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ABSTRACT: Donor−donor electronic excitation transfer
among 9-phenylanthracene (9PA) chromophores was meas-
ured in the room temperature ionic liquid (RTIL) 1-methyl-3-
octylimidazolium chloride using time dependent fluorescence
depolarization. 9PA, which is uncharged and nonpolar, will
partition into the organic regions of the RTIL. The excitation
transfer rate, which is sensitive to the distribution of
chromophores in the RTIL, is modeled using different spatial
configurations of 9PA molecules in the RTIL solution. The
models are an isotropic distribution (random distribution) and
a clustered sphere model to represent hydrophobic regions of
a nanostructured environment. Model calculations were
performed to demonstrate the sensitivity of excitation transfer to different distributions of chromophores. When compared to
the experiment, the isotropic model can adequately match the data. From a Bayesian analysis of the sensitivity of the excitation
transfer to the models for the spatial distribution of chromophores, an upper limit of 6 Å radius is placed on the size of
hydrophobic domains in the RTIL.

I. INTRODUCTION
The concept of nanostructuring in room temperature ionic
liquids (RTILs) has been an important issue in understanding
the properties of RTILs. In addition to fundamental interest,
possible RTIL nanostructuring has been invoked to explain
phenomena in their applications, such as gas sequestration,1

photochemistry,2 solar devices,3 and electrodeposition.4 Spatial
heterogeneity, or nanostructuring, in RTILs has been difficult
to quantify. Nanostructuring is roughly defined as an aggre-
gation of the long alkyl chains due to a combination of
electrostatics and the hydrophobic effect. The structure has also
been likened to that of a bicontinuous emulsion on a much
smaller scale.4 The effect was first noted in computer simula-
tions, most notably those of Wang and Voth5 and Canongia-
Lopes and Pad́ua.6 While some effort to quantify the properties
of the nanostructure organization were undertaken based on
these simulations, especially with the development of a
heterogeneity order parameter,7 there is substantial ambiguity
on what nanostructuring means. In some sense, the strongest
understanding came from the color coded snapshots from
simulation trajectories that, while visually striking, do not fully
quantify the phenomenon.
Experimental indications of spatial heterogeneity have come

from a variety of sources,8,9 particularly X-ray scattering
experiments.10−14 The connection between these studies and
what is typically understood when discussing the nano-
structuring has, however, been called into question by neutron
studies which do not indicate the presence of substantial nano-
structuring.15 The neutron scattering experiments and other

work16 has contracted the length scale over which the nano-
structured hydrophobic regions likely exist. However, very
recent experimental work again advances the idea of meso-
scopic segregation.17,18 The length scale of the nanostructuring
is still an outstanding question. Size estimates have varied
widely from tens of nanometers9 to 18 Å19 to 6−8 Å.20

One consequence of the amphiphilic nature of the ionic
liquid is the selective solvation of molecules dissolved in the
RTIL. In the context of a nanostructured solvent, this is equated
with partitioning of the solute into the appropriate phase.
Evidence for this phenomenon has be seen in fluorescence21,22

and optical Kerr effect studies.23 This partitioning appears to
preserve the features of the surrounding solvent, such that the
intruding probe molecules do not substantially perturb the
surrounding solvent structure. For an ionic liquid, in which
minimizing the strong Coulomb interactions between ions is
likely the dominant force, this is not surprising. Thus, the
distribution of an appropriately chosen probe can report on the
structure of the region into which it partitions because of
favorable interactions.21

Excitation transfer has been successfully used as a tool to
address the structural nature of a variety of systems.24−27

Frequently, the method involves experiments with a single
excitation transfer step between a donor and an acceptor.28,29

The single donor/acceptor transfer experiment is used to gain
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some information about two positions, e.g. on a protein. For
systems in which information on a more global spatial con-
figuration is desired, either dilute donors with many acceptors
or donor−donor excitation transfer can be used.24−27 At its
heart, the use of excitation transport to determine spatial
distribution is based on the high spatial sensitivity of the
Förster excitation transfer mechanism. The rate of excitation
transfer has a 1/r6 dependence where r is the separation be-
tween chromophores. For a single donor and a single acceptor,
r is the separation between the chromophores. The sensitivity
to the spatial distribution is retained for chromophore systems
with many donors and acceptors that can participate in the
transfer dynamics. However, the mathematical treatment of the
problem becomes more intense. Donor−donor transfer is
preferable to donor−acceptor transfer in many situations
because only a single type of chromophore is needed. Employ-
ing a single type of chromophore avoids the possibility that the
two types of chromophores are not distributed identically in a
spatially heterogeneous system.
The presence of many donors in a donor−donor excitation

transfer system creates numerous pathways for the excitation to
migrate. A detailed and accurate solution to the donor−donor
excitation transfer problem for molecules randomly distributed
in solution was provided by Gochanour, Andersen, and Fayer
(GAF).30 Using a topological reduction, the GAF theory
provides a solution to the problem of energy migration that
incorporates an infinite number of particles and pathways. The
theoretical results were related to the experimental observable
of excitation transport induced fluorescence depolarization, and
excellent agreement was found between theory and experi-
ments for molecules randomly distributed in solution.31

However, the GAF theory is not applicable to heterogeneous
systems because it requires translational invariance of the
ensemble averaged Green’s function solution to the equations.
Other methods have been used for restricted and other
complex geometries.25,27,32−34

An approach developed by Huber for isotropic liquids,35,36

which is based on a two-body approximation, was shown to
give results essentially identical to the GAF self-part of the
Greens function.37 It is the self-part of the Greens function that
is directly related to the fluorescence depolarization observable.
The Huber theory for isotropic solution was extended to treat
spatially heterogeneous and finite volume systems, especially
polymers24,38−40 and micelles.41,42 The experiments demon-
strated that quantitative information on the spatial distribution
of chromophores can be obtained from fluorescence depola-
rization experiments and the appropriate application of theory.
Of particular interest here is the theory of clustered

chromophore systems,43 which is capable of being extended
to treat an inhomogeneous solvent similar to the structure
postulated to exist in the RTILs. Prior studies have shown that
nonpolar solutes are selectively solvated by the nonpolar tails of
RTILs.21 In the context of a nanostructured RTILs, nonpolar
chromophores will segregate into the nonpolar domains. The
segregation into nonpolar domains will result in a nonrandom
distribution of chromophore positions throughout the liquid,
which in turn will be manifested by modifying the electronic
excitation pathways available to a concentrated system of
chromophores relative to chromophores randomly distributed
in solution.
In this study, the nonpolar chromophore 9-phenylanthracene

(9PA) was used to study the process of excitation transfer
in a highly viscous ionic liquid 1-methyl-3-octylimidazolium

chloride (OmimCl). The structures are shown in Figure 1. 9PA
was chosen to be relatively small in size, nonpolar, soluble in

relatively large concentrations without forming dimers, and to
have a donor−donor Förster radius on the order of the
expected spatial heterogeneity. OmimCl was chosen because
prior experiments indicate it is potentially nanostructured, and
because high viscosity is required to separate the effect of
molecular rotation from the excitation transfer. The nano-
structuring corresponds to a restricted spatial distribution of the
9PA, which is partitioned into nonpolar domains. Experimental
evidence that 9PA partitions into the alkyl regions of OmimCl
is given in the Supporting Information. Previous studies also
support the selective partitioning of molecules like 9PA into the
hydrophobic regions of RTILs.21,44 The deviation from the
isotropic distribution of chromophores, which occurs in normal
solvents, will have a direct effect on the excitation transfer
process, and therefore, on the fluorescence depolarization time
dependent observable. Using a clustered chromophore
excitation transport model, it is possible to obtain the length
scale on which heterogeneity exists.

II. EXCITATION TRANSFER THEORY

The basis for this work is an extension of the original Huber
theory35,36 to consider clustered systems.37,43 The quantity of
interest throughout is ⟨Gs(t)⟩, which denotes the probability
that an excitation resides on the originally excited molecule at
time t. ⟨Gs(t)⟩ has contributions from excitations that have not
left the initially excited chromophore and from excitations that
have transferred to other chromophores and then returned to
the initially excited chromophore. The fluorescence polarization
decays as ⟨Gs(t)⟩ decays.

31 The rate at which the excitation is
lost from the originally excited molecule depends on the spatial
configuration of other chromophores and also on the Förster
dipole−dipole coupling transfer rate.45 The single pair of
chromophores rate is
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Figure 1. Normalized fluorescence and absorption spectra for the 9PA
dissolved in OmimCl. The molecular structures are shown in the
figure. The different fluorescence curves correspond to the different
9PA concentrations used in the study. At all concentrations the
absorption spectra were essentially identical.
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⟨Gs(t)⟩ can be described for any spatial distribution of
chromophores using37
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where c is the concentration of chromophores, τ is the fluo-
rescence lifetime, and R0 is the Forster radius. u(r) is the vector
distribution defined so that cu(r) dr is the probability of finding
another chromophore at r relative to the initially excited
molecule, which is set at the origin. For an isotropic system in
which all initial positions are equivalent, eq 2 can be directly
evaluated analytically yielding
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This relation has been experimentally verified in a number of
randomly distributed systems31,39 and also compares very well
with the more detailed GAF theory for times (t < 2τ) and
reduced concentrations C = (4π/3)cR0

3 < 2.37 For chromo-
phores on nonidentical sites, an average over configurations
must be performed on eq 2, yielding
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where u(rj) is the distribution of chromophores. Here all of the
chromophores are the same type of molecule since the
experiments measure donor−donor transfer. For the notation,
we will call the initially excited chromophore the donor (d) and
all other identical chromophores the acceptors (a). Vj is the
volume of the region of space occupied by the donor (d) and
the acceptors (a); N is the total number of chromophores
(donor + acceptors), and rad is the distance between the donor
and an acceptor. Equation 4 is the basis for all subsequent
calculations, which involve incorporating the appropriate forms
of u(r), the spatial distribution of the chromophores.
A particular form of u(r) must be supplied that models the

chromophore distribution. Then, a comparison between the
calculations and the experimental data results in a test of the
model. To describe the possible nanostructuring of RTILs in a
form that reflects the important characteristics of the
nanostructuring while remaining computationally tractable, a
system of clustered spheres is used. The 9PA will partition into
the hydrophobic regions. These hydrophobic regions are
treated as spherical cavities of radius Rs, and a hard sphere
radial distribution function is employed. This model incorpo-
rates the important feature of nanostructuring with the
hydrophobic regions as populated cavities and excluded exterior
spaces as the hydrophilic regions of cationic head groups and
anions. The chromophores can be distributed anywhere within
the hydrophobic pockets, that is they are locally isotropic.

Marcus et al. give a complete treatment of excitation trans-
port in clustered systems.43 An important result is that ⟨Gs(t)⟩
can be factored into two parts,

⟨ ⟩ = ⟨ ⟩⟨ ⟩G t G t G t( ) ( ) ( )s s s
on off

(5)

corresponding to the probability decay as the result of excita-
tion transfer within the cluster (on), and excitation transfer
between clusters (off). Breaking up the calculation simplifies
the expressions. Each part is treated separately.
⟨Gs

on(t)⟩ can be obtained by applying the appropriate
spherical geometry to eq 4. A change of coordinates simplifies
the calculations.37 The interior integration is performed over
the vector separating the donor and acceptor, rad. The exterior
integration is over all rd relative to the sphere’s center, but ra is
recast as a function of spherical coordinates of rad and θad,
where θad is the angle between the rd and ra. Using this trans-
formation, eq 4 becomes
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where q = cos(θad), and f(q,rd) = (Rs
2 + rd

2 − 2rd
2(1 − q2) −

2qrd(Rs
2 − rd

2(1 − q2))1/2)1/2.
The tendency of the curves for ⟨Gs

on(t)⟩ to be unity at small
Rs is the result of a constant chromophores density, which
makes the population of individual spheres scale with Rs

3. This
result has been compared to a more exact treatment, and it has
been found to agree well when the two-body approximation is
applicable (t < 2τ and c < 2).32,46

⟨Gs
off(t)⟩ is obtained in a similar fashion from eq 4, except

that the integration for the donor and acceptor molecules are
over different spheres separated by distance D. The problem is
first treated with a single fixed D and then expanded to consider
a large number of spheres at different separations. To com-
pactly perform the required integrations, a multiframe coordi-
nate system is used.43 The transformation of ra → Arad changes
eq 4 into
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The limit of D = 0 gives the case of two spheres sitting on top
of one another, which yields another route to ⟨Gs

on(t,N)⟩. For
all other cases, eq 7 must be treated numerically.
To have a detailed model of the ionic liquid structure, the

result of integrating eq 7 must be expanded to consider
a large number of spheres at different spacings. The decay of
⟨Gs

off(t,D,N)⟩ can be written as a product of all pairwise
interactions between spheres. Taking the limit as the number of
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spheres becomes large leads to the thermodynamic limit of
⟨Gs

off(t,N)⟩, which can be expressed as43

∫⟨ ⟩ = − π −
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for a distribution of spheres of macroscopic concentration cs
and radial distribution g(D). The radial distribution function
reflects the possible structures of the RTIL. The lower bound is
set to prevent overlap of spheres, and the upper limit is
expanded to infinity because the contribution from spheres
outside several R0 is negligible.
At this point, ⟨Gs(t,N)⟩ has been solved for a constant

number (N) of chromophores per cluster. Since only the
macroscopic cluster concentration will be specified, the distri-
bution in chromophore number must be treated. Assuming the
chromophores do not interact, the number of chromophores
in any sphere will follow a Poisson distribution. Therefore,
the observed ⟨Gs(t,c)⟩ is the product of Poisson weighted
contributions of ⟨Gs

on(t,N)⟩ and ⟨Gs
off(t,N)⟩, with eq 6
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and eq 7 becoming

∫

∑⟨ ⟩ = − π ν
− !

× −

=

∞ −ν −

∞

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

G t c c
e

N

G t D N g D D D

( , ) exp 4
( 1)

[1 ( , , )] ( ) d

s s
N

N

R s

off

1

1

2
off 2

s (10)

ν is the expectation number of chromophores in a sphere,
which is equal to the macroscopic concentration of
chromophores divided by the concentration of spheres. This
form of the Poisson distribution neglects all contributions from
clusters containing N = 0, because they will not contribute to
fluorescence events.
Combining eqs 9 and 10 in eq 5 gives the final result for the

⟨Gs(t,c)⟩. The importance in this quantity lies with its
connection to experimental observables. For a randomly
oriented distribution of chromophores, polarized fluorescence
comes from the initially excited molecule.47 Therefore, the
decay of the polarization of the fluorescence reports on the prob-
ability that the emission comes from the same molecule that
was initially excited, ⟨Gs(t,c)⟩.
If the molecular rotation is slow and uncorrelated with the

excitation transfer, then the anisotropy, defined as
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can be represented as the product of the anisotropy decay due
to molecular rotation, and the anisotropy decay due to
excitation transfer,43

= Θ ⟨ ⟩r t t G t c( ) ( ) ( , )s (12)

The contribution from molecular rotation, Θ(t), can be
measured in a low concentration sample in which excitation
transfer is absent. Because the chromophores in this experiment
are very slowly rotating, the frequently used orientationally
averaged Forster rate is not applicable. The experimental
situation considered here can be calculated from the orienta-
tional relaxation rate and the expected excitation transfer rate
through a correction factor included in the Forster transfer
rate.48 The correction applies to the orientational factor ⟨κ2⟩ in
the Forster coupling to reflect the amount of orientational
averaging experienced while undergoing excitation transport.
For these experiments, τrot ≃ 5τtransfer, for which the correction
is between 0.84 and 0.90, depending on chromophores con-
centration. Thus, each instance of the Forster rate incorporates
this concentration dependent factor Γ(c), as
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III. EXPERIMENTAL PROCEDURES
1-Methyl-3-octylimidazolium chloride (OmimCl) was obtained
from Iolitec at 99+% purity. 9-Phenylanthracene (9PA) was
obtained from Aldrich at maximum purity and used without
further purification. The OmimCl was dried under vacuum at
60 °C for 5 days and then transferred into a nitrogen glovebox.
Water content was measured using Karl Fischer titration
(Mettler DL39) to be less than 500 ppm by weight. A carefully
prepared stock solution of 9PA in methylene chloride was made
using calibrated glassware. Measured amounts of this stock
solution were added to a test tube and the solvent gently
evaporated, leaving behind the 9PA. These dried tubes were
transferred to the glovebox and then stirred with precisely
weighed quantities of dry OmimCl. The ionic liquid solution
was then transferred to a custom sample cell with variable path
length and sealed in a constant temperature cryostat (Janus ST-
100) under dry nitrogen. Absolute exclusion of additional water
was imperative, as small quantities of absorbed water will
change the viscosity of the sample, making correction for the
solute rotation unreliable. Samples were prepared with peak
optical densities of ∼0.3 to minimize fluorescence absorption
and re-emission. This was accommodated by using the variable
path length to ensure the different concentration solutions
satisfied the 0.3 maximum absorbance. The absorption in the
region of overlap of the absorption and emission was far less.
The experimental setup for the time correlated single photon

counting system has been described previously.21 The system
has an approximately Gaussian instrument response function of
28 ps fwhm. Since the relevant fluorescence and anisotropy
decay times in this study were significantly greater than the
instrument response time, deconvolution was not necessary to
achieve accurate results. Samples were excited at 375 nm, and
after passing through a long pass Schott glass filter to remove
scattered excitation light, the fluorescence was resolved with a
monochromator and detected at 426 nm with a channel plate
detector. For each sample, time dependent fluorescence
intensities were collected in parallel, perpendicular, and magic
angle (54.7°) geometries. For the low concentration sample,
the excitation volume in the cuvette was moved around to
minimize the impact of photobleaching, which could interfere
with proper removal of background fluorescence. For all high
concentration samples, the effect of background fluorescence
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was negligible. For the low concentration sample, the back-
ground fluorescence of trace impurities in the OmimCl was
removed by swapping in a blank sample and then performing
the experiment under identical conditions.
On each sample, a UV/vis absorption spectrum was taken

with a Cary 6000i spectrometer. Steady state fluorescence scans
were taken with 375 nm excitation wavelength on a Fluorolog 3
fluorimeter. No evidence for excimers or dimers was seen in the
fluorescence spectra for the concentrations used as shown in
Figure 1.
The Förster radius R0 of 9PA was also calculated as 19.7 ±

0.7 Å from the measured overlap integral, quantum yield, and
using literature values for index of refraction.49 Extinction
coefficients were measured from dilutions of calibrated ionic
liquid solutions. The background subtracted absorption spectra
were measured on the Cary 6000i spectrometer at 1 mm path
length. The fluorescence quantum yield was measured using the
comparison method with 9,10-diphenylanthracene as the
standard.50 For the ionic liquid samples, stock 9PA solutions
were diluted to absorbances between 0.01 and 0.1 at 1 cm path
length. The samples were stirred and warmed to 50 °C
overnight to remove bubbles. The preparations were done
entirely in the glovebox and, therefore, oxygen free. 9,10-
Diphenylanthracene solutions were made from dilutions of
stock solutions to a similar absorbance range in cyclohexane.
Prior to sealing in cuvettes, the solutions were deoxygenated by
bubbling cyclohexane saturated nitrogen through the solution
for 15 min. The fluorescence measurement was performed on
the Fluorolog-3 fluorimeter. The fluorimeter was warmed up
and set at 375 nm excitation wavelength for all samples,
performed in randomized order without changing any
fluorimeter parameters. Because the ionic liquid has a very
high viscosity and cyclohexane has a low viscosity, orientational
relaxation is small in the ionic liquid over the fluorescence
lifetime while it is complete in cyclohexane. To make the steady
state fluorescence measurements in the two liquids independ-
ent of orientational relaxation and therefore comparable,
polarizers were used at the magic angle to remove rotational
effects. Additionally, a Schott glass absorber was placed on the
emission side to completely remove any scattered light. In a
randomized order, each sample’s fluorescence was measured
and then immediately placed in the Cary 6000i to measure
absorption relative to the appropriate solvent blank. Auto-
fluorescence was subtracted in the ionic liquid samples from an
identically treated blank. The measurements gave a fluores-
cence quantum yield of 0.14 ± 0.03. In the time-resolved
experiments, the fluorescence lifetime of the 9PA was single
exponential with a decay time of 7.18 ns.

IV. RESULTS

A. Model Calculations. In performing calculations using eq
10, a bulk cluster concentration (sphere concentration) is
required. For polymers or micelles, the cluster concentration is
straightforward; it is the bulk concentration of polymer or
micelles. To investigate the possible spatial heterogeneity in the
RTILs, a different approach must be taken. The concentration
of spheres is obtained by assuming a bulk volume fraction of
spheres φ.
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Similarly, the expectation value for the chromophore number
per sphere is given by

ν =
ϕ

CRs
3

(15)

where C is the reduced chromophore concentration (see
expression above eq 4). For the case of OmimCl, the volume
fraction was estimated using the van der Waals volumes of the
ions. The hydrophobic regions were assumed to be composed
of some collection of the eight carbons on the octyl chain. The
hydrophilic regions were taken to be a collection of the
methylimidazolium part of the cation, and the entirety of the
chloride anion. Using these divisions, a volume fraction of 0.7 is
calculated. At low occupation numbers ν, the time dependent
contributions to the fluorescence depolarization come from the
N = 2 term in the Poisson average. In this limit, the factors of φ
in the cluster concentration and chromophore expectation
number in eq 10 multiply and cancel.
Using eqs 9 and 10, it is possible to model ⟨Gs(t)⟩ curves for

different spatial distributions. Numerical integrations were
performed using iterated Legendre−Gauss quadrature. Figure 2
shows some predicted curves for a reduced bulk chromophores
concentration of C = 1.5 using clustered spheres and the
isotropic model. For these model calculations, the radial
distribution function for the spheres in eq 10 was made
isotropic, i.e. g(D) = 1 for D > Rs. The choice of radial
distribution function is discussed later in the section.

For very small sphere radii, the curves predicted by the
clustered sphere model approach the isotropic model. The
similarity comes from the short distances over which the
distribution of the chromophores changes relative to R0, which
averages out any structure. In effect, the clusters themselves act
like individual chromophores. Since the spheres are almost
isotropically distributed, the effective chromophores distribu-
tion also looks isotropic. There is a small difference between
the small sphere limit and isotropic model because of the
quantization in the Poisson average used for the sphere
calculation. The functional form of the curve is the same as the
case of the isotropic model, but the effective reduced

Figure 2. ⟨Gs(t)⟩ calculated from the clustered sphere model for
various normalized Rs (the sphere radius divided by the Förster
transfer radius R0) and also for the isotropic model. The isotropic
model curve is a. Curves for clustered spheres of Rs = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9 are labeled b−j sequentially. The curves for b
and c are on top one another. The time coordinate is normalized
relative to the fluorescence lifetime for this and all subsequent plots.
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concentration is decreased by about 5%. In an experiment,
these curves will be indistinguishable within the experimental
error in measuring the Förster radius.
The other limiting case is at very large sphere radius. The

model again begins to look isotropic because the majority of
the chromophores are too far removed from the boundary of
the sphere to feel its effect. Since the chromophores inside the
spheres are isotropically distributed, this recovers the bulk
isotropic curve shape. Again the concentration is scaled, but this
time by the inverse volume fraction. The excitation transfer
in this limit is dominated by the ⟨Gs

on(t)⟩. But within the sphere,
the effective chromophores concentration is enhanced relative
to the apparent bulk concentration by the volume fraction,
increasing the rate of excitation transfer. Between these two
extremes, the clustered sphere model shows a difference from
the isotropic model that is very sensitive to the size of spheres.
The region of sensitivity of the excitation transfer to sphere

size, and therefore, the size of nanostructured domains, is for
sphere radii from approximately 0.3R0 to 3R0. The range of
sensitivity depends slightly on the average chromophore
number per sphere. As the size of the sphere is increased at
constant bulk concentration and volume fraction, the rate of
excitation transfer initially decreases as the excluded regions
between spheres become important. The trend continues until
about Rs = 0.8R0, when the excitation transfer reaches its
slowest rate. Further increasing the size of the sphere will then
begin increasing the rate of excitation transfer, particularly at
early time. The time coordinate of ⟨Gs(t)⟩ is in some sense a
measure of distance. The transfer rate in eq 6 contains the ratio
of t/rad

6. Thus, the transfer events happening at earliest time
will be dominated by the closest neighbors.
It is important to consider the sensitivity of the model to

important inputs, in particular the radial distribution function
g(D) from eq 10 and volume fraction of the spheres in eqs 14
and 15. An excessive sensitivity with respect to these
parameters will lead to model selection problems and limit
the robustness of the sphere model as an analogy to
nanostructuring. Figure 3 shows the expected observable for

two cases of sphere volume fractions, 0.6 and 0.7, at a bulk
chromophore reduced concentration of C = 1. The sphere size
is the reduced size; that is, it is divided by the Förster transfer

radius R0. For small Rs (black curve), the curves are identical,
consistent with the limits described above. The difference
between the curves is still relatively minor at an intermediate
size Rs = 0.5 (red and blue curves). For the sphere radius equal
to the Förster radius, Rs = 1 (green and purple curves), the
difference in the curves is significant. The chromophore used in
the experiments, 9PA, has R0 = 19.7 Å. For small spheres,
therefore, the packing fraction does not significantly impact the
fits. This is useful. For relatively small spheres, the volume
fraction can be set to the calculated value. As discussed below,
this turns out to be the situation that arises when fitting the
experimental data.
A second input is the radial distribution function for the

spheres. Two cases are calculated for a same sphere sizes as
above, namely Rs = 0.1, 0.5, and 1. One uses an isotropic
distribution of clusters, where g(D) in eq 10 is constant and
equal to 1 for all D > Rs. In this case, there is equal probability
of finding two spheres with any separation greater than the
distance required to prevent overlap. The second case uses the
radial distribution function g(D) for a hard sphere liquid at the
same volume fraction of spheres, i.e., φ = 0.7.51 A similar trend
as that seen in Figure 3 is shown in Figure 4, with increasing,
but modest, effect over the range of sphere sizes expected.

These results demonstrate the robustness of using the sphere
model to capture the essence of any nanostructuring when the
characteristic radius is smaller than the Förster radius, R0, that is
Rs < 1. In this situation the number of parameters involved in
analyzing the data is reduced. The experiments analyzed below
fall into this situation. At larger scales, the volume fraction and
form of radial distribution function become important and must
be addressed. But because small Rs is the case for the relevant
conditions that will occur in the following treatment, the radial
distribution function can be set to 1 and the volume fraction to
the calculated value of 0.7 without worrying about their effect
on the results. By removing these parameters (volume frac-
tion and radial distribution function) from consideration for
moderate to small sphere sizes, only the size of the sphere
remains as a source of difference in the excitation transfer. Any
deviation in the excitation transfer from the expectation of the
isotropic distribution of chromophores is therefore indicative of
clustering. In addition, because the only sensitive parameter is

Figure 3. ⟨Gs(t)⟩ plotted for volume fractions φ = 0.6 and 0.7 for three
Rs. Both black curves are for Rs = 0.1 and are identical. The red and
blue curves are for Rs = 0.5 and are very similar. For Rs = 1 (green and
purple curves), there is a difference, owing to the substantial con-
tribution from spheres populated with multiple chromophores. For
clarity, the pairs of curves at a particular Rs have been vertically offset.

Figure 4. ⟨Gs(t)⟩ for different models of sphere radial distribution
function. The pairs of curves are for Rs = 0.1, 0.5, and 1, calculated
using g(D) as either isotropic (g(D) = 1) or using the radial distri-
bution function for a hard sphere liquid. The two curves at Rs = 0.1
cannot be differentiated.
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the sphere size, the length scale of clustering can be determined
within experimental error.
B. Experimental Results. ⟨Gs(t)⟩ for 9PA is obtained by

removing the rotational contribution from the fluorescence
anisotropy via eq 12. The resulting curves are compared to the
predictions from the chromophore distributions of the isotropic
and clustered sphere models of excitation transfer. In Figure 5A,

the data are compared to the calculated curves using the
isotropic model and the experimentally determined value of the
Förster radius, R0 = 19.7 Å. There are no adjustable parameters
in the calculations. The agreement with the data for three
concentrations is reasonable. The calculations reproduce the
concentration dependence. The shapes of the curves are not
perfect. There is reasonable agreement at early and late time,
with noticeable deviations at intermediate times. Since these
calculations use the isotropic model, they do not depend on a
choice of radial distribution functions or volume fraction. The
reasonable agreement with no adjustable parameters is an early
indication that the size scale of any nanostructure cannot be
large.
These calculations are sensitive to error in the experimentally

determined Förster radius. To take into account possible error
in R0, the data are also fit using the isotropic model, but with R0
used as an adjustable parameter. The fit is performed globally
using weighted nonlinear least-squares. The variances for the
experimental data are used as weighting factors. The results are
shown in Figure 5B. By adjusting R0 down from 19.7 to 19.3 Å,
the fit is improved, decreasing the value of the reduced χ2 from

3.0 to 1.5. Since there is some structure in the residuals, the
confidence intervals for this fit were approximated using
resampling of the residuals.52 This is a bootstrap method that
uses the residuals and fit parameters to create a synthetic data
set to refit. Repetition builds up sufficient statistics to approxi-
mate the true distribution from which the estimates of R0 are
drawn. Using this approach, a 95% confidence interval for R0 is
constructed by ordering each estimate and finding the
appropriate cutoffs from the list. For the isotropic model, this
leads to a 95% confidence interval of [19.1 Å, 19.4 Å]. The
interval is the fit bounds and does not take into account any
other sources of systematic error or bias.
Figure 6 shows experimental data compared to the clustered

sphere model using the experimentally determined value,

R0 = 19.7 Å. For each chromophore concentration, curves are
generated for the clustered sphere model at various Rs from 0.1
to 0.9. Since R0 and Rs are both fixed, there are no adjustable
parameters for each curve shown; the curves are not fits to the
data. In contrast to the case with the isotropic model calcula-
tions shown in Figure 5, there is very poor agreement between
the experiment data and any of the clustered sphere calculations
using R0 = 19.7 Å. Since the excitation transfer only slows down
with increasing sphere size, there is no reasonable value of Rs

that can be chosen to fit the data using the R0 = 19.7 Å (unless
the spheres become unphysically large so the system is again
isotropic).
In Figure 6, each curve is calculated with no adjustable

parameters; the values of R0 and Rs are fixed. Again because the
valves of Rs are small (<1), it is not necessary to be concerned
with a radial distribution function (g(D) = 1 is used), and the
same calculated volume fraction of 0.7 is used for each curve.
However, the calculations depend on both Rs and R0, and there
is experimental uncertainty in the determination of R0. The data
can be fit by varying both of these parameters. However, for
clustered spheres, no simple regression can be performed
because the model contains two parameters (R0 and Rs), which
are coupled when optimizing fits to ⟨Gs(t)⟩. Thus, there are a
number of local minima, some of which are shown in Figure 7.

Figure 5. Global fits to the experimental data using the isotropic
model. (A) Calculated curves use the experimental value R0 = 19.7 Å.
There are no adjustable parameters. The reduced concentrations, top
curve to bottom curve are C = 0.36, 0.72, and 1.43. (B) R0 is used as an
adjustable parameter. The best fits are for R0 = 19.3 Å. The reduced
concentrations, top curve to bottom curve, are C = 0.34, 0.67, and
1.35.

Figure 6. ⟨Gs(t)⟩ calculated with the clustered sphere model at the
experimental value of R0 = 19.7 Å. The black curves are the experi-
mental data for each chromophore concentration as listed on the
graph. The red curves are the clustered sphere calculations for Rs = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 (lowest curve to top curve in each
group, the same as in Figure 2). Because the value of R0 is fixed, each
calculated curve has no adjustable parameters.
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C. Bayesian Analysis. In Figure 5A, the isotropic model
does a reasonable job of describing the data with no adjustable
parameters. In Figure 5B, it is shown that using one adjustable
parameter, R0, the agreement is improved. In Figure 7, it can be
seen that the sphere calculations that represent nanostructuring
can do a very good job of reproducing the data, but now there
are two adjustable parameters, R0 and Rs, and a range of pairs of
these parameters can reproduce the data. It is necessary to
decide between the models and the parameters. There is risk
that the uncertainty in R0 will cause a poor selection of param-
eters, even though for a particular set, the least-squares fit is
better.
There is additional information, however, in that there is

knowledge of what the Förster radius is within a range of values
given by the error bars. Using Bayesian inference, this corre-
sponds to prior knowledge of the distribution of parameters
both models can take for the parameter R0. With this informa-
tion, model selection can be performed that fully incorporates
the experimental data.
The Bayes factor formalism of model selection was

developed by Jeffreys to perform scientific inference using the
Bayes theorem.53 For two models, both of which are equally
likely candidates before the experiment, the Bayes factor
represents the posterior odds of one model over the other,
given the experimental data. This is represented as

=
|
|

B
D H
D H

pr( )
pr( )

1

0 (16)

with Bayes factor B, and pr(D|Hi) as the probability of
observing the data D, given the hypothesis Hi (known as the
posterior odds). In this case, the index i takes two values: 0 for
the null hypothesis of the isotropic model and 1 for the hypo-
thesis of a clustered sphere model. The posterior probability is
found by marginalizing the likelihood of the data given a
hypothesis over all model parameters and their prior
probabilities, as

∫| = |θ π θ | θD H D H Hpr( ) pr( , ) ( ) di i i i i i (17)

The probability inside the integral is the likelihood of the data
given the hypothesis parametrized by model parameters θi, and
π is the prior probability for the model parameters. The value of
the Bayes factor expresses the odds ratio of one hypothesis over
another, corresponding to a weight of evidence.54 Jeffreys
provided a table of Bayes factors, and the level of support they
correspond to in real situations. The table is heuristic but has
endured owing to its repeated successful performance.55 Table 1

shows the base 10 logarithm of the Bayes factor and the strength
of evidence for one hypothesis over another.
In this experiment, the two hypotheses are the isotropic

model and the clustered sphere model. The Bayes factor
therefore represents the strength of evidence for the clustered
sphere model relative to the isotropic model. For the isotropic
model, the only parameter is R0. Its prior probability comes
from the determination of its value and the associated error
bars using spectroscopic observables. The error bar on the
19.7 Å value of R0 is 0.7 Å. However, to increase the range in the
Bayes analysis, we will take the prior distribution to be normally
distributed, with a standard deviation of 1 Å.

π | =
πσ

−
− ̂
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0 0
2

2
0 0 (18)

The increase in the standard deviation used in the analysis
reflects a desire to encompass unknown errors or biases that
could be present. Comparing the shape of the curves for the
isotropic and clustered sphere models at their maximum
likelihood estimates, it is clear that the clustered sphere model
is most benefitted from the relaxed width of the prior
distribution. Thus, the broad prior distribution gives the
clustered sphere model the best chances of fitting the data. The
clustered sphere model contains two parameters, R0 and Rs.
The prior probability of the Förster radius is set identically for
both models, as given in eq 18. For the sphere radius, a
noninformative prior is chosen to reflect the fact that prior to
the experiment; all values are equally likely up to a cutoff.

π | =R H
R

( )
1

s sph
max (19)

The cutoff radius is set at 22 Å. This value corresponds to the
length of an OmimCl molecule with the octyl chain all-trans.
For spheres larger than this, it would not be possible to pack
OmimCl molecules in a manner that evokes the nanostructured
picture of a hydrophobic pocket that the sphere model attempts
to capture.
Using the above prior probabilities, Bayes factors were first

computed for simulated data ⟨Gs(t)⟩ using both models at two
values of R0. Analysis of this simulated data will indicate
the region over which the experiment is anticipated to be
sufficiently sensitive to distinguish the two models. To simulate
the data, theoretical curves calculated for R0 = 19.7 Å and 19.3 Å
were generated using the isotropic model, and the clustered

Figure 7. Calculated ⟨Gs(t)⟩ for different pairs of [R0, Rs] that
represent possible fits for the clustered sphere model. Only one
concentration is shown for clarity, although the fits are global using all
three concentrations’ data. The curves are for [R0, Rs] = [20.5 Å, 0.2],
[20.9 Å, 0.35], [21.3 Å, 0.45], [21.7 Å, 0.5], [22.1 Å, 0.6], and [22.5 Å,
0.8]. Other than the curve at [22.5 Å, 0.8] which fits poorly at early
and late times, all other sets of parameter combinations perform about
as well as the fits using the isotropic model.

Table 1. Strength of Evidence for Different Bayes Factors55

log10(B) strength of evidence

0−0.5 not worth more than a mention
0.5−1.0 substantial
1.0−2.0 strong
>2.0 decisive
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sphere model for Rs = 0.2 through 0.9 in 0.1 increments. These
simulated data were then analyzed using the Bayes factors.
Using the Bayes factors from the simulated data, it is possible to
determine for which cases the experiment is able to distinguish
the two models, and for which the uncertainty in R0 makes
distinguishing the models impossible. For example, since the
calculate observable at very small Rs is very similar to the
isotropic curve, it is anticipated that one would not be able to
resolve these cases. This will be manifested by a small or
possibly negative value of the Bayes factor B for that case of
simulated data. Using the criteria in Table 1, it will be possible
to determine for which cases a decision can be made, and for
which no such determination is possible within the errors in
this experiment. Because of the similarity between the two
models that occurs at small Rs, the sensitivity will occur as a
lower bound in Rs above which the two models can be
distinguished via their Bayes factors.
The simulated data was assumed to have the experimentally

measured variances, and the prior probability distributions were
the same as will be used to analyze the experimental data. To
compute the Bayes factors, eqs 16 and 17 were combined with
the prior probabilities in eqs 18 and 19 and numerically inte-
grated. For the likelihood function in eq 17, the data were
assumed to be independent, normally distributed and hetero-
skedastic with variances taken to be those measured from the
counting statistics in the fluorescence experiment. From the
large number of points, the value of the integrand in eq 17 is
highly peaked around the maximum likelihood estimate for
the isotropic model, and a parametrized curve on R0 and Rs in
the clustered sphere model. The integration could therefore
be performed using the Laplace approximation.55 The inte-
grand under this approximation for a model with d parameters
becomes

= π |Σ̃| |θ̃ π θ̃I D H H(2 ) pr( , ) ( , )d/2 1/2
(20)

where all quantities are evaluated only at the estimator
(denoted using ∼), and Σ is the negative inverse of the
Hessian matrix on the log likelihood,

Σ = − |θ̃ π θ̃ −D H HD{ log[pr( , ) ( , )]}2 1
(21)

The conditions under which the Laplace approximation can
operate are normally taken to be that the number of data points
n > 20d (20 times the number of model parameters), which is
well satisfied in this case.55 Moreover, the structures of the
predicted curves for both the isotropic and clustered sphere
models are similar. Therefore, to a degree any errors are likely
to be substantially offsetting when ratioed for the Bayes factor.
Table 2 gives the Bayes factors evaluated for simulated

clustered sphere model data at two R0s. Each cell represents a
different set of conditions that was simulated, with the Bayes
factor being how strongly one could accept the clustered sphere
model over the isotropic model given the limitations of the
experiment for that particular case. The trends are the same for
both R0s. For simulated data from very small spheres (0 ≤ Rs <
0.2), the Bayes factors are negative. This is a consequence of
the Bayes factor’s tendency to penalize overparameterized
models that do not substantially improve the fit. Since the
calculated curves for the lower limit of the clustered sphere
model (Rs < 0.2) are almost identical to the isotropic model,
the fits will be identical. But with more parameters, the
clustered sphere model is selected against. At Rs = 0.3, the
Bayes factor begins to rise into the realm of “substantial” based

on the Jeffreys criteria. The Bayes factors do not monotonically
increase with increased sphere size but have a dip centered
around Rs = 0.65. This results from coincidental improvement
in the isotropic fit to the data as the component of ⟨Gs

on(t)⟩ in
eq 5 begins to contribute. For smaller Rs at the occupation
numbers relevant to the concentrations in this study, ⟨Gs

on(t)⟩
does not contribute due to the low probability of having two
chromophores in a single small sphere. Even here, the evidence
remains categorically “substantial.” Further increase in the
sphere size results in a rapid rise in the Bayes factor, reaching
decisive levels for Rs > 0.8. These results show that the
excitation transfer is sufficiently sensitive to detect the
difference between an isotropic distribution of chromophores
and the clustered distribution with Rs > 0.3. For smaller sized
clusters, no evidence would be detected and the inference
would likely call for rejecting the clustered hypothesis. This
theoretical treatment includes the limitations from random
experimental noise, since those experimentally relevant vari-
ances were used to compute the likelihoods.
Using the same computation method but with the

experimental ⟨Gs(t)⟩ from the actual fluorescence data, the
Bayes factor is calculated in the same manner as above. This
will compare the isotropic model and clustered sphere against
the experimental data. Because the Bayes factor analysis
marginalizes on model parameters, it will not give optimal fit
parameters. Instead, it will consider the two hypotheses as a
whole when determining how strongly each model is supported
by the experimental data. As the ratio is computed here, it
represents whether the clustered sphere model can be accepted
over the isotropic model. Because the experiment will only be
sensitive for larger Rs, a negative result will be constrained by
the upper limit of Rs over which the excitation transfer is anti-
cipated to differentiate between the two models. The resulting
Bayes factor calculated from the experimental data (expressed
as log10(B)) has a value of 0.29. This puts it at the level of
largely insignificant. The model selection indicates there is
nothing in the experiment that strongly supports the clustered
sphere model over the isotropic model for the distribution of
9PA in the ionic liquid. With regard to the picture of nano-
structuring, this indicates that there is no appreciable structure
on a length scale greater than Rs ≥ 0.3, the range over which the
experiment was shown to be able to distinguish the two models.
Using 19.7 Å for R0, the results correspond to a lack of

structure for radii of nanostructured domains of greater than
6 Å, which is the radius of the equivalent sphere used to describe
the possible heterogeneity. In arriving at this value, it is impor-
tant to check the previous assumptions about volume fraction

Table 2. Bayes Factors for Support of the Clustered Sphere
Model over the Isotropic Model at Different Simulated
Conditions

log10(B)

sphere size R0 = 19.3 Å R0 = 19.7 Å

Rs = 0.0 −1.6 −1.7
Rs = 0.2 −0.85 −1.0
Rs = 0.3 0.61 0.50
Rs = 0.4 1.7 1.64
Rs = 0.5 1.4 1.23
Rs = 0.6 0.67 0.46
Rs = 0.7 0.70 0.54
Rs = 0.8 1.7 1.6
Rs = 0.9 3.1 3.1
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and sphere packing, as mentioned above. During the integra-
tion of eq 17 for the clustered sphere model using the exper-
imental data, no maximum likelihood estimate contained an
Rs greater than 0.65 that contribute to the integral. That is,
while integrating along R0, the likelihood for any point where
the maximum likelihood has an Rs > 0.65 are so small as to be
negligible. Therefore, all of the best fits correspond to the
smaller values of Rs, in which reasonable changes in volume frac-
tion or sphere packing negligibly impact the resulting
calculated curve for ⟨Gs(t)⟩. Their influence can therefore safely
be excluded from the calculations. Similarly, the broad prior
probability distribution on the Förster radius gives the clustered
sphere model the maximum chance of being accepted. Its
rejection is therefore not the result of an overly hostile choice
of the prior distribution. This conclusion is also resistant to
proposed changes in the geometry of nanostructured domains.
The key feature of the model is exclusion of probe molecules
from a region of similar size to the Förster radius. This will be
true of any nanostructured model of sufficiently large domains.
The upper bound of 6 Å puts the results of this experiment in

line with other experiments,15,16 which have tended to reduce
the prominence of nanostructure organization in ionic liquids.
Again referring to the previously computed van der Waals
volumes as a rough guide of size, the 6 Å sphere would
correspond to about 5 octyl chains combining to form the
hydrophobic domain.

IV. CONCLUDING REMARKS
Donor−donor excitation transfer of 9-phenylanthracene
dissolved in the room temperature ionic liquid 1-methyl-3-
octylimidazolium chloride was measured at room temperature.
Model calculations for the excitation transfer were computed
for an unstructured solvent using an isotropic distribution of
chromophores and a nanostructured solvent model using
spheres to represent the hydrophobic domains. The spectro-
scopic observables were simulated, and it was shown that the
excitation transfer experiments can differentiate the structured
and unstructured models for sufficiently large nanostructured
regions (sphere sizes). When compared to the time correlated
fluorescence data for the 9-phenylanthracene in 1-methyl-3-
octylimidazolium chloride, no evidence of large scale
nanostructure is found.
The determination that there is no large scale structure is

based on comparison of the donor−donor excitation transfer
data at three different concentrations to two different models. It
was found that an isotropic model does a reasonable job of
reproducing the concentration dependent data with no
adjustable parameters (Figure 5A). The concentration depend-
ence is reproduced accurately and the shapes of the curves are
reasonable. Improved agreement is found when the Förster
radius, R0, is allowed to vary within its error bars (Figure 5B).
The isotropic model places the chromophores randomly. There
is no nanostructuring.
When the model for the nanostructured liquid is used, which

is based on a distribution of spheres to represent the nano-
structured hydrophobic regions, it is apparently possible to
improve the agreement between the calculations and the ex-
perimental data. The improvement is only possible using two
adjustable parameters, the sphere size, Rs, (size of the hydro-
phobic domains) and R0, rather than a single adjustable
parameter for the isotropic model. However, applying Bayesian
statistical methods, it was demonstrated that the probability is
negligible, essentially zero, that the two parameter fits using the

theory of excitation transfer in the nanostructured model are
meaningful. Tests using simulated data in model calculations
and Bayesian statistics showed that if the system is nano-
structured on a significant distance scale (Rs > 0.3), it would be
apparent in the comparison between the data and the model
calculations. For very small nanoscopic domains, the isotropic
and nanostructured excitation transport models are indistin-
guishable. Therefore, the Bayesian analysis sets an upper bound
on how large the nanostructured domains can be. On the basis
of the experiments and the Bayesian analysis, the upper bound
on the size of any nanostructured hydrophobic domains is a
radius of 6 Å.
The results obtained here are consistent with recent neutron

scattering experiments.18 Aoun et al. discuss D1, the repeat
distance associated with the nanostructuring in a series of
RTILs with different alkyl chain lengths. The longest chain
length in this study is hexyl. The reported results show that
each extra pair of carbons adds ∼4.5 Å to the repeat distance.
So 4.5 Å were added to the reported hexyl repeat distance to
give a repeat distance for OmimCl of ∼23 Å. The excitation
transfer experiments and calculations presented here give a
radius of organic region of ∼6 Å. Then the diameter is ∼12 Å.
To obtain the ∼23 Å repeat distance would require the diam-
eter of the ionic regions to be ∼11 Å, which is a reasonable
result. Thus, the results of the excitation transfer study are in
accord with the neutron scattering studies of Aoun et al.20
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