a� and �b�� The Bn
m parameters of the �Y3

m�
���t��Y2

m���0��� corre-
lation functions. The solid lines are calculated from Eqs. �A21� and �A22�
for the sum rules. The dashed lines are calculated for B1

0+B2
0, B1

1, and B1
2

numerically. See details in text.

244703-17 Interfacial orientational relaxation J. Chem. Phys. 132, 244703 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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