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Functionalized organic monolayers deposited on planar two-dimensional surfaces are important sys-
tems for studying ultrafast orientational motions and structures of interfacial molecules. Several
studies have successfully observed the orientational relaxation of functionalized monolayers by fluo-
rescence depolarization experiments and recently by polarization-resolved heterodyne detected vi-
brational transient grating (HDTG) experiments. In this article we provide a model-independent
theory to extract orientational correlation functions unique to interfacial molecules and other uniax-
ial systems based on polarization-resolved resonant third-order spectroscopies, such as pump-probe
spectroscopy, HDTG spectroscopy, and fluorescence depolarization experiment. It will be shown (in
the small beam-crossing angle limit) that five measurements are necessary to completely character-
ize the monolayer’s motions: I‖(t) and I⊥(t) with the incident beams normal to the surface, I‖(t) and
I⊥(t) with a non-zero incident angle, and a time averaged linear dichroism measurement. Once these
measurements are performed, two orientational correlation functions corresponding to in-plane and
out-of-plane motions are obtained. The procedure is applicable not only for monolayers on flat sur-
faces, but any samples with uniaxial symmetry such as uniaxial liquid crystals and aligned planar
bilayers. The theory is valid regardless of the nature of the actual molecular motions on interface.
We then apply the general results to wobbling-in-a-cone model, in which molecular motions are re-
stricted to a limited range of angles. Within the context of the model, the cone angle, the tilt of the
cone relative to the surface normal, and the orientational diffusion constant can be determined. The
results are extended to describe analysis of experiments where the beams are not crossing in the small
angle limit. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870436]

I. INTRODUCTION

The properties of molecules on interfaces are of increas-
ing interest, particularly due to recent developments in chem-
ical methodologies used to functionalize various types of
surfaces.1 For example, functionalized surfaces have potential
applications as molecular heterogeneous catalysts,2 and or-
ganic molecular coatings can be used to modify surface prop-
erties that are useful in biomedical applications.3 For molec-
ular monolayers bound to a surface, it is useful to determine
both the static structure and dynamics of the surface bound
molecules. A functional group bound to a surface by alkyl
chains will have some average angle relative to the surface
normal, as defined by some aspect of the group such as a tran-
sition dipole, as well as a distribution of angles (a cone of an-
gles) about the average. In addition, the angles within the cone
are not static. Thermal fluctuations will cause the angles to
fluctuate. The system will evolve over time such that a range
of angles is sampled. This type of orientational dynamics is
frequently referred to as wobbling-in-a-cone motion.4–6 It is
of primary interest to elucidate these orientational dynamics
of interfacial molecules using time-resolved spectroscopy.

For systems that are isotropic in three dimensions, it is
well known how to measure the orientational dynamics us-
ing various types of polarized spectroscopies, such as fluores-

a)fayer@stanford.edu

cence depolarization,7 polarized pump-probe experiments,8

and polarized transient grating experiments.9 In experiments
with isotropic samples, the anisotropy r(t) is obtained through

r(t) = I‖(t) − I⊥(t)

I‖(t) + 2I⊥(t)
, (1.1)

where I‖(t) is the time dependent signal observed with the
excitation and the detection polarizations parallel to each
other, and I⊥(t) is the signal with orthogonal polarizations.
For isotropic samples, the anisotropy r(t) is directly propor-
tional to the orientational correlation function of the transition
dipole moments, 〈P2(μ̂(t) · μ̂(0))〉, where P2 is the 2nd order
Legendre polynomial.7, 10

The simplest case is molecules in an isotropic liquid,
where the decay of the orientational anisotropy is directly re-
lated to the orientational diffusion constant.7 It is also known
how to treat molecules at interfaces if the interfaces support-
ing the molecules are randomly oriented in the sample. Exam-
ples of such systems are fluorophores adsorbed on surfaces of
an ensemble of randomly oriented porous silica particles,11, 12

fluorophores embedded in randomly oriented bilayers,13 and
water molecules at the interface of reverse micelles.14, 15 In
such systems, the orientational relaxation of the chromophore
under observation may not sample all angles. However, as
long as the initial distribution of transition dipole directions is
isotropic, the anisotropy given in Eq. (1.1) is still directly pro-
portional to orientational correlation function. The anisotropy,
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r(t), measured for these surface bound molecules in a sys-
tem with overall random orientation typically shows a de-
cay followed by a significant plateau. The wobbling-in-a-cone
theory4–6, 16 relates the decay time constant and the plateau
level to the cone angle (angular width of the cone) and the
orientational diffusion constant. The cone angle is extracted
from the plateau level observed in r(t). Combining the cone
angle and the r(t) decay constant yields the angular diffusion
constant for motion in the cone of angles. With this theoret-
ical framework, time-resolved depolarization spectroscopies
have been useful in providing a detailed picture of interfacial
molecular motions for 3D isotropic systems.

While the approach outlined above for investigating static
angular distributions and the dynamics of surface bound
molecules provides useful information, it has limitations. Ex-
periments on dispersed isotropic 3D systems cannot address
the questions of (1) how the interfacial molecules are oriented
relative to the surface (the tilt angle of the cone relative to the
surface normal) and (2) how in-plane and out-of-plane orien-
tational dynamics differ.

To extract these structural and dynamical properties
unique to interfaces, the polarization-resolved measurements
must be applied to molecules bound to or at two-dimensional
(flat) surfaces. There are numerous reports of static (time
averaged) molecular orientations on surfaces and in mem-
branes studied by fluorescence and IR linear dichroism spec-
troscopic methods.17–24 Sum-frequency generation (SFG)
spectroscopy has also provided detailed structural informa-
tion for molecules at liquid-air interfaces.25 Compared with
these static properties, the studies of orientational dynam-
ics of molecules on two-dimensional interfaces are lim-
ited. Polarization-resolved pump-probe SFG spectroscopies
have been applied to observe the orientational relaxation
of molecules on liquid-air interfaces.26–29 Also, fluorescence
probes were introduced selectively at liquid-liquid or liquid-
air interfaces to study their reorientation dynamics by time-
resolved fluorescence depolarization spectroscopy.30–32 Most
recently, an organic monolayer functionalized with a vibra-
tional probe was studied, and the results demonstrated that
picosecond orientational motions of the monolayer can be
probed by polarization-resolved infrared heterodyne detected
transient grating (HDTG) spectroscopy.33

These studies were successful in providing some impor-
tant insights about the in-plane and out-of-plane motions of
interfacial molecules, although the interpretations involved
model dependent assumptions. It is generally assumed that
in-plane and out-of-plane motions of interfacial molecules are
decoupled.26, 30 This assumption is not valid in general as seen
in examples shown in Sec. III. A model independent theory
to extract in-plane and out-of-plane orientational motions is
required.

Zannoni34 and Szabo35 independently studied the fluo-
rescence depolarization of probes in thick samples of macro-
scopically aligned uniaxial liquid crystals in a model inde-
pendent manners. In these studies it was pointed out that the
anisotropy in Eq. (1.1) is not directly proportional to the ori-
entational correlation function for uniaxial systems, but there
is still a linear relationship for the case in which the polar-
ization (E-field) of the excitation beam is set parallel to the

C∞ symmetry axis of liquid crystal. Molecules on a planar
interface, such as an organic monolayer, can be regarded as
a uniaxial system where the normal to the substrate’s sur-
face is the C∞ axis. To apply the theories by Zannoni and
Szabo to the case of two-dimensional monolayers, the exci-
tation beam must propagate virtually parallel to the surface
with a grazing angle so that the polarization of the excitation
beam is normal to the surface. This geometry was previously
used for fluorescence experiment to probe out-of-plane mo-
tions of interfacial molecules,30–32 but is impractical for many
of the spectroscopic methods, such as HDTG and pump-probe
spectroscopies. Furthermore, in this approach only the out-of-
plane motions can be studied; a model independent method
for probing the in-plane motion of molecules has not been
presented.

In this article, we present a model independent theory to
fully characterize dynamical and structural properties of inter-
facial molecules on a two-dimensional surface (flat surface)
based on third-order resonant spectroscopies, such as flu-
orescence depolarization spectroscopy, polarization-resolved
pump-probe spectroscopy, and polarization-resolved HDTG
spectroscopy. It will be also shown that the theory is valid for
any system with uniaxial symmetry. The discussion will pro-
ceed in the following manner. In Sec. II, we will first show that
the necessary response functions can be rigorously expressed
in terms of the following four quantities: the time dependent
correlation functions of spherical harmonics (〈Y 0∗

2 Y 0
2 〉 and

〈Y 2∗
2 Y 2

2 〉), a parameter reflecting time average of molecular
orientation (〈Y 0

2 〉), and a time dependent isotropic population
decay (P(t)). Based on the formulas obtained for the response
functions, we prove that these four terms can be experimen-
tally obtained by the four measurements: I‖(t) and I⊥(t) with
the beam(s) incident normal to the surface, I⊥(t) with a certain
incident angle χ (tilted surface), and also the time averaged
fluorescence or infrared linear dichroism. In an actual exper-
iment, I‖(t) with the same incident angle χ is also necessary
to account for the difference in the number of molecules in
the focal volume between the two different surface configu-
rations. The anisotropy r(t) given by Eq. (1.1) is not the cor-
rect quantity to extract the dynamical and structural informa-
tion. Instead, the spherical harmonic correlations functions,
〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉, are the set of orientational correlation

functions.
In Sec. III, model calculation from the response func-

tions derived in Sec. II is presented for molecules (transition
dipole moments) displaying wobbling-in-a-cone motions on
a planar surface. It is shown how the cone angle (width of
the cone) and the cone tilt angle (angle the cone axis makes
with the normal) affect the response functions. In Sec. IV
the procedure to extract the orientational correlation func-
tions from two test cases is presented. In Secs. II–IV, it is
assumed that the crossing angles between the beams are in-
finitely small. In real experiments non-negligible crossing
angles may be necessary to separate the excitation beams
from the signal or to collect a measurable amount of fluores-
cence. The detailed expressions for the response functions for
various beam geometries and crossing angles are presented
in Sec. V with their derivations given in the supplementary
material.36
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II. GENERAL EXPRESSIONS FOR RESPONSE
FUNCTIONS

In this section, we will derive the model-independent
formulas for the response functions in terms of averages and
time correlation functions of spherical harmonics. The well-
established method to express the response functions with
dipole interactions and Green’s functions is briefly reviewed
in Sec. II A. In Sec. II B the advantage of expressing the inter-
actions in the “surface frame” (S) is discussed. The response
functions for the simplest case are calculated as a demonstra-
tion. Following the procedures discussed in Secs. II A and
II B, the response functions for several cases are calculated
in Sec. II C. The experimental procedure to fully characterize
molecular motions is also given in Sec. II C.

Throughout this paper, it will be assumed that excita-
tion transition dipole moment and the transition dipole mo-
ment used for the observation step are identical. The as-
sumption is met for pump-probe experiments and transient
grating experiments in which the same transition is excited
and probed. However, it is not always true for fluorescence
experiments.5, 35 The theory as presented is applicable to flu-
orescence probes with the same excitation and emission tran-
sition dipoles.

A. Response functions and dipole interactions

In third-order resonant nonlinear spectroscopy, the third-
order nonlinear polarization induced by three incident electric
fields generates the signal, which can be expressed by37, 38

P (3)
η (t) = (−i)3

∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1

×R
(3)
ηγβα(t3, t2, t1) exp[i(ω3 + ω2 + ω1)t3

+ i(ω2 + ω1)t2 + iω1t1]

×E3,γ (t−t3)E2,β (t−t2 − t3)E1,α(t − t1 − t2 − t3).

(2.1)

Equation (2.1) is the time-domain representation of the non-
linear polarization oscillating at ω = ω1 + ω2 + ω3, where
ωi is a frequency of the ith input E-field. A sequence of three
E-fields interacts with the matter in the order of E1, E2, and
E3. The three fields occur with the intervals of t1 and t2, and
the polarization created is monitored after time t3 from the
last input interaction. R(3) is the third-order response func-
tion, which is a function of time-intervals and polarizations
of the incident E-fields. This representation is useful for time-
resolved experiment. Here, we limit our discussion to the
cases of pump-probe experiment or heterodyne detected tran-
sient grating (HDTG) experiment. In these cases, t1 and t3
can be set to 0 with ω2 = −ω1, because the first two inter-
actions occur simultaneously and the resultant signal is emit-
ted as soon as the third interaction with the transition dipole
occurs.10 The pulses are taken to be delta functions in time.
The method to include the effect of finite pulse duration is
well known,39 but frequently unnecessary. For delta function
E-fields, Eq. (2.1) reduces to

P (3)
η (t) = (−i)3R

(3)
ηγβα(0, t2, 0)E3,γ E∗

2,βE1,α. (2.2)

FIG. 1. Illustration of the surface frame (XS, YS, ZS). The XSYS plane is in
the plane of the surface, while ZS axis is normal to the surface. The direc-
tion of each transition dipole μ̂ is described by polar angle θ and azimuthal
angle φ.

Thus the direct observable in these experiments is the re-
sponse function R

(3)
ηγβα(0, t2, 0). In the following discussion,

this response function R
(3)
ηγβα(0, t2, 0) is denoted as Rtot

ηγβα(t),
where t is used instead of t2 to represent the interval be-
tween the first two instantaneous interactions and the third
interaction.

The total response function Rtot
ηγβα(t) is separated into

the orientational response function Rηγβα(t) and the isotropic
population decay (relaxation to the ground electronic or vi-
brational state) P(t):

Rtot
ηγβα(t) = Rηγβα(t) × P (t). (2.3)

Our interest is how the orientational response function
Rηγβα(t) is related to the motion of a transition dipole moment
on a molecule bound to a planar surface.

The molecular orientational motion is described by the
time-dependence of the direction of the transition dipole mo-
ment specified by polar angle θ and azimuthal angle φ in the
surface frame (S) as illustrated in Figure 1. Here we consider
G′(
1, t|
0), which is the probability that a transition dipole
oriented at 
0 = (θ0, φ0) at t = 0 is oriented at 
1 = (θ1,
φ1) after time t. For the ensemble of molecules bound to the
surface, the equilibrated distribution of transition dipole ori-
entations is Peq(
). By defining Green’s function G(
1, t|
0)
as

G(
1, t | 
0) = G′(
1, t | 
0)Peq(
0), (2.4)

the orientational response function can be written as

Rηγβα(t) =
∫

d
1

∫
d
0(μ̂1ε̂η)(μ̂1ε̂γ )G(
1, t | 
0)

× (μ̂0ε̂β)(μ̂0ε̂α), (2.5)

where μ̂i is a unit vector pointing the direction of 
i = (θ i,
φi), ε̂α , ε̂β · · · is a unit vector parallel to incident E-field
with α, β · · · polarizations. The meaning of Eq. (2.5) can
be intuitively understood in the following manner. A transi-
tion dipole moment oriented with angles 
0 interacts instanta-
neously with α and β polarized E-fields. This transition dipole
undergoes reorientation to the direction 
1 with the probabil-
ity G(
1, t|
0), then interacts with a γ polarized E-field after
time t, and at the same time t emits an η polarized signal.

The central topic of this paper is the calculation of
Eq. (2.5) for a two-dimensional monolayer on a planar sur-
face with various sets of incident polarizations and beam
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geometries. It is worth mentioning that Eq. (2.5) is applicable
to fluorescence depolarization experiments as well as pump-
probe and transient grating experiments. In the semi-classical
response function method, absorption or emission of a photon
corresponds to two E-field interactions; because fluorescence
is generated by absorption of one photon followed by emis-
sion of one photon, Eq. (2.5) is valid for fluorescence depolar-
ization experiments as well.7 Thus time resolved fluorescence
depolarization can be treated as a third-order spectroscopy.

B. Dipole interactions and corresponding spherical
harmonics representations

Since our interest is in the dynamics of a transition dipole
in the surface frame (S), it is convenient to describe all inter-
actions associated with Eq. (2.5) in the S. For this purpose,
the polarizations of incident E-fields ε̂α , ε̂β · · · given in the
lab frame (L) are converted to the S. This transformation de-
pends on the experimental configuration. In the simplest case
where the surface is normal to the propagation direction of the
beam (Figure 2(a)), L and S can be simply set so that

ε̂XL
= ε̂XS

, (2.6)

ε̂YL
= ε̂YS

. (2.7)

If the beam is incident on the surface with finite incident angle
χ (Figure 2(b)), the transformation between L and S is given
by

ε̂XL
= ε̂XS

, (2.8)

ε̂YL
= cos χ · ε̂YS

+ sin χ · ε̂ZS
. (2.9)

Once the E-fields are expressed in the S, all the quantities in
Eq. (2.5) can be expressed in terms of 
0 and 
1.

As a demonstration, consider the case in which all of the
incident and output polarizations are XL-polarized in the L,
and the surface is set normal to the propagation direction of
the beam (χ = 0◦; Figure 2(a)). For the beams impinging on
the surface with no crossing angle, the corresponding orienta-
tional response function is

R
χ=0◦
XXXX(t) =

∫
d
1

∫
d
0(μ̂1ε̂XL

)2G(
1, t | 
0)(μ̂0ε̂XL
)2

=
∫

d
1

∫
d
0(μ̂1ε̂XS

)2G(
1, t | 
0)(μ̂0ε̂XS
)2.

(2.10)

Here, μ̂i ε̂XS
= sin θi cos φi in the S and thus (μ̂i ε̂XS

)2

= sin2 θi cos2 φi . Using the definitions of the spherical
harmonics,10, 40

Y 0
2 (θ, φ) = 1

4

√
5

π
(3 cos2 θ − 1), (2.11)

Y±2
2 (θ, φ) = 1

4

√
15

2π
sin2 θe±2iφ. (2.12)

(a)

(b)

FIG. 2. Two experimental configurations discussed in Sec. II in the small
crossing angle limit, i.e., all the incident beams have the same k-vector.
The polarization of the incident beams are either ε̂X,L or ε̂Y,L in lab frame.
(a) The surface is normal to the k-vectors of the incident beams. The surface
frame can be defined so that XS axis and YS axis are parallel to ε̂X,L and
ε̂Y,L respectively. By definition, ZS axis is along the k-vectors of the incident
beams. (b) The surface is tilted by angle χ so that ε̂Y,L is no longer parallel
to the YS axis, while ε̂X,L is still parallel to the XS axis. The ZS axis makes
the angle χ relative to the k-vectors of the incident beams.

(μ̂i ε̂XS
)2 = sin2 θi cos2 φi can be re-expressed as

(μ̂i ε̂XS
)2 = 1

3
− 2

3

√
π

5
Y 0

2 (
i) +
√

2π

15

[
Y 2

2 (
i) + Y−2
2 (
i)

]
.

(2.13)
Equation (2.13) is substituted into Eq. (2.10) to yield

R
χ=0◦
XXXX(t)

=
∫

d
1

∫
d
0

[
1

3
− 2

3

√
π

5
Y 0

2 (
1)

+
√

2π

15

{
Y 2

2 (
1) + Y−2
2 (
1)

} ]
G(
1, t | 
0)

×
[

1

3
− 2

3

√
π

5
Y 0

2 (
0) +
√

2π

15

{
Y 2

2 (
0) + Y−2
2 (
0)

}]
.

(2.14)
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TABLE I. Matter-E-field dipole interactions arising from the evaluation of Eq. (2.5), and corresponding trigono-
metric functions and spherical harmonics representations. Note that the subscript S indicates the surface frame.
The incident E-fields in lab frame must be transformed to the surface frame.

Dipole interactions Trigonometric functions representation Spherical harmonics representation

(μ̂ε̂X,S )2 sin2 θ cos2 φ 1
3 − 2

3

√
π
5 Y 0

2 +
√

2π
15 (Y 2

2 + Y−2
2 )

(μ̂ε̂Y,S )2 sin2 θ sin2 φ 1
3 − 2

3

√
π
5 Y 0

2 −
√

2π
15 (Y 2

2 + Y−2
2 )

(μ̂ε̂Z,S )2 cos2 θ 1
3 + 4

3

√
π
5 Y 0

2

(μ̂ε̂X,S )(μ̂ε̂Y,S ) sin2 θ sin φ cos φ −i

√
2π
15 (Y 2

2 − Y−2
2 )

(μ̂ε̂Z,S )(μ̂ε̂X,S ) sin θ cos θ cos φ −
√

2π
15 (Y 1

2 − Y−1
2 )

(μ̂ε̂Z,S )(μ̂ε̂Y,S ) sin θ cos θ sin φ i

√
2π
15 (Y 1

2 + Y−1
2 )

By expanding Eq. (2.14), Rχ=0◦
XXXX(t) can be expressed in terms

of the following time-correlation function (Eq. (2.15)) and the
time-average (Eq. (2.16)) of the spherical harmonics:〈
Ym∗

2 Ym′
2

〉 ≡ 〈
Ym∗

2 (t)Ym′
2 (0)

〉
≡

∫
d
1

∫
d
0Y

m∗
2 (
1)G(
1, t | 
0)Ym′

2 (
0),

(2.15)

〈
Ym

2

〉 ≡
∫

d
1

∫
d
0Y

m
2 (
1)G(
1, t | 
0)

=
∫

d
1

∫
d
0G(
1, t | 
0)Ym

2 (
0). (2.16)

Ym∗
2 denotes the complex conjugate of Ym

2 . It can be rigor-
ously proven that a system which is macroscopically symmet-
ric in-plane, regardless of the actual functional form of G(
1,
t|
0), obeys the following orthogonality relations for the cor-
relation function of the spherical harmonics.〈

Ym∗
2 Ym′

2

〉 ∝ δmm′ , (2.17)

〈
Ym

2

〉 ∝ δm0. (2.18)

The derivations of Eqs. (2.17) and (2.18) are given in
Section A of the supplementary material.36 It is reasonable
to assume that a functionalized monolayer does not have
macroscopic directionality. The orthogonality relations given
in Eqs. (2.17) and (2.18) greatly simplify the expansion of
Eq. (2.14) to yield

R
χ=0◦
XXXX(t) = 1

9
− 4

9

√
π

5

〈
Y 0

2

〉 + 4

45
π

〈
Y 0∗

2 Y 0
2

〉 + 4

15
π

〈
Y 2∗

2 Y 2
2

〉
.

(2.19)

In the derivation of Eq. (2.19), the relations Y 2∗
2 = Y−2

2 ,
Y 0∗

2 = Y 0
2 and 〈Y 2∗

2 Y 2
2 〉 = 〈Y−2∗

2 Y−2
2 〉 were used. Note that

as seen in Eqs. (2.15) and (2.16), 〈Y 0
2 〉 is time independent

while 〈Y 0∗
2 Y 0

2 〉 ≡ 〈Y 0∗
2 (t)Y 0

2 (0)〉 and 〈Y 2∗
2 Y 2

2 〉 ≡ 〈Y 2∗
2 (t)Y 2

2 (0)〉
are time dependent. Thus the orientational response function
can be expressed in terms of the time independent average and
the time dependent correlation functions of spherical harmon-
ics in the surface frame.

The same procedure can be followed to calculate re-
sponse functions with other sets of input polarizations. All
the necessary matter-E-field transition dipole interactions and
corresponding representations with spherical harmonics are
given in Table I. To summarize, the response functions are
represented using the Green’s function and the polarizations
of the E-fields in the surface frame (Eq. (2.10)). Then the
dipole interactions are replaced by their spherical harmonics
representations in Table I (Eq. (2.14)). The expansion of the
representation in terms of correlation functions and average
of spherical harmonics, with the use of orthogonality of the
spherical harmonics, will lead to equivalent of Eq. (2.19).

C. Derivations of orientational correlation functions
from response functions

We first consider implementing the polarization-resolved
pump-probe experiment with the most natural configuration
shown in Figure 2(a), where the propagation direction of
the incident beams is normal to the surface. The sample
is assumed to be a molecular monolayer on a solid pla-
nar surface. Here the crossing angle between the pump and
probe beams is zero. Finite crossing angles are discussed in
Sec. V and the supplementary material.36 For some situations,
the zero crossing angle results are applicable without modifi-
cations even with finite crossing angles. The polarization of
the pump beam is always set to either XL or YL, whereas the
polarization for the probe beam is always fixed to XL. The
observed signals are the response functions R

χ=0◦
XXXX(t) (pump

and probe polarizations parallel) and R
χ=0◦
XXYY (t) (pump and

probe polarizations perpendicular). As discussed in Sec. II A,
the response functions are factored into orientational corre-
lation functions and an isotropic population decay. The ori-
entational correlation function for R

χ=0◦
XXXX(t) was obtained in

Sec. II B, Eq. (2.19). In the same manner, the orienta-
tional correlation function for R

χ=0◦
XXYY (t) can be calculated by

evaluating

R
χ=0◦
XXYY (t) =

∫
d
1

∫
d
0(μ̂1ε̂X,S)2G(
1, t | 
0)(μ̂0ε̂Y,S)2.

(2.20)
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Including the isotropic population decay, the response func-
tions as observables can be written as

R
χ=0◦
XXXX(t) =

[
1

9
− 4

9

√
π

5

〈
Y 0

2

〉 + 4

45
π

〈
Y 0∗

2 Y 0
2

〉

+ 4

15
π

〈
Y 2∗

2 Y 2
2

〉 ] × P (t), (2.21)

R
χ=0◦
XXYY (t) =

[
1

9
− 4

9

√
π

5

〈
Y 0

2

〉 + 4

45
π

〈
Y 0∗

2 Y 0
2

〉

− 4

15
π

〈
Y 2∗

2 Y 2
2

〉 ] × P (t). (2.22)

The physical meanings of Eqs. (2.21) and (2.22) can be seen
when the original forms of the spherical harmonics, Eq. (2.11)
and (2.12), are referred to. Y 0

2 only depends on polar angle
θ , thus 〈Y 0

2 〉 reflects average polar angle of transition dipole
moments, and 〈Y 0∗

2 Y 0
2 〉 corresponds to out-of-plane motion of

the transition dipoles. On the other hand, Y 2
2 contains both

polar angle θ and azimuthal angle φ. Y 2
2 is directly propor-

tional to e±2iφ . Considering that the polar motions of organic
molecules bound to a surface are generally restricted, 〈Y 2∗

2 Y 2
2 〉

can be interpreted as mainly in-plane motions coupled to
some extent of out-of-plane motions. Because the polariza-
tions of the E-fields are in-plane in the experimental configu-
ration shown in Figure 2(a), the in-plane motions will con-
tribute differently to the two response functions, while the
contribution from out-of-plane motion should be the same,
which can be seen in Eqs. (2.21) and (2.22). 〈Y 0∗

2 Y 0
2 〉 con-

tributes to the response functions with the positive sign in both
equations, while the signs for the 〈Y 2∗

2 Y 2
2 〉 terms are opposite.

These response functions in Eqs. (2.21) and (2.22) are
in contrast to the response functions for randomly orientated
transition dipoles in isotropic (iso) 3D space in terms of the
number of unknown variables. These are given by7, 10

Riso
XXXX(t) = 1

9

{
1 + 4

5
c2(t)

}
P (t), (2.23)

Riso
XXYY (t) = 1

9

{
1 − 2

5
c2(t)

}
P (t). (2.24)

c2(t) is orientational correlation function 〈P2(μ̂(t) · μ̂(0))〉,
where P2 is the second-order Legendre polynomial. As is
clear from Eqs. (2.23) and (2.24), Riso

XXXX(t) and Riso
XXYY (t)

contain only two time dependent parameters c2(t) and P(t).
Thus, the measurements of the two observables described by
Eqs. (2.23) and (2.24) are sufficient to obtain both of the un-
known parameters, c2(t) and P(t) using the standard forms,

P (t) ∝ Riso
XXXX + 2Riso

XXYY , (2.25)

2

5
c2(t) = Riso

XXXX − Riso
XXYY

Riso
XXXX + 2Riso

XXYY

≡ r(t). (2.26)

For the case of a two-dimensional planar monolayer, the re-
sponse functions in Eqs. (2.21) and (2.22) contain three time
dependent parameters (〈Y 0∗

2 Y 0
2 〉, 〈Y 2∗

2 Y 2
2 〉, and P(t)) and one

time averaged parameter, 〈Y 0
2 〉. Because there are four un-

known parameters in total, at least four measurements are nec-
essary to uniquely determine all of these parameters; the two

measurements, R
χ=0◦
XXXX(t) and R

χ=0◦
XXYY (t), are not sufficient to

fully characterize molecular motions on a planar surface. Two
other measurements are required.

Among the unknown parameters in Eqs. (2.21)
and (2.22), the time averaged parameter, 〈Y 0

2 〉
= 1

4

√
5
π
〈3 cos2 θ − 1〉, is directly related to the well-known

order parameter17, 18, 23, 41

〈S〉 = 1

2
〈3 cos2 θ − 1〉. (2.27)

The order parameter 〈S〉 can be measured by absorption (vis-
ible or IR) or fluorescence linear dichroism experiments. In
these static experiments, p and s polarized light (continuous
wave) impinge on the surface with a defined incident angle.
Based on the incident angle and independently measured
absorbance (or fluorescence emission) for p and s polarized
light, the order parameter 〈S〉 can be obtained. The details for
these experiments are found in literature.41 Once these mea-
surements are made and 〈S〉 is experimentally determined,
〈Y 0

2 〉 is obtained as

〈
Y 0

2

〉 = 1

2

√
5

π
〈S〉 . (2.28)

We still need another measurement to complete the de-
termination of the four unknown parameters. The necessary
additional measurement can be made with a time-resolved
polarization-resolved pump-probe experiment using the con-
figuration shown in Figure 2(b). In Figure 2(b), the surface
is tilted so that YL-polarization in lab frame makes angle χ

with the surface. Again the pump polarization is set to either
XL or YL (lab frame), while the probe polarization is fixed
to XL. The observed signals for each set of polarizations are
denoted by R

χ

XXXX(t) and R
χ

XXYY (t). Since XL polarization
is insensitive to the difference in configurations between
Figures 2(a) and 2(b),

R
χ

XXXX(t) = R
χ=0◦
XXXX(t) (2.29)

Unlike R
χ

XXXX(t), R
χ

XXYY (t) is not equal to R
χ=0◦
XXYY (t).

Following the transformation of E-fields between the lab
frame and the surface frame given in Eqs. (2.8) and (2.9),

R
χ

XXYY (t) =
∫

d
1

∫
d
0(μ̂1ε̂X,S)2G(
1, t | 
0)

×{(cos χ · μ̂0ε̂Y,S + sin χ · μ̂0ε̂Z,S)}2.

(2.30)

Equation (2.30) again can be expanded and expressed in
terms of spherical harmonics using Table I. The orthogonality
of spherical harmonics, Eqs. (2.17) and (2.18), is very useful
to simplify the representation; the result is

R
χ

XXYY (t) =
[

1

9
− 2

9

√
π

5
(3 cos2 χ − 1)

〈
Y 0

2

〉

+4π

45
(3 cos2 χ − 2)

〈
Y 0∗

2 Y 0
2

〉
−4π

15
cos2 χ

〈
Y 2∗

2 Y 2
2

〉] × P (t). (2.31)
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Note that by substituting χ = 0◦ into Eq. (2.31), Eq. (2.22) is
correctly recovered.

Now that there are four independent observables contain-
ing four unknown parameters, all of the four parameters, 〈Y 0

2 〉,
〈Y 0∗

2 Y 0
2 〉, 〈Y 2∗

2 Y 2
2 〉, and P(t), can be constructed from the ob-

servables, R
χ=0◦
XXXX(t), R

χ=0◦
XXYY (t), R

χ

XXYY (t), and 〈S〉, by solv-
ing Eqs. (2.21), (2.22), (2.28) and (2.31). R

χ

XXYY (t) can be
measured with any non-zero χ . The solution becomes partic-
ularly simple when the angle χ is set so that cos2 χ = 2

3 , i.e.,
χ = 35.3◦. In this case, Eq. (2.31) is reduced to

R
χ=35.3◦
XXYY (t) =

[
1

9
− 2

9

√
π

5

〈
Y 0

2

〉 −8π

45

〈
Y 2∗

2 Y 2
2

〉] × P (t).

(2.32)
By solving Eqs. (2.21), (2.22), (2.28) and (2.32), the time de-
pendent parameters can be obtained:

P (t) ∝ R
χ=0◦
XXXX(t) + 3R

χ=35.3◦
XXYY (t) − R

χ=0◦
XXYY (t), (2.33)

〈
Y 2∗

2 Y 2
2

〉 = 5

8π
(1 − 〈S〉)

· R
χ=0◦
XXXX(t) − R

χ=0◦
XXYY (t)

R
χ=0◦
XXXX(t) + 3R

χ=35.3◦
XXYY (t) − R

χ=0◦
XXYY (t)

, (2.34)

〈
Y 0∗

2 Y 0
2

〉 = 5

8π

Q(t)

R
χ=0◦
XXXX(t) + 3R

χ=35.3◦
XXYY (t) − R

χ=0◦
XXYY (t)

,

(2.35)
where

Q(t) = (1 + 〈S〉) R
χ=0◦
XXXX(t) − 6 (1 − 2 〈S〉) R

χ=35.3◦
XXYY (t)

+ (5 − 7 〈S〉) R
χ=0◦
XXYY (t). (2.36)

Equations (2.33)–(2.35) are important results stating that the
pure population decay P(t), the in-plane motion 〈Y 2∗

2 Y 2
2 〉, and

the out-of-plane motion 〈Y 0∗
2 Y 0

2 〉 can be directly and indepen-
dently obtained by the three time dependent measurements
together with the time averaged linear dichroism experiment.

It should be emphasized that the only assumption we
have made so far to derive Eqs. (2.33)–(2.35) is the symme-
try of the surface in the plane, which permits the orthogonal-
ity of spherical harmonics correlation functions, Eqs. (2.17)
and (2.18), to be employed. As long as in-plane symmetry
is guaranteed, regardless of the actual functional forms of
Green’s function, Eqs. (2.21), (2.22) and (2.32) are mathe-
matically rigorous and so are Eqs. (2.33)–(2.35). In the fol-
lowing discussions in Secs. III and IV, it is assumed that the
origin of the depolarization is the wobbling-in-a-cone motion
of the molecules and their transition dipole moments, but the
procedure is completely valid for any other types of motions.
The depolarization does not have to originate from motions of
molecules but can be induced by Förster excitation transfer as
well.42, 43

In the above discussion, a planar monolayer was consid-
ered to derive Eqs. (2.33)–(2.35), but the theory is valid for
any system with uniaxial symmetry. For example, the sub-
strate of the monolayer can be rough as long as surface rough-
ness does not have certain directionality in plane. The sample
does not have to be a single layer of molecules but can be thick
samples such as uniaxial liquid crystals and aligned phospho-

lipid multibilayers. For these thick samples the measurement
should be implemented so that ZS axis in Figure 2 matches C∞
axis of the samples. Then the correlation function 〈Y 2∗

2 Y 2
2 〉 re-

flects the motion of molecules in the plane perpendicular to
the C∞ axis, while 〈Y 0∗

2 Y 0
2 〉 gives the molecular motions out

of the plane. Thus the experimental procedure proposed here
can provide detailed information on molecular motions in any
type of the uniaxial system in contrast to procedures using the
anisotropy in Eq. (1.1).34, 35

It is important to emphasize that to obtain the parameters
from Eqs. (2.33)–(2.35), the experimental measurements of
R

χ=0◦
XXXX(t), Rχ=0◦

XXYY (t) and R
χ

XXYY (t) must be made so that their
amplitudes are correct. However, when the sample is tilted as
shown in Figure 2(b) to make the measurement with χ �= 0,
the number of molecules in the focal volume, the intensity
of E-field per surface area, and the reflectivity of the beams
from the surface will all change relative to the configuration in
Figure 2(a). The observed signal, S

χ

ββαα , has a linear relation-
ship with the corresponding response function, but the factor
depends on the configuration:

S
χ

ββαα = Aχ × R
χ

ββαα. (2.37)

Thus S
χ

XXYY measured in a real experiment is likely to have
a different absolute intensity scale from S

χ=0◦
XXXX and S

χ=0◦
XXYY .

The difference in the amplitudes of the signals must be ac-
counted for. Equation (2.29) is useful for this purpose. What
Eq. (2.29) means is that as long as all the polarizations are set
so that they are XL-polarized, the response functions should
be the same in terms of the projection of the incident E-fields
to transition dipole moment. Thus, when S

χ

XXXX is measured,
the time dependence is identical to S

χ=0◦
XXXX, but the amplitude

is different due to the different sample configuration. By also
measuring S

χ

XXXX, the necessary experimental amplitude cor-
rection factor can be obtained.

S
χ

XXXX = (Aχ/Aχ=0◦
) × S

χ=0◦
XXXX. (2.38)

The measured S
χ

XXYY can be thus scaled using the
Aχ/Aχ=0◦

as

S
χ

XXYY → (Aχ=0◦
/Aχ )Sχ

XXYY . (2.39)

Then Eqs. (2.33)–(2.35) are used to obtain the orientational
correlation functions and the population decay, by substitut-
ing R

χ

ββαα with measured S
χ

ββαα with the correct amplitudes.

Therefore, although four measurements (Sχ=0◦
XXXX(t), Sχ=0◦

XXYY (t),
S

χ

XXYY (t), and 〈S〉) are sufficient theoretically to extract all of
the information, in practice a measurement of S

χ

XXXX(t) may
also be necessary to scale S

χ

XXYY (t) to the correct amplitude.
Then the scaled S

χ

XXYY (t) can be used with other two experi-
mentally measured response functions.

Above, it has been shown that the experimental scheme
to extract the orientational correlation function for three-
dimensional isotropic samples (Eqs. (2.25) and (2.26)) is not
applicable for two-dimensional monolayers. Instead of two
measurements for isotropic samples, three time dependent
measurements (Rχ=0◦

XXXX(t), R
χ=0◦
XXYY (t), and R

χ

XXYY (t)) and one
time averaged linear dichroism experiment to determine 〈S〉
are required for planar monolayers. In practice to correctly
scale the amplitude of R

χ

XXYY (t), measurement of R
χ

XXXX(t)
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is also necessary. The results derived above show that the
time-correlation functions for in-plane and out-of-plane mo-
tions can be independently obtained as 〈Y 2∗

2 Y 2
2 〉 and 〈Y 0∗

2 Y 0
2 〉

as seen in Eqs. (2.33)–(2.35).

III. MODEL CALCULATIONS OF THE ORIENTATIONAL
RESPONSE FUNCTIONS FOR WOBBLING-IN-A-CONE

In this section model calculations are used to demonstrate
how the structures and motions of molecules on a planar sur-
face affect the response functions. In particular, we will fo-
cus on wobbling-in-a-cone motions of the transition dipoles.6

Wobbling-in-a-cone model is known to capture the essen-
tial behavior of molecules under spatial restriction, which is
the situation interfacial molecules are expected to experience.
The transition dipoles can sample a range of angles that are
within a cone of angles with cone half angle θC, which rep-
resents the extent of spatial restriction. There are two cases
illustrated in Figures 3(a) and 3(b). The axis of the cone is
normal to the plane (3(a)) and the axis of the cone has a tilt
angle, θ tilt, relative to the normal to the plane (3(b)).

If the axis of the cone is normal to the surface (normal
cone), as shown in Figure 3(a), the polar angle θ of the tran-
sition dipole is restricted in the range 0 ≤ θ ≤ θC, while no
limitation is imposed on azimuthal angle φ. Wang and Pec-
ora have given the averages and time-correlation functions of
the spherical harmonics necessary to calculate the response
functions and order parameters in Eqs. (2.21), (2.22), (2.28)
and (2.31).6 The averages and correlation functions of spher-
ical harmonics are listed in Table II(A). In Sec. III A the ori-
entational response functions for a transition dipole wobbling
in a normal cone are presented for several θC.

(a)

(b)

FIG. 3. Wobbling-in-a-cone model with cone half angle θC. (a) The cone
axis is normal to the surface. (b) The cone axis is tilted by θ tilt from ZS axis
(surface frame).

In general, the cone is likely to be tilted relative to the
surface as shown in Figure 3(b). For a tilted cone, both the
polar angle θ and the azimuthal angle φ are restricted. The
averages and time correlation functions of the spherical har-
monics associated with transition dipoles in tilted cones have
been derived to calculate the response functions, and the re-
sults are shown in Table II(B). The derivations of the aver-
ages and correlation functions of the spherical harmonics are
given in Section B of the supplementary material.36 Based
on the results given in Table II(B), the orientational response

TABLE II. Correlation functions and averages of spherical harmonics used to calculate the response functions
in Eqs. (2.21), (2.22) and (2.32) for the wobbling-in-a-cone model. The order parameters, 〈S〉, can be calculated
through Eq. (2.28) as well. D – diffusion constant, θC – (half) cone angle, and θ tilt – tilt angle. ν1, ν2 are constants
dependent on the cone angle θC. ν1, ν2 are well-approximated by ν1 ≈ 100.496θ−1.122

C and ν2 ≈ 100.237θ−1.122
C .

Refer to Section B in the supplementary material for the derivation of these correlation functions.36

A. Normal cone (θ tilt = 0◦)
〈Y 0∗

2 (t)Y 0
2 (0)〉 = 5

16π
cos2 θC (1 + cos θC )2

+ 1
16π

(4 − cos θC − 6 cos2 θC − cos3 θC + 4 cos4 θC )e−ν1(ν1+1)Dt

〈Y 2∗
2 (t)Y 2

2 (0)〉 = 1
32π

{8 − 7 cos θC (1 + cos θC ) + 3 cos3 θC (1 + cos θC )}e−ν1(ν1+1)Dt

〈Y 0
2 〉 =

√
5

16π
cos θC (1 + cos θC )

B. Tilted cone (θ tilt �= 0◦)

〈Y 0∗
2 (t)Y 0

2 (0)〉 = 5
320π

(3 cos2 θtilt − 1)2[5 cos2 θC (1 + cos θC )2.

+ (4 − cos θC − 6 cos2 θC − cos3 θC + 4 cos4 θC )e−ν1(ν1+1)Dt ]

+ 3
8π

sin2 θtilt cos2 θtilt{2 + 2 cos θC (1 + cos θC ) − 3 cos3 θC (1 + cos θC )}e−ν2(ν2+1)Dt

+ 3
128π

sin4 θtilt{8 − 7 cos θC (1 + cos θC ) + 3 cos3 θC (1 + cos θC )}e−ν1(ν1+1)Dt

〈Y 2∗
2 (t)Y 2

2 (0)〉 = 3
128π

sin4 θtilt[5 cos2 θC (1 + cos θC )2

+ (4 − cos θC − 6 cos2 θC − cos3 θC + 4 cos4 θC )e−ν1(ν1+1)Dt ]

+ 1
16π

sin2 θtilt(1 + cos2 θtilt)

× {2 + 2 cos θC (1 + cos θC ) − 3 cos3 θC (1 + cos θC )}e−ν2(ν2+1)Dt

+ 1
32π

{sin8 θtilt
2 + cos8 θtilt

2 }
× {8 − 7 cos θC (1 + cos θC ) + 3 cos3 θC (1 + cos θC )}e−ν1(ν1+1)Dt

〈Y 0
2 〉 =

√
5

16π
3 cos2 θtilt−1

2 cos θC (1 + cos θC )
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(a)

(b)

(c)

FIG. 4. Calculated orientational response functions for transition dipoles
wobbling-in-a-normal-cone with various cone angles θC = 30◦, 45◦, 60◦.
The diffusion constant D was set to 0.01 ps−1 for all cases. Red: R

χ=0◦
XXXX

= R
χ=35.3◦
XXXX , blue: R

χ=0◦
XXYY , and green: R

χ=35.3◦
XXYY . Regardless of the cone angle

θC, R
χ=0◦
XXXX and R

χ=0◦
XXYY reach the same level after long time. The depolar-

ization rate decreases as the cone angle θC increases. The intensity level of
R

χ=35.3◦
XXYY is distinctively larger than R

χ=0◦
XXXX and R

χ=0◦
XXYY for small θC.

functions for a tilted cone are presented for several θ tilt. In this
section and Sec. IV, the surface to which molecules are bound
is taken to be ideally flat. The effect of surface roughness will
be discussed at the end of Sec. IV.

As is clear in Figure 3(b), for a tilted cone, the restric-
tion imposed on the azimuthal angle φ is dependent on the
polar angle θ . Thus in general, it is not valid to assume that
polar and azimuthal motions of molecules are decoupled. The
theory presented in Sec. II is applicable for general motions
where polar and azimuthal motions are strongly correlated.

A. Transition dipole moments wobbling
in a normal cone

The orientational response functions Eqs. (2.21), (2.22)
and (2.32) calculated for a transition dipole wobbling in a nor-
mal cone (Figure 3(a)) with various cone angles are plotted in
Figure 4. The diffusion constant D was set to 0.01 ps−1 for
all cases. The response functions for parallel (Rχ=0◦

XXXX) and

TABLE III. Order parameters and corresponding average polar angles for
a transition dipole wobbling in (A) a normal cone with various cone angles
θC and (B) a tilted cone with various tilt angles θ tilt. For calculation of tilted
cone cases, the cone angle is fixed at θC = 30◦.

A. Normal cone (θ tilt = 0◦)
Cone angle θC 30◦ 45◦ 60◦

Order parameter 〈S〉a 0.808 0.603 0.375
Average polar angle θ avg

b 21.0◦ 31.0◦ 40.2◦

B. Tilted cone (θC = 30◦)
Tilt angle θ tilt 0◦ 30◦ 60◦

Order parameter 〈S〉a 0.808 0.505 −0.101
Average polar angle θ avg

b 21.0◦ 35.1◦ 59.0◦

aCalulated by 〈S〉 = √
4π/5〈Y 0

2 〉. See Section B of the supplementary material.36

bCalculated by solving 〈S〉 = (3 cos2 θ avg − 1)/2.

perpendicular (Rχ=0◦
XXYY ) signals with the incident beam nor-

mal to the surface (Figure 2(a)) and the perpendicular signal
(Rχ=35.3◦

XXYY ) with the incident angle χ = 35.3◦ (Figure 2(b)) are
shown in Figure 4. R

χ=35.3◦
XXXX is the same as R

χ=0◦
XXXX in small

crossing angle limit. The order parameters, which can be mea-
sured with time averaged linear dichroism experiments, were
also calculated and are tabulated in Table III(A), together with
the average polar angles calculated from the order parameters.

A prominent feature observed in Figure 4 is that R
χ=0◦
XXXX

and R
χ=0◦
XXYY tend to be smaller than R

χ=35.3◦
XXYY . For normal cones

with small θC, the transition dipoles on the surface tend to
be normal to the surface, and in case incident polarizations
are in-plane, the transition dipole moments cannot interact
sufficiently with the E-fields. As θC increases, the average
polar angle also becomes larger (Table III(A)). As a result
the difference between R

χ=35.3◦
XXYY and the other two, R

χ=0◦
XXXX

and R
χ=0◦
XXYY , becomes smaller. It can also be seen in Figure 4

that regardless of the cone angle θC, Rχ=0◦
XXXX and R

χ=0◦
XXYY reach

the same intensity level after long time. The physical mean-
ing of this behavior is important and can be traced back to
Eqs. (2.21) and (2.22). Subtracting Eq. (2.22) from Eq. (2.21),
R

χ=0◦
XXXX − R

χ=0◦
XXYY ∝ 〈Y 2∗

2 Y 2
2 〉 is obtained. As discussed in

Sec. II, 〈Y 2∗
2 Y 2

2 〉 is essentially the orientational correlation
function for in-plane motion. Thus, in the absence of popula-
tion decay, R

χ=0◦
XXXX − R

χ=0◦
XXYY is recording the in-plane orien-

tational correlation function. For a transition dipole wobbling
in a cone with its axis normal to the plane, the azimuthal an-
gle φ will completely randomize after sufficiently long time
because there is no restriction on in-plane motion. Therefore,
the in-plane orientational correlation function, 〈Y 2∗

2 Y 2
2 〉, will

decay to zero (Rχ=0◦
XXXX = R

χ=0◦
XXYY at long time) independent of

the cone angle θC. If the anisotropy r(t) given in Eq. (1.1) is
calculated from the measurements of R

χ=0◦
XXXX and R

χ=0◦
XXYY in

the conventional single geometry shown in Figure 2(a), r(t)
will decay to zero regardless of the cone angle. Therefore,
anisotropy r(t) contains no information on the cone angle θC.
To extract the cone angle, the measurements with the two ge-
ometries shown in Figures 2(a) and 2(b) are necessary, and
the two orientational correlation functions must be obtained
using Eqs. (2.34) and (2.35). The detailed procedure to derive
the cone angle will be discussed in Sec. IV.

Another important feature of the response functions
shown in Figure 4 is the dependence of the depolarization
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time constants on the cone angle θC. As seen in Figure 4, tran-
sition dipoles wobbling in a cone with smaller θC tend to com-
plete depolarization faster than transition dipoles with larger
θC, even with the same diffusion constant, D = 0.01 ps−1.
For example, for θC = 30◦ cone, R

χ=0◦
XXXX − R

χ=0◦
XXYY reaches

zero within ∼10 ps, whereas it takes nearly ∼50 ps for θC

= 60◦. Therefore, the determination of the diffusion constant
requires the information on both the depolarization time con-
stant and the θC. This is also true for wobbling-in-a-cone in an
isotropic 3D system.5 It is also important that all the response
functions are single exponential decays, because the time de-
pendence of correlation functions in Table II(A) are described
only by exp [−ν1(ν1 + 1)Dt].

B. Transition dipole moments wobbling
in a tilted cone

Orientational response functions from Eqs. (2.21), (2.22)
and (2.32) are calculated for a transition dipole wobbling in
a tilted cone (Figure 3(b)). The correlation functions and av-
erage of spherical harmonics in Table II(B) were employed
for the calculations. θC was fixed at 30◦ and the tilt angle θ tilt

was varied from 0◦ (no tilt) to 60◦. Time-independent order
parameters and average polar angle are listed in Table III(B).

The relative intensity of R
χ=35.3◦
XXYY with respect to R

χ=0◦
XXXX

and R
χ=0◦
XXYY can be explained in a similar way as in the normal

cone case. As tilt angle θ tilt increases, the average polar angle
of transition dipole moments on the surface also increases.
As a result, R

χ=0◦
XXXX and R

χ=0◦
XXYY tend to increase due to larger

projection of incident E-field onto the transition dipoles, while
R

χ=35.3◦
XXYY decreases relative to R

χ=0◦
XXXX and R

χ=0◦
XXYY as average

polar angle increases.
The most important feature in Figure 5 is that for θ tilt

> 0◦, R
χ=0◦
XXXX and R

χ=0◦
XXYY (geometry of Figure 2(a)) are

not equal even after infinitely long time. Again, R
χ=0◦
XXXX

− R
χ=0◦
XXYY ∝ 〈Y 2∗

2 Y 2
2 〉 is reporting on the in-plane orientational

correlation function. In the case of normal cone discussed
above, 〈Y 2∗

2 Y 2
2 〉 decays to zero. However, for a tilted cone,

both the out-of-plane and in-plane motions are limited. It is
clear from Figure 3(b) that a transition dipole cannot sam-
ple all the azimuthal angles in the surface frame, leading to
a plateau in 〈Y 2∗

2 Y 2
2 〉 at long time. Thus R

χ=0◦
XXXX − R

χ=0◦
XXYY is

non-zero even at long time. Larger θ tilt produces more restric-
tion on the azimuthal motion of the transition dipole, and the
difference between R

χ=0◦
XXXX and R

χ=0◦
XXYY becomes more signif-

icant. The restriction on azimuthal angles also depends on
cone angle θC. Again, three measurements, R

χ=0◦
XXXX, R

χ=0◦
XXYY

and R
χ=35.3◦
XXYY , are required to independently obtain θ tilt and θC.

The details of the determination will be discussed in Sec. IV.
It should be clear from the above discussions that if the

anisotropy r(t) (Eq. (1.1)) is measured in the configuration
shown in Figure 2(a), a non-zero plateau in r(t) indicates that
wobbling is occurring in a tilted cone rather than a normal
cone, even though further quantitative information cannot be
obtained from r(t).

The time dependence of the response functions shows
complicated behavior in the case of a tilted cone. As seen
in Table II(B), the spherical harmonics correlation func-
tions used in the calculations of the response functions are

(a)

(b)

(c)

FIG. 5. Calculated orientational response functions for transition dipoles for
tilted cone wobbling with tilt angles θ tilt = 0◦(no tilt), 30◦, 60◦. The cone
angle θC and the diffusion constant D were set to 30◦ and 0.01 ps−1, re-
spectively. Red: R

χ=0◦
XXXX = R

χ=35.3◦
XXXX , blue: R

χ=0◦
XXYY , and green: R

χ=35.3◦
XXYY . In

contrast to cones with their axes normal to the plane, R
χ=0◦
XXXX and R

χ=0◦
XXYY are

distinctively different even at infinite time.

bi-exponential (with exp [−ν1(ν1 + 1)Dt] and exp [−ν2(ν2

+ 1)Dt]). Therefore, the response functions constructed
from these correlation functions are also bi-exponential.
Even though ν1 and ν2 only depend on θC, the ratio of the
amplitudes of the two exponentials depends both on θ tilt

and θC. The details of the time dependence are discussed
immediately below.

IV. DEMONSTRATION OF DATA ANALYSIS
PROCEDURE

A. Two model cases and recovery of the orientational
correlation functions

In Sec. III, using Eqs. (2.21), (2.22) and (2.31), ori-
entational response functions were calculated for transition
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dipoles wobbling in various types of cones. The corre-
lation functions of spherical harmonics given in Table II
were employed. To obtain information from experiments,
the reverse procedure needs to be employed. The response
functions, R

χ=0◦
XXXX, R

χ=0◦
XXYY , and R

χ

XXYY , are measured as
observables, and the correlation functions for spherical har-
monics, 〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉, are reconstructed from these

response functions by applying Eqs. (2.33)–(2.35). Based on
the 〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉 obtained from the experiments, in

the context of the wobbling-in-a-cone model, the cone angle
θC and tilt angle θ tilt can be extracted. In this section, the
procedure is demonstrated by examining the following two
model systems: a system in which transition dipoles are wob-
bling in a normal cone (θ tilt = 0◦) with θC = 60◦, and an-
other system where transition dipoles are wobbling in a tilted
cone with θ tilt = 36.7◦ and θC = 30◦. We refer to these two
samples as systems A and B, respectively. The parameters
for these two cases were selected because these two systems
have the same order parameter 〈S〉 = 0.375. Therefore, these
two cases are not distinguishable based only on time averaged
measurements, such as linear dichroism experiments, regard-
less of the significant differences in the structure and dynam-
ics of the two systems. As shown in the following discussion,
these two cases are clearly resolved by dynamic depolariza-
tion measurements described in Sec. II.

In Sec. III, only orientational response functions were
included in the calculations. In real measurements there
is also isotropic population decay (P(t) in Eqs. (2.21),
(2.22) and (2.31)). Here we assume that we are study-
ing a vibrational probe with vibrational lifetime of 20 ps
(P(t) ∝ exp [−t/(20ps)]).

For both of the systems, 〈Y 0∗
2 Y 0

2 〉 and 〈Y 2∗
2 Y 2

2 〉 can be cal-
culated using Table II. Here we set the orientational diffusion
constant D to 0.01 ps−1 for both systems. Then, together with
the isotropic population decay P(t) with τV = 20 ps, the to-
tal response functions can be calculated based on Eqs. (2.21),
(2.22) and (2.31). The actual functional form of P(t), 〈Y 0∗

2 Y 0
2 〉,

and 〈Y 2∗
2 Y 2

2 〉 used to calculate the response functions are given
in Table IV, and the resultant response functions are plotted
in Figure 6(a) for system A and Figure 6(b) for system B.

The goal of the dynamic depolarization experiments is
to obtain τV , θC, θ tilt, and D for the systems based on the
“signals” in Figure 6. To find these parameters, P(t), 〈Y 0∗

2 Y 0
2 〉,

and 〈Y 2∗
2 Y 2

2 〉 must be extracted using Eqs. (2.33)–(2.35). P(t),
〈Y 0∗

2 Y 0
2 〉, and 〈Y 2∗

2 Y 2
2 〉 obtained using Eqs. (2.33)–(2.35) are

shown in Figure 7.
As seen in Figure 6, the difference between the re-

sponse functions for these two systems is significant but not
large, especially due to the presence of population decay
P(t). However, once P(t), 〈Y 0∗

2 Y 0
2 〉, and 〈Y 2∗

2 Y 2
2 〉 are indepen-

dently recovered from the response functions, these two sys-
tems display very different behavior of 〈Y 2∗

2 Y 2
2 〉 as shown in

Figure 7. Thus, in many instances, extracting the orientational
correlation functions is more useful than directly comparing
the response functions.

The population decays (calculated using Eq. (2.33) from
the plots in Figure 6) shown in Figure 7(a) (blue and red
dashed curves) correctly recovers the single exponential pop-
ulation decay with the vibrational lifetime of τV = 20ps. In

TABLE IV. Parameters used to calculate the response functions in
Figure 6. Correlation functions listed in Table II were used to obtain
these parameters. Based on these parameters, population decays and
orientational correlation functions are constructed as P (t) ∝ exp[−t/τV ],
〈Y 0∗

2 (t)Y 0
2 (0)〉 = Afast

2,0 · e−t/τwf + Aslow
2,0 · e−t/τws + A∞

2,0, 〈Y 2∗
2 (t)Y 2

2 (0)〉
= Afast

2,2 · e−t/τwf + Aslow
2,2 · e−t/τws + A∞

2,2. Note that for normal cone
(system A) both of the orientational correlation functions decay with single
exponentials, while the correlation functions for the tilted cone (system B)
are bi-exponential decays. These parameters are correctly recovered from
P(t), 〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉 in Figure 7.

System A System B

τV (ps) 20

τwf (ps) 8.3 2.1
τws (ps) . . . 6.3

A
f ast

2,0 0.042 0.001

Aslow
2,0 . . . 0.044

A∞
2,0 0.056 0.056

A
f ast

2,2 0.033 0.002

Aslow
2,2 . . . 0.019

A∞
2,2 0 0.012

these model calculations it was assumed that the population
decay is a single exponential, but the procedure shown here
to extract population decay is valid regardless of the actual
form of population decay as long as the population relaxation
is independent of molecular orientation.

Orientational correlation functions of our primary inter-
est, 〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉, are shown in Figures 7(b) and 7(c),

(a)

(b)

FIG. 6. Calculated response functions (signals) for (a) (θC = 60◦, θ tilt
= 0◦) and (b) (θC = 30◦, θ tilt = 36.7◦) including the population decay P(t)
(τV = 20 ps). Red: R

χ=0◦
XXXX = R

χ=35.3◦
XXXX , blue: R

χ=0◦
XXYY , and green: R

χ=35.3◦
XXYY .
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(a)

(b)

(c)

FIG. 7. Population decays P(t) and the two orientational correlation func-
tions, 〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉, recovered from the calculated data in Figure 6

using Eqs. (2.33)–(2.35). (a) Population decays (red dashed curve, normal
cone; blue dashed curve, tilted cone) obtained with Eq. (2.33). (b) 〈Y 0∗

2 Y 0
2 〉

for both systems obtained with Eq. (2.35). Similar and substantial plateau
levels are observed for both systems. (c) 〈Y 2∗

2 Y 2
2 〉 orientational correlation

function obtained with Eq. (2.34). While 〈Y 2∗
2 Y 2

2 〉 decays to zero for the nor-
mal cone, 〈Y 2∗

2 Y 2
2 〉 reaches an offset significantly above zero for the tilted

cone.

respectively. The difference between normal cone and tilted
cone emerges particularly in 〈Y 2∗

2 Y 2
2 〉, which can be inter-

preted as in-plane orientational correlation function. While
〈Y 2∗

2 Y 2
2 〉 decays to zero for system A (normal cone), there is

a significant plateau observed for system B (tilted cone). As
mentioned in Sec. III, the physical origin of this behavior is
clear. While there is no restriction on azimuthal angle φ in
surface frame for normal cone (decays to zero), the directions
of transition dipoles are azimuthally confined for a tilted cone
(decays to a plateau). If 〈Y 2∗

2 Y 2
2 〉 has a plateau, the cone is ti-

tled. 〈Y 0∗
2 Y 0

2 〉 is also different for the normal and tilted cones,
but the difference is not large for the particular parameters
used in these calculations.

B. Extraction of cone angle and tilt angle

θC and θ tilt can be determined from data like those
shown in Figure 7. For an isotropic three-dimensional sys-

tem, the cone angle θC can be extracted from the offset in
the anisotropy r(t). For planar monolayers, offsets in both
〈Y 2∗

2 Y 2
2 〉 and 〈Y 0∗

2 Y 0
2 〉 are necessary to obtain θC and θ tilt. As

shown in Section B of the supplementary material,36 the cor-
relation functions at infinitely long time (the plateaus) are
given by

〈
Y 2∗

2 (∞)Y 2
2 (0)

〉 = 15

128π
sin4 θtilt cos2 θC (1 + cos θC)2 ,

(4.1)

〈
Y 0∗

2 (∞)Y 0
2 (0)

〉= 5

64π
(3 cos2 θtilt−1)2 cos2 θC(1+cos θC)2.

(4.2)
Dividing Eq. (4.1) by Eq. (4.2),〈

Y 2∗
2 (∞)Y 2

2 (0)
〉

〈
Y 0∗

2 (∞)Y 0
2 (0)

〉 = 3

2
·
(

sin2 θtilt

3 cos2 θtilt − 1

)2

. (4.3)

Therefore, θ tilt can be extracted from the offsets in the two
spherical harmonics correlation functions. The plateau level
for 〈Y 2∗

2 Y 2
2 〉 is zero for system A, so θ tilt = 0◦. For system

B, 〈Y 2∗
2 (∞)Y 2

2 (0)〉/〈Y 0∗
2 (∞)Y 0

2 (0)〉 = 0.21, so θ tilt = 36.7◦,
which is consistent with the input in the model calculations.

Once the tilt angle θ tilt is derived, putting it into
Eq. (4.1) or (4.2), θC is extracted. For sample A, because
〈Y 0∗

2 (∞)Y 0
2 (0)〉 = 0.056 and θ tilt = 0◦, cos2θC(1 + cosθC)2

= 0.56 from Eq. (4.2), giving θC = 60◦. Similarly, the cone
angle for system B is calculated from Eq. (4.1) to be 30◦.

While the procedure mentioned above works in a
straightforward manner for these two systems, careful at-
tention must be paid in case the derived offset ratio
〈Y 2∗

2 (∞)Y 2
2 (0)〉/〈Y 0∗

2 (∞)Y 0
2 (0)〉 exceeds 1.5, because there

are two possible values of θ tilt which yield the same offset
ratio given in Eq. (4.3). One of the solutions of Eq. (4.3) is
smaller than 54.7◦, while another solution is larger than 54.7◦.
To determine θ tilt uniquely, the sign of order parameter 〈S〉
can be employed. For transition dipole moments wobbling-
in-a-cone, 〈S〉 is given by

〈S〉 = 3 cos2 θtilt − 1

2
cos θC(1 + cos θC). (4.4)

Assuming θC < 90◦, the sign of 〈S〉 is determined only by
(3 cos2 θ tilt − 1) / 2. Therefore by obtaining the sign of order
parameter 〈S〉 through linear dichroism measurement, θ tilt can
be determined to be either larger or smaller than 54.7◦. Then
together with the value of 〈Y 2∗

2 (∞)Y 2
2 (0)〉/〈Y 0∗

2 (∞)Y 0
2 (0)〉,

θ tilt can be uniquely specified.
The offset ratio given in Eq. (4.3) is quite sensitive to θ tilt

when θ tilt is larger than 30◦, which enables a precise deter-
mination of θ tilt. If θ tilt is smaller than 20◦ the offset ratio is
close to zero and is less sensitive to θ tilt, which will lead to
less accuracy in the determination of θ tilt.

C. Extraction of diffusion constant D

Another important parameter contained in the spherical
harmonics correlation functions is the orientational diffusion
constant D. For a three dimensional system in which the
molecular orientation is completely randomized, the constant

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

171.64.123.90 On: Fri, 11 Apr 2014 23:13:02



144702-13 J. Nishida and M. D. Fayer J. Chem. Phys. 140, 144702 (2014)

can be extracted by D = 1/6τ , where τ is the time constant
for decay of the anisotropy. For a three-dimensional isotropic
wobbling-in-a-cone system, the diffusion constant can be ex-
tracted from the single exponential anisotropy decay time
constant τw by5

D ≈ 7θ2
C

24τw

, (4.5)

where θC is the cone angle obtained from the plateau level in
the anisotropy. Thus for wobbling-in-a-cone model, the diffu-
sion constant depends both on τw and θC.

The situation is more complicated for molecules func-
tionalized on a planar surface. For transition dipoles
wobbling-in-a-cone, Table II shows that 〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉

decay as bi-exponentials,〈
Y 0∗

2 (t)Y 0
2 (0)

〉 = Afast
20 · e−t/τwf + Aslow

20 · e−t/τws + A∞
20, (4.6)

〈
Y 2∗

2 (t)Y 2
2 (0)

〉 = Afast
22 · e−t/τwf + Aslow

22 · e−t/τws + A∞
22, (4.7)

where τwf and τws are the faster and slower wobbling time
constants. The decay time constants are related to the cone
angle by

τwf ≈ 1

ν1(θC) (ν1(θC) + 1) D
, (4.8)

τws ≈ 1

ν2(θC) (ν2(θC) + 1) D
, (4.9)

with

ν1(θC) = 100.496θ−1.122
C , (4.10)

ν2(θC) = 100.237θ−1.122
C . (4.11)

As seen in Eqs. (4.10) and (4.11), ν1 is roughly ∼1.8
times larger than ν2. Note that the ratio of the amplitudes of
the fast decay component and the slow decay component de-
pends both on θC and θ tilt, as given in Table II(B). The ratios
of the amplitudes, Aslow

20 /Afast
20 and Aslow

22 /Afast
22 , are shown in

Figure 8 for various tile angles θ tilt with the cone angle fixed
to θC = 30◦ or 60◦.

For system A, θC and θ tilt are 60◦ and 0◦, respectively.
As seen in Figure 8, if θC = 60◦ and θ tilt is small, the con-
tribution from slow component is negligible and the decay in
both 〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉 can be regarded as single exponen-

tial decays with the fast decay time. (For the normal cone,
the decay is rigorously single exponential as can be seen in
Table II(A)). Equation (4.10) yields ν1(60◦) = 2.98. Then
based on the decay time constant of τwf = 8.3 ps for both
〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉 (Table IV), the diffusion constant D can

be correctly recovered as 0.01 ps−1, using Eq. (4.8).
For system B with θC = 30◦ and θ tilt = 36.7◦, which

can be experimentally derived from the ratio of plateaus in
orientational correlation functions, the contribution from the
fast component is negligible for both 〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉 as

seen in Figures 8(a) and 8(b), and the decay will appear to
be single exponential with the decay time constant of 6.3 ps
(Table IV). Knowing that this time constant corresponds to

(a)

(b)

FIG. 8. The amplitude ratio (a) Aslow
20 /Afast

20 and (b) Aslow
22 /Afast

22 in Eqs. (4.6)
and (4.7) with respect to the tilt angle θ tilt for two cone angles θC = 30◦ (red)
and 60◦ (blue). Table II(B) can be used to calculate the ratios for other sets
of cone and tilt angles.

slow decay time constant τws , the diffusion time constant D
can be correctly recovered as 0.01 ps−1, using Eq. (4.9) and
ν2(30◦) = 3.57.

D. Surface roughness

When a monolayer on a solid substrate is studied, the sur-
face supporting the monolayer may not be ideally flat, and
has some roughness. As mentioned in Sec. II, the procedure
presented there (and in Sec. V) to extract in-plane and out-of-
plane orientational correlation functions is totally valid even
for the molecules on rough surfaces, as long as the roughness
is symmetric in plane and thus the system can be regarded as
a uniaxial system. If not specifically taken into account, the
roughness will become part of the angular distribution and
the effect is convolved into the obtained orientational corre-
lation functions. Surface roughness essentially tilts the transi-
tion dipole moments by some range of angles about those that
would occur in the ideally flat case. If the roughness amounts
to a range of a few degrees, it could be ignored and the re-
sults in Secs. III and IV can be directly employed. In case
the surface is locally and significantly rough, the roughness
should be taken into account to simulate or interpret 〈Y 2∗

2 Y 2
2 〉

and 〈Y 0∗
2 Y 0

2 〉. Once the nature of the surface roughness is
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characterized, e.g., using Atomic Force Microscopy, it is
straightforward to simulate 〈Y 2∗

2 Y 2
2 〉 and 〈Y 0∗

2 Y 0
2 〉 with the sur-

face roughness taken into account. This procedure is briefly
discussed in Section B of the supplementary material.36

Roughness is obviously not the issue for studying dynamics at
liquid-air interfaces, or uniaxial thick samples such as liquid
crystals.

Thus the surface roughness can be rigorously accounted
for, but it is worth showing that the effect of surface rough-
ness is minor if monolayer samples are prepared with rea-
sonably high quality substrates. Commercially available sub-
strates have the surface flatness of λ/10, meaning that peak-
to-valley depth on surface is ∼50 nm. What is important here
is the horizontal length scale (in the plane) over which this
peak-to-valley roughness is occurring. In case this peak-to-
valley roughness happens over 10 μm, the actual surface to
which molecules are bound is tilted by at most ∼ 0.2◦. This
angle is so small that the surface can be regarded as ide-
ally flat, and the discussion in Secs. III and IV will be di-
rectly applicable. If the peak-to-valley roughness has a pe-
riod of 1 μm, the surface can be tilted by ∼ 3◦, which may
still be regarded as relatively small angle, but the roughness
can be taken into account rigorously by applying the for-
mula given in the supplementary material.36 Monolayers on
rougher surfaces should definitely be treated with the consid-
eration of surface roughness. As seen in the discussion above,
what matters is the absolute roughness of the substrate’s sur-
face (range of angles about the ideal plane), and the thickness
of the monolayer relative to the peak-to-valley depth is not
important.

V. NON-COLLINEAR BEAM GEOMETRIES

To this point the theoretical developments have been
for experimental configurations in the small crossing angle
limit. In the small crossing angle limit, the response functions
are given by Eqs. (2.21), (2.22) and (2.31). The correlation
functions of the spherical harmonics and isotropic popula-
tion decay are obtained by solving these equations through
Eqs. (2.33)–(2.35). In the real experiments, however, non-
negligible crossing angles are frequently required to separate
the signal from pump beam(s) or, in a fluorescence experi-
ment, to observe a cone of emitted fluorescence.

In the case that the crossing angle between the beams
is significant, the polarizations of the beams (X or Y) do not
necessarily coincide with the polarizations in lab frame de-
fined in Figure 2, and the corrections to the formulas are
required that depend on the crossing angle. In this section,
we will present the formulas for the orientational response
functions for the following four beam geometries: pump-
probe geometry, transient grating geometry with the beams
in a plane, BOXCARS geometry, and fluorescence geometry.
The derivations of these formulas are provided in detail in
Section C of the supplementary material.36 In the following,
the monolayer sample is on the front surface of the substrate,
and thus the beams in Figures 9 and 10 do not show the re-
fraction that will occur when the beams pass in and out of the
substrate.

(a)

(b)

FIG. 9. Experimental geometries for (a) pump-probe geometry and (b) het-
erodyne detected transient grating geometry with beams in a single plane.
S-sample with the monolayer on the input side of the substrate, P- polarizer
to set the signal’s polarization. In both (a) and (b), the sample is tilted in YLZL

plane. For the pump-probe geometry (a), the polarization of each beam ex-
actly coincides with the polarization in lab frame. For the HDTG geometry
(b), while the X-polarization of each beam coincides with the XL-polarization
in lab frame, the Y-polarization is a linear combination of the YL- and ZL-
polarizations.

A. Pump-probe geometry

In the pump-probe geometry, the only crossing angle is
the angle between the pump and probe beams. There are sev-
eral possible ways to set the polarizations and install the pla-
nar sample, but the simplest configuration is shown in Fig-
ure 9(a). In Figure 9(a), the k-vectors for the pump and probe
beams are in YLZL plane. The k-vector for pump beam is set
so that it is normal to the surface when χ = 0◦. Also, the
polarization of probe beam is fixed so that it is parallel to
XL axis. Note that, as shown in Figure 9(a), the polariza-
tions of the beams (X or Y) exactly coincide with the polar-
izations in lab frame (XL and YL), regardless of the cross-
ing angle �. So whatever � is, the discussion shown in
Sec. II C is applicable without any modifications; the response
functions are given by Eqs. (2.21), (2.22) and (2.31), and
the orientational correlation functions can be calculated by
Eqs. (2.33)–(2.35).

B. Heterodyne detected transient grating geometry
with beams in a plane

In heterodyne detected transient grating experiment, the
same information as pump-probe experiment can be acquired
with the improved sensitivity.33, 44 The geometry with the
three excitation beams and the signal beam in a plane is shown
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(a)

(b)

FIG. 10. The beam geometry for (a) heterodyne detected transient grating
in the BOXCARS geometry and (b) fluorescence experimental geometry. In
(a), beam 1 and the TG signal beam are in the XLZL plane; beams 2 and
3 are crossed in YLZL plane. The sample is installed so that ZS axis in the
surface frame is normal to the XL axis. The ZS axis in the surface frame is
tilted by angle χ with respect to the ZL axis. The angles � are relative to
the dashed green line in (a), which is perpendicular to the input plane and
is equidistant from each of the input beams, B1, B2, and B3. In (b) both X
and Y polarizations of the excitation beam are along the XL and YL axes in
lab frame, respectively. The sample is installed so that ZS axis in the surface
frame is normal to XL axis. The sample is tilted so that the ZS axis makes an
angle χ with ZL axis. The cone of emitted fluorescence is collected by the
lens (L), and then passed through the polarizer (P). The half-cone angle of
the collected fluorescence is �.

in Figure 9(b). The two excitation pulses (beams B1 and B2)
cross in the sample simultaneously to produce the grating.
The third beam (B3) is the probe beam, which generates the
signal beam, TG. Because the sample is a monolayer, the
grating is in the thin grating limit (Raman-Nath diffraction),
so the probe beam can be brought in at any angle. The sig-
nal will emerge in the Bragg diffraction direction. Because a
TG signal is well separated from the other beams, it can be
overlapped with the external local oscillator for heterodyne
detection that can amplify the signal.33, 44 Heterodyne de-
tection results in the signal being at the E-field level (ETG

∝ P(3)(t)), consistent with the results derived above. In the
absence of heterodyne detection, the TG signal is at the
intensity level (|ETG|2), and data analysis requires taking
the absolute value squared of the results given above and
the results given in this and Sec. V C on the BOXCARS
geometry.

In the configuration in Figure 9(b), the k-vectors for all
the input beams (B1, B2, and B3) and the signal beam (TG)
are in the YLZL plane. The angle between the excitation beams
(B1 and B2) is 2�, and the probe beam (B3) is the bisector
of this angle (see Figure 9(b)). The polarization for the probe
beam (B3) and the detection polarization for the TG signal is
always set parallel to the XL axis. In this configuration, each

orientational response function is given by

R
χ=0◦
XXXX = R

χ

XXXX = 1

9
− 4

9

√
π

5

〈
Y 0

2

〉 + 4
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π
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2

〉
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π
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2 Y 2
2

〉
, (5.1)
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(
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45
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(
cos2 � + 2 sin2 �

) 〈
Y 0∗

2 Y 0
2

〉
− 4

15
π cos2 �
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〉
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R
χ

XXYY = 1

9
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π

5
{2 cos (χ + �) cos (χ − �)

− sin (χ + �) sin (χ − �)} 〈
Y 0

2

〉
+ 4

45
π{cos (χ + �) cos (χ − �)

−2 sin (χ + �) sin (χ − �)} 〈
Y 0∗

2 Y 0
2

〉
− 4

15
π cos (χ + �) cos (χ − �)

〈
Y 2∗

2 Y 2
2

〉
. (5.3)

See Section C of the supplementary material for the
derivations.36 Even though the actual functional forms of Eqs.
(5.2) and (5.3) are different from Eqs. (2.22) and (2.31), the
procedure for extracting the orientational correlation func-
tions and population decay is the same. 〈Y 0

2 〉 is determined
by time averaged linear dichroism experiment, and then there
are three equations with three unknown parameters, 〈Y 0∗

2 Y 0
2 〉,

〈Y 2∗
2 Y 2

2 〉, and P(t). Thus all of these parameters can be ob-
tained by solving Eqs. (5.1)–(5.3).

It is important to note that as shown in Eq. (5.1),
R

χ=0◦
XXXX = R

χ

XXXX. This equality of two XXXX signals is im-
portant for scaling the two signals with different χ angles as
discussed in Sec. II C.

C. Heterodyne detected transient grating geometry
with BOXCARS geometry

BOXCARS geometry for HDTG experiments can be very
useful if, for example, 2D IR vibrational echo experiments are
also conducted on the same sample using this beam geome-
try. In such a situation it is only necessary to change the tim-
ings of the pulses without any change in the beam geometry
to perform the HDTG experiments.33, 44–46 In the BOXCARS
geometry, beams are crossing both in the YLZL plane and in
the XLZL plane (see Figure 10(a)). The crossing of beams in
both planes introduces substantial complexity in the observ-
able response functions when the crossing angle is significant.
“X” polarization for each beam is defined such that the polar-
ization is in XLZL plane and orthogonal to the propagation di-
rection of the beam, whereas “Y” polarization is polarized in
YLZL plane and normal to the k-vector of each beam. Beam
B1 and B2 are the excitation beams that form the grating.
Beam B3 is the probe, and TG is the transient grating signal
that will be combined with the local oscillator for heterodyne
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detection. The angle, �, is shown in Figure 10(a). The angles
are relative to the dashed green line in Figure 10(a), which is
perpendicular to the input plane and is equidistant from each
of the input beams, B1, B2, and B3. For this configuration,
orientational response functions can be written as

R
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XXXX = cos2 �
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Depending on the crossing angle � and the structure factor,
implementation of this geometry presents two issues. First, in
R

χ

XXXX (Eq. (5.4)), an additional spherical harmonic correla-
tion function, 〈Y 1∗

2 Y 1
2 〉, appears. Second, R

χ

XXXX is not equal
to R

χ=0◦
XXXX, which can introduce an error when the R

χ

XXYY sig-
nal is scaled based on these two measurements. If the cross-
ing angle is sufficiently small, both problems are negligible.
As seen in Eq. (5.4), 〈Y 1∗

2 Y 1
2 〉 is multiplied by sin2�, thus if

� is small this term can be dropped. Also for small �, the
scaling error becomes insignificant. For example, for an order
parameter of −0.2 and � = 10◦, the term with 〈Y 1∗

2 Y 1
2 〉 can

be dropped and the scaling error is negligible. Ten degrees is
actually a fairly large angle in an experiment. These issues are
discussed in complete detail in Section C of the supplemen-
tary material.36

D. Fluorescence geometry

In a fluorescence experiment, the excitation beam im-
pinges on the surface so that the X and Y polarizations co-
incide with XL and YL axes in lab frame (see Figure 10(b)).
That is, the k-vector of the excitation beam is the ZL axis in
the lab frame. The sample is again installed so that ZS axis
on the surface is perpendicular to XL axis in lab frame. For
χ �= 0◦ measurement, the sample is tilted in YLZL plane as
shown in Figure 10(b). Upon excitation, a “cone” of fluores-
cence will be collected by a lens. The half-cone angle of the
collected fluorescence is �. The fluorescence collimated by
the lens passes through a polarizer to selectively detect XL-
polarized fluorescence, and the excitation beam polarization
is rotated between XL and YL.

The derivation and discussion of the following results are
given in the supplementary material.36
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where I1(�) and I2(�) are the integrals given by

I1(�) ≡ 1

2π (1 − cos �)

∫ �

0
dθ sin θ

×
∫ 2π

0
dφ

cos2 θ

cos2 θ + sin2 θ cos2 φ
, (5.12)
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I2(�) ≡ 1

2π (1 − cos �)

∫ �

0
dθ sin θ

×
∫ 2π

0
dφ

sin2 θ cos2 φ

cos2 θ + sin2 θ cos2 φ
. (5.13)

Note that I1(�) + I2(�) = 1 for any �, and also I1(0)
= 1 and I2(0) = 0 for the small cone (small �) limit. I1(�)
and I2(�) can be numerically evaluated. For example, in case
� = 10◦, I1(�) = 0.99 and I2(�) = 0.01, indicating that the
effect of collection cone is minor and small-crossing angle
limit is valid. In practice, a collection cone half angle of 10◦

is fairly large.
In addition, R

χ

XXXX is not rigorously equal to R
χ=0◦
XXXX. As

mentioned in the previous discussions, the equality of R
χ

XXXX

and R
χ=0◦
XXXX is used to scale the amplitude of R

χ

XXYY . The col-
lection cone angle must be set small enough so that the differ-
ence between R

χ

XXXX and R
χ=0◦
XXXX is negligible. A quantitative

discussion on the maximum acceptable collection half-angle
� is provided in the supplementary material.36

VI. CONCLUDING REMARKS

We have developed the theory necessary to extract de-
tailed orientational dynamics and structural information for
molecules bound to a planar two-dimensional surface from
polarization-resolved third-order resonant spectroscopy. The
theory was applied specifically to UV/Vis or IR polarization
selective pump-probe experiments, UV/Vis or IR heterodyne
detected transient grating experiments, and time resolved flu-
orescence orientational anisotropy measurements. The the-
ory is also applicable to chromophores in uniaxial systems
such as planar phospholipid bilayers or aligned uniaxial liq-
uid crystals. The usual orientational anisotropy observable,
r(t) in Eq. (1.1) is not the correct observable to be mea-
sured for molecules bound to a planar surface. As discussed in
Sec. II, the orientation dynamics and structural informa-
tion are related to the spherical harmonics correlation func-
tions 〈Y 0∗

2 Y 0
2 〉 and 〈Y 2∗

2 Y 2
2 〉, which correspond to out-of-plane

motions and (mainly) in-plane motions, respectively. It is
demonstrated that four measurements (Rχ=0◦

XXXX(t), R
χ=0◦
XXYY (t),

R
χ

XXYY (t), and 〈S〉) are necessary to determine the orienta-
tional correlation functions and isotropic population decay
P(t). In practice, another measurement of R

χ

XXXX(t) is use-
ful to obtain the necessary absolute amplitude of R

χ

XXYY (t) so
that it can be used with R

χ=0◦
XXXX(t) and R

χ=0◦
XXYY (t) to extract the

orientation dynamics and structural information.
The general theoretical results were applied to the

wobbling-in-a-cone model, which describes molecular mo-
tions that are restricted to a limited range of angles (the cone).
For molecules bound to a surface, the axis of the cone can
be normal to the surface or tilted. As described in Sec. IV, the
experimental measurements yield 〈Y 2∗

2 Y 2
2 〉 and 〈Y 0∗

2 Y 0
2 〉 which

permit the determination of the cone half-angle θC and tilt an-
gle θ tilt, as well as the orientational diffusion constant, D. In
the initial derivations, all of the results are obtained for the
beams in the small crossing angle limit. In Sec. V, the equa-
tions are modified to provide the results necessary to perform
experiments with beam geometries that occur in experiments.

The theory presented here is immediately applicable to
fast dynamics of functionalized planar monolayers studied by
HDTG spectroscopy, pump-probe experiments, and fluores-
cence depolarization. To apply the theory presented here for
the fluorescence depolarization studies, the absorption tran-
sition dipole moment and the emission transition dipole mo-
ment must be the same. If the absorption and emission dipoles
do not coincide, the theory would need to be modified to take
the difference in two dipoles’ orientations into account.

In Secs. III and IV the theory was applied to the
wobbling-in-a-cone model. It is important, however, to em-
phasize that the proposed experimental procedures presented
in Secs. II and V are valid regardless of the nature of the
molecular motions. Thus, the in-plane and out-of-plane orien-
tational correlation functions, 〈Y 2∗

2 Y 2
2 〉 and 〈Y 0∗

2 Y 0
2 〉, obtained

from experiments can be compared with those obtained from
molecular dynamics (MD) simulations. MD simulations of
interfacial molecules have been presented.47–52 As seen in
Sec. IV, the essential features of interfacial molecular mo-
tions are captured in the correlation functions rather than each
response function. Thus, the experiments proposed in this ar-
ticle, which directly obtain the correlation functions, should
enable detailed comparison between experiment and MD sim-
ulations.
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