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The theory of vibrational excitation transfer, which causes spectral diffusion and is also influenced
by structural spectral diffusion, is developed and applied to systems consisting of vibrational chro-
mophores. Excitation transfer induced spectral diffusion is the time-dependent change in vibrational
frequency induced by an excitation on an initially excited molecule jumping to other molecules that
have different vibrational frequencies within the inhomogeneously broadened vibrational absorp-
tion line. The excitation transfer process is modeled as Forster resonant transfer, which depends on
the overlap of the homogeneous spectra of the donating and accepting vibrational chromophores.
Because the absorption line is inhomogeneously broadened, two molecules in close proximity can
have overlaps of their homogeneous lines that range from substantial to very little. In the absence
of structural dynamics, the overlap of the homogeneous lines of the donating and accepting vibra-
tional chromophores would be fixed. However, dynamics of the medium that contains the vibrational
chromophores, e.g., a liquid solvent or a surrounding protein, produce spectral diffusion. Spectral
diffusion causes the position of a molecule’s homogeneous line within the inhomogeneous spectrum
to change with time. Therefore, the overlap of donating and accepting molecules” homogeneous lines
is time dependent, which must be taken into account in the excitation transfer theory. The excitation
transfer problem is solved for inhomogeneous lines with fluctuating homogeneous line frequencies.
The method allows the simultaneous treatment of both excitation transfer induced spectral diffusion
and structural fluctuation induced spectral diffusion. It is found that the excitation transfer process
is enhanced by the stochastic fluctuations in frequencies. It is shown how a measurement of spec-
tral diffusion can be separated into the two types of spectral diffusion, which permits the structural
spectral diffusion to be determined in the presence of excitation transfer spectral diffusion. Vari-
ous approximations and computational methodologies are explored. © 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4742762]

. INTRODUCTION

The transfer of an electronic excitation among molecules
in dense media has been studied for over two thirds of
a century.'™ Using the theoretical framework devised by
Forster, electronic excitation transfer has been analyzed
in polymer systems,S‘7 micelles,® solutions,’® mixed
crystals,'* two-dimensional systems,'>!'® and biological
systems.'72! Recently, there has been considerable interest
in developing a firm theoretical understanding of ultrafast
time-dependent vibrational spectroscopy of dense media.
The systems studied include proteins and other biolog-
ical molecules,"'?%2! water (and isotopically labeled
water),?>?3 clusters of ions in solution,>*? phospholipid
bilayers,?® and most recently self-assembled molecular mono-
layers of catalytically active molecules.”’ In particular, 2D IR
vibrational echo spectroscopy is employed to measure spec-
tral diffusion. Spectral diffusion is the time evolution of the
vibrational frequencies of molecular vibrational oscillators
within an inhomogeneously broadened absorption line.?8-30
The interest in spectral diffusion is that it is caused by struc-
tural evolution of the system. Therefore, the time dependence
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of spectral diffusion reports on the time dependence of struc-
tural changes of a system such as a liquid,* or a protein.’!

In addition to structural changes, there can be another
source of spectral diffusion. If the vibrational chromophores
are close to each other, vibrational excitation transfer (ET)
can occur.>* In general, two molecules that are physically
near each other will not have the same vibrational frequency
because they will have different local environments. When
an excitation jumps from an initially excited molecule to a
nearby molecule, the frequency of the excitation will change.
Therefore, excitation transfer is a source of spectral diffusion.
To avoid this source of spectral diffusion in ultrafast IR stud-
ies of water dynamics, the OD stretch of dilute HOD in H,O
is studied.’® Because the HODs are dilute, excitation transfer
is eliminated. In pure H,O, excitation transfer in itself is of
interest, and it dominates spectral diffusion.?-3¢ However, in
other systems excitation transfer cannot be avoided,?” but the
source of spectral diffusion that is of interest is the structural
spectral diffusion (SSD). Therefore, it is necessary to be able
to accurately calculate the excitation transfer induced spectral
diffusion so that it can be separated from the structural spec-
tral diffusion. As shown in detail here, the problem is complex
because the structural spectral diffusion has a strong influence
on the excitation transfer induced spectral diffusion.

© 2012 American Institute of Physics
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In addition, the Forster theory of excitation transfer re-
quires knowledge of the overlap of the homogeneous spec-
tra of the donating and accepting molecules.*37-3% For elec-
tronic excitations, it is assumed that the spectroscopic lines
are homogeneously broadened (no inhomogeneous broaden-
ing). Electronic excitations generally have a large Stokes shift
between the absorption and fluorescence spectra. The neces-
sary overlap is the overlap of the absorption and fluorescence
spectra.*37 Vibrational absorption lines usually have substan-
tial inhomogeneous broadening. The homogeneous spectra of
the donor and acceptor are buried under the inhomogeneous
lines. (Here we use donor to be the initially excited molecule
and acceptor to be the molecule that receives the excitation
although the two molecules are chemically identical.) There-
fore, it is necessary to perform a 2D IR vibrational echo ex-
periment to determine the homogeneous linewidth,**? which
is a necessary input for the Forster theory and the theoretical
method developed below.

A preliminary version of the theory, which is developed
fully here, was used to interpret 2D IR vibrational echo spec-
troscopic data for samples that consisted of approximately a
monolayer of molecules bound to a surface.”’ In these sys-
tems, the proximity of chromophores indicated that excitation
transfer plays a significant role in determining the observed
vibrational spectral diffusion, and therefore excitation trans-
fer needed to be treated properly to obtain the underlying
molecular structural dynamics. As mentioned above, in vi-
brational systems, spectral lines are inhomogeneously broad-
ened, which precludes the use of standard Forster type results,
which depend on the underlying transitions being homoge-
neously broadened. Not only are the spectral lines in vibra-
tional systems inhomogeneous, they also undergo spectral dif-
fusion that can be on the same timescale as excitation transfer.
A simultaneous solution to the coupled excitation transfer and
structural spectral diffusion processes is necessary. This paper
presents several useful calculations for these systems: (1) ex-
citation transfer in the case of static inhomogeneous lines (no
structural spectral diffusion), (2) spectral diffusion induced by
excitation transfer, and (3) spectral diffusion in the case of ex-
citation transfer and structural spectral diffusion processes.

Despite the keen interest in developing an understanding
of the vibrational spectral dynamics in the condensed phases,
there has not been an acceptable framework developed for un-
derstanding how excitation transfer occurs in these systems.
In fact, researchers have applied Forster theory in situations
in which the theory is not applicable. Although Forster theory
has been exceptionally powerful in understanding excitation
transfer among homogeneously broadened electronically ex-
cited molecules, many of the simplifying assumptions that ap-
ply well to electronic spectroscopy simply do not hold when
vibrations are considered. The primary assumption that fails
for most vibrational systems is the assumption that all spec-
tral lines are purely homogeneously broadened. This com-
plication was observed for the case of electronic transitions
nearly 40 yr ago in the Russian literature,*'** but these ob-
servations have been considered seriously only in the case
of the electronic excited state dynamics of photosynthetic
complexes*" and dispersive excitation transport in liquids
and polymers.”-**8 The work of Stein and Fayer incorporates
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spectral diffusion into a theory of dispersive excitation trans-
port, yet the theory only applies to the case of narrowband ex-
citation experiments (such as hole burning, fluorescence) and
is difficult to generalize. Stein and Fayer do not examine the
general aspects of excitation transfer induced spectral diffu-
sion (ETISD), its coupling to SSD, or computational method-
ologies that allow for the calculation of an observable other
than the self part of the excitation transfer Green’s function.’

Forster theory describes the transfer of excitation be-
tween two chromophores through dipole-dipole coupling.*
The transfer rate can be calculated either by Fermi’s golden
rule or second-order time-dependent perturbation theory in
the density matrix formalism.?>4%° The Forster limit cor-
responds to weak incoherent transfer. When the coupling is
sufficiently strong or the transfer is coherent, Forster theory
does not apply, and a fully quantum mechanical treatment is
necessary to solve the excitation transfer problem.”! If the ex-
citation transfer problem is in the Forster limit, then a master
equation formalism can be used to calculate the effects of ex-
citation transfer on the excitation probabilities in a system.*’
This paper focuses on results derived from the master equa-
tion approach, although despite this limitation, that the gen-
eral ideas should shed some light on strongly coupled sys-
tems.

Structural spectral diffusion is the stochastic fluctuation
among inhomogeneous spectral states.’®3° The process can
be characterized by its correlation functions. If the fluctua-
tions are Gaussian (or reasonably approximated as Gaussian),
then the process is fully characterized by its autocorrelation
function that is called the frequency-frequency correlation
function (FFCF). If the FFCF is known, then the absorption
and 2D IR spectroscopic line shapes can be calculated,
linking the observed spectroscopy to the microscopic dy-
namics. Furthermore, in the higher order nonlinear optical
experiments, that is, 2D IR vibrational echoes, the FFCF
can be directly measured.>*>> The FFCF includes both the
spectral diffusion among the inhomogeneous states and the
homogeneous linewidth.

Within an inhomogeneous line, transfer of an excitation
from an excited chromophore to a different chromophore with
a different frequency will also contribute to the decay of the
FFCF. Calculating the full FFCF requires taking into account
both structural processes and the excitation transfer process it-
self. These processes together form a coupled stochastic non-
linear dynamic system, the practical solution of which is the
major goal of this paper.

Recently, other researchers have studied spectral diffu-
sion in systems undergoing excitation transfer. Yang, Li, and
Skinner recently published an analysis of energy transport
in liquid H,O, D,0, and isotopically diluted mixtures.?>23
Their analysis is based upon a solution of the time-dependent
Schrodinger equation for the manifold of local vibrational
states using molecular dynamics (MD) trajectories to define
the atomic coordinates. Their theory satisfactorily agrees with
experimental measurements of the orientational anisotropy
decay.”® Due to the nearly first principles approach, Skin-
ner and co-workers have validated that perturbation theory
adequately describes excitation transfer even in extremely
strongly coupled situations (like liquid water) and that the
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majority of the transfer is incoherent.>* Despite the fact that
the system is in the Forster limit, a naive application fails to
agree with experiments that probe the underlying excitation
transfer process. Skinner and co-workers say that by includ-
ing orientational effects, a proper radial distribution function,
and intramolecular excitation transfer, Forster theory can be
made to agree with experimental anisotropy data. However,
Skinner and co-workers have illuminated the pitfalls of ap-
plying Forster theory to vibrational energy transport. Their
extension of Forster theory utilizes only a single Forster ra-
dius, Ry, which in principle cannot account for vibrational
excitation transport between different types of pairs of water
molecules, i.e., for randomly chosen pairs of water molecules,
not only do their relative orientations and distances differ but
also the center frequencies of their homogeneous lines will
differ. Because Ry depends on the overlap of the homoge-
neous lines, different pairs of molecules will have different
Ry’s. While Skinner’s ab initio theory correctly incorporates
frequency fluctuations and frequency differences among pairs
of exchanging water molecules, no attempt was made to cor-
rectly incorporate this fundamental aspect of the excitation
transfer process into a modified Forster theory. However, the
nature of water may mask this inadequacy. The homogeneous
linewidth in water is very broad; it is a substantial fraction of
the total linewidth. In addition, much of the structural spectral
diffusion is very fast, occurring on the order of a few hundred
femtoseconds. These properties of the water hydroxyl stretch
spectral dynamics are in many respects similar to those found
in electronic excitation transfer systems consisting of chro-
mophores in room temperature liquids in which the simple
Forster theory generally works well. Water is unique in this
respect. Many vibrations have homogeneous lines that are
much narrower than the inhomogeneous linewidth and have
relatively slow structural spectral diffusion. In these systems,
simple Forster theory with a single Ry will not provide a use-
ful description of the vibrational excitation transfer and its
contribution to spectral diffusion.

Il. EXCITATION TRANSFER INDUCED SPECTRAL
DIFFUSION IN THE STATIC FREQUENCY LIMIT

The failure of nearly every attempt to use Forster theory
to explain vibrational excitation transfer can be reduced to the
fact that the expectation value of a function of a random vari-
able is not equal to the function evaluated at the expectation
value of the random variable, i.e., E[f(x)] # f(E[x]). In certain
special cases (f(x) is linear, x is deterministic), the equality
can hold, but none of these cases applies to vibrational ET.
In the language of ET theory, x is the transfer rate between
two randomly selected molecules and f(x) is an experimental
observable. f{x) could be the frequency-frequency correlation
function, the anisotropy decay, or simply the amount of pop-
ulation left on the initially excited molecule. For the case of
the frequency-frequency correlation function, the desired ex-
pectation value is

B (1)dw(0)) = Egr.o[ f(r, w;1)]
= Bty [E[d0(1)80(0)[{r, w}]], (1)
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where (§w(f)dw(0)) is the frequency-frequency correlation
function which depends on the position related variables of
the system r, and the frequency related variables of the sys-
tem w.

In this paper we explicate Forster theory in the inhomoge-
neous case and demonstrate how the excitation transfer pro-
cess can drive not only spectral diffusion but also be driven
by structural spectral diffusion. The initial inhomogeneous
Forster theory is modified to account for structural spectral
diffusion, and tractable approximations are made that greatly
simplify the calculations. Due to recent work on surface sys-
tems undergoing spectral diffusion and ET simultaneously,
extra attention is given to the two-dimensional case.?’

A. Excitation transfer for an ensemble of particle pairs

In the case when vibrations do not undergo structural
spectral diffusion, there is only homogeneous and inhomoge-
neous spectral line broadening. When two spatially proximate
molecules are chosen at random from the inhomogeneous dis-
tribution of vibrational frequencies, they may undergo ET. Be-
cause these molecules belong to different sub-ensembles and
are not coupled by any mechanism other than dipole-dipole
coupling (which is assumed to be relatively weak and incoher-
ent), the classical Forster theory applies.* Within this theory,
the rate of ET depends on the difference in center frequencies
and the homogeneous linewidths. We can calculate the proba-
bility of the excitation moving between these two molecules.
For two molecules undergoing reversible ET, the coupled
differential equations which describe the ET process are
written as

Po = —kpo + kp1,

. 2
p1 = +kpo — kpy,

where k is the Forster transfer rate, pg denotes the probability
of the excitation residing on the initially excited molecule, and
p1 is the probability of excitation residing on the non-initially
excited molecule. Vibrational population relaxation has been
omitted as it is assumed to be the same for all molecules and
therefore can be added in later as decay in the overall proba-
bility of finding the excitation anywhere. The solution to these
coupled differential equations for the initial condition py = 1;
p1 = 01is po(t) = %(1 + e~2k"). This probability is also de-
noted as the self part of the Green’s function, Gy(f), which
comes into play when there are more than two chromophores.
The rate k is determined by the standard Forster method,*3®
ie.,

3, (Ro\°
k= 2TVRK ) <T> ’ )

go _ Jn 1020 p [ Mea(Mep(M)dr

07 12875 Nynt JF ep()da

“

where R is the Forster radius, Ty is the vibrational life-
time, Op is the quantum yield, N is Avogadro’s constant,
n is the index of refraction of the medium, A is the wave-
length in nm, ¢ is the molar decadic extinction coefficient
(in L mol~' cm™!) and «2(Q) is the dipole-dipole coupling
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orientation factor. The quantum yield is the fraction of chro-
mophore excitations that decay by spontaneous emission, and
can be calculated from the radiative lifetime and the non-
radiative lifetime. Ry depends on the frequency distribution
of both oscillators and their transition strengths. In Forster
theory, the overlap integral that is used to determine Ry in-
cludes the emission line of the donor and the absorption line
of the acceptor. In the case of vibrations there is no apprecia-
ble Stokes shift, so for a given vibrational oscillator the ab-
sorption and emission line position and shape are considered
to be the same throughout this paper.

The solutions to the ET problem for two molecules in
two different cases (using the parameters from the Appendix)
are illustrated in Figure 1. In the first case, the two molecules
chosen have vibrations with their homogeneous lines close
in frequency (Figure 1(a), blue curves). The overlap between
the two absorption lines is large. Therefore, Ry is large, which
makes the transfer rate, &, large. The probability p, therefore
decays quickly (Figure 1(b), blue curve). In the second case,
the molecules are chosen such that their vibrations do not lie
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FIG. 1. (a) The inhomogeneous distribution (black curve) of homogeneously
broadened vibrational lines (green, red, and blue curves) plotted about the
line center. (b) The probability that an initially excited molecule remains ex-
cited after a time ¢ in two cases: (red) the exchanging molecules have cen-
ter frequencies denoted by the red lines in panel (a), (blue) the exchanging
molecules have center frequencies denoted by the blue lines in panel (a).
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close in frequency (Figure 1(a), red curves). In this case the
overlap between the two absorption lines is small. So Ry is
small, which makes the transfer rate small. The probability
that the excitation resides on the initially excited molecule
decays slowly as shown in Figure 1(b) (red curve).

In addition to calculating the probability of ET, our
goal here is to also determine the frequency-frequency cor-
relation function of the system undergoing ET. As a sim-
ple example consider a system composed of an ensemble
of pairs of molecules. In each pair, the two molecules in-
teract with each other but not with other molecules. We can
calculate the frequency-frequency correlation function as we
know the time-dependent probability distribution of the vi-
brational frequency. In terms of expectation values, we can
calculate the inner expectation of the dynamical observable
Sw(H)éw(0)|w,r. r was given by the setup of the problem
(Appendix), i.e., 8 A with k2 = 2/3, and the frequencies,
which are static at this point, were drawn from the inhomoge-
neous distribution. In this simple case there are only two prob-
abilities which must be accounted for, the probability that the
excitation lies on the initially excited molecule and the prob-
ability that it does not. Therefore, the FFCF expectation value
is given by the formula

1
(50(1)30(0)) = Efs s [5(1 1ok

1
+51 = e—z“wl*”z)’)aw]swz} NS

where Sw; is the frequency of the initially excited vibra-
tion and Sw; is the frequency of the vibration on the other
molecule. The expectation value is the average over the in-
homogeneous distribution of frequencies for each vibration.
Note that & is a function of dw; and dw, and therefore must
be calculated inside the expectation value. The above solution
for the frequency-frequency correlation function is only for
spectral diffusion caused by ET. There is no structural spec-
tral diffusion. The homogeneous contribution to the total vi-
brational line shape can be included by an additional delta
function component in the FFCF.*

Even in this simple system several key properties of ET
are clearly visible. To illustrate them we show the results of
ETISD calculation for the ensemble of pairs of molecules.
For this calculation we use the numerical inputs chosen for all
calculations (see the Appendix). Figure 2 shows the normal-
ized FFCF with the homogeneous component omitted (black
curve), the self part of the Green’s function (blue curve), and
the self part of the Green’s function with the Forster radius
calculated taking the total spectroscopic line to be homo-
geneously broadened (red curve), and therefore having unit
overlap, instead of using the underlying inhomogeneous dis-
tribution of homogeneous line shapes. None of the functions
are identical. This figure clearly demonstrates that it is im-
perative that one performs a detailed ET calculation using the
true homogeneous and inhomogeneous line shapes even when
calculating the effect of ET on observables uncorrelated with
frequency. Using the Forster radius calculated using the entire
absorption line yields an incorrect G(¢) curve that is much too
fast. The ETISD itself evolves differently than the ET process
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FIG. 2. Normalized FFCF with the homogeneous component omitted for
excitation transfer in an ensemble of pairs of particle system (black line). Self
part of the Green’s function is shown for system studied (blue line) and for a
hypothetical purely homogeneously broadened system with the pre-spectrally
averaged rate constant (red line).
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that drives it, namely, slower. The FFCF decays more slowly
than the underlying ET, given as G,(t) (Figure 2, blue curve)
because there is a tradeoff between fast ET and a large fre-
quency change. When molecules are far apart in frequency,
there is a large change in frequency when ET occurs. How-
ever, the molecules undergo slow ET because the overlap of
the homogeneous lines is small. When molecules are close in
frequency, they exchange excitations quickly, but the associ-
ated change in frequency is small.

Improperly pre-averaging the Forster radius before calcu-
lation of ensemble averaged properties is a serious flaw in the
manner that Forster theory is frequently used. Forster theory
depends on the application of the steady-state approximation
to the second-order perturbation theory rate of dipole-dipole
coupling induced excitation transfer.**>>" This approximate
rate is itself an ensemble averaged quantity. By ensemble
averaging over the entire inhomogeneous distribution in
the steady-state approximation step, it becomes impossible to
then use the pre-averaged rate to calculate other dynamical
observables that must themselves be integrated over the en-
semble degrees of freedom. In other words, one cannot use an
average rate constant to calculate a kinetic process between
distinct sub-ensembles that do not react at the average rate.

The condition that the full underlying homoge-
neous/inhomogeneous distribution of frequencies needs to be
accounted for in an ET problem can be relaxed when the
homogeneous linewidth dominates the total absorption line
shape. In Figure 3, the same ensemble of pairs of molecules
problem is studied but instead of having the homogeneous
linewidth, ' = 2 cm™! and the inhomogeneous linewidth
equal to 16 cm™! (for a total linewidth of 17.1 cm™') as in
Figure 2, I is varied from 2 cm~! to 17 cm™!', and the inho-
mogeneous linewidth is set between 17.1 cm™! and 1.2 cm™!
to achieve a total linewidth of 17.1 cm™"' for all values of the
homogeneous linewidth. The black curves are the normalized
FFCF with the homogeneous component omitted. Thus, only
the time-dependent part of the FFCF is shown. It is important
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to keep in mind that as I" is increased, the range of spectral
diffusion is decreased because the inhomogeneous width is
decreased. The blue curves are the properly averaged G(t),
and the red curves are G¥™(¢) in which the donor and
acceptor are taken to have perfect overlap as if the lines are
homogeneously broadened. Several key trends are clear from
the figure. First, as the homogeneous linewidth begins to dom-
inate as a fraction of the total linewidth, the time dependence
of the frequency-frequency correlation function, and the self
part of the Green’s function converge. Furthermore, the im-
properly pre-averaged Forster radius Ggavg'me)(t) curve also
converges to the true one, indicating that in predominantly
homogeneously broadened lines the traditional calculation of
the Forster radius (ignoring inhomogeneous line shapes) is
accurate. This is the reason that the simplified Forster theory
works for water in which the homogeneous linewidth is a sub-
stantial fraction of the total linewidth.?* Also note that as long
as there is non-negligible inhomogeneous broadening, ETISD
does not track the ET process itself. In Figure 3, only for I'
= 17 cm™! are the time dependences of ET and ETISD the
same, and in this case the range of spectral diffusion is very
small. The spectral diffusion induced by ET in an inhomoge-
neously broadened system can never be described by the time
dependence of the ET process, no matter how well it is calcu-
lated. The homogeneous linewidth must be measured and the
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FIG. 3. Normalized FFCF with the homogeneous component omitted (black
curve) and self part of the Green’s function (actual, blue curve; pre-averaged,
red curve), for an ensemble of pairs of particle excitation transfer systems as
a function of homogeneous linewidth. The total linewidth is held constant.

0.5
0



064109-6 D. E. Rosenfeld and M. D. Fayer

inhomogeneous distribution accounted for in calculating the
time dependence of the ETISD.

These simple cases encompass the entirety of the physics
of vibrational ET theory within the Forster limit. The rest of
the work is to build tools to solve this problem efficiently for
physically realistic systems rather than an ensemble of iso-
lated pairs. For the remainder of this section we will work
within the static frequency limit (no structural spectral dif-
fusion). Once the methodology has been developed we will
move on to include stochastically fluctuating structural spec-
tral diffusion.

B. N-particle excitation transfer dynamical system

The two molecule problem can be extended to include
N molecules by creating an N-dimensional linear dynamical
system (or a master equation; the matrix method is used here
for ease of computation) which represents the N coupled lin-
ear ordinary differential equations:

p = A(w, r)p, (6)

where the vector p is the vector of probabilities of an exci-
tation being found on a given molecule. The matrix A is the
dynamics matrix and is filled with the rates k;; that are all cal-
culated by the Forster method. The above equation holds for
a given set of positions and frequencies. The solution to this
problem (with static frequencies and positions) for any ini-
tial condition may be given by matrix exponentiation of the
dynamics matrix, A,

p(r) = exp [tA] - p(0), (N

where p(0) is the vector of initial probabilities and p(?) is
the time-dependent probability of finding an excitation on
any given molecule. For systems with large N, it becomes
intractable to solve this problem analytically; however, for
periodic or quasi-periodic systems (such as crystals, liquids,
solids, surfaces) periodic boundary conditions can be en-
forced, for example, by the minimum image criterion, on the
dynamics matrix. As long as N is large enough, the results for
the periodic systems will be asymptotically equivalent to the
results for the bulk system of infinite extent.

Once the time-dependent vector of probabilities is
known, then it is possible to calculate the frequency-
frequency correlation function for this system. For the case
where only a single molecule begins in the excited state, the
p(0) vector is a vector containing a single non-zero element
that is equal to 1, that is, p(0)V%) = 0; p(0)® = 1. Given that
the initial excitation begins on the ith molecule, the FFCF for
a molecular system with static frequencies given by the inho-
mogeneous distribution when the frequencies are not corre-
lated with spatial position is

E [w()w(0)|w,r] =E [w(t)w(0)|A(w,r)] = (p(t) - @) w— ©.

®)

The superscript (i) denotes the ith element of a vector,
and the vector @ contains the center frequency values for each
molecule. Note that in the case of time-dependent frequencies
(structural spectral diffusion) discussed below, the frequency

J. Chem. Phys. 137, 064109 (2012)

vectors need not be the same. Also note the clear difference
between how the FFCF is calculated versus how Gg(?) is cal-
culated for this system, G,(t) = p®(¢).

C. Monte-Carlo based computation of the FFCF

The above solution to the ET induced spectral diffusion
problem is based upon a single realization of the static ran-
dom frequency distribution and a single static realization of
the geometric distribution of molecules. To calculate the ex-
pectation value of the frequency-frequency correlation func-
tion over each of these distributions it is suitable to perform
Monte-Carlo averaging. Subsequently, a procedure that sim-
plifies the calculations will be introduced. Thus, returning to
the conditional expectation notation, the expected frequency-
frequency correlation function is,

(Be(1)6w(0)) = Eqr,0y [E [d(t)dw(0)|A(r, w)]]

MC 1

— 5 2 B0 0 = % DY )@,

{w,r,i} {w,r} i
©)

The outer expectation is over the joint space-frequency
distribution function, and the Monte-Carlo summation is a
sum over the randomly drawn space-frequency realizations
and a randomly chosen initial excitation vector.

For the examples simulated in this paper, the Monte-
Carlo averaging is not computational intensive, as spatial
distribution functions without higher order structure are
chosen. For simulations of real molecular systems, more
averaging will be required and Metropolis Monte-Carlo or
another Markov Chain Monte-Carlo method will be neces-
sary. For example, we use a uniform random distribution.
By drawing independent samples from the uniform random
distribution, under 1% error at 95% confidence in the MC es-
timates can be achieved in under 10° samples. When random
frequency trajectories are sampled later in the paper, again
only simple (i.e., random sampling) Monte-Carlo averaging
is necessary, as the higher order structure in the frequency
trajectory is generated through the integrated stochastic law
we derive for the random process. The sampling is even more
efficient when one takes advantage of the fact that multiple
initial excitation sites are possible.

lll. ETISD AS A PROBE OF STRUCTURE

Due to the »® dependence of the Forster transfer rate,
ET and ETISD are extremely sensitive to the joint space-
frequency distribution function of molecules. For the case
when frequencies and spatial distribution are independent,
and for a given frequency distribution, the excitation transfer
and associated ETISD problem are sensitive to the geometric
distribution of molecules. This sensitivity can exist in both
the distribution of intermolecular distances (through the
r~® dependence) and the distribution of relative molecu-
lar orientations (through the «? factor). Below we show
some general properties of this sensitivity for 1D, 2D, and
3D dimensionalities and implement the Monte-Carlo solution
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FIG. 4. One-dimensional systems. (a) Normalized FFCFs with the homoge-
neous component omitted (solid curves) and G(#) curves (dashed curves) for
random distribution with excluded volume (black), one-dimensional lattice
(red line), and hard sphere model (blue line). (b) Radial distribution func-
tions for the corresponding geometric models (same colors) in panel (a). The
dashed lines correspond to the lattice sites for the one-dimensional lattice
model.

to the ETISD problem discussed above. Except for the
calculations in Figure 6, the angular factors are static and
isotropic, that is, there is a random distribution of fixed
orientations.

ETISD is sensitive to the dimensionality of the system.
Within a given dimensionality different structures are easily
discernible due to their different ETISD profiles. For each di-
mensionality, three different structures are simulated, a lattice,
a loosely packed hard sphere model, and a random distribu-
tion with an excluded volume effect. The average density is
the same for the three structures. In the 1D systems, the lat-
tice is a linear lattice; in 2D systems it a hexagonal lattice; and
in 3D systems it is a simple cubic lattice. The structures dif-
fer in their associated radial distribution functions which are
visualized in Figures 4(b), 5(b), and 7(b). The different radial
densities cause ETISD to proceed at different rates. All calcu-
lations use the Monte-Carlo formalism developed above. The
Monte-Carlo averaging is performed over both the spatial and
frequency dimensions.
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FIG. 5. Two-dimensional systems. (a) Normalized FFCFs with the homoge-
neous component omitted (solid curves) and G(¢) curves (dashed curves) for
random distribution with excluded volume (black), two-dimensional hexag-
onal close packed lattice (red line), and hard sphere model (blue line). (b)
Radial distribution functions for the corresponding geometric models (same
colors) in panel (a). The dashed lines correspond to the lattice sites for the
two-dimensional hexagonal lattice model.

Figure 4(a) illustrates the normalized FFCFs with the
homogeneous component omitted (solid curves) and G(?)
(dashed curves) for the three model one-dimensional systems.
The black curves are for the random distribution with ex-
cluded volume. The red curves are for the 1D lattice, and the
blue curves are for the hard sphere model. The radial distribu-
tion functions of the three model systems are shown in panel
(b) of Figure 4. The dashed lines show the position on the
lattice as the distance is increased from the donor molecule.
The FFCFs are normalized and the homogeneous contribution
is not shown. Parameters for the simulations are given in the
Appendix. The random distribution with excluded volume ef-
fect is the slowest ETISD system, followed by the linear lat-
tice, followed by the hard sphere model. The differences in
ETISD rate are clearly correlated with the radial distribution
functions. Specifically, higher local density near an excited
molecule drives ETISD due to the strong r~® dependence of
the transfer rate.
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FIG. 6. Two-dimensional systems. (a) Normalized FFCFs with the homoge-
neous component omitted for six different angular distributions. Blue curves
correspond to fixed polar angle models of 45° (dotted), 60° (dashed), and
90° (solid) with respect to the surface normal. Red lines correspond to static
isotropic model (solid), dynamic isotropic (dashed), and dynamic with a fixed
polar angle of 45° (dotted). (b) G(¢) curves for the same systems, line desig-
nations are the same as in the panel (a).

Figure 5(a) illustrates the normalized FFCFs with the
homogeneous component omitted (solid curves), and Gy(f)
(dashed curves) for the three two-dimensional model systems
(monolayers). The hard sphere model has the fastest G,(¢) and
ETISD (dashed blue and solid blue curves) due to large peak
in the radial distribution function at 5.8 A (panel b). This in-
creased local density is nearly four times the average den-
sity of molecules in the system and serves to enhance ET and
ETISD for the hard sphere system. Because the densities are
the same, the hexagonal lattice system (red curves) has slower
transfer, despite its more efficient packing due to the increased
distance between nearest neighbors relative to the hard sphere
model. The random distribution with excluded area has the
slowest transfer of the three models due to its flat radial dis-
tribution function.

The angular distribution for the orientation of the tran-
sition dipoles can substantially change the properties of the
ETISD and ET process. This effect is illustrated for the two-
dimensional system for which several different angular dis-
tribution models were analyzed for the random with excluded
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FIG. 7. Three-dimensional systems. (a) Normalized FFCFs with the homo-
geneous component omitted (solid curves) and G(f) curves (dashed curves)
for random distribution with excluded volume (black), three-dimensional
simple cubic lattice (red), and hard sphere model (blue). (b) Radial distri-
bution functions for the corresponding geometric models (same colors) in
panel (a). The dashed lines correspond to the lattice sites for the simple cubic
lattice model.

volume effect model (see Figure 6). The static isotropic
model means the transition dipoles are distributed randomly
and uniformly in both polar and azimuthal angle. The dy-
namic isotropic model corresponds to each transition dipole
sampling all of angular space on a much faster timescale than
excitation transfer. The fixed polar angle model has each chro-
mophore with its transition dipole at an angle 6 with respect
to the surface normal and is free to lie at any azimuthal angle.
The dynamic fixed polar angle model is when the azimuthal
angle is sampled much faster than the excitation transfer
rate. Three different static fixed polar angle distributions are
shown in Figure 6, 6 = 45°, 60°, and 90° where 6 is the angle
between the transition dipoles of the chromophores and the
surface normal. The ETISD process is fastest for 6 = 90° and
slowest for 6 = 45°, however, the change is not monotonic, as
6 = 30° is about as fast as € = 60° and 6 = 0° is about as fast
as 6 = 90°. These latter angles are not shown in the figure.
For the static isotropic, dynamic isotropic (corresponding to
k> = 2/3 for all chromophores) and dynamic fixed polar
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angle (corresponding to x> = 9/16 for all chromophores)
models, the ETISD occurs fastest in the dynamic isotropic
and at a nearly equal but slower rate in the static isotropic and
dynamic fixed polar angle models. The dynamic averages are
either slower or faster than the static averages depending on
the angular distribution used. Changing the angular distri-
bution effectively changes the Ry’s in the system by scaling
the rate factors. This scaling changes the sensitivity of both
ETISD and G;(#) to the underlying frequency distributions in
different and nontrivial ways.

ETISD and G,(¢) curves have also been calculated for
three-dimensional systems. The results are illustrated in
Figure 7. The trends are similar to the one- and two-
dimensional cases. However, in three dimensions, the hard
sphere and lattice models are more similar than in the 1D and
2D systems.

IV. APPROXIMATIONS TO THE ETISD PROBLEM

Baumann and Fayer have previously applied the Hu-
ber approximation® for ET in two- and three-dimensional
systems.'® The Huber approximation is useful when a sim-
plified method is required to solve the ET problem. The key
result from their work is that the natural logarithm of the self
part of the Green’s function (probability of initial excitation
remaining on initially excited molecule) can be related to a
configuration space integral over the ET probability kernel be-
tween the initially excited molecule and any other molecule in
the system:

o +00
InGy(t) = _Xf dr
ro

6
X / s [1 —exp (— 3AtIiOK2(Q)>i| u(r)v().
Q 2'[}"

(10)

Here, p is the density, A is a parameter which is 1 for donor-
acceptor transfer and 2 for donor-donor transfer (the typical
vibrational case), t is the lifetime, u(r) is the radial distribu-
tion function, and v(€2) is the orientational probability den-
sity function. The above equation differs from Eq. (2.12) of
Baumann and Fayer by the fact that the lower limit, which
was 0 in the reference, is replaced by ry, the exclusion radius.
The exclusion radius is the distance below which the proba-
bility of finding a nearby molecule is 0.

Baumann and Fayer derive relations only in the case for
ro = 0, but here we will generalize their results to work for
any exclusion radius in a nearly analytical fashion. Follow-
ing Baumann and Fayer, two substitutions are made: y = %,

. 3MRS o . .
w(€2; 1) = =2k7(£2), resulting in the expression

7
y(r=ro) 5 1
InG,(1) = —3/ dy (1) —
A Jo J 6u

X fdQ[l —exp (—y(r, Q;0)Ju(r)v(R2). (11)
Q

This is the most general result and can be further sim-
plified in the cases of one, two and three dimensions if the
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radial distribution function is completely uniform except for
the excluded volume effect. For dimension, A € {1, 2,3} and
uniform radial distribution, u(r) € {2, 2xr, 471r2}, the log-
arithm of the self part of the Green’s function in the case
where there is a non-negligible molecular volume may be
expressed as

N6/ \ A6
InG,(t) = —cpar2/071 (5) <;> / dQucA3(Q)
Q

x [yo(sz)—A/ﬁ(e‘-Wm) —D+y (1 - % yo(sz))],

(12)

where y(-,-) is the lower incomplete Gamma function, and

_ 13MR} 2 . . .
Yo(§2) = - =2.=(2) is the value of the dimensionless pa-
o

rameter y when r is at the exclusion radius (ry) lower bound
and the chromophores have a relative orientation of €2 in an-
gular space. cp is the reduced concentration which is equal
to the density multiplied by the Forster volume, i.e., ca
= pVa, where V, is 2R for the one-dimensional case, 7 Ry>
for the two-dimensional case, and (4/3)7 Ry’ for the three-
dimensional case.'®

In the isotropic dynamic limit, the configuration space
integral disappears, k> = 2/3, and the expression is replaced
by

A/J6
t
InG,(r) = —car /67! (—)

T
A
—AJ6, o
X |:y0,dAy/n (e — D4y (1 v y(),dyn>] ,
(13)
where yo 4y, = %’VIRS.

Performing the angular average over the relative orien-
tation of the chromophores is nontrivial and in the isotropic
static case depends on four polar angles regardless of the
dimension. ' For the case of the fixed polar angle model (see
the Appendix), the orientational average depends on only the
two azimuthal angles with respect to the separation vector.

The Huber approximation is a two-particle model (in
that the initial excitation is coupled outward to all nearby
acceptors, but the acceptors are not inter-coupled) plus a
first-order cumulant expansion truncation.'®>3 However, for
a three-dimensional random distribution of molecules, G(7)
calculated with the Huber approximation and with a diagram-
matic method involving an infinite number of particles and
pathways!' showed essentially perfect agreement.®>* This
model is easily modified to encompass inhomogeneous lines.
Instead of the initial excitation being coupled to an accep-
tor density, the initial excitation is coupled to many uncon-
nected acceptor densities each with a different acceptor fre-
quency. For each acceptor density the ET problem is solved
independently, and then averages over all possible acceptor
frequencies and initial excitation frequencies are performed.
Mathematically, Eq. (12) is first exponentiated so that for each
possible Ry a Gy(f) curve is generated. These G,(f) are then
used to calculate the FFCF according to Eq. (5) (where the
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FIG. 8. (1D) 1D Huber approximation (dashed curves) and full Monte Carlo
approach (solid curves). The top set of curves in the figure are normalized
FFCFs with the homogeneous component omitted, and the lower set of curves
the Gs(7) curves. (2D) Same as 1D but for the two-dimensional system. Red
curves are simulations at half the density of the black curves (1 x 104 cm~2
vs 2 x 10" cm~2). (3D) Same as 1D but for the three-dimensional system.

two-particle Green’s functions are replaced with the Huber
Green’s functions).

Figure 8 compares the Huber approximate solutions to
the ETISD (FFCF) and ET (G,(#)) problems to the Monte
Carlo results for the random distribution with excluded
volume model. The static isotropic angular distribution is
used. In these calculations, the vibrational lifetime is 10 ps.
The calculations go out to 100 ps. In a typical experiment,
measurements can be made out to 2 to 4 vibrational lifetimes.
G,(?) is only the decay of the probability of finding the
excitation on the initially excited molecule. The decay of the
probability of being on any molecule caused by the lifetime
is a multiplicative exponential factor. The reduced Forster
concentrations cannot be specified since they are based on the
assumption of homogeneous lines and a single value of R.
Here because the lines are inhomogeneously broadened and
Ry depends on the overlap of the homogenous lines, there is
not a single Ry or reduced concentration. The concentrations
are very high. If the lines were homogeneously broadened,
the 1D, 2D, and 3D reduced concentrations would be 1.5,
1.8, and 1.9. For the 2D case, a concentration of half this 2D
value is also considered. The slower decaying pairs of curves
are the FFCFs and the faster decaying pairs of curves are the
G,(1)s. The solid lines are from the full Monte Carlo solution
to the ET problem and the dashed lines were calculated with
the Huber approximation.

In Figure 8, the 1D Huber approximation to the normal-
ized FFCF with the homogeneous contribution omitted and
G,(¢) are virtually identical to the Monte Carlo simulations for
the entire simulation time. For the 2D case, the lower concen-
tration curves (red, 1 x 10 cm™2) are very close. The FFCF

J. Chem. Phys. 137, 064109 (2012)

Monte Carlo and Huber approximation calculations are vir-
tually identical to 4 or 5 lifetimes, which is generally longer
than experiments can be conducted. At the higher concentra-
tion in 2D (black curves, 2 x 10'* cm™2), G,(¢) has some error
after about one lifetime, but the calculation of the FFCF is still
very good out to about 3 lifetimes.

The agreement between the Huber approximation and the
Monte Carlo simulations is much worse at the high concen-
tration used in the calculations, although it improves rapidly
as the concentration is reduced. The FFCF is quite good out
to about two lifetimes. To get a feel for the error, the curves
were fit to multi-exponentials. The FFCFs fit essentially per-
fectly with a bi-exponential, while the G,(¢) curves require
tri-exponentials to get an excellent fit. The fits to the FFCFs
yield time constants of 25.3 ps and 335 ps (Huber) compared
to 27.1 ps and 237 ps (Monte Carlo). The fits to Gy(¢) yield
time constants of 3.6 ps, 20.7 ps, and 208 ps (Huber) com-
pared to 3.9 ps, 20.8 ps, and 139 ps (Monte Carlo). For both
the FFCF and G;(t), the agreement is very good for the short
time components, but there is an error of ~30% on the long
time components.

V. ETISD COUPLED TO STOCHASTICALLY
FLUCTUATING FREQUENCIES (STRUCTURAL
SPECTRAL DIFFUSION)

Excitation transfer is only one of the two mechanisms
that can produce spectral diffusion. The other is SSD caused
by microscopic changes in the inhomogeneous environments
which molecules experience. For systems in which the vibra-
tional chromophores are in high concentration, structural fluc-
tuations occur simultaneously with the excitation transfer pro-
cess. The goal of most nonlinear spectroscopic experiments in
which the frequency-frequency correlation function is mea-
sured is to extract the SSD correlation function and not the
ETISD correlation function. However, in order to extract the
SSD correlation function it is necessary to have a firm under-
standing of the ETISD process. In the following, calculations
and methods are presented that include both ETISD and SSD,
and it is possible to extract the structural spectral diffusion.
First a phenomenological model for SSD is introduced and
then it is combined with ETISD.

A. Treating structural spectral diffusion

Structural spectral diffusion is associated with stochastic
fluctuations affecting the underlying micro-states responsible
for inhomogeneous broadening of absorption lines. Spectral
diffusion processes are noise processes that are characterized
by statistical autocorrelation functions. These statistical au-
tocorrelation functions (time correlation functions), are typi-
cally measured using time-resolved spectroscopic techniques
such as hole-burning™ and 2D IR spectroscopy.”® To simu-
late total spectral diffusion measured by one of these exper-
iments, a phenomenological model of structural spectral dif-
fusion must be developed that can be coupled to the ETISD
problem.

Structural spectral diffusion can be modeled as a
Langevin process.’’ The damping term of the Langevin
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process ensures that the absorption frequency returns to line
center and the random force results in fluctuations. This
is essentially a filtered noise process with an exponential
autocorrelation. The process is described by the following
assumptions:

d(o(t)

P —ydw(t) + F(1), (14)

(F(1) = 0; (F)F (1)) = Fod(t — 1); ($w()F(t)) =0,
15)

where F(f) is a white Gaussian noise process with power
spectral density Fj and y is the relaxation rate. The above
assumptions state that the center frequency of a chosen oscil-
lator evolves according to a Hookean differential equation that
is noise driven, where the noise is uncorrelated with the fre-
quency state variable and is a Gaussian random variable. The
frequency process given by the above equation is a Gaussian
random process and all moments (time correlation functions
in the continuous time case) are related to the mean and co-
variance via the standard Gaussian relationships for moments.
The Green’s function solution to the differential equation is

Sw(t) = e 7 8w(0) + / F(r)e """ dr. (16)
0

To ensure strict-sense stationarity of the stochastic pro-
cess it may be shown that Fy = 2y (8w(0)?), where (§w(0)?)
is the variance of the frequency and defines the inhomoge-
neous linewidth in the absorption line being modeled. By
substitution of

s
Saw(s) = e 7 8w(0) + / F(r)e "¢ Ddr
0

into
t
Saw(t) = e 7 8w(0) + / F(v)e 74z
0

for times s < ¢, it is possible to show that dw(f)
= e 7 IBw(s)] + [ F(t)e7"dr.  This  relation
implies that it is possible to increment the Langevin process
by sampling from the following stochastic process:

o(t) = e "I Bw(s)] + et — 5), (17)

e(t — ) ~ N(O, (§w(0)*)(1 — e~ 27=9)y), (18)

This procedure permits discrete time propagation of the
stochastic process describing SSD on a continuous frequency
grid with any time step. The continuous frequency distribu-
tion generated by the error term above can also be discretized
onto a frequency grid for ease of simulation. In experiments
that measure SSD, a mutli-exponential form of the FFCF
is usually used in the data analysis.’®>° The treatment
given above yields a single exponential FFCF for the SSD.
For multi-exponential FFCFs, multiple independent SSD
processes can be simulated and their outputs simply added.

Figure 9 illustrates a sample simulation by the above
method for an inhomogeneous width of 16 cm™! and a SSD
correlation time of 75 ps. Panel (a) shows a random trajectory
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FIG. 9. (a) Example of a small piece of a simulated discrete time spectral
diffusion noise process for a time constant of 75 ps and standard deviation of
16 cm™!. (b) Theoretical normalized autocorrelation (red dashed curve) and
normalized sample autocorrelation (solid black curve) from the noise process
shown in panel (a).

of frequencies. Note that panel (a) is just a short snapshot of
the total simulation. Panel (b) shows the numerically calcu-
lated normalized autocorrelation function (black curve) from
the full trajectory. The red dashed line is the theoretical nor-
malized autocorrelation (exponential decay of 75 ps). Clearly
the two curves are essentially identical. The agreement
demonstrates the accuracy of the simulation method. One
caveat is that the simulated variance (45.75 cm™2) is slightly
lower than the theoretical variance (46.16 cm~2) due to the ef-
fect of discretizing the frequency distribution. However, this
discretization effect does not impact the simulated correlation
time which is the most important feature of the model.

B. Multiplicative approximation to the coupled
stochastic-dynamic system

Using the idea of propagating the SSD noise process by
using a deterministic component plus a noise term, it is possi-
ble to build a multiplicative approximation to the FFCF of the
coupled stochastic-dynamic system for coupled ET/SSD. The
assumptions in this approximation are that there is a single



064109-12  D. E. Rosenfeld and M. D. Fayer

excitation and that there will be a sequential propagation of
ET and SSD. First, ET will occur for a short time ¢, and then
SSD will occur for a short time 7. Clearly, in the limit of small
time steps this procedure will generate the correct dynamics.

To begin working with this approximation first we write
down the FFCF in terms of iterated conditional expectation
values:

(8(®)8(0))gr(ry = Esw(0)Eswr)sw©) [B(H)@(0) | $a(0)] ,
(19)

(Sa(t + 1)8w(0)) g1y +sSD(T)
= Es00)Eswi+0)500) [So(t + T)w(0)|dw(0)] . (20)

Sw(1)]|8w(0) is determined by the ET process and is distributed
as P(8w(t)|w(0)), which is p(¢) from Eq. (8). P(8w(#)|w(0)) is
the probability distribution given by the ET dynamic after a
time ¢. Equation (19) is the short time propagation of the exci-
tation transfer dynamic process. Equation (20) is the sequen-
tial propagation of the short time ET process followed by the
short time SSD process. Expanding the probability law of the
sequential ET/SSD process within Eq. (20) we achieve

(8ot + 1)8w(0))ET(r)+55D(T)
= Esu0)Esw)s00)Bem[(e 77 Sw(t) + £(7))w(0) | §w(0)],
(2D

where the SSD process has been propagated using the deter-
ministic exponential multiplication and the noise term &(t)
which is given by Eq. (18). We take apart the internal sum by
linearity of expectation,

{(Sa(t + 1)8w(0))g1()+ssD(T)
= ¢ ""Esu0) Esoiso0Eem [0 (0) | §0(0)]

+ Es00)Esotso@Eeq) [£(T)@(0) | w(0)] . (22)

Clearly, the second term is zero since the error term in
the SSD propagator has zero mean. The first term, referring
to Eq. (19) is equal to

(St + 1)6w(0))r)+sspry = €77 (8w(t)3w(0)Ery) -
(23)

which shows that within a short time approximation the cou-
pled ET/SSD system behaves as the ET only FFCF multiplied
by the normalized SSD FFCF. This motivates the approxima-
tion that the combined ET/SSD FFCF will be equal to that of
the SSD FFCF multiplied by the ETISD only FFCF. Here we
are considering a SSD FFCF that is a single exponential. As
mentioned above, the SSD FFCF can have more terms than a
single exponential. The time constant for the full FFCF will
end up being different from the underlying SSD time con-
stant as will be shown empirically for a number of systems
in Sec. V C.

This approximation is not true at all times due to the
fact that the SSD process intrinsically changes the statistical-
dynamical law of ET, i.e., the Ps,sw(0) 1S changed at later
times in the propagation process. The SSD process, in fact,
speeds up the ET dynamics because it pulls initially distant
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frequencies towards the center of the line due to the expo-
nential damping term of the SSD process. This means that
molecules that initially undergo slow excitation transfer will
on average undergo faster excitation transfer at later times.
This phenomenon is observed in calculations below.

C. Solving the coupled stochastic-dynamic system

Solving for the dynamics in the case of ETISD and SSD
requires coupling the ET dynamic system with the stochastic
fluctuations of SSD. Perhaps the most straightforward way to
solve this problem on a discrete time grid of size N is to recur-
sively build the N-dimensional probability distribution of fre-
quencies that obey the SSD law. Unfortunately, this method
results in a need to keep track of m" probabilities and fre-
quency vectors where m is the number of elements in the fre-
quency grid upon which the SSD and ETISD problems are
solved. This problem is clearly computationally impossible
as N increases, and therefore is more efficiently solved by
Monte-Carlo averaging over frequency trajectories sampled
from the stochastic SSD system.

The method of coupling the two dynamic systems is to
co-propagate their state variables. For example, in a single
time step, first new frequencies are drawn from the stochastic
SSD process and then, using populations on the vibrational
chromophores from the previous time step, new populations
are calculated according to the dynamic law governing ET.
This method will first be developed in an ensemble of particle
pairs case, extended to the N-particle case, and finally approx-
imations to allow faster calculation of ETISD in the presence
of SSD will be presented.

1. The ensemble of particle pairs case

For the ensemble of pairs of vibrational chromophores
with no interactions between pairs, the discrete time-
frequency SSD coupled ETISD problem can be solved ex-
actly given a random discrete time trajectory along the given
frequency grid. If the probability of the excitation lying on the
initially excited molecule at a time ¢ is denoted by Ey(?), then
Ey(t+7) is given by

1
Eo(t+1)= 5 (l + e*2k(wo(!),w1(t))r(ZEO(t) _ 1)) , (24)

where k(wy(t),w;(t)) is the Forster transfer rate at the time ¢
due to the current values of the stochastic time-dependent fre-
quencies @y and ;. In the ensemble of particle pairs case,
only a single variable (Ej) must be carried between time
steps due to the law of total probability, in the N-dimensional
case at least N—1 probabilities must be accounted for at ev-
ery time step. As it will be useful in developing further ap-
proximations to this problem, we also develop a graphical
method for propagating the ET system when SSD is occur-
ring simultaneously. The process, which is equivalent to the
algebraic method of Eq. (24), is illustrated in Figure 10. At
the start of a new time step from ¢ to ¢ 4+ 7, the remain-
ing initially excited population Ey is found on the new dy-
namic system curve for the new frequencies drawn from the
stochastic process. The remaining initially excited population
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FIG. 10. Graphical procedure for coupled dynamic/stochastic system propa-
gation. At the start of a new time step from 7 to ¢ + 7 the remaining initially
excited population, Ejp, is found on the new dynamic system curve for the
new frequencies drawn from the stochastic process. The remaining initially
excited population is then propagated down the new dynamic system curve
for t. This method is equivalent to the algebraic propagation in Eq. (19). This
method may be used for propagation of the Huber approximation coupled to
a stochastic spectral diffusion process, or any other method for estimating
G(1) as a function of frequency pairs.

is then propagated down the new dynamic system curve for
7. For each trajectory and time step the contribution of a
particular trajectory to the Monte Carlo averaged FFCF is cal-
culated by Eq. (8).

For the standard two-particle parameters outlined in the
Appendix, we have solved the SSD coupled ETISD problem
for various SSD rates. The results (solid black curves) are
the total normalized FFCFs with the homogeneous compo-
nent omitted shown in Figure 11(a). The dashed black curve,
which is the top curve in each panel, is the FFCF for ETISD
in the absence of SSD. The coupled SSD and ETISD prob-
lem was also solved for the case of a separation distance
of 5 A, for which ET and, therefore, the ETISD is faster
(Figure 11(b)). The SSD ranges from slow, 800 ps, which is
comparable to the ETISD, to fast, 25 ps, which is much faster
than the ETISD.

Figure 11 also illustrates the multiplicative approxima-
tion to the coupled ETISD and SSD problem. The red dashed
curves are the result of fitting the properly calculated total
spectral diffusion, which has contributions from ETISD influ-
enced by SSD and SSD, to the form of an exponential decay
multiplied by the ETISD with no SSD (dashed black curves)
as suggested by the approximation discussed above. The SSD
exponential time constant obtained from the fit using the mul-
tiplicative approximation is not equal to the true time constant
of the SSD stochastic process. However, the important result
is that the SSD time constants from the multiplicative approx-
imation are close to the true SSD time constants. Figure 12
illustrates the true SSD process time constants plotted against
the multiplicative approximation SSD fit time constants for
both d = 8.0 A and d = 5.0 A. The dashed line is at 45°,
which would be the result if the multiplicative approximation
was perfect. It is a guide to the eye to make it easier to
see the error in the multiplicative approximation. For the
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FIG. 11. Normalized FFCFs with the homogeneous component omitted for
the ensemble of particle pairs ET models with SSD processes co-propagated.
The FFCFs from the coupled ET/SSD process (solid black) are calculated for
SSD time constants of 25 ps, 50 ps, 75 ps, 100 ps, 200 ps, 300 ps, 400 ps,
and 800 ps. The dashed black curve is the FFCF due to ETISD without any
accompanying SSD process. The red dashed curves are fits to the coupled
ET/SSD FFCFs by assuming the profile is created by an exponential decay
multiplied by the non-SSD coupled ETISD curve. Labels lie above their re-
spective curves. (a) Pair separation distance, d = 8 A. (b) Pair separation
distance, d = 5 A.
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d = 5.0 A the actual time constant is 1.12 times the time con-
stant obtained from the multiplicative approximation, and for
the d = 8.0 A the actual time constant is 1.058 times the ap-
proximate time constant. With d = 5.0 A, excitation transfer is
very fast. Even in this case, the multiplicative approximation
does not produce severe error in the determination of SSD.

The fact that the multiplicative approximation (red and
blue lines in Figure 12(a)) yields SSD that is faster than the
input process is caused by the fact that SSD speeds up ET.
Therefore, the ETISD contribution to the total FFCF is faster
than the FFCF with no SSD that is used in the approxima-
tion. The enhancement in the FFCF decay is caused by the
enhancement of ETISD by coupling to SSD, as the SSD pro-
cess is not modified by excitation transfer. The SSD process
creates a stochastic grid of frequencies upon which the ETISD
problem is solved. The stochastic nature of the frequency grid
changes the nature of the ET process. Figure 12(b) shows that
the ensemble averaged G,(#) curves decay faster when SSD is
included in the model, demonstrating the predicted result of
coupling between SSD and ETISD.
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FIG. 12. (a) Actual time constant of SSD process versus the one determined
by assuming SSD can be approximated by an exponential decay multiplied
by the ETISD curve calculated without the influence of SSD. The system is
the ensemble of particle pairs with the separations d = 8 A (blue squares)
and d = 5 A (red diamonds). Solid lines are linear fits (R2 > 0.999). The
dashed line is an aid to the eye that would occur if the approximation gave
the correct result. The true time constant is always longer than the fit time
constant, demonstrating that the ET/SSD coupling results in faster ETISD
than would occur without the two processes being coupled. The faster the ET
occurs, the faster the fit time is relative to the actual time. (b) Enhancement
of the underlying ET process by the inclusion of SSD is observed through the
self part of the Green’s function for the d = 8 A case. G,(1) curves are shown
when SSD is excluded (dashed curve) and for the ET coupled to SSD with
time constants between 25 ps and 800 ps (solid curves; same time constants
as in Figure 11). G(¢) decays faster as the SSD process becomes faster.

2. N-particle case

The general N-particle case corresponds to any system
— 1D, 2D, 3D, periodic, or non-periodic. Before describing
results for a specific system, the general methodology will be
revisited.

To solve the N-particle system, at each time step the in-
stantaneous frequencies drawn from the SSD process are used
to calculate the matrix propagator given by Eq. (7) for a sim-
ulation time step of 7. This propagator is used to update the
frequency probabilities for the initial excitation as it is tracked
across the manifold of acceptors. The new probability vector
is passed to the next iteration and a new propagator is cal-
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FIG. 13. Results of full coupled ET/SSD calculation for two 2D geometries.
(a) Normalized FFCFs with the homogeneous component omitted for the 2D
HCP lattice system (with fixed polar angle model with 6 = 45°) for 25-800
ps SSD time constants (same as in Figure 11). Dashed curve is ETISD pro-
file without coupling to SSD. Black solid curves are the FFCFs from the full
Monte Carlo solutions to the coupled ET/SSD problem. Red dashed curves
are the result of assuming that FFCF can be approximated as an exponen-
tial decay multiplied by the ETISD curve calculated with no SSD. Labels
lie above their respective curves. (a, inset) Comparison of the multiplicative
approximation time constants to the simulated SSD time constants (squares).
Red line is a linear fit with a slope of 1.17. The dashed line is an aid to the eye
that would occur if the approximation gave the correct result. (b) Normalized
FFCFs with the homogeneous component omitted for the 2D random with
excluded volume system (with fixed polar angle model with & = 45°) for 25-
800 ps SSD time constants. Curves are as in Panel (a). Labels lie above their
respective curves. (b, inset) Comparison of the multiplicative approximation
time constant to the simulated SSD time constant (squares). Red line is a lin-
ear fit with a slope of 1.14. The dashed line is an aid to the eye that would
occur if the approximation gave the correct result.

culated using the new frequencies given by the SSD process
progression.

As all N-particle systems are essentially the same prob-
lem, we show only a calculation of the SSD coupled ETISD
problem for a two-dimensional hexagonal lattice model and
the random distribution with excluded volume model using
the parameters from the Appendix. The angular model is
a fixed polar angle model with a 45° angle with respect to
surface normal. Figure 13(a) shows the results for the 2D
hexagonal lattice case. The dashed black curve is the normal-
ized FFCF with the homogeneous component omitted with
no SSD. The solid black curves are the FFCFs for the systems
with SSD time constants ranging from 25 to 800 ps. Clearly,
as the SSD rate increases, the FFCF decays more rapidly. The
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dashed red curves are the result of assuming that the FFCF
can be approximated by an exponential decay multiplied by
the ETISD FFCF with SSD omitted. A single exponential is
used due to the underlying single exponential SSD process.
This approximation agrees reasonably well with the full
simulations. The inset of Figure 13(a) shows the relationship
between the time SSD constants used in the multiplicative
approximation to the FFCF and the underlying SSD time
constants. A smaller time constant in the fit is indicative of en-
hancement of the underlying ET process as discussed above in
the ensemble of particle pairs case. In this case the true under-
lying time constant is 1.17 times the fit constant. Figure 13(b)
shows similar results for the 2D random distribution with
excluded volume model. Again, the normalized FFCF with
homogeneous component omitted is shown for the case of no
SSD (dashed curve) and SSD time constants between 25 ps
and 800 ps (solid black curves). The red dashed curves show
the approximation that the FFCF is equal to an exponential
decay multiplied by the ETISD FFCF with SSD omitted.
Again this approximation agrees well with the FFCFs from
the full simulation. The inset in Figure 13(b) shows the
agreement between the fit time constant and the true time
constant input into the simulation. For this system the true
underlying time constant is 1.14 times the fit time constant.
There is a common trend in the enhancement factors across
all systems simulated, both pairs of particles and N particles.
The faster ETISD occurs without SSD, the faster the apparent
exponential decay time constant is relative to the underlying
SSD process time constant due to the enhancement effect of
SSD on ET.

The multiplicative approximation (that the measured
FFCF is equal to the SSD FFCF multiplied by the ETISD
only FFCF) allows for the estimation of SSD process rates
for systems undergoing simultaneous ETISD and SSD even
when SSD has not been included in the calculation of ETISD.
Therefore, it is possible for the experimentalist to assess the
rate of SSD in the system once a model for ET has been cho-
sen. The error in using this approximation has been shown to
be on the order of 5%—20% for systems undergoing ET at the
rates illustrated in this paper.

3. Coupled ETISD and SSD within
the Huber approximation

The Huber approximation can be used to solve the
coupled ET/SSD problem using the graphical propagation
method illustrated in Figure 10. First, two frequency vectors
are independently drawn from the SSD noise process. Us-
ing the G,(¢) curves from the Huber calculation for each fre-
quency, the ET process is solved. Specifically, the intersection
between the remaining probability of excitation on the ini-
tially excited molecule is denoted as Ey(f) (Eyp(0) = 1), with
the G'"“?}(¢) curve for the two SSD drawn frequencies w;,
w, at the time ¢. The initial excitation is then updated to the
new value Eo(f + 1) = G“"“!(t + 1) where 7 is the simula-
tion time step and the process is repeated. The FFCF is calcu-
lated in the same manner as for the ensemble of particle pairs
case.
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FIG. 14. (a) Comparison of normalized FFCFs with the homogeneous com-
ponent omitted for combined ET/SSD models from a 2D random spatial dis-
tribution (with fixed polar angle model, 6 = 45°) using the full Monte Carlo
method (black curves) and the Huber method (dashed red curves) for SSD
time constants from 25 ps to 800 ps (same as in Figure 11). The slowest de-
caying curves (both dashed and solid) have no SSD process. Surface density
(Myissetto 1 x 10" cm~2. Labels lie above their respective curves. (b) Same
quantities except for a surface density (I') of 2 x 10'* cm™2 and SSD time
constants of 25 ps, 100 ps, and 400 ps. The blue curve shows an exponential
decay of 25 ps, illustrating that even when SSD is fast compared to ETISD
calculated with no SSD the use of an ET model significantly alters the curve
shape. The slowest decaying curves (both dashed and solid) have no SSD
process. Except for the bottom most curve, labels lie above their respective
curves.

Figure 14(a) illustrates the agreement between the nor-
malized FFCFs with the homogeneous component omitted
for the coupled ETISD/SSD problem solved within the Huber
approximation and the full Monte-Carlo solution for the half-
density (1 x 10 cm™2) 2D system. The lines are plotted
in pairs of solid (full Monte Carlo calculation) and dashed
(Huber approximation) curves. The top pair (dashed black
curve; solid black curve) are for the case of no SSD (these
curves are the same as the red curves shown in Figure § - 2D).
The next eight pairs of curves (red dashed curves; black solid
curves) correspond to simulations with SSD time constants
of 800-25 ps. The Huber approximation in this low density
case agrees excellently with the full Monte Carlo calculation.
Interestingly, as the SSD rate increases the Huber approx-
imation improves in agreement which is best seen in the
deviation of the dashed and solid curves at 100 ps. The SSD
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dependent agreement is due to the fact that as the ETISD
becomes less of a factor in determining the overall FFCF,
the accuracy of the ETISD solution is less important.
Figure 14(b) shows the comparison between the higher
density (2 x 10 cm™2) SSD/Huber approximation and
the full Monte-Carlo solution. As in panel (a), the top pair
of curve (dashed — Huber; solid — full Monte Carlo) is
for the case of no SSD (these are the black curves from
Figure 8 - 2D). The next three pairs of curves (red dashed
— Huber; black solid — full Monte Carlo) are for the SSD
time constants 400ps, 100ps, and 25 ps. The agreement of
the Huber approximation in the case of no SSD is seen to be
quite good up to about 30 ps, after which it rapidly degrades.
This is discussed above and is due to the high concentration
chosen for the simulations. The agreement however improves
as the SSD rate is increased. At a time constant of 25 ps, the
agreement is essentially quantitative. To illustrate that the
SSD coupled Huber approximation with a fast time constant
is still different from just assuming that ETISD is negligible
(i.e., the FFCF is just the SSD component), an exponential
decay of 25 ps is shown as well (blue curve). Even when SSD
is fast relative to ETISD, including the ET process is impor-
tant, as fitting the FFCF with a single exponential decay SSD
only model results in a decay time of 21 ps, a 16% additional
error. These results indicate that the SSD coupled Huber ap-
proximation is a valid approximation to the full Monte-Carlo
simulation approach, and is essentially exact when SSD is
much faster than ETISD without SSD. It is conducive to use
this method when the Monte-Carlo method requires excessive
computation and the radial distribution function of the system
allows for easy calculation of the integral in Eq. (11).

VI. CONCLUDING REMARKS

The theory developed above to describe ETISD in the
case of both static and stochastic fluctuating inhomogeneities
is broadly useful throughout spectroscopy. In any dense
system in which excitation transfer can occur, our theory
can help elucidate the underlying spectral dynamics. Further-
more, other experimental observables often depend implicitly
upon the excitation transfer process such as the orientational
anisotropy. Observables can only be fully understood after ac-
counting for the impact of ET, which depends on SSD. Since
the ET is itself modified by any underlying SSD processes,
a full understanding of the spectral dynamics is necessary
to interpret any experiment in systems where the distance
between chromophores approaches the Forster radius that
would apply for homogeneously broadened lines. For
measurements of SSD, even when the SSD is much faster
than ETISD determined in the static limit, substantial errors
are possible if ET is not accounted for. Fast SSD does not
overwhelm ETISD calculated in static limit because SSD
causes ETISD to become faster than the static limit. As the
rate of SSD increases, so does the rate of ETISD. To properly
account for ET, it is necessary to know the homogeneous
linewidth and the SSD. Only in systems in which the homo-
geneous linewidth is close to the total linewidth the standard
Forster method can be used because there is essentially no
SSD.
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Specifically, we have solved the “forward” problem;
given a set of parameters that describe excitation transfer and
structural spectral diffusion, the FFCF (or any other observ-
able) may be calculated. To solve the “inverse” problem, that
is, given the data, it is desired to determine the dynamical
parameters, which is the problem faced by the experimental-
ist, one would simulate a combined ET/SSD system much
like the above cases and vary the parameters of interest un-
til agreement with the experiment is obtained. Specifically,
we recommend the following protocol given that an experi-
mentalist wishes to measure an observable which depends on
excitation transfer. First, measure the parameters required to
simulate the excitation transfer, which includes the transition
dipole moment, the non-radiative lifetime (which combined
with the transition dipole gives the quantum yield®), the ho-
mogeneous linewidth, and the inhomogeneous linewidth. If
the system undergoes spectral diffusion, then the experimen-
tal spectral diffusion must be measured using 2D IR or an-
other method. By simulating the coupled ET/SSD system and
comparing the FFCF to the experimental FFCF, it is pos-
sible to extract the underlying SSD time constant(s). Only
now is it correct to calculate another observable that de-
pends on the excitation transfer. For example, suppose the
observable of interest is the orientational anisotropy. Only
after accounting for coupled ETISD and SSD is it possible
to determine the amount of anisotropy decay due to exci-
tation transfer. Excess anisotropy decay beyond the amount
due to excitation transfer can be attributed to orientational
relaxation.

The theory presented here also illustrates the broad utility
of ultrafast nonlinear optical spectroscopy and specifically
techniques such as two-dimensional infrared spectroscopy.
Only such techniques can extract the underlying homo-
geneous and inhomogeneous linewidths of chromophores.
These linewidths are necessary inputs into a microscopic
model of the ET or ETISD process. Furthermore, techniques
such as 2D IR can probe the spectral diffusion, another
necessary input for calculating the ETISD process. Without
such techniques it is impossible to take apart the underlying
dynamics.

The Monte-Carlo based techniques developed here also
have broad applications in the molecular simulation commu-
nity. Instead of full quantum mechanical models, it is pos-
sible to build our dynamic system approach on top of clas-
sical MD. The structures upon which the ET dynamic sys-
tem is solved can be sequential snapshots from a MD simu-
lation. Excitation transfer can therefore be incorporated into
MD models of spectroscopic line shapes quite easily. This
extension of the methods discussed above into MD simula-
tions will permit the study of systems where translational and
rotational motions happen on the time scales of excitation
transfer.
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APPENDIX: PARAMETERS USED FOR EXCITATION
TRANSFER CALCULATIONS

To illustrate trends and the underlying physics of excita-
tion transfer induced spectral diffusion, consistent model pa-
rameters were used across all simulations. The values used
are representative of many molecular systems but do not cor-
respond to a specific one.

The “chromophore” modeled has a vibrational reso-
nance at 5 um (2000 cm™') with an integrated absorption
strength of 1.8 x 10* M~' cm™? (integration performed
in wave numbers), in a medium of index of refraction
1.4 corresponding to a transition dipole moment of
0.34 D in a medium of index of refraction 1.4. The
“measured” lifetime is 10 ps which is taken to be the
non-radiative lifetime. Combining the non-radiative lifetime
with the transition dipole moment it is calculated®® that the
quantum yield is 4.1 x 10~°. The homogeneous (Lorentzian)
linewidth, except where noted otherwise, is taken to be
2 cm~!. The inhomogeneous (Gaussian) linewidth, except
where noted otherwise, is taken to be 16 cm~!. The full
linewidth using these two linewidths is 17.093 cm~'. The
frequencies were gridded on a 0.5 cm™! mesh and the grid
was allowed to extend to 2.5 inhomogeneous half widths in
either direction from the line center leaving a 0.32% chance
of finding a center frequency outside of the simulated region.

For ensemble of pairs of particle systems, the two par-
ticles are taken to be 8 A apart and «2 is taken to be in the
dynamic limit and equal to 2/3.

For one-dimensional systems, a density of 1.43 x 107
molecules/cm is used, which corresponds to a lattice constant
of 7 A for the one-dimensional lattice. The hard sphere model
simulation was run with a hard sphere radius of 2.62 A and the
exclusion radius in the random simulation was set to 5.0 A.
All simulations were performed in boxes of ~120 A length.
Angular models for the 1D system were statically averaged
and isotropically distributed.

For the two-dimensional systems simulated, the density
is assumed to be 2 x 10'* molecules/cm? except where oth-
erwise noted. The molecular diameter (exclusion radius) is
taken to be 6 A for the random distribution with excluded vol-
ume model, except where otherwise noted. The hard sphere
radius for the loosely packed hard sphere model was 2.92 A.
Prior to Sec. V, except where otherwise noted, the distribution
of angles is static and isotropic. For the coupled SSD/ETISD
calculations a fixed polar angle model is assumed. The polar
angle, 6, of the transition dipole away from the surface nor-
mal is assumed to be 45°. The azimuthal angle that describes
the orientation of the transition dipole in the surface plane
has a uniform random distribution. For this fixed polar an-
gle model, given the angles ¢, and ¢, denoting the azimuthal
angles of the donor and acceptor chromophores away from
the donor-acceptor separation vector, « (@1, @2, 8) = cos 2(6)
+ sin2(0)(sin (¢1)sin (¢2) — 2cos (¢1)cos (¢2)). Simulations
were run in 60 A by 60 A boxes.
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For three-dimensional systems, the transition moments
are isotropically distributed in either the dynamic or static
limits and a single density is simulated 2.92 x 10%!
molecules/cm®. This corresponds to a 7 A lattice constant in
a simple cubic lattice. The hard sphere model for 3D systems
was run with a hard sphere radius of 3.0 A and the exclusion
radius in random with excluded volume models was set to
6.0 A. Random and hard sphere models were run in a cube
with 30 A sides.

For all simulations other than the ensemble of particle
pairs simulations, periodic boundary conditions were en-
forced by the minimum image criterion. Hard sphere distribu-
tions were generated by filling a volume with fixed position
hard spheres randomly until no more spheres could be
added.
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