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Supplemental Material 

A. Orthogonality of the Surface Frame Correlation Functions of the Spherical Harmonics  

In Section II, Eqs. (II.17) and (II.18) played a central role in simplifying the response 

functions in terms of the correlation functions of spherical harmonics.  Here, we will prove that 

Eqs. (II.17) and (II.18) are rigorously correct as long as the system is macroscopically symmetric 

in the surface plane.  The correlation functions of interest,    *
2 1 2 0
m mY Y    , can be written as 
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 (B.1) 

The spherical harmonics can always be factorized into a -dependent factor and a -

dependent factor. We will focus on the  integral in Eq.(B.1).  When the  integral is calculated, 

all the other variables in Green’s function, 1 , 2  and t, can be regarded as constants. Because the 

system is symmetric in-plane, i.e., in terms of azimuthal angle, Green’s function can be written 

as 

 
1 01 1 0 0 , , 1 0( , , , , ) ( )tG t g         (B.2) 

where 
1 0, , ( )tg x   satisfies 

 
1 0 1 0, , , ,( 2 ) ( )t tg g        (B.3) 
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Eq. (B.2) says that the probability for a transition dipole moment to move from 1  to 2  (once 1 , 

2  and t are fixed) depends only on the difference between 1  and 2 . Because movements by   

or 2  are not distinguishable, Eq. (B.3) is valid. Then the  -integral in Eq. (B.1) can be 

written further as 
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Note that 
1 0 1 0, , , ,( ) ( )im

t th e g      satisfies 
1 0 1 0, , , ,( 2 ) ( )t th h        from Eq. (B.3). Thus 

1 0, , 1 0( )th     can be expanded as a Fourier series in the form 
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By substituting (B.5) into (B.4),  

 
 

1 0
0

1 0
1 0

1 0
0 1 0

1 0

1 0
01

1 0

2 2
( )

1 0 , , 1 0
0 0

2 2
( ) ( )

1 0
0 0

2 2
( )

1 0
0 0

,0 , 0 0, 0,

 ( )

 

  

i m m
t

i m m in
n

n

i n m min
n

n

n n n m m m m

n

d d e h

c d d e e

c d e d e

c c

   


 
 

   
  

 

   


 

   

 

 

   

 


 

  
  

 


  
 

 




   





 



  

 
  

  

 m m

 (B.6) 



3 
 

As seen in Eq.(B.6), the  integral in Eq. (B.1) is only non-zero when m m  . Therefore, 

   *
2 1 2 0 ,
m m

m mY Y 
   , which is Eq. (II.17) . Eq. (II.18) can be proven in the exactly same 

manner by setting 0m  in the above. 

 

B. Correlation Functions of the Spherical Harmonics in the Surface Frame for the 

Wobbling-in-a-Cone Model 

1.  Cone Normal to the Surface - Wang and Pecora 

Wang and Pecora1 solved the following differential equation for ( , )W t ,  
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 (C.1) 

with the boundary condition  
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( , )W t  is the probability a single transition dipole moment is pointing the direction of  . 

Based on their solution, they showed that in case the half-cone angle satisfies 60C    the 

correlation functions we need here are almost perfectly approximated by 
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where the C coefficients are the functions of cone angle C :  

  20 2
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2
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20 C C C CC          (C.7) 
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0 1
2 1,   and 2

1 also depend on C . There is no analytical form for these parameters, but the 

following approximate formulas based on numerical calculations are applicable for 170C   2,3: 

 0 2 0.496 1.122
2 1 10 C      (C.10) 

 1 0.237 1.122
1 10 C    (C.11) 

Also, the time-average of 0
2Y is given by 
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Eqs.(C.3), (C.5) and (C.12) are necessary to calculate the response functions for a transition 

dipole wobbling in a normal cone.  

2.  Tilted Cone 

A tilted cone is illustrated in Figure S1.  Here we derive the correlation functions of the 

spherical harmonics for a transition dipole in the titled cone in the surface frame (S); these are 

used in Eqs. (II.21), (II.22) and (II.31) to calculate the response functions. In the conical frame 

(C), shown as (XC, YC, ZC) in Figure S1, the correlation functions are clearly given by  
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Y t Y Y t Y
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Once the spherical harmonics in surface frame can be expressed in terms of those in  
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Figure S1. The definition of the Conical Frame (XC, YC, ZC) with respect to the Surface Frame (XS, YS, ZS). The 
transition dipole is wobbling in a normal cone in the Conical Frame. 
 
conical frame, then the correlation functions can be calculated using Eq. (C.13). Addition 

theorem for the spherical harmonics can be used for this purpose:4 

    2
2 2( , , )m m

S m m SC SC SC C

m

Y D Y   
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

   , (C.14) 

where 2 ( , , )m m SC SC SCD    is the second order Wigner D matrix 

 2 2( , , ) ( )SC SCi m i m
m m SC SC SC m m SCD e d e     
   (C.15) 

The Wigner small d matrix 2 ( )m md   can be found in literature.4 ( , , )SC SC SC    are the Euler 

angles that transfer the conical frame (XC, YC, ZC) into the surface frame (XS, YS, ZS). Based on 

Figure S1, the Euler angles for this procedure is 0SC  , tiltSC   . SC  depends on the 

azimuthal directions of the primary axis of the cone in the surface frame. Thus, Eq. (C.14) can be 

written as 
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Using Eq. (C.16), the correlation functions of interest are generally expressed as 
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Here, the orthogonality of the spherical harmonics in the conical frame is used. Eq. (C.17) is the 

correlation function for a cone tilted to a specific azimuthal direction specified by SC . Because 

of the in-plane symmetry of the surface, the azimuthal direction of the primary axis of the cones 

should be randomly oriented on the surface. Then, the actual ensemble average correlation 

functions in the surface frame can be calculated by 
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It is clear from Eqs. (C.17) and (C.18) that *
2 2( ) (0)m m

m mS
Y t Y 

 , which we proved for the 

general case in Section A above. From Eqs. (C.17) and (C.18), 
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Using (C.13), together with (C.2)-(C.5) and (C.12), (C.19)-(C.22) can be written more 

explicitly as 
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It should be noted that under the approximations given in Eqs. (C.10) and (C.11), the time-

dependent correlation functions decay as bi-exponentials, which leads to bi-exponential decays 

in the orientational response functions.  

From (C.23) and (C.25), the correlation functions at infinitely long time are given by 
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which are dependent both on the cone angle C  and the tilt angle tilt . 
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3.  Consideration of the Roughness of the Surface 

The addition theorem of spherical harmonics can be also used to take local roughness of 

the surface into account.  By surface roughness, we mean that local macroscopic regions of the 

surface are tilted at various angles relative to an ideal perfect plane.  Variations in the thickness 

of a monolayer do not matter.  In case the surface is rough, the frame in which the correlation 

functions are calculated is tilted from the actual surface frame by a certain angle. This is exactly 

the situation that occurs in the transformation from conical frame to surface frame discussed 

above.  Thus the same strategy can be employed here. The spherical harmonics correlation 

functions for rough surface can be calculated by 

  2* 2 *
2 2 2 2rough,S flat,S

( ) (0)  ( ) ( ) ( ) (0)m m k k
km

k

Y t Y d G d Y t Y  
 

  
  
  (C.29) 

where *
2 2 flat,S

( ) (0)k kY t Y  is the correlation function calculated assuming the surface supporting 

the monolayer is flat and *
2 2 rough,S

( ) (0)m mY t Y is the correlation function for the rough surface, 

which should be used in the calculation of response functions. The quantity in […] corresponds 

to the correlation function for monolayer on the surface which is tilted exactly by angle   from 

the ideal surface normal. ( )G  is the weighing factor which depends on the nature of the 

roughness of the surface. Again, the in-plane symmetry of the surface is assumed in the 

derivation of Eq. (B.29). Using Eq. (B.29), once the local roughness of the surface is 

characterized, e. g., by atomic force microscopy, to provide ( )G  , the correlation functions 

necessary to simulate response functions can be readily obtained from the correlation functions 

calculated with the assumption that the surface is ideally flat.  It is important to note that for a 

reasonably high quality surface if the angular deviations of the surface relative to a perfect plane 
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are only a few degrees, the roughness will introduce negligible error compared to error bars that 

are likely to arise in real experimental measurements. 

 

C. Modifications of the Response Functions for Beams with Significant Crossing Angles 

and Fluorescence with a Substantial Collection Cone 

In Section V, the orientational response functions were presented for the different 

experiments: pump-probe, heterodyne detected transient grating (HDTG) with all of the beams in 

a plane, HDTG with BOXCARS geometry, and the fluorescence geometry. In Figures 9 and 10, 

each polarization is relative to the beam propagation direction (B – beam frame), with ZB along 

the beam propagation direction, and XB and YB are perpendicular to ZB.  XB is in the XLZL plane, 

while YB is in the YLZL plane.  All of the response functions polarization subscripts are in the 

beam frame in this and following sections, but for brevity, the subscripts B have been omitted.  

Prior to Section V, all of the beams are collinear, so the polarizations are the same in the beam 

frame and the lab frame.   

As discussed in the text, for the pump-probe geometry in Figure 9A, no modification is 

necessary to the formulas given in Eqs. (II.21), (II.22) and (II.31), because the XB and YB 

polarizations of the beams coincide with XL and YL axes in the lab frame. The derivations of the 

formulas for the other geometries are provided below.  

For BOXCARS and fluorescence geometries, the horizontal crossing angle  or the 

fluorescence collection cone angle must be set sufficiently small so that the amplitude 

difference between  0

XXXXR   
 and 0

XXXXR   
 is negligible, as mentioned in Section V. For BOXCARS 

geometry, small  is also important to avoid a significant contribution of 1* 1

2 2Y Y  in 0

XXXXR   
. The 

maximum acceptable  and  are also discussed. 
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1. Transient Grating Geometry – Beams in a Plane 

In the configuration shown in Figure 9B, the XB polarizations of all the beams coincide 

exactly with the XL direction in the lab frame, whereas the YB polarizations of B1 and B2 are not 

parallel to the YL direction in the lab frame; the YB polarizations for B1 and B2 can be 

represented by the linear combination of the polarizations along YL direction and ZL directions. 

 
1

ˆ ˆ ˆcos sin
B L LY Y Z         (D.1) 

 
2

ˆ ˆ ˆcos sin
B L LY Y Z         (D.2) 

In case  = 0°, as shown in Eqs. (II.6) and (II.7), the E-fields in lab frame (L) and surface frame 

(S) coincide with each other.  Thus, for example, the response function 0
XXYYR  

 can be calculated 

by 

 

, 3 2 1

0
1 0 1 1 1 0 0 0

2
1 0 1 1 0

0 0 0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( )( ) ( , )( )( )

ˆˆ( ) ( , )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ                                       (cos sin )(cos sin )

B TG B B B

S

S S S S

XXYY X X Y Y

X

Y Z Y Z

R t d d G t

d d G t

        

 

       

     

    

        

 
 



 (D.3) 

To make the calculation clear, the following integral is defined: 

 1 0 1 1 1 0 0 0
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )( ) ( , )( )( )S S S SS

d d G t                  (D.4) 

The spherical harmonics representations for 
S

  (surface frame) are listed in Table S.1. 

Note that the integral such as 
S

XXYZ is zero. Eq. (D.3) can then be written as 

 0 2 2( ) cos sinXXYY S S
R t XXYY XXZZ    



 (D.5) 

Using Table S.1, Eq. (D.5) can be rewritten in terms of spherical harmonics as 

 
 

 

0 2 2 0
2

2 2 0* 0 2 2* 2
2 2 2 2

1 2
( ) cos 2 2cos sin

9 9 5
4 4

                           cos 2sin cos
45 15

XXYYR t Y

Y Y Y Y

 

 

      

     



 (D.6) 
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The same procedure can be followed to calculate 0
XXXXR 

, XXXXR  and XXYYR . Note that for 0  , 

in addition to the conversion from the beam frame to lab frame (Eqs. (D.1) and(D.2)), the lab 

frame must be further converted to surface frame using Eqs. (II.8) and (II.9). The results are 

shown in Eqs. (V.1)-(V.3) in the main text.  

2. BOXCARS Geometry 

To calculate the response functions for both  = 0 and   0 (shown in Figure 10A), 

again the polarization of each beam (B – beam frame) must first be converted to polarizations in 

the lab frame taking into consideration the crossing angle, and then into the surface frame taking 

into account .  Then, the surface frame unit vectors obtained from the lab frame vectors are 

used to calculate the response functions as in Section C.1, Eq.(D.3).   

The conversion formulas from B to L are given in the following Eqs. (C.7)-(C.12) where 

ˆ
BiX and ˆ

BiY corresponds to X- and Y-polarization of the ith beam in the beam frame (see Figure 

10A), and 
,

ˆ
B TGX  is the detected polarization of the emitted transient grating signal in the beam 

frame: 

1
ˆ ˆ ˆcos sin

B L LX X Z               (D.7) 

1
ˆ ˆ

B LY Y           (D.8) 

2
ˆ ˆ

B LX X           (D.9) 

2
ˆ ˆ ˆcos sin

B L LY Y Z               (D.10) 

3
ˆ ˆ

B LX X           (D.11) 

,TG
ˆ ˆ ˆcos sin

B L LX X Z        .      (D.12) 
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The polarizations in the lab frame (L) have to be again converted to surface frame (S) especially 

when sample’s tilt angle  is not zero.  In addition to Eqs. (II.8) and (II.9), the following 

conversion formula to convert ˆ
LZ to surface frame is necessary: 

 ˆ ˆ ˆcos sin
L S SZ Z Y         (D.13) 

For example, Eq. (D.7) can be converted to surface frame in the form of 

 
1

ˆ ˆ ˆ ˆcos sin sin sin cos
B S S SX X Y Z               (D.14) 

Other input polarizations can be converted to the surface frame as well. Then, for example, the 

XXXX signal for a tilt angle χ can be written as 

 

 
 

, 3 2 11 0 1 1 1 0 0 0

1 0 0 0 1 1 0

0 0 0

1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( )( ) ( , )( )( )

ˆ ˆ ˆˆ ˆ ˆcos sin ( ) ( , )

ˆ ˆ ˆˆ ˆ ˆ                                       ( ) cos sin

B TG B B B

L L L

L L L

XXXX X X X X

X Z X

X X Z

R t d d G t

d d G t

d d

        

     

     

    

        

   

 

 
 

  
 

0 1 1 0

0 0 0

ˆ ˆ ˆ ˆˆcos sin sin sin cos ( ) ( , )

ˆ ˆ ˆ ˆˆ ˆ ˆ                                       ( ) cos sin sin sin cos

S S S S

S S S S

X Y Z X

X X Y Z

G t      

        

         

      



(D.15) 

The orientational response functions can be written in the spherical harmonics representation 

using Table S.1. The results are shown in the main text, but repeated below for convenience: 

0 2 2

2 0 0* 0 2* 2
2 2 2 2 2

2 1* 1
2 2

= cos sin

1 4 4 4
cos

9 9 5 45 15

4
                                                                     sin

15

XXXX S S
R XXXX ZXXZ

Y Y Y Y Y

Y Y



  



   

 
     

 
   
 



 (D.16) 

0 2

2 0 0* 0 2* 2
2 2 2 2 2

cos

1 4 4 4
cos

9 9 5 45 15

XXYY S
R XXYY

Y Y Y Y Y



  

  

 
     

 



 (D.17) 
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2 2 2 2 2

2 0 0* 0 2* 2
2 2 2 2 2

2 2 1* 1 2 2 2* 2
2 2 2 2

cos sin cos sin sin

1 4 4 4
cos

9 9 5 45 15

4 4
           sin cos sin sin

15 15

XXXX S S S
R XXXX ZXXZ YXXY

Y Y Y Y Y

Y Y Y Y

  

  

   

     

 
     

 
         
   

 (D.18) 

    

    

 

2 0
2

0* 0
2 2

2* 2
2 2

cos cos( ) cos cos sin( )sin

1 2
cos 2cos cos cos cos sin sin

9 9 5
4

           cos cos cos 2cos sin sin
45
4

           cos cos cos
15

XXYY S S
R XXYY XXZZ

Y

Y Y

Y Y

    

    

    

  

     

       

     

  

 (D.19) 

Considering Eqs. (D.16)-(D.19), there are two issues in regard to the orientational 

correlation functions that need to be addressed.  First, 0
XXXXR 

 contains 1* 1
2 2Y Y , which does not 

show up for collinear beams (zero crossing angle) or for the geometries described above. As a 

result, the orientational correlation functions cannot be rigorously extracted from three 

measurements ( 0
XXXXR 

, 0
XXYYR  

and XXYYR ), because there are four unknown parameters, 0* 0
2 2Y Y , 

1* 1
2 2Y Y , 2* 2

2 2Y Y  and ( )P t . Another issue is that 0
XXXXR 

is no longer equal to XXXXR  as can be 

seen by comparing Eqs. (D.16) and (D.18). Thus the difference in the configuration factor (Eq. 

(II.39)) cannot be accounted for rigorously by examining the intensity ratio of the XXXX signals 

for 0  and 0   . To account for these two effects and extract orientational correlation 

functions with the same scheme used for collinear beams, the horizontal crossing angle  should 

be set small enough (the small-crossing-angle limit) so that  
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0 0
,approx

2

2 0 0* 0 2* 2
2 2 2 2 2

         cos

1 4 4 4
          = cos

9 9 5 45 15

XXXX XXXX

S

R R

XXXX

Y Y Y Y Y

 

  

 

 

 
    
 

 

 (D.20) 

and  

 0
XXXX XXXXR R  


. (D.21) 

When the approximations given by Eqs. (D.20) and (D.21) are valid, the ratio of the 

configuration factor in Eq. (II.39) can be found by comparing the ratio of 0
XXXXR  

 and XXXXR , and 

then 0* 0
2 2Y Y , 2* 2

2 2Y Y and ( )P t  are obtained by solving Eqs.(D.20), (D.17) and (D.19), each 

multiplied by ( )P t . 

To be in the small angle limit, the acceptable crossing angle must be determined.  As can 

be seen by examining Eqs. (D.16) and (D.20), the errors introduced by the approximations 

depend on each time averaged and time dependent parameters.  Therefore, the properties of the 

monolayer of interest determine how large the crossing angle can be and still avoid significant 

error.  The key to addressing these issue is the fact that Eq. (D.20) is essentially the 

approximation that neglects the contribution of 
S

ZXXZ  in favor of 
S

XXXX . The average 

polar angle of the transition dipoles in the surface frame, S , is closely related to the error 

introduced by the approximation.  If S  is close to 0°, i.e. transition dipoles are almost 

orthogonal to the surface, 
S

ZXXZ  is much larger in amplitude than 
S

XXXX  because 

ˆ ˆ
S SX Z     . On the other hand, in case S  is close to 90 ̊, because ˆ ˆ

S SX Z     , the 

amplitude of
S

ZXXZ  is much smaller than 
S

XXXX . Thus the approximation given in Eqs. 
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(D.20), which neglects the contribution from 
S

ZXXZ , introduces large error for the first case, 

but almost no error for the latter case. Thus the error is expected to have strong correlation with 

the order parameter S .  S  is directly related to the average polar angle S  through Eq. 

(II.27), and it can be obtained from time averaged linear dichroism measurements. 

In a typical experiment with BOXCARS geometry (Figure 10A),  will be less than 10°.  

In Figure 10A, if  is 10°, the angle formed by beams B2 and B3 is 20°, which is large for most 

experiments.  We will consider the errors introduced by the approximations for 

15 ,10 ,5 ,2.5       in the context of the wobbling-in-a-cone model with various cone angles C  

(10° - 60°) and tilt angles tilt  (0° ~ 90°).  The samples tilt angle  was set to 35°.  Once  , C  

and tilt  are specified, the response functions in Eqs.(D.16), (D.18) and (D.20) can be evaluated. 

Then the errors introduced by the approximation are calculated by 

  0 0 0
C22 ,approx( ) ( ) ( ) ( )XXXX XXXX XXXXE t R t R t R t     

  
 (D.22) 

  35 0 0
C23 ( ) ( ) ( ) ( )XXXX XXXX XXXXE t R t R t R t     

  
 (D.23) 

Eq. (D.22) is the error introduced by the approximation Eq. (D.20), and Eq. (D.23) is the error 

introduced by Eq.(D.21).  As seen in Eqs. (D.22) and (D.23), the errors are time-dependent.  For 

each set of conditions, we have determined the errors as a function of time and will present the 

worst errors.  For each set of C  and tilt , the order parameter S was calculated. The errors 

from Eqs. (D.22) and (D.23) were plotted with respect to order parameter S  and are shown in 

Figure S2.A for Eq. (D.22)) and Figure S2.B Eq. (D.23).  Because a given order parameter can 

arise from a range of C  and tilt , there is a vertical width for each order parameter.  As seen in 

Figure S2.A and S2.B, over a wide range of order parameters, the errors are less than 2%.  
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However, the error becomes significant as the order parameter increases, and range of acceptable 

errors is greater for smaller crossing angle .  As the order parameter approaches 1, not even a 

small crossing angle is useful in suppressing the errors.  For large order parameters the planar 

HDTG geometry (Figure 9B) should be used, or a pump-probe experiment (Figure 9A) can be 

performed.  These experiments do not require the approximations that are necessary for the 

HDTG experiment with BOXCARS geometry (Figure 10A). 

Figure S2.  Errors introduced by the approximations with 35    for 2.5    (black), 5   ( red), 10    

(blue), and  = 15° (green).  For each set of , the maximum error is shown as a function of the order parameter.  A 
given order parameter is obtained from a range of C  and tilt , which gives the vertical width for each crossing 

angle .  A. Approximation given in Eqs. (D.20) with the maximum error from Eqs. (D.22).  B.  Approximation 
given in Eqs. (D.21) with the maximum error from Eqs.(D.23). 
 
3. Fluorescence geometry 

As shown in Figure 10B, we assume that the excitation beam propagates along ZL axis, and 

measurements are made with XL and YL E-field polarizations.  The emitted fluorescence is 

collected by a lens, so there is a cone of angles collected with the cone half-angle determined by 
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the size and focal length of the lens.  The emitted beam is collimated by the lens and passed 

through a polarizer to selectively detect the XL polarization. A fluorescence photon is emitted 

from the sample with polar angle   and azimuthal angle   (Figure S3). The detected 

polarization for this photon, XB (beam frame), is perpendicular to k-vector of the photon and also 

to the YL axis in lab frame.  Because unit k-vector for this photon is given in lab frame by 

 ˆ ˆ ˆ ˆsin cos sin sin cos
L L LX Y Zk               (D.24) 

the XB polarized E-field, ˆ
BX , can be expressed in the lab frame as 

  
2 2 2

1
ˆ ˆ ˆcos sin cos

cos sin cosB L LX X Z     
  

   


 (D.25) 

Note that ˆ ˆ 0
B LX Y    and ˆˆ 0

BX k   . 

 

 
Figure S3. A cone of fluorescence is emitted following excitation by the pump beam.  The direction of each photon 
is specified by the angles ( ,  ) shown in the figure. The emitted fluorescence is collected for  = 0 to  and  = 0 

to 2. 
 
 First consider the simplest case in which the polarization for the excitation beam is XL 

and the sample is installed so that the surface is normal to the excitation beam ( 0   ).  In this 

XL

YL

ZL


XB


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case, ˆ ˆ
S LX X  and ˆ ˆ

S LY Y   as in Eqs. (II.6) and (II.7).  Thus for a specific photon emitted in the 

( ,  ) direction, the response function is given by 

0

2 2 2 2 2 2

2 2 2 2 2 2

2

2 2 2

cos sin cos
( , )

cos sin cos cos sin cos

cos sin cos
                          

cos sin cos cos sin cos

cos
                 

cos sin cos

XXXX

S

R X Z

X Z XX

XXX

    
     

  
     


  


    

   

   
   






2 2

2 2 2

sin cos

cos sin cosS S
X ZZXX

 
  




  

(D.26) 

The photons collected by the lens (see Figure 10B) are emitted in all directions within the 

collection cone, i.e. 0   to  and 0   to 2 . Thus the actual response function is given by 

 
 

2 2
0

2 2 2
0 0

2 2 2

2 2 2
0 0

1 cos
sin

2 1 cos cos sin cos

sin cos
                 sin

cos sin cos

XXXX S

S

R d d XXXX

d d ZZXX

  


 

  

 

  
   

   
  

 


 

 

 


   


  

 
 



 (D.27) 

which can be expressed using the spherical harmonics representations given in Table S.I to yield 

Eq. (V.10) in the main text.  The response functions for the other sets of polarizations can be 

derived in the same way. 

As pointed out in the main text, the fluorescence geometry has the same issue as the 

HDTG experiment with BOXCARS geometry in terms of scaling amplitudes between different 

configurations because the amplitudes of 0
XXXXR  

 and XXXXR  will not be the same. The maximum 

error in the scaling was estimated for transition dipoles wobbling-in-a-cone, and is given by 

  35 0 0( ) ( ) ( )flscale XXXX XXXX XXXXE R t R t R t     
  

, (D.28) 
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where the subscript, flscale, stands for fluorescence scaling.  The error calculations were done 

for various collection cone half angles 15 ,10 ,5 ,  and 2.5      , and a range of cone angles C  

(10° to 60°) and cone tilt angles tilt  (0° to 90°).  The samples tilt angle  was set to 35°.  The 

results are shown in Figure S4. As shown in Figure S4, even a relatively large collection cone 

half angle of 15° works for a wide range of order parameter (−0.5 to ~0.5).  For samples with an 

order parameter >0.5, must be selected so that the difference between 0
XXXXR  

 and XXXXR  is 

small.   = 2.5° works for essentially any order parameter.  It should be noted that the 

fluorescence geometry does not suffer from the emergence of 1* 1
2 2Y Y  in the response functions 

because the excitation beam is a single beam and the X-polarization is always set parallel to the 

XS axis of the surface frame. 

 

Figure S4.  The scaling error introduced by the approximation (Eq. (D.28)) with  = 35° for each fluorescence 
collection cone half angle .   = 2.5° (black),  = 5° ( red),  = 10° (blue), and  = 15° (green).  For each , the 
maximum error is shown as a function of the order parameter.  A given order parameter is obtained from a range of 
C and tilt, which gives the vertical width to each plot for each cone half angle . 
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TABLE S.1. Spherical harmonics representation (in the surface frame) of the integrals 
S

  

defined in Eq. (C.4). 
 

S
  integral Spherical Harmonics Representation 

S
XXXX ,

S
YYYY  

0 0* 0 2* 2
2 2 2 2 2

1 4 4 4

9 9 5 45 15
Y Y Y Y Y

  
    

S
ZZZZ  

0 0* 0
2 2 2

1 8 16

9 9 5 45
Y Y Y
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   

S
XXYY ,

S
YYXX  

0 0* 0 2* 2
2 2 2 2 2

1 4 4 4

9 9 5 45 15
Y Y Y Y Y

  
    

S
XXZZ ,

S
ZZXX ,

S
YYZZ ,

S
ZZYY  

0 0* 0
2 2 2

1 2 8

9 9 5 45
Y Y Y
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S
XYXY ,

S
YXXY ,

S
XYYX ,

S
YXYX  2* 2

2 2

4

15
Y Y


 

S
XZXZ ,

S
ZXXZ ,

S
XZZX ,

S
ZXZX ,

S
YZYZ ,

S
ZYYZ ,

S
YZZY ,

S
ZYZY  

1* 1
2 2

4

15
Y Y


 

Others 0 
 


