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A. Local Field Corrections for IRLD and PSAR-PP Experiment 

In this section, we will discuss the macroscopic/microscopic local field corrections necessary to 
interpret IRLD and PSAR-PP data correctly. The local field corrections have been developed by 
Shen and Heinz to study orientations of interfacial molecules by sum-frequency generation 
(SFG) spectroscopy. Shen and Heinz calculated a radiation field from an infinitely thin 
polarization sheet and derived necessary local field correction factors.1,2 Yamaguchi and Tahara 
calculated local field correction factors for linear reflection (LR) spectroscopy.3 The approach by 
Yamaguchi and Tahara can be easily extended to understand the local field effects in IRLD and 
PSAR-PP experiments.  

While particularly in SFG experiments signals emitted from nonlinear polarizations are often 
homodyne-detected, in IRLD/PSAR-PP experiments the signals are heterodyned by the field 
which is transmitted through the substrate. Because the transmitted field, acting as a local 
oscillator interfering with the signal, is different for s- and p-polarizations, this difference must 
be taken into account to compare the observed signal levels. 

In the following subsections, we will first discuss the local field effect for IRLD experiment in 
detail. The application of the local field effects to PASR-PP experiment is straightforward once 
they are formulated for IRLD. 

A1. Macroscopic Local Field Effect 

Our goal in this subsection is to derive the dichroic ratio in Eq. (S.12) with the effective incident 
angle  and the p/s enhancement factor /p sa  given in Eqs. (S.10a) and (S.10b), which takes the 

macroscopic local field effect into account. 

Strictly speaking, the sample studied here should be treated as a five-layer system with the air, 
the rhenium head group layer, the alkyl chain layer, the SiO2 layer and the CaF2 substrate. In the 
following discussion, we will combine the last three layers and treat them as a one layer with the 
refractive index 1.399bn  , which is the refractive index for CaF2 at 5μm. This is justified by (1) 

that the refractive indices for the C11 alkyl chain (~1.5),4 SiO2 (~1.35),5 and CaF2 are relatively 
well index-matched, and (2) that C11 alkyl chain layer (~1 nm) and SiO2 layer (~100 nm) are too 
thin compared with the wavelength (~5 μm) to modulate the phase of the beam, and therefore no 
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additional reflection as a source of the macroscopic local field correction will be introduced by 
the existence of  these layers. Under this approximation, the sample can be regarded as a three-
layer system as studied by LR/SFG works. 

Figure S1 shows the beam configuration for the infrared absorption spectroscopy for the s- and 
p-polarized beams. Note that the incident angle i , the reflection angle r i  , the transmission 

angle  1sin sin /t a i bn n   are independent of the polarization. In each geometry, the incident 

beam induces a first-order polarization from the infinitely thin sheet of absorbers at the surface 
(polarization sheet), which emits a first-order field. The emitted field propagates collinearly with 
the transmitted field.  

Our interest here is what the overall transmitted fields are in each geometry. By solving the 
Maxwell equation with proper boundary conditions,3 the overall transmitted fields in each 
geometry are obtained as 
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where st  and pt  are the Fresnel transmission coefficients from the air to the substrate given by 

Figure S1. Infrared absorption experiment on an interfacial layer for s-polarized (left) and p-polarized 

(right) infrared beams. The infrared beam is incident from the air and induces a first-order polarization P
(1)

, 

which emits a signal field E
(1)

.  E
(1) 

interferes with a transmitted field to be heterodyned-detected. 

1an 

1.399bn 

n
(1)

sP

0,sE 0,s sr E

0,s st E

(1)
sE

1an 

1.399bn 

n
(1)
pP

0, pE 0,p pr E

0,p pt E
(1)
pE

i r

t t

i r

X

Z

Y



S3 
 

2 cos

cos cos
a i

s
a i b t

n
t

n n


 




       (S.2a) 

2 cos

cos cos
a i

p
a t b i

n
t

n n


 




       (S.2b) 

L


 is a tensorial local field correction factor given by 
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and (1)P 


 is an interfacial polarization induced by the incident field through a first-order 

susceptibility (1)  as 
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Note that, as shown by Shen and Heinz,1,2 the polarization is induced by the local field incident 

from the air, and thus the local field correction factor L


 appears in Eqs. (S.4a)-(S.4c).  

The first terms in Eqs. (S.1a) and (S.1b), 0,s st E  and 0,p pt E , are the transmitted field in the 

absence of the polarization sheet, which serves as the local oscillators. The second terms are the 
first-order signal fields emitted by the first-order polarizations: 
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where the interfacial polarization was substituted with Eqs. (S.4a)-(S.4c). 
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When the time-averaged infrared absorption spectra as in Figure 1B in the main text were 
acquired, the IR intensity passing thorough the SiO2/CaF2 substrate without the functionalized 
monolayer was measured and used as a background intensity ( bgI ), and then the SiO2/CaF2 

substrate with the functionalized monolayer was installed instead and the transmitted intensity 
was recorded ( sigI ). The absorbance was derived as 
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Thus for the s-polarized beam, the absorbance is calculated as 
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As an approximation, the fact that the signal field (1)
sE  is much smaller than the local oscillator 

0,s st E  was used. Note that (1) is defined such that the absorptive part is the imaginary part. 

Similarly, for the p-polarized beam, the absorbance is derived as 
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Therefore, the observed dichroic ratio /p sA A   is given by 
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To understand the meaning of this equation, we define the effective incident angle   and the 

p/s enhancement factor /p sa  as 
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Then, Eq. (S.9) can be re-written as 
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Assuming that the microscopic local field correction factor is isotropic as justified later, using 

the dependence of (1)  on the average molecular orientation,3 this can be further written as 
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where   is an angle between a transition dipole moment and the surface normal, and   takes 

the ensemble average.  23cos 1 / 2S    is the order parameter, which is determined based 

on the linear dichroism measurement and used to extract correlation functions from PSAR-PP 
experiment. 

It is instructive to compare (S.11) with a special case of a polarization sheet embedded in two 
completely index matched materials, i.e. a bn n n  . In this case, there is no refraction and 

reflection of the beams, and the dichroic ratio is given by 

2 (1) 2 (1)

im (1)

cos Im sin Im

Im

XX ZZ

YY

   




        
  

     (S.13) 

where i   is the incident angle. Comparing (S.11) and (S.13), we can deduce for the general  

case that in the context of comparing p- and s-polarization absorption, (1) the field is effectively 
oriented in the layer as if the beam is propagating in the layer with the effective incident angle 
 , instead of the actual incident angle  in the air, and (2) the local field enhancement adds up 

to enhance the p-polarization absorption by the factor of /p sa  relative to the s-polarization 

absorption. This intuitive interpretation applies for the local field effect in PSAR-PP experiments 
as well. 

We would like to note that the effective incident angle   and the p/s enhancement factor /p sa  

can be equivalently written as 
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where (1)L


 is the local field correction factor for the polarization induction process which is 

identical to Eqs. (S.3a)-(S.3c), while (2)L


is the local field correction factor for the field emission 
process from the polarization sheet to the substrate, which is obtained by exchanging a bn n  

and i t   in Eqs. (S.3a)-(S.3c). This notation may appear more intuitive to the readers 

familiar with Shen and Heinz’s work.1,2 

 

A2. Effective Refractive Index and Microscopic Local Field 

To calculate ZZL  in Eq. (S.3c), it is necessary to specify the effective refractive index of the thin 

layer n . Zhuang et al. suggests that this refractive index can be chosen such that3,4 
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This refractive index, under modified Lorentz model, makes the microscopic local field 
correction factors isotropic. Therefore, with the adoption of Eq. (S.15), the microscopic local 
field correction can be neglected when a polarization dependence of a signal intensity is studied. 
For our system in Figure S1, Eq. (S.15) yields 1.178n  .  We decided to adopt this value of the 
effective refractive index for our analysis for the following reasons. 

(1) Zhuang et al. studied a hexadecanol monolayer at water-air interface, and compared the 
orientation of molecules determined from SFG spectroscopy and X-ray diffraction 
measurement.4 The orientation of the terminal –CH3 group located right at the monolayer-air 
interface was consistent with the X-ray diffraction measurement within the error when the 
effective refractive index was chosen as in Eq. (S.15). They also indicated that the value of the 
effective refractive index appears to be independent of the vibrational probes’ chemical 
structures and the locations within the interface.4 

(2) Most importantly, when the effective refractive index nwas chosen to be this value, the 
correlation functions in PSAR-PP spectroscopy acquired from two different incident angles 
measurements (60° and 45°) yielded consistent results (Figure S6). 

 

A3. Calculated Effective Incident Angle and p/s Enhancement Factor 

With the use of 1.178n  , Table S1 shows the effective incident angle   and the p/s 

enhancement factor /p sa  in Eqs. (S.10) for various incident angles  . These values were used for 

the following analysis of the IRLD and PSAR-PP results. It is worth noting that while the  

effective incident angle   is significantly different from   as a consequence of 1n  ,  p/s 

enhancement factor /p sa  is close to unity even at relatively large incident angle of 60°.  
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Incident Angle 
in Air    

Effective Incident 
Angle   

p/s enhancement 
factor /p sa   

0° 0° 1 
10° 8.529° 1.00 
20° 17.01° 1.002 
30° 25.39° 1.004 
40° 33.63° 1.006 
45° 37.70° 1.007 
50° 41.73° 1.009 
60° 49.72° 1.011 

A4. Macroscopic Local Field Effect for PSAR-PP Spectroscopy 

The local field correction scheme discussed above applies to PSAR-PP spectroscopy as well. Our 
goal is to derive Eqs. (S.21a) and (S.21b).  Figure S2 shows the beam and the polarization 
scheme used for “parallel” and “perpendicular” signals, respectively. We will obtain the local 
field correction factors for the general probe incident angle i . As discussed in the main text, the 

pump pulse is always set to be s-polarized. The probe pulse is s-polarized when the parallel 
signal is recorded (Fig. S2, left), and is p-polarized when the perpendicular signal is recorded 
(Fig. S2, right). 

In the case of PSAR-PP spectroscopy, what is detected is the signal field emitted toward the 

substrate from the interfacial third-order polarization (3)P 


induced by two interactions from the 
pump pulse and one interaction from the probe pulse, both incident from the air. Again, the 
emitted signal collinearly propagates with the transmitted probe field.  

The overall transmitted field including the emission from the third-order polarization (3)P 


 can be 

readily obtained by simply replacing (1)P 


 in Eq. (S.1) with (3)P 


: 
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Table S1. The effective incident angle   and the p/s enhancement factor /p sa  in Eqs. (S.10) 

calculated for various incident angles in the air  . 1.178n   was used as discussed in Sec. A2.  
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where st , pt  and L


 are identical to those in Eqs. (S.2) and (S.3) with i , t  and r  being for the 

probe beam. pr,sE  and pr, pE  are the amplitudes of the s-polarized (for “parallel” measurement) 

and the p-polarized  (for “perpendicular” measurement) probe incident field in the air.  

The interfacial third-order polarization (3)P 


is given as 
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Figure S2. PSAR-PP experiment on an interfacial layer for the measurement of the “parallel” signal (left) 
and the “perpendicular” signal (right). The s-polarized pump beam and either s-polarized (parallel) or p-

polarized (perpendicular) probe beam induces the third-order polarization P
(3)

, which emits the signal field 

E
(3)

. The E
(3) 

interferes with the transmitted probe field to be heterodyned-detected. The angles written in 
these figures are those for the probe beam, which are the only relevant angles for the data analysis. The 
reflected/transmitted pump beams are omitted for clarity. 
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L


is the local field correction factor for the pump pulse, which can be obtained from Eq. (S.3) 

by replacing ( i , t ) with ( i  , t  ), namely the incident and the transmission angle for the pump 

beam. Only y-component YYL   is of concern here because the pump beam is always s-polarized. 

As shown later, this YYL   will be combined with the geometry factors, which are experimentally 

accounted for in the scaling process, and thus do not have to be calculated. 

As discussed in the main text, the pump pulse was turned on/off every other shot and the pump-
probe signal was recorded as on off off( ) /I I I . Therefore, the “parallel” signal R  is given by 
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The same calculation applies for the “perpendicular” signal R  to yield 
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By defining the geometry factor pu,( , , )i i sA E    as 
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R  and R  can be written as 
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Again, Eq. (S.21) can be viewed as if the effective incident angle in the polarization sheet is 
altered from   to  , and the signal for the p-polarized probe beam is enhanced by /p sa  relative 

to the s-polarized probe beam. The third-order susceptibility in Eq. (S.21) is exactly what was 
evaluated in a previous publication,6 and these signals can be more explicitly written using the 

order parameter S , the out-of-plane correction function op ( )C t  (Eq. (4.1)), the mainly-in-plane 

correlation function mip ( )C t  (Eq. (4.2)), and the population decay ( )P t  as 
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As discussed in the main text, PSAR-PP spectroscopy is implemented in two geometries, namely 
the “normal” (Fig. 3A) and the “tilted” (Fig. 3B) geometries. For the normal geometry, 

0      and / 1p sa  , which yields Eqs. (3.1) and (3.2) in the main text where the geometry 

factor is written simply as A . There is no p/s enhancement factor involved for the normal 
geometry because all the polarizations involved are s-polarized. The geometry factor for the 
tilted geometry is simply written as B , which yields Eqs. (3.3) and (3.4). 

 

B. Sample Preparation 

The complete details of the sample preparation procedure can be found in our previous 
publications.7 Here, a brief summary of the synthesis procedure is provided. In the following 
procedure, unless specifically mentioned, the chemicals were obtained from Sigma Aldrich and 
used without further purifications. 

A CaF2 wafer (1” diameter, 1 wavelength flatness at 633nm, NewRise) was coated with a 100 
nm SiO2 layer by plasma-enhanced chemical vapor deposition in UCSB Nanofabrication 
Facility. 10 μL of 11-bromoundecyltrichlorosilane (Br-C11-SiCl3, Gelest) was added to 10 mL of 
bicyclohexyl, and the SiO2/CaF2 wafer was immersed in this solution for 1 hour. The self-
assembled Br-C11 monolayer on the SiO2/CaF2 wafer was then immersed in a 20 mL of saturated 
dimethylformamide (DMF) solution of sodium azide for 24 hours to replace the terminal 
bromine with an azide (-N3) group through an SN2 reaction. The terminal azide on the monolayer 
was then used for a copper-catalyzed azide-alkyne cycloaddition (CuAAC) “click” reaction with 
fac-Re(phenC≡CH)(CO)3Cl, which was prepared as in a previous study,8 to yield the monolayer 
in Fig. 1(a) shown in the main text. The synthesized monolayer was immersed in chloroform for 
1 hour to remove unclicked metal carbonyl complexes from the surface. It has been shown by 
AFM imaging that the surface of the sample prepared in this manner is very flat, namely 0.42 nm 
rms variation over a 10 nm correlation length, which corresponds to only 2° variation of the 
surface.9  

As discussed in Section F, to estimate the contribution from Förster excitation transfer, the 
sample with the reduced head group density was prepared as well. This sample was prepared by 
replacing the 11-bromoundecyltrichlorosilane/bicyclohexyl solution above with the mixture of 5 
μL of 11-bromoundecyltrichlorosilane (Br-C11-SiCl3) and 5 μL of undecyltrichlorosilane (C11-
SiCl3, Gelest) in 10 mL of bicyclohexyl. All the other procedures are identical. FT-IR spectrum 
verified that the head group density for this sample is ~70% of the density in the sample with the 
full functionalization. 
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C. Time-averaged Infrared Linear Dichroism 

C1. Experimental 

Nicolet 6700 FT-IR spectrometer (Thermo Scientific) was used to measure infrared absorption 
spectra with 2 cm-1 resolution and 1024 scans. A CaF2 holographic wire grid polarizer (Thorlabs) 
was installed in the beam path before the beam passes through the sample. The samples were 
installed on a rotation mount to control the incident angle of the beam. 

The measurement of the absorption spectra such as in Fig. 1(b) requires the measurement of the 
background intensity ( bgI ) and the sample intensity ( smplI ). The background intensity bgI  was 

obtained as the IR beam intensity passing through a SiO2/CaF2 wafer without the monolayer 
grafted on to it, and the sample intensity smplI  was acquired as the intensity passing through the 

SiO2/CaF2 wafer with the functionalized monolayer. The absorbance was then obtained as 

 10 smpl bglogA I I  . 

The absorbance was measured for the s-polarized and p-polarized incident beam with various 
incident angles from 0° to 60° with 10° increments. The measured absorbance for each 
polarization was integrated from 2018.5 cm-1 to 2028.5 cm-1 (2023.5 ± 5 cm-1), yielding sA  for 

the s-polarized beam and pA  for the p-polarized beam. For each incident angle, the dichroic ratio 

/p sA A   was calculated. The result is plotted in Figure S3(a). 

 

C2. Incident Angle Dependence of Dichroic Ratio and Order Parameter 

As shown in Section A1, the measured dichroic ratio is related to the order parameter S  by Eq. 

(S.12). By simple manipulation of Eq. (S.12), we obtain 

2

/

1 3sin
1p s

S

a S

   


       (S.23) 

For each incident angle in the air  , the effective incident angle  and the p/s enhancement 

factor /p sa  can be obtained as calculated in Table S1, with the effective refractive index of 

1.178n  . In Figure S3(b), the left hand side in Eq. (S.23) with the measured dichroic ratio is 
plotted with respect to the effective incident angle. The red line is the best fit to the data using 

the right hand side of Eq. (S.23), which yields the order parameter 0.290 0.016S    . As 

discussed in the main text, this order parameter was used for the analysis of PSAR-PP 
experiment. 
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D. Polarization-selective Angle-resolved Pump-probe (PSAR-PP) Spectroscopy 

D1. Experimental 

A regenerative amplifier system (Spitfire Ace, Spectra Physics), seeded by a 83 MHz oscillator 
output (MaiTai, Spectra Physics) and pumped by a 25W Nd:YLF Q-switch laser output 
(Empower, Spectra Physics) yielded a 800 nm pulse with the time duration of sub-70 fs, the 
pulse energy of 2 mJ, and the repetition rate of 3 kHz. This amplified 800 nm pulse was used to 
pump a home built optical-parametric amplifier (OPA) based on 3 mm-thick BBO crystals to 
generate a near-infrared signal pulse and an idler pulse with the total energy of 500 μJ. The 
signal and idler pulses were then spatially and temporarily overlapped and collinearly sent to a 
1.5 mm-thick AgGaS2 crystal to yield a mid-infrared pulse (~33 μJ, ~170 fs) centered at 2030 
cm-1 with the spectral bandwidth of 90 cm-1 fwhm. 

The generated pulse was split into a stronger pump pulse and a weaker probe pulse by 92:8 ZnSe 
beam splitter. The pump pulse was sent to a pulse shaper system based on a germanium acousto-
optic modulator (LS700-1109, Isomet). The pulse shaper system is essentially identical to the 
one described in a previous publication,10 except that as an arbitrary waveform generator we 
employed PXDAC4800 from Signatec. Using the pulse shaper system, we modified the spectrum 
of the excitation pulse such that <1950cm-1 component of the spectrum was eliminated.  Thus, 
the low frequency modes of the metal complex are not pumped by the pump pulse, which 

Figure S3. (a) The measured dichroic ratio Ap/As for various incident angles in the air  . (b) Dots – the 

measured dichroic ratio in Fig. S3(a) divided by p/s enhancement factor /p sa  with respect to the effective 

incident angle  . Note that /p sa  and  depend on the incident angle and tabulated in Table S1.  Red line – the 

fit of the observed 
/p sa  to the right hand side of Eq. (S.23). The best fit was obtained with 0.290S   , and 

the 1σ fitting error was estimated to be 0.016. 
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potentially interferes with the signal of interest through coherent transfer and population transfer 
processes.11-13 The pulse shaper generates the pump pulse every other shot, and the phase of the 
pump pulse was flipped by π for every other generated pump pulse. Overall, the output from the 
pulse shaper system is a 4-shot sequence represented as (0, OFF, π, OFF), where 0 and π are the 
phase of the pump pulse and “OFF” stands for the pump pulse not being generated. This 
sequence is useful to remove minor scattered light from the surface, which interferes with the 
pump-probe signal.12 

The probe pulse is delayed by a controllable linear delay line. The pump pulse as the output from 
the pulse shaper system, and the probe pulse crossed in the sample as shown in Figure 2 in the 
main text. The cross correlation between the pump pulse and the probe pulse yielded the 
effective pulse duration of ~190 fs. To make the pump pulse s-polarized, a MgF2 half-wave plate 
was installed in the pump path. The polarizers used in Figure 2 are all high-contrast wire grid 
silicon polarizers (POL-3-5-SI-25, ISP optics). The resolving polarizer is mounted on a 
motorized polarizer rotation mount, and switched during the measurement to either s-polarized 
or p-polarized to record parallel or perpendicular signals, respectively. The probe passing 
through the resolving polarizer was projected to 45° by another polarizer and sent to a 
spectrograph to disperse the frequency component of the probe pulse, and detected by a 32-
element HgCdTe array detector. In the following and in the main text, we are discussing the 
pump-probe signal at the probe frequency of 2023.5 cm-1. The pump-probe signal was recorded 
as in Eq. (2) in the main text.  

To account for a shot-to-shot instability of the mid-infrared pulses, a CaF2 window was installed 
in the probe path with 45° incident angle to reflect a minor fraction of the probe pulse, and the 
reflection was monitored by a single element HgCdTe detector as a reference detector. The 
sensitivity was significantly improved by this referencing scheme to detect a minute signal 
arising from a single layer of molecules. 

 

D2. Saturation Effect 

As briefly mentioned in the main text, care needs to be paid to avoid “saturation” of the IR 
transition. Pump-probe spectroscopy essentially probes the number of molecules in the excited 
state. When a significant portion of the molecules in the beam focus is pumped into the excited 

state, the number of molecules in the excited state is no longer proportional to  2

pumpE 


. The 

proportionality between the signal and  2

pumpE 


 is a fundamental assumption made to derive 

the polarization dependence of the pump-probe signals, such as Eq. (3) in the main text for 
interfacial molecules, or the anisotropy decay for isotropic samples given by 

2( ) 0.4 ( )
2

R R
r t C t

R R





 






       (S.24) 
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Thus, under strong saturation, these schemes to extract orientational correlation functions are no 
longer valid. This saturation effect emerges as a pump intensity dependence of the observed 
anisotropy decays. In “parallel” signals, the probe tends to read out the molecules pumped with 

large  2

pumpE 


, while in “perpendicular” signals, the probe reads out the molecules pumped 

with smaller  2

pumpE 


, simply because the pump and the probe polarizations are orthogonal. 

As a result, the saturation effect reduces the amplitude of the parallel signal more than the 
perpendicular signal, and therefore the observed anisotropy emerges lower than 20.4 ( )C t . 

It is thus important to keep the pump power low enough not to saturate the transition of interest. 
To quantitatively evaluate the extent of the saturation with a good signal-to-noise ratio, we 
prepared a solution of Re(phenC≡CH)(CO)3Cl (used for the synthesis of the monolayer) in 
dimethyl sulfoxide (DMSO) and applied a standard polarization-selective pump-probe (PSPP) 
spectroscopy to the CO symmetric stretching mode. Because the solution is isotropic, the 
anisotropy in Eq. (S.24) should be evaluated to obtain the orientational correlation function. The 
anisotropies of this bulk solution measured for various pump intensities are plotted in Figure S4. 
Note that the intensities shown in the legend of the plot are rough estimates, while the ratios 
between the intensities are accurate. Clearly, the observed anisotropy strongly depends on the 
pump intensity, and becomes lower as the pump intensity increases, which is qualitatively 
explained by the saturation effect. So far there is no analytical model established to handle the 
observed anisotropy decay under the strong saturation effect. As seen in Figure S4, ~20 
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Figure S4. The pump intensity dependence of the observed anisotropy for the bulk solution of 
Re(phenC≡CH)(CO)3Cl in DMSO. Note that the intensities in the legend are very rough estimates and may not 
be absolutely accurate. As expected from the saturation effect, the higher pump intensity significantly reduces 
the anisotropy value. At ~40MW/mm2 the transition dipole is free from the saturation effect. The same pump 
intensity ~40MW/mm2 was employed for PSAR-PP experiments on the monolayer sample. 
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MW/mm2 pump and ~40 MW/mm2 pump essentially yielded the identical decay, indicating that 
the transition is free from the saturation effect once the pump intensity is reduced to ~40 
MW/mm2. Also, these two anisotropy decays extrapolate to 0.4 at t = 0, which is the maximum 
possible value of the anisotropy for any isotropic samples, further verifying that these signals are 
completely free from the saturation effect. In the actual PSAR-PP experiment for the monolayer, 
the pump intensity identical to ~40 MW/mm2 was employed to make sure the acquired signal is 
free from saturation.  

Note that DMSO has a relatively high refractive index of ~1.5, which is significantly higher than 
the effective refractive index at the monolayer-air interface (1.178). Therefore the microscopic 
local field experienced by the metal carbonyl vibrational probe is expected to be lower at 
monolayer-air interface than in DMSO. 

 

D3. Tilt Angle Dependence  

As discussed in depth in the main text, the out-of-plane correlation function op ( )C t  and the 

mainly-in-plane correlation function mip ( )C t  were extracted by solving the simultaneous linear 

equations in Eqs. (3) with the experimental observables. To achieve this, the parallel and 
perpendicular signals were acquired in the two geometries, namely the “normal” geometry (Fig. 
3A) and the “tilted” geometry (Fig. 3B). In the tilted geometry, the tilt angle   should be set as 

large as possible, because the larger tilt angle makes a clearer contrast between the perpendicular 
signals acquired in the “normal” geometry and the “tilted” geometry. In the main text, we 
discussed the data acquired with the tilt angle 60   , because this tilt angle was the largest 

angle we were able to set in our experimental setup. 
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Figure S5. Scaled pump-probe signals acquired for the monolayer in (a) the normal geometry (identical to the 
data in Fig. 3(a)), (b) the tilted geometry with the tilt angle 60° (identical to the data in Fig. 3(b)), and (c) the 
tilted geometry with the tilt angle 45°. Clearly the 45° data in (c) can be viewed as the data between the normal 
data in (a) and the 60° data in (b). The 45° data can be combined with the normal data to yield the out-of-plane 
and the mainly-in-plane correlation functions in the same manner applied to the 60° data in the main text. 
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Nonetheless, we should obtain the identical op ( )C t  and mip ( )C t  when we acquired these 

correlation functions using another tilt angle, as long as the theory in our previous publication6 
and the local field correction scheme discussed in Section A, including the choice of the effective 

refractive index n , are correct. In this subsection, we will show that op ( )C t  and mip ( )C t  

acquired from the 45   is in excellent agreement with the ones obtained from the 60    

measurement discussed in the main text. 

Figure S5 compares the parallel and the perpendicular signals obtained in the normal ( 0   ) 

geometry, the tilted geometry with 60   , and the tilted geometry with 45   . These signals 

are scaled such that the parallel signal at t = 0.5 ps is normalized to 1.  Again, the scaled parallel 
signal in the 45    measurement is identical to the parallel signals in the normal and the

60    measurements, because all of these signals only involve in-plane s-polarized fields. In 

the main text, the parallel and perpendicular signals in the normal geometry (Fig. S5(a)) and the 
parallel and perpendicular signals in the tilted geometry with the tilt angle of 60    (Fig. 

S5(b)) were combined to yield op ( )C t  and mip ( )C t . The same procedure can be followed by 

using the signals in the normal geometry (Fig. S5(a)) and the tilted geometry with the tilt angle 

of 45    (Fig. S5(c)). 0.290 0.016S     can be used as the order parameter, while, for the  

45   geometry, the effective incident angle is 37.70    and the p/s enhancement factor is 

/ 1.007p sa   as calculated in Table S1. The results are plotted as red lines in Fig. S6(a) and (b), 

together with the data from 60    measurement as blue lines for comparison. These data agree 

within the noise and the error, which strongly supports that the theory and the local field 
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Figure S6. (a) The out-of-plane and (b) the mainly-in-plane correlation functions extracted from the signal with 
(red) the χ=45° incident angle geometry and (blue) the χ=60° incident angle geometry. The shared normal 
geometry data was used in the extraction process. The shade is 1σ STD error for the χ=60° data. The agreement 
between the χ=45° data and the χ=60° data is excellent. 
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correction are both correct, and the choice of the effective refractive index as 1.178n   is 
reasonable. 

 

E. Orientational Correlation Functions for Numerical Models 

In this section, we will calculate the out-of-plane and the mainly-in-plane correlation functions, 
and the order parameter for several numerical models.  

First, in the following subsection E1, we will briefly review “wobbling-in-a-tilted-cone” model 
which was developed and discussed in depth in a previous publication (Fig. S7(a)).6 Then, we 
will extend this model to “wobbling-in-a-range-of-tilted-cones” model in E2, where the system is 
regarded as an ensemble of cones with different tilt angles continuously varying from ,0t t    

to ,0t t    (Fig. S7(b)). As shown in the main text, this model did not reproduce the observed 

out-of-plane correlation function well. In E3, we will derive the correlation functions for 
“wobbling-in-two-cones” model, where the system is assumed to be composed of two kinds of 
cones with different tilt angles (Fig. S7(c)). This model reproduced the observed out-of-plane 
correlation function well, and indeed is in accordance with the prediction from a MD simulation 
on a similar monolayer.14 

In E4, we will derive the in-plane correlation function for transition dipoles “wobbling-in-a-
sector” (Fig. S7(d)). This is essentially two-dimensional version of widely adopted wobbling-in-
a-cone model.15 This model was necessary to understand the observed mainly-in-plane 
correlation function decay. 
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E1. Wobbling-in-a-tilted-cone Model 

In wobbling-in-a-tilted-cone model (Fig. S7a), we assume the transition dipole is wobbling in a 
tilted cone with a hard wall. The cone’s tilt angle is t  and the half-cone angle is c . The 

diffusion constant is D. We derived the out-of-plane and the mainly-in-plane correlation 
functions, and the order parameter for this motion. The detailed derivations are given in the 
Supporting Information of a previous publication.6 The results are accurately approximated up to 

60c    by: 
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While there are several approximations provided for 0
2 , 1

1  and 2
1 ,16,17 we re-evaluated these 

factors as a numerical solution of an equation provided by Wang and Pecora,15 and found that 
these are well approximated by (10 90c    ) 
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Figure S7.  Four numerical models discussed in this section. See the text above and the subsections below for 
details. 
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Note that this model cannot capture the observed op ( )C t , because in this model, after long 

enough time, op ( )C t  decays to 
2

S : 

2 2 2 2
2op (3cos 1) cos (1 cos )

( )
16

t c cC S
   

         (S.27) 

As discussed in the main text, this is not what we are observing in Fig. 5A, and op ( )C   is 

significantly higher than the experimental 
2

S , indicating that the transition dipoles are not 

sampling all the possible configurations in the time window of the experiment. 

The results in Eqs. (S.25) are important for the following calculations in E2 and E3.  

 

E2. Wobbling-in-a-range-of-tilted-cones Model 

To reproduce the observed op ( )C t  which is significantly higher than 
2

S  even after long time, 

we first calculated the correlation functions and the order parameter for transition dipoles which 
are wobbling with the identical diffusion constant D and cone angle c , but the tilt angles of the 

cones vary continuously from ,0t t    to ,0t t    as shown in Fig. S7(b). The correlation 

functions and the order parameter for this case can be calculated as 
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where op
, ,t c DC  , mip

, ,t c DC   and 
, ,t c D

S
 

 are given by Eqs. (S.25a)-(S.25c). Note that all the integrals 

can be calculated analytically, and thus (S.28a)-(S.28c) have well-defined analytical forms given 
by: 
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The out-of-plane correlation function in Eq. (S.29a) was used to fit the data in Fig. 5A by 
varying c , ,0t , t  and D , under the condition that the order parameter in Eq. (S.29c) yields 

the observed order parameter of 0.290 0.016S    . As shown as a green line in Fig. 5A, this 

model was not able to reproduce the observed out-of-plane correlation function together with the 
observed order parameter. 
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E3. Wobbling-in-two-cones Model 

In wobbling-in-two-cones model, we assume that the transition dipoles are wobbling in either 
one of two types of cones (Fig. S7(c)). The tilt angle, the cone angle, and the diffusion constant 
are all independent for the two cones. The correlation functions and the order parameter for this 
case can be written as: 

1 1 1 2 2 2

op op
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1 2

( ) ( )
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C t
N N
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where op
, , ( )

t c DC t  , op
, , ( )

t c DC t   and 
, ,t c D

S
 

 are those calculated from Eqs. (S.25) for a single cone 

model. N1 and N2 are the surface densities of the transition dipoles wobbling in cone 1 and cone 
2, respectively. What matters here is the ratio of the density 1 2/N N  rather than their absolute 

values. 

Again, the out-of-plane correlation function in Fig. 5A was fit with Eqs. (S.30a) so that the order 
parameter calculated based on Eq. (S.30c) yields the observed order parameter 

0.290 0.016S    .  As discussed in the main text, this model fits the observed correlation 

function and reproduced the order parameter fairly well. Based on the fitting parameters obtained 
from the out-of-plane correlation function, the contribution of the two-cone wobbling motion in 
the mainly-in-plane correlation function can be calculated by Eq. (S.30b). The observed mainly-
in-plane correlation function decays more significantly than the two-cone motion, indicating that 
there exists significant in-plane motion on the top of this two-cone motion. 

 

E4. Wobbling-in-a-sector Model  

In this subsection, we will discuss a transition dipole reorienting on a strictly two-dimensional 
plane. This is equivalent of a transition dipole moment in a three-dimensional space with a 
completely frozen polar motion and a free or restricted azimuthal motion. 

Restricted Two-dimensional Rotation. We are particularly interested in a transition dipole 
wobbling in a “sector” (Fig. S7(d)) with a full sector angle 2 c  with a diffusion constant D. For 

convenience, we assume that the center of the sector is located at 0  , and the hard walls are 

located at c   and c   . We will calculate the in-plane correlation function 
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 *ip 2 ( ) 2 (0)( ) i t iC t e e   for such a transition dipole, eventually given in Eq. (S.41). A transition 

dipole wobbling in a sector centered at 0   yields an identical result. 

The probability  ,W t  that a transition dipole is pointing toward   at time t obeys the 

following differential equation and the boundary condition: 

   2

2

, ,W t W t
D
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 
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 
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which yields the general solution of ( , )W t  in the form of 
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where ( )nf   is given by 
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The orthogonality of ( )nf  can be easily verified: 
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Because the transition dipole must be found somewhere between c   and c   , ( , )W t  

must satisfy 
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for any time t. nc  in Eq. (S.32) depends on the initial distribution of the transition dipoles. 

Particularly for 0( ,0) ( )W      , which obviously satisfies Eq. (S.35), nc  is given by 
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( , )W t  obtained above with the initial distribution 0( ,0) ( )W      can be regarded as a 

Green’s function 0( , ,0)G t  , which corresponds to the probability that we find a transition 

dipole moment pointing toward 0  at time 0t   and pointing toward   at later time t : 
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Now that we obtain the form of the Green’s function, we can calculate the correlation function 

 *ip 2 ( ) 2 (0)( ) i t iC t e e  . At t = 0, the transition dipole moments must be equally distributed 

between c   and c   , i.e. 
1

( ,0)
2 c

W 
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 , which satisfies Eq. (S.35). Based on this initial 

distribution and the Green’s function in Eq. (S.37), the correlation function can be calculated as 
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Figure S8.  Plots related to the “wobbling-in-a-sector” model. (a) The plot of ip 2( ) [sinc(2 )]cC    with respect 

to the half-cone angle ϕc. (b) S(N) in Eq. (S.39) for N=1,2,3 and 4 with respect to the half-cone angle ϕc. The 
value close to 1 indicates that the exact infinite summation is well-approximated by the summation up to the N-
th term. (c) Dcorr/D with respect to the half-cone angle ϕc in radian. Dcorr was calculated as 1/τcorr, where τcorr was 
calculated based on Eq. (S.40). ip ( )C t was calculated as in Eq. (S.38) with the summation taken up to 4th term, 

which should be an excellent approximation based on the plot in (b). 
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Note that sinc function here is defined as sinc( ) sin /x x x . Eq. (S.38) indicates that ip ( )C t  

decays as the sum of infinite number of exponentials, while, as we will show later, taking just the 
first 1n   term in the summation is a very good approximation to the exact infinite sum, and the 
summation up to 2n   is almost the perfect approximation when 50c   . The offset in this 

correlation decay obtained as t   is exactly  2
sinc(2 )c , which is plotted in Fig. S8(a). At 

0c   , the transition dipole cannot reorient at all, so the ip ( )C t stays at its maximum possible 

value of 1 and never decays. As the half-sector angle c  becomes large, the offset decreases and 

at 90c    (full-sector angle of 180°) there is no offset. There is a minor recurrence for 

90c   , though such a situation as 90c  may not be physically realistic. 

Note that at 0t  , regardless of the sector angle, the transition dipoles have not moved and 

therefore ip (0) 1C  . Here we define 

 22

1

1
( ) (sinc[2 ]) sinc(2 / 2) ( 1) sinc(2 / 2)

2

N
n

c c c
n

S N n n    


        (S.39) 

Note that ip( ) (0) 1S C    .  Thus, instead of taking the infinite summation in Eq. (S.38), the 

summation can be taken up to such N that makes ( )S N  approximately 1. ( )S N  with respect to 

the half-sector angle c  for various N is given in Fig. S8(b). It can be seen that 2N  , i.e. the 

summation up to the second term, almost perfectly approximates the exact infinite summation in 
a physically realistic situation of 90c   . If 60c   , even if we take only the first term it is 

indeed a fairly good approximation. 

It is useful to calculate the correlation time defined as 

ip ip

0
corr ip

( ( ) ( ))

1 ( )

C t C dt

C



 


 


       (S.40) 

The correlation time provides a good approximation to the ip ( )C t  by  

 ip 2 2
corr( ) [sinc(2 )] (1 [sinc(2 )] ) exp( / )c cC t t          (S.41) 

We are interested in how the actual diffusion constant D in Eq. (S.31a) is related to the decay 

rate in ip ( )C t . Fig. S8(c) plots corr
corr

1
D


  normalized by the diffusion constant D with respect 

to the half-sector angle c  from 10° to 90°. It turns out that corrD  is well approximated by 

 2 3 4
corr 1.94

2.77
1.09 0.63 1.23 0.96 0.38c c c c

c

D D   


        (S.42) 

where c  is given in radian. Thus to extract D, the following procedure should be taken: 
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(1) First, based on the offset level ip 2( ) [sinc(2 )]cC   , c  is obtained. 

(2) Based on the observed time constant obs , obs obs1/D   can be calculated. obsD  corresponds 

to corrD  in Eq. (S.42). Based on the known c , D can be acquired by solving Eq. (S.42). 

Free Two-dimensional Rotation.  

In case the transition dipoles are reorienting in two-dimensional plane without any restrictions 
(free rotation), the same procedure above can be followed by replacing the boundary condition in 
Eq. (S.31b) with  

   , 2 ,W t W t           (S.43) 

which eventually yields 

ip ( ) exp( 4 )C t Dt          (S.44) 

The identical result was previously obtained by Bonn and co-workers.18 Because there is no 

restriction on the motion of the transition dipole moment, ip ( )C t  decays to zero at long time. 

 

F. Förster Excitation Transfer 

In the main text we attribute the decay in the orientational correlation functions op ( )C t  and 
mip ( )C t  to the reorientation of the transition dipoles; the decay could also be caused by Förster 

excitation transfer. In Förster excitation transfer, the excitation on a particular molecule is 
transferred to molecule through a transition dipole-transition dipole interaction. When the 
directions of the two transition dipoles involved are different, this process leads to the decay of 
the orientational correlation functions. The rate of the excitation transfer depends both on the 
strength of the transition dipoles involved, and the distance between the dipoles. It also depends 
on the overlap of the vibrational homogeneous lines of the donor molecule and the acceptor 
molecule.19 Two molecules can be close in space but have little overlap between their 
homogeneous lines, resulting in very slow excitation transfer.  In the monolayer sample studied 
here, we are studying the vibrational probe with a very large transition dipole and the distance 
between the transition dipoles is relatively close (~7.5 Å), so we need to be cautious about the 

possible contribution of Förster excitation transfer in the observed op ( )C t  and mip ( )C t  decays. 

Förster excitation transfer is expected to contribute to spectral diffusion decay measured in two-
dimensional infrared spectroscopy as well; when the two transition dipoles involved in the 
excitation transfer are oscillating with different frequencies, the excitation transfer leads to the 
decay in the frequency-frequency correlation function. It was found for the type of samples 
studied here that the spectral diffusion rate is insensitive to the density of the head groups on the 
surface, indicating that the Förster excitation transfer is indeed negligible in this monolayer.9 
This absence of the excitation transfer process, regardless of the strong transition dipole and the 



S26 
 

high density, can be explained by the strongly inhomogeneously broadened infrared absorption 
band of the symmetric CO stretching mode. As experimentally derived from two-dimensional 
infrared spectroscopy, out of ~16 cm-1 fwhm absorption band, the homogeneous line width is 
less than 2 cm-1 fwhm.9 For the excitation transfer to take place, the frequencies of the two 
transition dipoles must overlap, which is unlikely due to the small homogeneous/inhomogeneous 
line width ratio. Thus the strongly inhomogeneously broadened band is preventing the excitation 
transfer. 

These previous studies by two-dimensional infrared spectroscopy demonstrated that the Förster 
excitation transfer is absent in this sample, but it is important to directly verify that the 
contribution from Förster excitation transfer is minor in our current observables of the 
orientational correlation functions. First, we will show that the excitation transfer induced 
depolarization does not reproduce the time-dependence of the 2D anisotropy well (Fig. 9A). 
Second, we will show that the observed 2D anisotropy decay rate is less sensitive to the loading 
of the head groups than expected from the excitation transfer induced depolarization.  

We will compare so called two-dimensional anisotropy defined as 
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







,        (S.45) 

which can be obtained from the normal geometry measurement. This 2D anisotropy is 
proportional to the in-plane correlation function if the in-plane and out-of-plane motions of the 
transition dipoles are decoupled. This decoupling of the two motions should be a fairly good 
approximation in our sample because we demonstrated that the out-of-plane dynamics is strongly 
restricted while there is a significant in-plane dynamics. In case the excitation transfer is the 

Fig. S9 (a) The attempt to fit the observed 2D anisotropy decay for the 100% loading sample with the 
excitation transfer induced depolarization decay in Eq. (S.46). The fit clearly does not reproduce the 
observed data well. (b) The loading dependence of the 2D anisotropy decay. It is hard to discern these 
two decays are indeed different. (c) The loading dependence of the 2D anisotropy decay arising from the 
excitation transfer induced depolarization. While the two plots in (b) could be indeed different, the 
difference is smaller than the calculated plots in (c), supporting that the excitation transfer induced 
depolarization cannot be a dominant depolarization mechanism.  
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dominant mechanism of the orientational correlation function decay, 2D anisotropy 
experimentally obtained through Eq. (S.45) should decay as20 

1/3
ET( / )2D 1

( )
2

tr t e          (S.46) 

where ET is inversely proportional to the cube of the transition dipole density   : 3
ET   , 

which makes the decay in Eq. (S.46) extremely sensitive to the loading of the vibrational probe. 

The solid line in Fig. S9(a) shows the 2D anisotropy for the sample discussed in the main text 
(100% loading sample). We attempted to fit this data with Eq. (S.46), and the dotted line in Fig. 
S9(a) is the best fit, which clearly is not reproducing the decay curve. Excitation transfer induced 
depolarization is not the mechanism causing the 2D anisotropy decay. 

Fig. S9(b) shows 2D ( )r t  for the 100% loading sample and the 70% loading sample (for the 

synthesis procedure, see Sec. B). The data for 70% loading sample is much noisier because of 
the lower signal level and the less averaging. Though it is unclear if these two decays are 
distinctly different beyond the noise level, admittedly it appears that the decay in the 70% sample 
is consistently higher than the decay in the 100% loading sample. Nonetheless, this difference is 
much smaller than what we expect from the excitation transfer induced depolarization. The plots 
in Fig. S9(c) are the calculated 2D anisotropy decay based on Eq. (S.46) for the 100% loading 
sample and the 70% loading sample. The time axis is normalized by ET  for the 100% loading 

sample. As seen in Fig. S9(c), in the case of the excitation transfer induced depolarization, it 
takes roughly 3 times longer for the 70% loading sample to reach the 2D anisotropy level of 0.2 
than the 100% loading sample. The observed 2D anisotropies for the 100% and the 70% samples 
reach 0.2 around t = 4ps and 7ps respectively, which is much closer to each other than what is 
expected from the excitation transfer process. 

Based on these two observations, together with the previous results from two-dimensional 
infrared spectroscopy, we conclude that the orientational correlation function decays are caused 
by the reorientation of the transition dipoles as discussed in the main text rather than the 
intermolecular Förster excitation transfer process. 

The small difference between the decay in the 100% sample and the 70% sample in Fig. S9(b), if 
it is real, may be attributed to the actual difference in the structures and dynamics between the 
two samples. Indeed, the absorption band center position for the 70% sample was ~2 cm-1 blue 
shifted compared with the 100% sample, indicating that the structure of the monolayer is 
affected by the loading of the head group. Also, for the monolayer on a gold surface, it has been 
shown that the lower-loading monolayer shows slower dynamics, which was verified by both a 
two-dimensional infrared spectroscopy measurement and a MD simulation.14  
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