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The center line slope (CLS) method is often used to extract the frequency-frequency correlation func-
tion (FFCF) from 2D IR spectra to delineate dynamics and to identify homogeneous and inhomo-
geneous contributions to the absorption line shape of a system. While the CLS method is extremely
efficient, quite accurate, and immune to many experimental artifacts, it has only been developed and
properly applied to systems that have a single vibrational band, or to systems of two species that
have spectrally resolved absorption bands. In many cases, the constituent spectra of multiple compo-
nent systems overlap and cannot be distinguished from each other. This situation creates ambiguity
when analyzing 2D IR spectra because dynamics for different species cannot be separated. Here
a mathematical formulation is presented that extends the CLS method for a system consisting of
two components (chemically distinct uncoupled oscillators). In a single component system, the CLS
corresponds to the time-dependent portion of the normalized FFCF. This is not the case for a two
component system, as a much more complicated expression arises. The CLS method yields a series
of peak locations originating from slices taken through the 2D spectra. The slope through these peak
locations yields the CLS value for the 2D spectra at a given Tw. We derive analytically that for two
component systems, the peak location of the system can be decomposed into a weighted combination
of the peak locations of the constituent spectra. The weighting depends upon the fractional contribu-
tion of each species at each wavelength and also on the vibrational lifetimes of both components. It
is found that an unknown FFCF for one species can be determined as long as the peak locations (re-
ferred to as center line data) of one of the components are known, as well as the vibrational lifetimes,
absorption spectra, and other spectral information for both components. This situation can arise when
a second species is introduced into a well characterized single species system. An example is a sys-
tem in which water exists in bulk form and also as water interacting with an interface. An algorithm
is presented for back-calculating the unknown FFCF of the second component. The accuracy of the
algorithm is tested with a variety of model cases in which all components are initially known. The
algorithm successfully reproduces the FFCF for the second component within a reasonable degree
of error. © 2011 American Institute of Physics. [doi:10.1063/1.3625278]

I. INTRODUCTION

2D IR vibrational spectroscopy has proven to be an ex-
tremely powerful technique for elucidating molecular dy-
namics and understanding congested spectra of condensed
matter systems.1, 2 Through analysis of the 2D spectral line
shapes and other experimental observables, the frequency-
frequency correlation function (FFCF) can be determined.3–10

The frequency-frequency correlation function describes the
likelihood that an oscillator of a certain frequency will have
the same frequency after a given period of time. The fre-
quency of an oscillator will change with time because of
structural fluctuations in the system, a process known as
spectral diffusion. The FFCF is often sensitive to the dif-
ferent structural environments that a species interacts with
over time, giving insight into the time scales of processes
involved in spectral diffusion. For instance, bulk water un-
dergoes fast local hydrogen bond fluctuations on a rela-
tively fast, ∼0.4 ps, time scale and a set of slower processes
on ∼1.7 ps time scale caused by complete randomization
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of the hydrogen bonding network.11 In addition to extract-
ing these time scales in the FFCF, 2D IR spectroscopy can
also separate contributions of homogeneous (motionally nar-
rowed) and inhomogeneous broadening to the line shape. Ho-
mogeneous broadening occurs when very fast fluctuations
cause motional narrowing, while inhomogeneous broadening
arises from slower processes. Water has a relatively large ho-
mogeneous component.11 2D IR spectroscopy has been ex-
tremely successful in understanding spectral diffusion in bulk
water6–8, 12–15 and other hydrogen bonding systems,11, 16, 17

protein and other biological systems,18–26 as well as systems
that undergo chemical exchange or isomerization.27–32

Through a time-ordered series of three input electric
fields (ultrafast laser pulses), 2D IR spectroscopy can manip-
ulate the quantum pathways by which a system evolves. The
first pulse excites a coherent superposition of the ground (0)
and first excited (1) vibrational states. After a time period τ ,
the evolution period, a second pulse interacts with the sample
and brings the system into population states, 0 and 1. After
a time period Tw, the waiting period, the third pulse interacts
with the sample and creates another coherent superposition.
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The generated echo signal emits at a time t ≤ τ , which is
the detection time period. A fourth beam, known as the local
oscillator, is overlapped with the vibrational echo signal for
heterodyned detection. In an experiment, τ is scanned at a se-
ries of fixed Tw values. The molecules undergo spectral diffu-
sion during Tw due to dynamic structural evolution of the sys-
tem. After Fourier transformation of the temporal interfero-
grams obtained during the experiment, correlation spectra are
obtained for the detection vs. initial excitation frequencies,
referred to as ωm (axis of echo emission, vertical axis) and
ωτ (axis of interaction with the first pulse, horizontal axis),
respectively.

Various methods for extracting the FFCF from the 2D
correlation spectra have been developed. A rigorous, and con-
sequently more cumbersome, method involves choosing a
trial function for the FFCF and using the nonlinear third or-
der response functions to calculate 2D spectra. The FFCF pa-
rameters are iteratively adjusted until the calculated and ex-
perimental spectra agree.3, 4, 33 This procedure becomes even
more problematic when finite pulse durations must be taken
into account. In addition, the quality of convergence of the fit
is questionable, given that there are multiple adjustable pa-
rameters. The complexity surrounding the trial FFCF proce-
dure has encouraged the development of simpler methods for
extracting the FFCF.

2D IR observables such as the ellipticity,34–37

eccentricity,35 and dynamic line width7, 8 have all been
used to extract dynamical information from 2D IR correlation
spectra. Although these techniques are much simpler compu-
tationally compared to using a trial FFCF, these techniques
are susceptible to distortions from finite pulse durations,
sloping background absorption, Fourier filtering methods
(such as apodization) as well as the overlap between the
0-1 and 1-2 transition peaks. The full FFCF, including a
fast motionally narrowed (homogeneous) component, may
be obtained via these methods, but a full treatment using
nonlinear response theory must be used.

The center line slope (CLS) method has also been used to
extract the FFCF from 2D IR measurements.9, 10 This method
is particularly useful because the Tw-dependent portion of
the FFCF may be obtained directly from the spectra with-
out any response function calculations. The motionally nar-
rowed component may be easily obtained using the CLS in
conjunction with the linear IR absorption spectrum. In the
CLS technique, slopes are calculated through the lines that
connect the peak positions of one-dimensional cuts parallel
to the ωm axis for each correlation spectrum. This variant of
the method is referred to as CLSωm. When the cuts are taken
parallel to the ωτ axis, then the technique is called CLSωτ .
In CLSωm, the slopes are plotted vs. Tw. In CLSωτ , the in-
verse of the slopes vs. Tw are plotted. In either case, the CLS
plot is equal to the normalized Tw-dependent portion of the
FFCF. Figure 1 shows the CLS data for bulk water at two
Tw’s. The dotted lines are the peak positions through which
the slope is calculated. In this work and in previous23–25, 38

studies, the CLSωm technique is used because, unlike the
CLSωτ technique, it is not sensitive to distortions caused by
the overlap of the 0-1 and 1-2 transitions. The CLSωm tech-
nique, and the process by which the motionally narrowed
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FIG. 1. Calculated 2D IR spectra for bulk water at Tw = 0.2 ps (a) and Tw

= 2 ps (b). The solid lines show the direction of cuts through the spectra for
the CLSωm technique. The dotted lines show the peak positions for a series
of cuts parallel to the ωm axis (and the solid lines), also known as center line
data. As Tw lengthens, the spectra become more symmetric, and the slope
through the center line data approaches zero.

component is obtained, will be discussed in more detail in
Sec. II.

When a system is composed of a single vibrational com-
ponent (such as the OD stretch of dilute HOD in bulk water),
then analysis of the 2D IR spectra with the CLS method is
relatively straightforward. Only one 0-1 peak is present in the
spectrum, so the CLS cuts are taken at a range of frequencies
around the 2D IR maximum value for each Tw. If a system
has two separate components, and if the separation of peak
transition frequencies for the components is large enough
such that the system shows two distinct bands in the 2D IR
spectrum, then the CLS analysis may be carried out on each
band independently to yield the dynamics for each compo-
nent. The question addressed in this paper is how one should
treat a system of two components that are not spectrally re-
solved. In this scenario, the resulting spectrum only shows
one 0-1 band, even though it is made up of two 0-1 bands, one
from each component. 2D IR spectra are additive, so the over-
all observed spectrum can be thought of as the weighted av-
erage of two separate spectra. Each individual spectrum will
in general have its own distinct dynamics, which CLS analy-
sis should be able to determine, if the two components could
be separated from one another. This paper will show that the
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CLS results for the observed experimental spectra of a sys-
tem with two components may be decomposed into contri-
butions from each component, provided that the center line
data of one of the components is known. The vibrational life-
times, linear IR absorption spectra, and relative fractions of
the components must also be known in order for the algorithm
to work. It should be noted here that the term “component”
in this work refers to a chemically distinct and separate vibrat-
ing species and not, for instance, a system of coupled oscilla-
tors on the same molecule. An example of a relevant system
is water in reverse micelles. Over the years, experimentalists
have used reverse micelles as model systems to probe the dy-
namics of water molecules in confined environments,38–66 a
topic that bears great significance to biological and industrial
applications in which the behaviors of small amounts of water
or water next to interfaces can severely impact the function
of systems such as proteins, pharmaceuticals, and fuel cell
membranes. In a reverse micelle, a water pool is surrounded
by a shell of surfactant molecules that have hydrophilic head
groups, which can either be charged or neutral. The surfactant
molecules are suspended in a non-polar organic phase. A very
popular surfactant for making reverse micelles is Aerosol-OT
(AOT) because it makes monodispersed, spherical reverse mi-
celles of easily tunable water pool diameters.67–69 The size of
the reverse micelle water pool is often denoted by the ratio
of water to AOT, w0 = [H2O]/[AOT].69 Water pool diame-
ters can range from 1.7 to 28 nm (w0 = 2 to w0 = 60). It has
been shown that the population and orientational dynamics of
water inside large AOT reverse micelles (diameters of 5.8 nm
and greater) can be readily separated into bulk and interfacial
components, each with distinct dynamics.39, 41 As of yet, there
has been no analogous method presented to separate bulk and
interfacial contributions to spectral diffusion. The extended
CLS method presented in this paper can be applied not only
to large reverse micelles which are composed of bulk and in-
terfacial water environments but also to other two component
systems that show only one band in their absorption and 2D
IR spectra.

II. THEORETICAL DEVELOPMENT

A. CLS method for a single component system

The CLS method for systems of one component, or for
systems with two spectrally resolved components, has been
discussed in detail previously.9, 10 As explained in the intro-
duction, the CLSωm variant will be used in this work. In this
technique, cuts through the 2D IR correlation plots are taken
parallel to the ωm axis and fit to Gaussian line shape functions
to find the maximum at each frequency. Typically, the cuts are
taken at a range of ωτ frequencies surrounding the location of
the maximum of the 2D spectrum. The set of peaks and cor-
responding ωτ frequencies are referred to as center line data.
The CLSωm is not sensitive to the overlap between the 0-1
and 1-2 bands, allowing cuts to be taken on either side of the
spectral maximum even if there is overlap of the 0-1 and 1-2
bands. The peak positions of the Gaussian line shape fits are
plotted vs. their corresponding ωτ frequencies, and the slope
of the resulting line is calculated. This process is repeated for
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FIG. 2. CLS decay curve for bulk water. Spectral diffusion is relatively rapid
and has mostly decayed by ∼2 ps. There is a large homogeneous component,
as seen by the large drop from 1 of the data.

each Tw, and a plot of slopes vs. Tw is obtained. The CLS plot
corresponds to the Tw-dependent portion of the normalized
FFCF. Figures 1(a) and 1(b) show calculated 2D IR spectra for
bulk water at Tw = 0.2 ps and 2 ps based on its known FFCF.11

The CLS method assumes Gaussian fluctuations,9, 10 an as-
sumption that does not strictly apply for water systems.70, 71

For the model calculations presented here, the assumption of
Gaussian fluctuations for water does not affect the results. The
CLS is a valid experimental observable whether the fluctua-
tions are Gaussian or not. The center line data of ωm peak
positions at each Tw are indicated by the dotted lines. The di-
rection of the cuts is denoted by the solid lines. Typically, the
center line data are found over a limited range of frequencies
around the maximum in the 2D IR spectrum. For water sys-
tems, a typical range is ± 30–40 cm−1 about the maximum.
Figure 2 shows the CLS decay for the bulk water system. The
data points in Figure 2 are the slopes calculated from the cen-
ter line data of the 2D spectra at each Tw. A large homoge-
neous component results in the CLS having an initial value
well below 1.

The FFCF is composed of homogeneous (motionally nar-
rowed) and inhomogeneous components. Using a sum of ex-
ponentials, the FFCF is

C1(t) = 〈δω10(t)δω10(0)〉 = δ(t)

T2
+

∑
i

�2
i e

−t/τi , (1)

where 〈δω10(t)δω10(0)〉is the correlation function for the fluc-
tuating 0-1 transition frequency, and δω(t) = 〈ω〉 − ω(t). The
T2 parameter is the dephasing time given by

1

T2
= 1

T ∗
2

+ 1

2T1
+ 1

3τor

, (2)

where T ∗
2 is the pure dephasing time, T1 is the vibrational life-

time, and τ or is the orientational relaxation time constant. The
delta function term that involves the dephasing time in Eq. (1)
is the motionally narrowed component. The �i terms are fre-
quency fluctuation amplitudes, and the τ i terms are their asso-
ciated time constants. The time constants represent different
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time scales for processes that contribute to spectral diffusion.
The magnitude of a �i term represents the contribution to the
line shape of processes occurring on each time scale.

CLS data are often fit to a multiexponential decay, yield-
ing a set of time constants and associated amplitudes. The
parameters obtained from the CLS data like that shown in
Figure 2 are used in the overall calculation that determines
the motionally narrowed component, yielding the full FFCF.9

The values of the time constants are accurate, as well as the
amplitude corresponding to the longer of the time constants.
Due to the short time approximation,9, 34, 72 the amplitude of
the first component can be pushed into the homogeneous con-
tribution. Therefore, the CLS method cannot accurately de-
termine the exact amplitudes of the fast inhomogeneous com-
ponent and the homogeneous component. To determine these,
the absorption line shape is employed. The absorption spec-
trum is the Fourier transform of the linear response function,
R1(t),

R1(t) = |μ10|2 e−i〈ω10〉t e−ig1(t), (3)

where μ10 is the transition dipole moment of the 0-1 transi-
tion, 〈ω10〉 is the average 0-1 transition frequency, and g1 is
the line shape function given by

g1(t) =
∫ t

0
dτ2

∫ τ2

0
dτ1 〈δω10(t)δω10(0)〉. (4)

Equation (4) shows the link between the absorption spectrum
and the FFCF. Using the amplitude of the fast inhomogeneous
decay and the homogeneous component as the only adjustable
parameters, the absorption line shape of the system is fit si-
multaneously with the CLS decay.9, 11, 38 This procedure is
able to accurately determine the motionally narrowed com-
ponent as well as the amplitude of the first inhomogeneous
component.

B. Extension of the CLS method to two components

Following the work of Kwak et al.,10 the 2D IR line shape
function may be expressed as

R(ωm,ωτ ) = 4π
√

2

K(Tw)1/2
exp

(
A(ωm,ωτ )

K(Tw)

)
− 2πs2

√
2

Q(Tw)1/2

× exp

(
B(ωm,ωτ )

Q(Tw)

)
. (5)

In this expression, s = μ21/μ10, the ratio of transition dipole
moments for the 1-2 and 0-1 transitions. The remaining pa-
rameters are as follows:

A(ωm,ωτ ) = − (
C1(0)ω2

m − 2C1(Tw)ωmωτ + C1(0)ω2
τ

)
,

B(ωm,ωτ ) = − (
C1(0)(ωm + �)2 − 2C2(Tw)(ωm + �)ωτ

+C3(0)ω2
τ

)
,

K(Tw) =
√

C1(0)2 − C1(Tw)2,

Q(Tw) =
√

C1(0)C3(0) − C2(Tw)2, (6)

where the � term is the anharmonic frequency shift of the 0-1
and 1-2 transitions and

C1(t) = 〈δω10(τ1)δω10(0)〉 ,

C2(t) = 〈δω21(τ1)δω10(0)〉 ,

C3(t) = 〈δω21(τ1)δω21(0)〉 .

(7)

The CLSωm technique finds the maximum value of the
line shape function along a slice taken parallel to the ωm axis.
In other words, the derivative of Eq. (5) with respect to ωm is
set to 0 according to

∂R(ωm,ωτ )

∂ωm

= 0 = 4π
√

2

K(Tw)3/2
exp

(
A(ωm,ωτ )

K(Tw)

)
∂A

∂ωm

− 2πs2
√

2

Q(Tw)3/2
exp

(
B(ωm,ωτ )

Q(Tw)

)
∂B

∂ωm

.

(8)

After some rearrangement of Eq. (8), a set of ωm and ωτ that
correspond to a maximum in the slice parallel to ωm is defined
by

2Q(Tw)3/2

s2K(Tw)3/2
exp

(
A(ωm,ωτ )

K(Tw)
− B(ωm,ωτ )

Q(Tw)

)

= −2C1(0)(ωm + �) + 2C2(Tw)ωτ

−2C1(0)ωm + 2C1(Tw)ωτ

. (9)

As shown by Kwak et al.10 the slope through the set of
points described by Eq. (9) may be found by finding the total
derivative of Eq. (9) with respect to ωτ and then solving for
dωm

dωτ
. After simplification it is found that,

dωm

dωτ

=

C1(0)(C1(Tw) − C2(Tw))ωτ + C1(0)C1(Tw)�

(C1(Tw)ωτ − C1(0)ωm)2
−D(ωτ , ωm, Tw, s)

[
C1(Tw)ωm−C1(0)ωτ√

C1(0)2 − C1(Tw)2
−C2(Tw)(ωm+�)−C3(0)ωτ√

C1(0)C3(0) − C2(Tw)2

]

C1(0)(C1(Tw) − C2(Tw))ωm + C1(0)2�

(C1(Tw)ωτ − C1(0)ωm)2
+ D(ωτ , ωm, Tw, s)

[
C1(Tw)ωτ − C1(0)ωτ√

C1(0)2 − C1(Tw)2
− C2(Tw)ωτ − C3(0)(ωm + �)√

C1(0)C3(0) − C2(Tw)2

] ,

(10)
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where

D(ωτ , ωm, Tw, s)

=
(

2(C1(0)C3(0) − C2(Tw)2

s2C1(0)2 − C1(Tw)2

)

× exp

(
− C1(0)ω2

m − 2C1(Tw)ωmωτ + C1(0)ω2
τ

2
√

C1(0)2 − C1(Tw)2

+ C1(0)(ωm+�)2−2C2(Tw)(ωm+�)ωτ+C3(0)ω2
τ

2
√

C1(0)C3(0) − C2(Tw)2

)
.

(11)

Within the harmonic approximation for a three level vibra-
tional system, all of the correlation functions are equal to each
other. In this situation, C(t) = C1(t) = C2(t) = C3(t) and the
slope (Eq. (10)) becomes the normalized FFCF,10

dωm

dωτ

= C(Tw)

C(0)
. (12)

When two species are involved, the 2D IR line shape
becomes

R(ωm,ωτ )

= f1(ωτ , Tw)

[
4π

√
2

K1(Tw)1/2
exp

(
A1(ωm,ωτ )

K1(Tw)

)

− 2πs2
√

2

Q1(Tw)1/2
exp

(
B1(ωm,ωτ )

Q1(Tw)

)]

+ (1 − f1(ωτ , Tw))

[
4π

√
2

K2(Tw)1/2
exp

(
A2(ωm,ωτ )

K2(Tw)

)

− 2πs2
√

2

Q2(Tw)1/2
exp

(
B2(ωm,ωτ )

Q2(Tw)

)]
,

(13)

where the Ai, Bi, Ki, and Qi parameters are defined in a
similar manner as given above (Eq. (6)) but correspond to
different components with different sets of correlation func-
tions (Eq. (7)). The f1 term corresponds to a frequency and
Tw-dependent fraction term. The fraction reflects the overall
concentration of a species at a certain wavelength.

In two component systems such as reverse mi-
celles, the fraction can be obtained from infrared spectral
analysis.39, 41, 49 As a concrete example for calculating the
fraction term, the 2D IR spectrum of a large AOT reverse mi-
celle will be used as a model, but the AOT system will not
be used to test the modified CLS method developed here. In-
stead, hypothetical systems are constructed. As discussed in
the introduction, the water nanopool in a large AOT reverse
micelle consists of a bulk water core and water at the AOT
interface. Each spectrum may be thought of as a linear combi-
nation of the bulk water spectrum and the spectrum of w0 = 2,
a very small reverse micelle. In the w0 = 2 system, essentially
all of the waters interact with surfactant head groups. Thus,
the spectra are decomposed into “core” and “shell” spectra.49
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FIG. 3. Linear IR absorption spectra for water (5% HOD in H2O) inside
the AOT w0 = 12 reverse micelle (black line). The overall spectrum may be
decomposed into a linear combination of the bulk water (5% HOD in H2O)
spectrum (blue line) and the w0 = 2 spectrum (red line) in which all waters
interact with the surfactant head group interface.

Figure 3 shows the component core and shell spectra for water
in the w0 = 12 AOT reverse micelle. It should be noted that the
water measured inside the reverse micelle is the OD stretch of
5% HOD in H2O. Dilute HOD in H2O is used in experiments
to eliminate vibrational excitation transfer and so that there
is a single local stretching mode.73, 74 The model calculations
performed in this work use the OD stretch of HOD in H2O.

The overall linear absorption spectrum of a two compo-
nent system takes the following form:

Itot (ωτ ) = a1I1(ωτ ) + (1 − a1)I2(ωτ ) = S1(ωτ ) + S2(ωτ ),

(14)

where Ii(ωτ ) are the component spectra, and a1 is a single
weighting factor. For w0 = 12, a1 = 0.56.

Each ωτ will yield a different fraction of component i
determined by the overlap of the infrared spectra of the two
components. The relative populations at a particular time, Tw,
are also dependent on the vibrational lifetimes. Each compo-
nent spectrum of the 2D correlation plot will decrease in am-
plitude at a rate defined by its vibrational lifetime. The f1 term
can be calculated by

f1(ωτ , Tw) = S1(ωτ )e−Tw/T 1
1

S1(ωτ )e−Tw/T 1
1 + S2(ωτ )e−Tw/T 2

1

, (15)

where the Si terms are the infrared spectra of components
1 and 2 defined in Eq. (14), and the T i

1 are their associ-
ated vibrational lifetimes. Figure 4 illustrates the behavior of
Eq. (15) with changing wavelength and Tw for the AOT w0

= 12 system. Often in two component systems the vibra-
tional lifetimes for each component remain invariant with
wavelength. Only the fractional populations of each compo-
nent change with wavelength. If the vibrational lifetime is
wavelength-dependent, then the known lifetimes could be in-
corporated into Eq. (15) at the corresponding wavelengths.
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Similar to the above derivation, the location of the maximum of a slice along the ωm axis is found by setting the partial derivative
of Eq. (13) with respect to ωm to 0,

∂R(ωm,ωτ )

∂ωm

= f1(ωτ , Tw)1

[
4π

√
2

K1(Tw)3/2
exp

(
A1(ωm,ωτ )

K1(Tw)

)
∂A1(ωm,ωτ )

∂ωm

− 2πs2
√

2

Q1(Tw)3/2
exp

(
B1(ωm,ωτ )

Q1(Tw)

)
∂B1(ωm,ωτ )

∂ωm

]

+ (1 − f1(ωτ , Tw))

[
4π

√
2

K2(Tw)3/2
exp

(
A2(ωm,ωτ )

K2(Tw)

)
∂A2(ωm,ωτ )

∂ωm

− 2πs2
√

2

Q2(Tw)3/2
exp

(
B2(ωm,ωτ )

Q2(Tw)

)
∂B2(ωm,ωτ )

∂ωm

]
= 0.

(16)

Again, Eq. (16) defines a set of ωm and ωτ values that corre-
spond to the location of the maximum along a slice parallel
to ωm. As before, we may take the derivative of Eq. (16) with
respect to ωτ to obtain an equation for the slope of the curve
created by the maxima locations. Even after extensive rear-
rangement and using the harmonic approximation for each set
of correlation functions associated with a given component, a
complicated expression for dωm

dωτ
is obtained. The full form and

derivation of dωm

dωτ
are presented in the Appendix.

It is discovered that the slope, dωm

dωτ
, does not yield the nor-

malized FFCF, in contrast to the case for a single ensemble.
An expression involving the center line positions, the frac-
tions, and their derivatives is obtained, showing that the slope
in this two component situation is not a weighted average of
the individual normalized FFCFs. Instead, we find that the
center line data are a weighted average of the center line data
for each component. If a center line point corresponding to a
maximum along ωm is denoted as ω∗

m, then this relationship
may be mathematically expressed by

ω∗
mC(ωm,ωτ , Tw) = f1(ωτ , Tw)ω∗

m1(ωm,ωτ , Tw)

+ (1 − f1(ωτ , Tw))ω∗
m2(ωm,ωτ , Tw),

(17)

0.6

0.8
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FIG. 4. Frequency and Tw-dependent fraction of bulk water for the AOT w0
= 12 reverse micelle system.

where ω∗
mC , ω∗

m1, and ω∗
m2 represent the sets of center line data

for the experimentally observed two component system, com-
ponent 1 by itself, and component 2 by itself, respectively. If
one of the components can be measured or simulated inde-
pendently from the two component system, then the second
component may be obtained from simple rearrangement of
Eq. (17),

ω∗
m2(ωm,ωτ , Tw)

= (ω∗
m2C(ωm,ωτ , Tw) − f1(ωτ , Tw)ω∗

m1(ωm,ωτ , Tw))

(1 − f1(ωτ , Tw))
,

(18)

provided that the linear spectra and the fraction term are also
known (see Appendix). Equation (18) provides a simple and
experimentally tractable expression for back-calculating the
center line data for the second component from known quan-
tities. The center line data for component 2 may be back-
calculated for Tw’s common to both the combined system and
the first component. From the resulting component 2 center
line data, the CLS values (slopes) may be determined and
plotted vs. Tw, from which the FFCF parameters can be ex-
tracted according to the procedures outlined in Sec. II A, ef-
fectively isolating the dynamics of component 2 from com-
ponent 1. Section III will test this algorithm for a variety of
cases.

C. Model calculation details

The two component CLS method was tested using sets
of model cases in which two different FFCF functions are
formulated separately. For our purposes we chose one of the
FFCFs to be the FFCF for bulk water (Table I, system 1).
In all cases studied here, component 2 corresponds to a hy-
pothetical FFCF. The FFCF parameters are inserted into the
third order response functions that describe the emitted 2D IR
signal electric field. 3, 75, 76 The response functions are used to
construct 2D correlation plots on which CLS analysis may
be performed. In addition to the FFCF parameters, a cen-
ter frequency, anharmonicity, and vibrational lifetime are also
required to calculate the 2D spectra. When generating spec-
tra for a system with two components (known as the com-
bined system), the sets of response functions for each com-
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TABLE I. First model case FFCF parameters.

� �1 t1 �2 t2 ω0 T1

System (cm−1) (cm−1) (ps) (cm−1) (ps) (cm−1) a1 (ps)

1 76 41 0.38 34 1.7 2509 0.5 1.8
2 40 45 0.9 30 5 variable 0.5 4.5

ponent are weighted by a fractional concentration (a1 from
Eq. (14)). Calculated 2D spectra may be independently ob-
tained for each component by itself as well as the combined
system. The FFCF of component 2 can be back-calculated us-
ing the method outlined above, and then the procedure can be
verified since the actual starting FFCF parameters of compo-
nent 2 are known.

It should be noted that to apply Eq. (18) to a two com-
ponent system in an experimental situation, none of the indi-
vidual FFCFs actually need to be known. The only required
information is the set of center line data for one of the com-
ponents and the experimentally measured system (plus the vi-
brational lifetime and other details). Here we examine model
cases and begin by knowing the FFCFs of both components
so that the efficacy of the algorithm may be evaluated.

III. TESTING THE TWO COMPONENT CLS METHOD

A. Practical application of the two component
CLS algorithm

The flow chart in Figure 5 illustrates the chain of events
for back-calculating the FFCF of component 2 using calcu-
lated 2D IR and linear IR data. The algorithm is easily adapt-
able to experimental data as long as 2D and linear IR spectra
for the combined system and for one of the components can be
measured independently. Again, in an experimental situation
it is not actually necessary to know the FFCF of component 1;
only the center line data are required. Each block in Figure 5
is referenced with a letter so that the reader can follow along
with the description presented in this section. In the first step
(a), the required pieces of information are collected. FFCF pa-
rameters are chosen for each component (the bulk water FFCF
parameters are used for component 1 while component 2 is
hypothetical). In addition, the center frequencies, vibrational
lifetimes, and the anharmonicity values between the 0-1 and
1-2 transitions must also be known. Reasonable values were
chosen for the second component. The last piece of required
information is the fractional concentration of species used to
weight the linear and 2D IR spectra (a1 from Eq. (14)). The
starting information is used to calculate the linear absorption
spectra of the components that make up the combined system
spectrum, according to Eq. (14), as well as center line data
for components 1 and 2 separately and the combined system
(b). From the linear absorption spectra, the f1 fraction terms
may then be calculated using Eq. (15) and the vibrational life-
times of the two components (c). The center line data calcu-
lated from the 2D spectra for component 1 and the combined
system are used in Eq. (18) to back-calculate the center line
data for component 2 (c). Figure 6 shows representative re-
sults for the center line back-calculation. The black circles

St ti I f ti

a
Starting Information

1. FFCF parameters (including motional narrowing), center 
frequencies, anharmonicity values, and vibrational 
lifetimes for:
a) Component 1
b) Component 2

2. Weighting factor of components (a1 from eq. 14)

Calculate 2D IR center line data and linear IR spectra (S1 and 
S2 in eq. 14) for:
1.  Component 1
2.  Component 2
3. Combined System

b

3. Combined System

Calculate f1 fractions using eq. 15 and then back-calculate the 
center line data for component 2 using eq. 18 

c

d
Calculate the CLS around the IR peak position of component 2

Simultaneously fit the IR spectrum of component 2 and the 

d

e

CLS to obtain the FFCF for component 2

FIG. 5. Flow chart illustrating the algorithm that back-calculates the cen-
ter line data and FFCF for a second component from known information
(Eq. (18)). Because the model systems are calculated from known FFCF pa-
rameters, the accuracy of the algorithm may be easily verified.

are the center line data from the calculated 2D IR spectrum
of the model combined system. The blue circles are the cen-
ter line for component 1 by itself. The green circles are the
back-calculated center line for component 2 by itself using
Eq. (18). The red line that passes through the black circles is
the reconstructed center line data for the combined system ob-
tained by combining the back-calculated component 2 center
line and the known component 1 center line with the correct
fraction terms. The red line exactly reproduces the data repre-
sented by the black circles, showing the virtually quantitative
agreement of the calculation.

The back-calculated center line data for component 2
is then subjected to CLS analysis (d). The CLS data are
determined for a ∼30–40 cm−1 range around the center
frequency of component 2 (one of the pieces of starting infor-
mation). For spectra with smaller bandwidths, a smaller range
should be chosen. The CLS is then simultaneously fit with the
IR spectrum of component 2 (step b) in order to obtain the
FFCF (e).

B. Non-overlapping bands

In some systems, the constituent components yield spec-
trally resolved line shapes. For example, the red and blue
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FIG. 6. Representative center line data used in the algorithm. The known
center line data for bulk water are the blue circles, while the center line
data for the known combined system are shown by the black circles. After
applying the algorithm, the center line data for component 2 are produced
(green circles). The calculated center line data can then be recombined with
the known bulk water data to reproduce the known combined data (red line).

states of the CO stretching mode of horseradish peroxi-
dase (HRP) give rise to narrow peaks at 1903.7 cm−1 and
1932.7 cm−1, respectively.35 The bandwidths of these peaks
are 10 and 15 cm−1, so the peaks are readily distinguishable.
In this situation, CLS analysis is performed independently on
each peak to obtain the individual FFCFs.9 It will be seen
shortly that the model cases tested in this study involve a bulk
water-like component which has a much broader absorption
spectrum compared to the HRP system. We would like to
stress that the modified CLS analysis and relevant discussions
presented here can apply to many two component systems and
not just those with water.

Table I lists FFCF parameters that were used to construct
a series of calculated spectra for testing the two component
CLS method. The set of FFCF parameters in Table I is collec-
tively referred to as the first model case, but it is used to gen-
erate four separate situations involving different component
2 center frequencies. The first row contains the known FFCF
parameters for bulk water11 as well as the center frequency
(2509 cm−1) and the vibrational lifetime, T1. Each concen-
tration (a1) was set to a fraction of 0.5. The only parameter
varied in each scenario is the center frequency (ω0) for the
second component. In the non-overlapping case discussed in
this section, the center frequency of component 2 was set to
2700 cm−1. Figure 7 displays calculated 2D IR spectra for
this system at Tw = 0.2 and 5 ps. The 0-1 and 1-2 bands due
to bulk water (component 1) are located on the red side of
the plot and by 5 ps are almost completely depleted due to a
faster vibrational lifetime. T1 for component 2 is 4.5 ps, while
T1 for bulk water is 1.8 ps.39 Spectra were also calculated sep-
arately for component 1 and component 2. If CLS analysis is
performed on the individual bands of the combined spectra
shown in Figure 7, then the resulting CLS curves essentially
match the CLS curves calculated for the separate sets of spec-
tra for bulk water and component 2. Figure 8 shows the ex-
cellent agreement of these CLS calculations. There is no need

2800 (a)   Tw = 0.2 ps

2500
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2700

ω
m

2300 2400 2500 2600 2700 2800
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2500

2800 (b)   Tw = 5 ps

2500

2600

2700

ω
m

2300 2400 2500 2600 2700 2800
2300

2400
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ωωτ

FIG. 7. Calculated 2D IR spectra for non-overlapping bands at Tw = 0.2 ps
(A) and Tw = 5 ps (B). The bulk water system is the set of peaks on the
left side of the spectra (lower frequency). Because the two components have
different vibrational lifetimes, the spectra decay at different rates.

to apply the algorithm presented in Figure 5. Since the peaks
basically have no overlap, it is not surprising that the CLS for
each peak can be readily extracted.

C. Overlapping but distinguishable bands

Figure 9(a) shows a 2D IR spectrum for the combined
system (Table I) with the center of the second component
set to 2650 cm−1. In this situation, two bands can be distin-
guished, but there is significant overlap between them. De-
spite this overlap, the CLS can still be calculated separately
from the individual peaks. The accuracy is improved if the
CLS is calculated slightly more to the blue of the center for
component 2 and more to the red of the center for compo-
nent 1. Figure 9(b) shows the CLS results for component 2.
The red circles are the CLS calculated from the 2D IR spectra
[Figure 9(a)] between 2650 and 2730 cm−1. The green cir-
cles are the CLS calculated from single 2D IR spectra of
component 2 by itself. The black circles are the CLS from the
center line data back-calculated using Eq. (18). Again, there
is excellent agreement between the data sets. The important
result here is that the CLS can be obtained accurately from
each band individually even though there is substantial over-
lap. In this case, it is not necessary to know the parameters
for component 1. The CLS curves of both component 1 and
component 2 can be obtained.
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FIG. 8. Model case 1 for non-overlapping bands (centers of 2509 and
2700 cm−1): CLS decay curves for bulk water (a) and component 2 (b). The
red dots are the CLS calculations performed on the spectra when both com-
ponents are present, while the blue dots denote the CLS calculated on the
simulated bulk water and component 2 systems by themselves. Because the
peaks are well-separated, the CLS results for each component (blue vs. red)
match almost perfectly.

D. Unresolved overlapping bands

Figure 10(a) shows a 2D IR spectrum when the center of
component 2 (Table I) is set to 2600 cm−1. The central lobe
is quite elongated, but there is no clear separation into two
bands. Figure 11(a) corresponds to the case where the cen-
ter of component 2 (Table I) is 2550 cm−1 and resembles a
spectrum that might arise from a single component. The two
peaks are so overlapped that there is no indication that there
are two components. In such a situation, it is necessary to
know whether two species contribute. In these strongly over-
lapping cases, Eq. (18) can be used to obtain the CLS for com-
ponent 2. The results for these two cases [Figures 10(a) and
11(a)] are presented in Figures 10(b) and 11(b). The green
circles are the calculated CLS from the single component 2
spectra without component 1. The black circles are the results

TABLE II. FFCF parameters obtained for component 2 via Eq. (18) and
simultaneous fitting.

Component 2 center � (cm−1) �1 (cm−1) t1 (ps) �2 (cm−1) t2 (ps)

2600 (cm−1) 47 49 0.8 27 5.1
2550 (cm−1) 45 46 0.9 29 4.9

2800 Tw = 0.2 ps
(a)
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2700

ω
m

2300 2400 2500 2600 2700 2800
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0.8

1.0 Component 2
from combined spectra
from single component 2 spectrum
back-calculated using eq. 18
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0 1 2 3 4 5 6 7 8 9 10
0.0

Tw (ps)

FIG. 9. Model case 1 for overlapped but distinguishable bands (centers of
2509 and 2650 cm−1): Calculated 2D IR spectrum at Tw = 0.2 ps (a) and
the CLS results for the system (b). The red dots are the CLS calculated for
component 2 from the combined system 2D IR spectra. The green dots are
the CLS curve obtained from the calculated 2D spectra of component 2 by
itself. The black dots are the CLS for component 2 after applying Eq. (18).

from applying Eq. (18). The results from Eq. (18) (black cir-
cles) differ slightly from the component 2 simulation results
(green circles). Table II lists the FFCF parameters obtained
from simultaneously fitting the CLS curves resulting from
Eq. (18) and the FT IR spectra of component 2 at the two
center positions (2600 and 2550 cm−1). Because the curves
do not exactly agree, there is some error in the magnitude of
the homogeneous component, but the remaining parameters
(�’s and time constants) have excellent agreement with the
starting parameters for the model case listed in Table I. Given
that the two bands are completely indistinguishable in either
the linear IR spectrum or in the 2D IR spectra, the accuracy of
the extracted component 2 parameters demonstrates the use-
fulness of the method.

In verifying the method, many model calculations with
various input parameters were used. These all gave good
agreement between the extracted component 2 FFCF param-
eters and the component 2 FFCF parameters used in the cal-
culations. Table III illustrates a different model system with
two components, collectively referred to as the second model
case. Component 1 is the same as in Table I, but the second
component consists of a homogeneous component, an expo-
nential decay, and a static offset (�s) as given in Table III. The
resulting 2D IR spectra are so close together that the spectrum
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FIG. 10. Model case 1 for overlapping bands (centers of 2509 and
2600 cm−1): Calculated 2D IR spectrum at Tw = 0.2 ps (a) and the CLS
results for the system (b). The green dots are the CLS from the calculated 2D
spectra of component 2 by itself. The black dots are the component 2 results
after applying Eq. (18).

consists of a single 0-1 peak, just as in the other model cases
in this section. Figure 12 shows that the CLS calculation us-
ing only the component 2 spectra and the back-calculation
of the CLS using Eq. (18) have some error. However, si-
multaneously fitting with the CLS and IR spectrum recovers
the homogeneous component quite accurately. The FFCF pa-
rameters obtained from the Eq. (18) CLS results are listed
in the third row of Table III. The agreement is essentially
quantitative.

One interesting question is what happens when the CLS
is calculated around the 2D IR centers of the spectra of the
combined system, without decomposing the dynamics into
two components? Figure 13 shows the CLS decay for the
first model case (Table I) with center frequencies of 2509
and 2550 cm−1. Each CLS data point was calculated for
±40 cm−1 around the peak position of the corresponding
spectrum. Because there are two components that decay with

TABLE III. Second model case parameters.

� �1 t1 �2 t2 �s ω0 T1

System (cm−1) (cm−1) (ps) (cm−1) (ps) (cm−1) (cm−1) a1 (ps)

1 76 41 0.38 34 1.7 . . . 2509 0.56 1.8
2 35 55 1.9 . . . . . . 20 2565 0.44 4.5
2 FFCF 36 60 1.9 . . . . . . 19.3 . . . . . . . . .
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FIG. 11. Model case 1 for overlapping bands (centers of 2509 and
2550 cm−1): Calculated 2D IR spectrum at Tw = 0.2 ps (a) and the CLS
results for the system (b). The green dots are the CLS from the calculated 2D
spectra of component 2 by itself. The black dots are the component 2 results
after applying Eq. (18).

different vibrational lifetimes, the center steadily shifts from
∼2530 cm−1 at Tw = 0.2 ps to 2550 cm−1 at Tw = 10 ps.
When the curve in Figure 13 is fit with a biexponential decay,
the fit parameters are a1 = 0.30, t1 = 0.6 ps, a2 = 0.39, t2
= 4.3 ps, where the ai and ti terms are amplitudes and de-

0.6
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1.0 Component 2 (Table 3)
from single component 2 spectrum
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FIG. 12. CLS results for the second model case of overlapping bands
(Table III with component 2 center at 2565 cm−1) at Tw = 0.2 ps. The green
dots are the CLS from the calculated 2D spectra of component 2 by itself.
The black dots are the component 2 results after applying Eq. (18).
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FIG. 13. CLS decay, calculated around the 2D IR maxima, for the first model
case (Table I with component 2 center at 2550 cm−1) without decomposing
the data into different components. A biexponential fit to the curve yields
ambiguous information.

cay constants for a given component, respectively. The time
constants fall between the known starting values for each
component in Table I, but without knowledge of any of the
components, no further information can be gained. The fit pa-
rameters could be used to calculate an FFCF, but the resulting
processes would be nonspecific to the different environments
in a system and instead indicate a type of average behavior.
Much more information can be gained by separating out the
components using Eq. (18).

Figure 14 shows the CLS curve, calculated around the
peak position for each spectrum, for the second model case
listed in Table III. The resulting curve can be fit to a biexpo-
nential plus and offset, but it is unclear what the fit parame-
ters can tell us about the system, since there appears to be a
kink in the curve around 2 ps, indicating that a strictly biex-
ponential fit plus offset is not the correct functional form for
the FFCF. This is not surprising because the CLS points re-
flect the combination of two distinct FFCFs. This kink is most
likely due to the relatively faster FFCF of bulk water dying out
more quickly than the FFCF for component 2. Similar shapes
have been observed for multi-component anisotropy decays
where one component reorients faster than the second.39, 43, 77

Figures 13 and 14 show an important aspect of multi-
component systems. In Figure 14, the shape of the CLS data
obtained from a series of 2D IR spectra hints the data are not
arising from a single component system. However, the plot in
Figure 13 does not provide an indication that the system has
two components. The curve can be fit very nicely to a sum of
exponentials. However, treating the CLS as if it is a one com-
ponent system does not provide the correct FFCF parameters
for either component. Therefore, the algorithm presented in
this paper is not a cure-all for ambiguous data sets but rather
a tool for analysis of two components systems that can be used
when critical pieces of information are known beforehand or
can be reasonably simulated.

1.0 Model Case from Table 3
( t 2509 & 2565 1)
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FIG. 14. CLS decay, calculated around the 2D IR maxima, for the second
model case (Table III with component 2 center at 2565 cm−1) without de-
composing the data into different components. It is unclear what functional
form this CLS curve should take, indicating that decomposing the CLS data
into separate components can yield more useful information.

IV. DEGREE OF ERROR IN THE TWO-COMPONENT
CLS METHOD

The model cases discussed above show that in non-
overlapping and even in significantly overlapping cases with
resolvable 2D IR spectra, the CLS for each component can be
directly calculated from the spectra separately for each com-
ponent. It appears that when the separation of the 0-1 peaks
for the two components exceeds 50% of the FWHM of one of
the components, then the CLS curves may be calculated di-
rectly from the spectra. This is certainly the case for the red
and blue states of HRP referenced earlier because the spectral
separation is several times larger than the bandwidth of the
peaks.35 Figure 9 suggests that the results are same whether
or not the CLS is obtained from the spectra or Eq. (18). In
cases where the separation of components is less than 50%
of one of the FWHM values, then Eq. (18) should be used to
obtain the correct center line data. A general rule of thumb is
that if one cannot distinguish separate peaks, then the algo-
rithm should be used.

Another point of interest is how much error can be
introduced into the FFCF parameters after doing the si-
multaneous fit of CLS data and the IR spectrum. The ex-
tracted FFCF parameters using Eq. (18) that are presented in
Tables II and III show that the parameters are reasonably re-
produced when compared to the initial known values for com-
ponent 2. It should be noted that the algorithm was tested
for quite a few other cases not presented here. For exam-
ple, we tested the algorithm for two components with similar
vibrational lifetimes and found no change in accuracy.
Throughout our studies, it appeared that the algorithm typi-
cally returned � values within ±5 cm−1 of the starting value
with occasional deviants of ±10 cm−1. The time constants
were generally within ±1 ps. As can be seen from Tables I and
II, there can be great error associated with the homogeneous
component, but this degree of error is similar to previously re-
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ported error values for the homogeneous component.11 Over-
all, the algorithm presented in this paper succeeds in capturing
the overall dynamics of a system (biexponential, single expo-
nential, etc.) and returns values that are reasonably close to
the true parameters. When applied to experimental systems,
results can be trusted and the errors may not exceed experi-
mental error.

V. CONCLUDING REMARKS

2D IR vibrational echo spectroscopy is a useful technique
for studying the dynamics of molecules in liquids, solids, and
biological systems. The dynamics of a system are described
by the frequency-frequency correlation function that can be
extracted from the 2D spectra using the CLS technique. The
main benefit of the CLS technique is that a full response func-
tion calculation is not needed to obtain the full FFCF. In con-
trast to other methods, the CLS technique is insensitive to
pulse duration, Fourier filtering techniques, sloping absorp-
tive background, and the overlap of the 0-1 and 1-2 transition
peaks.10 However, when more than one species is present in
a system, the CLS technique becomes more complicated, and
normal application of the CLS technique can yield ambiguous
information. We have shown mathematically that the peak lo-
cation of a slice through a spectrum with two components is a
weighted combination of the peak locations of the individual
components. The center line data (set of peak locations vs. ωτ

for a given Tw) for each component are weighted by frequency
and Tw-dependent fraction terms, which can be obtained from
the linear absorption spectra and vibrational lifetimes of the
two components. Therefore, if one of the components of a
two component system is well characterized, and if other pa-
rameters for both components are known, i.e., the center fre-
quencies, vibrational lifetimes, and IR spectra, then the set
of center line data for the second component can be readily
back-calculated (using Eq. (18)) from experimental data of
the combined system. After the center line data for compo-
nent 2 is calculated, CLS analysis may be performed and the
FFCF for the second component obtained.

We have tested this algorithm for a variety of model cases
to show its accuracy in reproducing sets of model data. Over-
all, the extracted FFCF parameters of the unknown compo-
nent are quite accurate. A significant implication of this al-
gorithm is the realization that the CLS curve for a multiple
component system is not itself a weighted average of indi-
vidual CLS curves for each component separately (shown in
detail in Appendix). Therefore, a traditional single CLS curve
is not very useful in describing the dynamics of a multiple
component system. The algorithm developed here extracts an
unknown FFCF from a set of 2D IR data consisting of two
contributing components.
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APPENDIX: DERIVATION OF THE TWO COMPONENT
CLS METHOD

For a two component system, the 2D IR line shape is

R(ωm,ωτ )

= f1(ωτ , Tw)

[
4π

√
2

K1(Tw)1/2
exp

(
A1(ωm,ωτ )

K1(Tw)

)

− 2πs2
√

2

Q1(Tw)1/2
exp

(
B1(ωm,ωτ )

Q1(Tw)

) ]

+ (1 − f1(ωτ , Tw))

[
4π

√
2

K2(Tw)1/2
exp

(
A2(ωm,ωτ )

K2(Tw)

)

− 2πs2
√

2

Q2(Tw)1/2
exp

(
B2(ωm,ωτ )

Q2(Tw)

) ]
, (A1)

where the Ai, Bi, Ki, and Qi parameters are defined by

Ai(ωm,ωτ ) = −(
Ci

1(0)ω2
m − 2Ci

1(Tw)ωmωτ + Ci
1(0)ω2

τ

)
,

Bi(ωm,ωτ ) = −(
Ci

1(0)(ωm + �)2 − 2Ci
2(Tw)(ωm + �)ωτ

+Ci
3(0)ω2

τ

)
,

Ki(Tw) =
√

Ci
1(0)2 − Ci

1(Tw)2,

Qi(Tw) =
√

Ci
1(0)Ci

3(0) − Ci
2(Tw)2, (A2)

where

Ci
1(t) = 〈

δωi
10(τ1)δωi

10(0)
〉
,

Ci
2(t) = 〈

δωi
21(τ1)δωi

10(0)
〉
,

Ci
3(t) = 〈

δωi
21(τ1)δωi

21(0)
〉
.

(A3)

The f1 term corresponds to a frequency and Tw-dependent
fraction term. The fraction reflects the overall concentration
of a species at a certain wavelength and is given by

f1(ωτ , Tw) = S1(ωτ )e−Tw/T 1
1

S1(ωτ )e−Tw/T 1
1 + S2(ωτ )e−Tw/T 2

1

, (A4)

where S1 and S2 are the component linear absorption spec-
tra whose sum yields the linear absorption spectrum of the
combined system. T 1

1 and T 2
1 are the vibrational lifetimes of

components 1 and 2, respectively.
The location of the maximum of a slice along the ωm axis

is found by setting the partial derivative of Eq. (A1) with re-
spect to ωm to 0,
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∂R(ωm,ωτ )

∂ωm

= f1(ωτ , Tw)1

[
4π

√
2

K1(Tw)3/2
exp

(
A1(ωm,ωτ )

K1(Tw)

)
∂A1(ωm,ωτ )

∂ωm

− 2πs2
√

2

Q1(Tw)3/2
exp

(
B1(ωm,ωτ )

Q1(Tw)

)
∂B1(ωm,ωτ )

∂ωm

]

+ (1 − f1(ωτ , Tw))

[
4π

√
2

K2(Tw)3/2
exp

(
A2(ωm,ωτ )

K2(Tw)

)
∂A2(ωm,ωτ )

∂ωm

− 2πs2
√

2

Q2(Tw)3/2
exp

(
B2(ωm,ωτ )

Q2(Tw)

)
∂B2(ωm,ωτ )

∂ωm

]
= 0

(A5)

where the Ai, Bi, Ki, and Qi parameters are defined by
Eqs. (A2) and (A3).

Equation (A5) defines a set of ωm and ωτ values that cor-
respond to the location of the maximum along a slice parallel
to ωm. We can take the derivative of Eq. (A5) with respect

to ωτ to obtain an equation for the slope of the curve created
by the maxima locations. After extensive rearrangement of
Eq. (A5) and using the harmonic approximation for each set
of correlation functions associated with a given component,
we obtain the following expression for dωm

dωτ
:

dωm

dωτ

=
f1(ωτ , Tw)F (ωm,ωτ , Tw, s) − G(ωm,ωτ , Tw, s) df1

dωτ

f1(ωτ , Tw)J (ωm,ωτ , Tw, s) + (1 − f1(ωτ , Tw))K(ωm,ωτ , Tw, s)

+
(1 − f1(ωτ , Tw))H (ωm,ωτ , Tw, s) + I (ωm,ωτ , Tw, s) df1

dωτ

f1(ωτ , Tw)J (ωm,ωτ , Tw, s) + (1 − f1(ωτ , Tw))K(ωm,ωτ , Tw, s)
. (A6)

Equation (A6) is written in a highly condensed form where

F (ωm,ωτ , Tw, s) = −2C1
1 (Tw)ea/b(

C1
1 (0)2 − C1

1 (Tw)2
)3/2 + 4ea/b

( − C1
1 (0)ωm + C1

1 (Tw)ωτ

)( − C1
1 (Tw)ωm + C1

1 (0)ωτ

)
(
C1

1 (0)2 − C1
1 (Tw)2

)5/2

+ 2s2ec/b
(
C1

1 (Tw)ωm − C1
1 (0)(ωm + �)

)( − C1
1 (0)ωτ + C1

1 (Tw)(ωm + �)
)

(
C1

1 (0)2 − C1
1 (Tw)2

)5/2 , (A7)

G(ωm,ωτ , Tw, s) = 2ea/b
( − C1

1 (0)ωm + C1
1 (Tw)ωτ

)
(
C1

1 (0)2 − C1
1 (Tw)2

)3/2 − ec/bs2
(
C1

1 (Tw)ωm−C1
1 (0)(ωm+�)

)
(
C1

1 (0)2 − C1
1 (Tw)2

)3/2 , (A8)

H (ωm,ωτ , Tw, s) = 2C2
1 (Tw)ed/f(

C2
1 (0)2 − C2

1 (Tw)2
)3/2 + 4ed/f

( − C2
1 (0)ωm + C2

1 (Tw)ωτ

)( − C2
1 (Tw)ωm + C2

1 (0)ωτ

)
(
C2

1 (0)2 − C2
1 (Tw)2

)5/2

+ 2s2eg/f
(
C2

1 (Tw)ωm − C2
1 (0)(ωm + �)

)( − C2
1 (0)ωτ + C2

1 (Tw)(ωm + �)
)

(
C2

1 (0)2 − C2
1 (Tw)2

)5/2 , (A9)

I (ωm,ωτ , Tw, s) = 2ed/f
( − C2

1 (0)ωm + C2
1 (Tw)ωτ

)
(
C2

1 (0)2 − C2
1 (Tw)2

)3/2 − eg/f s2
(
C2

1 (Tw)ωm − C2
1 (0)(ωm + �)

)
(
C2

1 (0)2 − C2
1 (Tw)2

)3/2 , (A10)

J (ωm,ωτ , Tw, s) = −2C1
1 (0)ca/b(

C1
1 (0)2 − C1

1 (Tw)2
)3/2 + ec/bs2

(
C1

1 (0) − C1
1 (Tw)

)
(
C1

1 (0)2 − C1
1 (Tw)2

)3/2

+4ea/b
( − C1

1 (0)ωm + C1
1 (Tw)ωτ

)2

(
C1

1 (0)2 − C1
1 (Tw)2

)5/2

+2ec/bs2
(
C1

1 (Tw)ωm − C1
1 (0)(ωm + �)

)(
C1

1 (0)(ωm + �) − C1
1 (Tw)ωτ

)
(
C1

1 (0)2 − C1
1 (Tw)2

)5/2 , (A11)
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K(ωm,ωτ , Tw, s) = −2C2
1 (0)cd/f(

C2
1 (0)2 − C2

1 (Tw)2
)3/2 + eg/f s2

(
C2

1 (0) − C2
1 (Tw)

)
(
C2

1 (0)2 − C2
1 (Tw)2

)3/2

+4ed/f
( − C2

1 (0)ωm + C2
1 (Tw)ωτ

)2(
C2

1 (0)2 − C2
1 (Tw)2

)5/2

+2eg/f s2
(
C2

1 (Tw)ωm − C2
1 (0)(ωm + �)

)(
C2

1 (0)(ωm + �) − C2
1 (Tw)ωτ

)
(
C2

1 (0)2 − C2
1 (Tw)2

)5/2 , (A12)

and

a = −C1
1 (0)ω2

m + 2C1
1 (Tw)ωmωτ − C1

1 (0)ω2
τ , (A13)

b = C1
1 (0)2 − C1

1 (Tw)2, (A14)

c = −C1
1 (0)2 + 2C1

1 (Tw)ωτ (ωm + �) − C1
1 (0)(ωm + �)2,

(A15)

d = −C2
1 (0)ω2

m + 2C2
1 (Tw)ωmωτ − C2

1 (0)ω2
τ , (A16)

f = C2
1 (0)2 − C2

1 (Tw)2, (A17)

g = −C2
1 (0)2 + 2C2

1 (Tw)ωτ (ωm + �) − C2
1 (0)(ωm + �)2.

(A18)

In these expressions, the Ci
1 terms are correlation functions

for the ith component.
Equation (A6) is not a very practical expression, espe-

cially for use in analyzing 2D spectra. It is extremely impor-
tant to note that the resulting slope is not simply a weighted
average of the slopes of both components. The center line data
points are, however, a weighted average of the center line data
points for each component. If a center line point correspond-
ing to a maximum along ωm is denoted as ω∗

m, then this rela-
tionship may be mathematically expressed by

ω∗
mC(ωm,ωτ , Tw) = f1(ωτ , Tw)ω∗

m1(ωm,ωτ , Tw)

+ (1 − f1(ωτ , Tw))ω∗
m2(ωm,ωτ , Tw),

(A19)

where ω∗
mC , ω∗

m1, and ω∗
m2 represent the sets of center line

data for the experimentally observed two component system,
component 1 by itself, and component 2 by itself, respec-
tively. Differentiating Eq. (A20) with respect to ωτ recovers
Eq. (A7),

dω∗
mC

dωτ

= f1(ωτ , Tw)
dω∗

m1

dωτ

+ ω∗
m1(ωm,ωτ , Tw)

df1

dωτ

+ (1 − f1(ωτ , Tw))
dω∗

m2

dωτ

− ω∗
m2(ωm,ωτ , Tw)

df1

dωτ

.

(A20)

If one of the components is completely known, that is, the
center line data can be measured or simulated independently
from the combined system, then the second component may
be calculated from,

ω∗
m2(ωm,ωτ , Tw)

=
(
ω∗

m2C(ωm,ωτ , Tw) − f1(ωτ , Tw)ω∗
m1(ωm,ωτ , Tw)

)
(1 − f1(ωτ , Tw))

.

(A21)

The details surrounding the use of Eq. (A21) have been dis-
cussed in the main text.
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