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Supporting Information 

A. Methods for linear IR absorption and time-resolved nonlinear IR spectroscopy 

 Fourier-transform IR (FTIR) spectra were recorded on a Thermo Scientific Nicolet 6700 

FTIR spectrometer with a resolution of 0.5 cm-1. For O-D hydroxyl spectra in hydrogel samples, 

background absorption due to H2O and PAAm was removed in two steps. The majority of the 

background, contributed by H2O, was subtracted using the spectrum of pure H2O as the first step. 

Some residual absorption blue of the hydroxyl (O-D) stretch remained from the PAAm fibers. 

The FTIR spectrum of a low-concentration hydrogel (10% PAAm) containing only H2O was 

background subtracted, resulting in the isolated polymer spectrum. This polymer spectrum was 

subtracted from the O-D absorption spectrum in the second step of background correction. For 

SeCN‒ spectra, D2O background absorption was subtracted using a spectrum of pure D2O. The 

background spectra of hydrogels containing D2O do not differ from pure D2O in the C-N stretch 

spectral region.  

 The ultrafast IR measurements of hydrogels were performed on two different IR laser 

systems at a temperature of 297.0 ± 0.3 K. For the measurements on 5% HOD in hydrogels, the 

broadband mid-infrared (MIR) source and time resolved IR spectrometer have been described in 

detail previously.1,2 Briefly, a relatively short pulse Ti:Sapphire regenerative amplifier (1 or 2 

kHz, 45 fs FWHM, 800 nm output) pumped an optical parametric amplifier (OPA) to produce 60 

fs FWHM, 4 µJ MIR pulses centered at 2510 cm-1 with a bandwidth of about 230 cm-1. These 

short pulses with large bandwidth are required to cover the very broad hydroxyl (O-D) 

absorption band. 2D IR measurements used a non-collinear box-CARS geometry in which the 

direction, timing, polarization, and intensity of the three excitation pulses, signal, and local 

oscillator (LO) are independently controllable.3-5 The time delay between pulses one and two is 

scanned to generate an interferogram, while the second to third pulse time delay is the waiting 
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time, wT . 2D IR experiments on HOD were done with the same polarization for the 3 input 

pulses and the echo signal pulse, i.e., the XXXX   polarization configuration. PSPP 

measurements were conducted with a strong pump pulse and weak probe pulse, and are 

otherwise the same as described for the pulse-shaping system below. Vibrational population 

relaxation of the O-D stretch in bulk water and similarly water-rich environments results in a 

transient heating signal originating from the breaking of hydrogen bonds.6,7 This isotropic 

contribution to the PSPP data was removed following a well-documented procedure6,7 to recover 

the pure lifetime decays for the O-D stretch of HOD in the PAAm gels. 

 For hydrogels that contain SeCN‒ as the probe, experiments were carried out with an IR 

Fourier-domain pulse-shaping system. Details of this system have been described previously.8,9 

The IR output from the OPA is a 3 kHz pulse train with a pulse energy of ~30 μJ. The IR 

spectrum was centered at 2075 cm-1 with a bandwidth of 100 cm-1, giving a duration of ~160 fs. 

The IR beam was split into a pump beam and a probe beam (90:10). The pump beam passed 

through an acousto-optic modulator (AOM) that generated two pulses separated by time τ for the 

2D IR measurements and a single pulse for the pump-probe experiments. The probe pulse 

(corresponding to pulse 3 in the echo experiments) was delayed by a mechanical delay line to 

scan the time between pump and probe, denoted Tw in the 2D IR and t in the PSPP experiments.  

For the PSPP experiments, the probe beam polarization was set horizontal (0°) and the pump 

beam polarization was set +45°. After the sample, the probe beam passed through a motorized 

resolving polarizer that was alternated between +45° or ‒45° so that the components of the probe 

(and thus pump-probe signal) parallel ( S ) and perpendicular ( S ) were obtained.10 Then the 

probe beam entered a spectrograph with horizontal polarization after a final polarizer and was 

detected with a 32-pixel MCT array. The parallel and perpendicular PSPP signals are described 

by:  
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The population decay, ( )P t , is isolated using equation (1) in the main text. Rotational motions 

are extracted from through the anisotropy, equation (2) in the main text.  

 For 2D IR measurements using the pulse-shaping system, the optical alignments were the 

same as the PSPP experiments. The AOM split each pump pulse into pulse 1 and pulse 2 which 
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were collinear but delayed by the period τ and with controlled varying phase. The probe pulse 

(pulse 3) stimulated the emission of echo pulse travelling collinearly with the probe pulse. The 

probe pulse therefore also served as the LO pulse. For each 2D IR spectrum acquired at a certain 

Tw, τ was scanned by the AOM to generate the interferograms recorded on the array pixels. In the 

same manner as in the PSPP measurements, the polarization of pulse 1 and 2 is either 45° or -45° 

relative to the horizontal pulse 3 during the measurements. The measured XXXX   and XXYY   

2D IR spectra were transformed as 2XXXX XXYY      into the isotropic 2D IR spectra used for 

spectral diffusion analysis.11,12 Unlike for HOD as the vibrational probe, the 2D IR spectra are in 

the isotropic polarization configuration. The reorientation measurements revealed two distinct 

populations for the anionic probe: SeCN‒ in the core of the nanopools and associated with 

polymer fibers. The isotropic 2D IR observable eliminates orientational relaxation from 

influencing relative amplitudes contributing to the 2D IR spectra. 

B. Wobbling-in-a-cone correlation functions, cone angles, and diffusion constants 

 The wobbling-in-a-cone model with a hard cone potential12-16 has found great success in 

quantitatively describing restricted orientational diffusion observed in pump-probe2,12,17,18 and 

fluorescence13,14,19 anisotropy decay, NMR Overhauser enhancement,15,20 and time-domain 

optical Kerr effect21-24 measurements. In this section we provide some additional details on this 

highly informative model.  

 The key piece of information obtained from the anisotropy observable is the second order 

Legendre polynomial orientational correlation function: 

 2 2( ) ( ( ) (0))t P tC     
 

,  (S2) 

where 2P  is the second Legendre polynomial and ( )t  is the time dependent transition dipole 

orientation, a unit vector. If 2C  is found to decay to zero in the infinite-time limit, then the 

orientational motion samples all directions on a long enough timescale. However, restrictions on 

the range of orientational motion, such as attachment of the probe to an immobile surface, can 

cause 2C  to decay to an offset. This offset is given by 2
2S , the square of a generalized order 

parameter: 

 2 2 2 eq(cos ) d (cos ) ( )S P P p       , (S3)  
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where eq ( )p   is the equilibrium probability density of transition dipole polar angles (assumed 

azimuthally around the z -axis) and   refers to the angular coordinates ( , )  .15  

 This order parameter alone provides model-free information about the confining 

potential, but much better understanding of both the structural features of the restriction and the 

dynamics within the confining potential can be gained by introducing a particular model. The 

hard cone model is both conceptually clear and allows for some analytical results, as shown by 

Lipari and Szabo.15 In this model, the unique symmetry axis of the probe, which is assumed to be 

coincident with the transition dipole direction and thus the bond axis, undergoes free diffusion 

within a cone around the z -axis of half angle 0 . There is equal probability of finding any value 

of the polar angle   within the cone, and zero probability of it appearing outside: eq ( ) 0p    for 

0  .  

 The model inputs are thus a hard cone half angle 0  and orientational diffusion constant 

wD  for the free rotational diffusion within the cone. It is straightforward to calculate the order 

parameter with this model. Defining 0 0cosx  , we have: 

 0 0
2

(1 )

2

x
S

x
 , (S4)  

which was also given in the form of equation (4) in the main text. An excellent analytical 

approximation to the full orientational correlation function is available,15 taking the form of a 

single exponential decay to an offset, which is the squared order parameter: 

  2 2
2 2 2( ) 1 exp( / )ct S SC t     . (S5)  

The effective wobbling time constant, w , depends on both the diffusion constant and the cone 

angle;15 it is given by: 
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If the model inputs 0  and wD  are known, the orientational correlation function (S5) can be 

constructed. More importantly, when the orientational correlation function is determined through 

a fit to experimental data of the form (S5), we can straightforwardly solve the reverse problem to 
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obtain the model characteristic parameters 0  and wD  from the fit parameters 2
2S  and c  using 

(S4) and (S6). 2S  directly gives the cone angle, and then 0  and c  are used to determine wD . 

 In the main text (Sections II.B,C and Table I), the anisotropy decays of HOD in H2O and 

SeCN- in D2O, in hydrogels of various PAAm concentration, are analyzed. Results for c  and c  

are reported; these two give good descriptions of the observable decay rates and structural 

constraints, respectively. To compare the rates at which diffusion in the cones is actually 

occurring, however, the diffusion constant is the more relevant parameter. Data from the fits that 

is useful for the calculation from Table I (main text) are reproduced in Table S1. The wobbling-

in-a-cone diffusion constants wD  were calculated for HOD and SeCN- in bulk solution and the 

various concentration hydrogels. We report the inverse diffusion constant, or diffusion timescale, 

1
wD  in Table S1 for comparison in more convenient units. 

C. Estimation of water pool size in PAAm hydrogels for model distributions and 

comparison to reverse micelles 

 In examining the structural and rotational dynamics of vibrational probes (HOD and 

SeCN-) in the restricted hydrogel networks, it can be helpful to consider the relationship between 

the PAAm concentration T (percent weight / volume) and the average water pore dimensions in 

which either probe molecule can reside. In the present section we consider two limiting cases of 

the pore distribution in PAAm hydrogels. The first is a model originally derived by Ogston 

which assumes a completely random distribution of long polymer fibers in a suspension.25 The 

Ogston model and its extensions have a long history of use in examining the physical properties 

of hydrogels and relating them to performance in electrophoresis, yielding a well-known 1/2T   

dependence of pore size on polymer concentration.26-29 The complete randomness of the 

distribution yields a relatively small average pore diameter. In the opposite limit, we consider a 

model of a highly organized lattice of polymer fibers. Assuming a three-dimensional cubic 

lattice, the average pore size (or polymer fiber spacing) is straightforward to calculate. This gives 

an upper bound on the pore diameter as the highly organized polymer network allows for greater 

spacing between the fibers.  

 Given these relationships of polymer concentration to water pool dimensions in the 

hydrogel, we may compare to a different system of confined water: that in reverse micelles. 

Reverse micelles have been extensively studied in terms of both their structure and the dynamics 
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of the water inside. The spherical micelle diameter is simply related to the ratio of water to 

surfactant head groups, allowing comparison to the characteristic hydrogel pore sizes we 

examine in the following.  

 For Ogston’s uniform random fiber suspension model,25 we assume identical straight 

fibers of length 2L  (a distance L  to each end from the fiber center) with a uniform average 

number density   of fiber centers per cm3. We further assume the fiber radius r  is finite but 

small enough compared to the fiber length that it does not affect the distribution of fiber centers 

or orientations. In an isotropic suspension, all fiber orientations are equally probable. The size of 

a pore or space is defined by taking any given point in the medium and determining the largest 

sphere that can be constructed from this center before making contact with a fiber. This distance 

from a chosen origin to the nearest fiber is denoted D , which defines the pore radius.  

 Ogston determined the probability distribution of D  in general using only the above 

assumptions.25 The results are considerably simplified with one further approximation also 

introduced by Ogston: that the values of interest for D  (i.e., those with significant probability) 

satisfy D L , which is likely to hold for large L  at moderate concentrations  . The 

probability density of D  was found to be: 

 2d
4 exp( 2 )

d

P
LD LD

D
   , (S7)  

from which the mean value of D  is found as: 

 1/2(8 )D L    . (S8)  

Ogston observed the extremely useful fact that equations (S7) and (S8) do not depend on   and 

L  individually, but rather their product, which is proportional to the total length of fiber per unit 

volume.25 Defining   as the length of fiber per cm3, we have 2L   and thus 1/2(4 )D     .  

 Given the concentration of polymer in mass per unit volume, mC  in g/cm3 (so that 

(%) 100 mT C  ), the polymer fiber radius r , the molar volume contributed per monomer unit 

mV , and the monomer unit molar mass wM , we can calculate the length of fiber per unit volume 

  and thus the mean pore radius D  . The volume of polymer per cm3 of liquid suspension is 

 m m
p

w

V
V

C

M
 . (S9)  
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The cross sectional area of a polymer fiber is given simply by 2
cA r . Thus the length of fiber 

per volume of suspension is  

 2

p m m

c w

V V C

A r M



   , (S10) 

from which it follows that the mean pore radius is  

 1/2(4 )
2

w

m m

M
D r

V C

      . (S11) 

For the later comparisons, it will be more useful to evaluate the mean pore diameter, 

 2 w

m m

D
V C

d
M

r   .  (S12) 

The expected 1/2
mC   dependence appears in (S12).  

 For the second model, we assume a three dimensional lattice of polymer fibers. A cubic 

lattice is considered for simplicity; other lattice shapes would be expected to give similar, but not 

identical, results. The cubic unit cell is illustrated in Figure S5. The length of each edge is l , 

giving a box volume of 3V l . The polymer fiber radius is r  as introduced above. This perfectly 

organized hydrogel model contains three intersecting polymer fibers, modeled as cylinders, 

whose axes are orthogonal. The distance between each adjacent parallel fiber is clearly l . Thus l  

is the characteristic “diameter” or length scale of the water pore in this network structure, which 

can be compared with d  in (S12).  

 To calculate l , we observe that there is a definite polymer mass contained in a cell of this 

given length scale. This mass m  per cell volume V  must be mC , which is known. The total 

volume of the three cylindrical fibers is  

 23TV r l .  (S13) 

Now, given the molar mass and molar volume per monomer unit, we obtain the mass of polymer 

per unit cell: 

 
23T w w

m m

M

V
m

V r lM

V


  .  (S14) 

To match the experimental polymer concentration, we must have: 
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
   .  (S15) 

Solving (S15) for l , we obtain the desired expression for the cubic cell length: 

 3 w

m m

M
l r

V C
 .  (S16) 

This result is larger than for the random fiber distribution result d  in (S12) by a factor of 3 , 

but otherwise has identical form.  

 The expressions (S12) and (S16) for d  and l , respectively, are the distances between the 

centers of polymer fibers which define the pore. When the polymer radius r  is finite, it also 

restricts the available pore space. To account for this, as suggested by Ogston, we can subtract 

the fiber diameter of 2r  from the diameters d  and l  to obtain the actual size of the water pore 

in each of the models.25 Thus we have 

 2w
w

m m

M
r r

V C
d     (S17) 

and 

 3 2w
w

m m

M
r r

V C
l     (S18) 

for the random fiber suspension (Ogston) and lattice model water pool diameters, respectively.  

 In order to evaluate the expressions for wd  and wl  as a function of the PAAm 

concentration mC , we need the parameters characterizing this polymer in aqueous solution or 

suspension. The molar mass for the acrylamide monomer is wM   71.08 g/mol. For the 

definition of polymer volume, the most appropriate choice is the Van der Waal’s volume, 

representing the space occupied by the polymer fibers in solution. We have for PAAm, mV   

38.15 cm3/mol as the Van der Waal’s volume per mole of acrylamide monomer.30 The final 

required property, the PAAm fiber radius r , is less straightforward to obtain as it depends on the 

exact synthesis conditions of the crosslinked hydrogel network. If the fibers were single-

monomer thick fibers, then one could simply use the radius of an assumed spherical monomer 

Van der Waal’s volume: 
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1/3
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m

A

V
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  
 

 ,  

with AN  Avogadro’s number. However, the fiber radius depends on the extent of PAAm 

crosslinking. Through molecular-sieve chromatographic separations on various proteins of 

known hydrodynamic radii in granulated PAAm gel, Fawcett and Morris found a simple relation 

between the fiber thickness and the cross linker concentration C  in weight percent of total 

monomer.28 For C  less than 10%, as is typical, the fiber radius is: 

 (nm) 0.50 0.10 (%)r C  .  (S19) 

The concentration for all samples was C   3.3% (main text, Section II.A), so we obtain r   

0.83 nm. This value of r , slightly more than three monomer units worth, is certainly much 

smaller than the fiber length. Thus the assumption in the Ogston model that the finite radius does 

not influence the fiber distribution should hold.  

 Given the parameters obtained above, the calculated values of wd  and wl  are displayed in 

Table S2 as a function of PAAm concentration, T . For hydrogels at or above 10% PAAm, both 

the lower bound, wd , and upper bound, wl , water pore diameters are below 10 nm, supporting 

the experimental observations of significant dynamical slowdown resulting from the confinement 

of the H-bonded water pool, which begins at PAAm concentrations of about 10%.  

 We now compare the mean pore sizes evaluated above for the spaces in PAAm hydrogels 

to the water pool sizes of reverse micelles (RMs). A mixture of water and surfactant with a 

certain ratio 0w  of water molecules per surfactant head group will self-organize in nonpolar 

solvents into typically spherical RMs of a particular, nearly monodisperse, size over a range of 

0w  values.31,32 For RMs based on Aerosol-OT (AOT, sodium di-2-ethylhexylsulfosuccinate) in 

isooctane, a simple relation between water to surfactant ratio 0w  and water pool diameter has 

been established through light scattering and viscosity methods. Using a surfactant length of 1.2 

nm for AOT, Kinugasa et. al. found a simple linear relationship that describes multiple sets of 

RM size measurements: 

 0(nm) 0.29 1.1md w  ,  (S20) 

valid for 0w  between 2 and 20.31 Thus, given a water pool size as calculated with our PAAm 

hydrogel models above, we can calculate the equivalent 0w  for a RM from: 
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 0

(nm) 1.1

0.29
md

w


 .  (S21) 

Calculated values of 0w  using (S21) for the hydrogel concentrations examined in the present 

work are shown in Table S2. We use an equivalent gel
md  that is the mean of wl  and wd . 

Intermediate length scales are characteristic of a hydrogel framework with a mix of disorder and 

more lattice-like arrangements. The values appear mostly within the range of applicability of  

equations (S20) and (S21), though for md  = 10.6 nm, 0w   33 is somewhat too high of an 

estimate.32-34  

 In comparing hydrogel and RM confinement of water, it is also worth considering the 

geometric fraction of water that is adjacent to the interface, as was calculated by Moilanen, et. al. 

for several large RMs previously.33 For reverse micelles, the radius of the water pool is 

/ 2m mr d , with md  given by Eq. (S20). We take the thickness of a single water hydration shell, 

present at the interface adjacent to surfactant molecules, to be 0.285  nm.35 Then, the radius 

of the “core” water pool is c mr r   . The volume of the interfacial water “shell”, sV  is simply 

the volume of the total water sphere, V , minus the volume of the core water sphere, cV . The 

geometric fraction of interfacial water is given by: 

 
2 2

RM
3

( 3 3 )s c m m
s

m

V V V r r
f

V V r

    
    . (S22) 

The calculation for RMs was straightforward because there is a clear geometry for each 

(identical) water pool in solution.  

 In the hydrogels, the water pool is continuous, and rather than knowing its size, we have 

direct access to the polymer volume fraction, in Eq. (S9) for pV . The calculation of interfacial 

water fraction is independent of the organization of polymer fibers in the suspension. With 

reference to Figure S5, consider a cylindrical fiber of PAAm of radius r . The volume per unit 

length is 2r . Interfacial water consists of a shell around this cylinder of thickness  . The total 

cylinder volume per unit length of fiber is 2( )r  . Then the volume fraction of interfacial 

water, sV , can be found from the ratio of water shell to fiber volume, as we know pV : 

 
2 2

2 2

( ) ( 2 )
s p p

r r r
V V V

r r

    


  
  . (S23) 
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The volume fractions sV  and pV  are out of a total value of unity for the entire polymer fiber 

suspension. Thus the volume fraction of “bulk” water, bV , is known from 1p s bV V V   . Here 

“bulk” refers to all water not directly against the polymer fiber interface, not to imply that its 

dynamics are necessarily bulk-like. The volume fraction of all water in the suspension is clearly 

1s b pV V V   . Finally, the geometric fraction of interfacial water out of all the water for 

polymer fiber suspensions is: 

 gel
2 2 1

( 2 ) ( 2 ) 1

1 1
ps

s
s b p p

VV r r
f

V V r V r V

   


 
  

  
 . (S24) 

For sufficiently small pV , the approximation 

 2(1 )
1

p
p p p p p

p

V
V V V V V

V
     


  

gives a linear dependence of interfacial water fraction on polymer volume fraction, as we 

observed for the polymer fiber-associated SeCN- probe in the main text. The approximate linear 

relation is easily calculated as: gel 0.43s mf C  . A slope of 0.44 was found experimentally for 

the fraction of fiber-associated SeCN- as a function of polymer mass fraction. This provides 

additional justification for the values of r  and   used here.  

 The interfacial water fractions were calculated for the hydrogels and are given in Table 

S2. These values of gel
sf  depend only on the polymer concentration and not the particular 

organization of fibers, i.e., the random chain versus lattice models. Using the equivalent diameter 

gel
md  that was associated with a RM size, we also calculated the interfacial water fraction that 

would exist in this hypothetical reverse micelle. These values of RM
sf  are also displayed in Table 

S2.  

 Moilanen et. al. extensively analyzed the vibrational relaxation and rotational dynamics 

of HOD in AOT reverse micelles formed in isooctane at a range of 0w  values spanning from the 

smallest possible RMs to large RMs containing considerable bulk water.33,34 The results are 

summarized in Table S3. The vibrational lifetime relaxation appeared as two exponentials for 

larger RMs, signifying two distinct dynamical ensembles. For the smaller RMs, only a single 

lifetime could be found, illustrating a transition to collective dynamics of the entire water pool. 
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From the very large RMs at 0w   37 through the transition point at 0w   10, a bulk-like “core” 

component with a shorter lifetime and faster reorientation appeared alongside a “shell” 

component, water molecules at the interface. The shell population had a longer lifetime and very 

slow orientational relaxation for all large and intermediate RMs (Table S3).33,34 Below the 0w   

10 RM, at values of 5 and 2, only a single, highly perturbed water environment remains, with 

slightly slower orientational relaxation at 0w   5 compared to the shell of larger RMs, and 

extremely slow relaxation in the smallest RM, 0w   2.  

D. Calculation of the complete FFCF from the CLS and absorption lineshape 

 In 2D optical spectroscopy, the center line slope (CLS) method allows for extremely 

robust extraction of the normalized, time-dependent part of the frequency-frequency correlation 

function, ( ) ( ) (0)C t t    , where ( ) ( )t t      is the instantaneous frequency 

fluctuation around the average value   .36-38 We make use of the CLS- 3  formulation37 in 

particular: slices of the 2D spectrum are taken parallel to the vertical 3  (or m ) axis and the 

position of the maximum value of this slice is determined. The center line is constructed by 

plotting the position of the max in 3  as a function of the slice value in 1  (or  ). Center lines 

are illustrated in the 2D IR spectra of HOD in hydrogels with 5% and 40% PAAm in Figure S6. 

The slope of this line is defined as the CLS, beginning from a theoretical value of unity for 

complete correlation of initial and final frequencies, and decaying to a value of zero at long 

waiting times for completely uncorrelated initial and final frequencies. It has been shown that the 

CLS technique retrieves the correct decay function despite the presence of background 

distortions, excited state absorption peaks (e.g., the 1-2 transition which often partially overlaps 

the 0-1 peak for ground state bleach and stimulated emission), and phasing error (for 

experiments done in non-collinear geometries).  

 We typically consider multi-exponential FFCFs, with explicit inclusion of a 

homogeneous component, of the form: 

 2

2

( )
( ) exp( / )k k

k

t
C t t

T

     , (S25) 

where k  is the contribution (in standard deviation of a Gaussian line shape) of process k  to the 

inhomogeneous broadening. 2T  is the total homogeneous dephasing time, with contributions 
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from pure dephasing due to extremely fast fluctuations (completely motionally narrowed 

processes with 1k k  , giving a pure dephasing linewidth of * 2 /k k    ), vibrational 

lifetime decay, and orientational relaxation of the transition dipole moment. With pure dephasing 

time constant * *
2 1/ ( )T   , vibrational lifetime 1T , and integrated second order rotational 

correlation time orT , the total dephasing time is given by:  

 
*

2 2 1 or

1 1 1 1

2 3T T T T
   .  (S26) 

The homogeneous linewidth is 21/ ( )T  , which is the FWHM of the Lorentzian lineshape. 

The CLS is a robust and easily obtained observable,37,38 but we pay the price of losing direct 

knowledge of 2T  (or  ) and the scale of the frequency fluctuations, k , if we analyze the CLS 

alone.  

 Two methods are available to recover the complete FFCF using the CLS and some 

auxiliary information. The first is well-documented and was described along with the CLS 

procedure initially.36,37 In this case we require the linear absorption lineshape and the CLS decay 

(fit and data points). The width of the linear absorption encodes the scale of both the 

inhomogeneous and homogeneous broadening; the CLS decay, on the other hand, describes how 

this linewidth is distributed. Diagrammatic perturbation theory is used to calculate the linear 

absorption spectrum from the complete FFCF. A simultaneous fit of the calculated linear 

absorption to the experimental FTIR spectrum and of the normalized FFCF (disregarding the 

homogeneous contribution) to the experimental CLS decay, while varying the scale of the k  

and 2T , allows the complete FFCF to be determined. This method gives excellent convergence 

for symmetric lineshapes and even slightly asymmetric lineshapes such as those of HOD in H2O 

(Figure 1), and was used for HOD in bulk water and in hydrogels at all PAAm concentrations.  

 However, for the SeCN- anion in water (D2O), the large red-side tail due to significant 

non-Condon effects (stronger transition dipole moment for more weakly H-bonded absorbers on 

the red side)39 causes poor convergence of the above method and inconsistent FFCF 

determination. For the SeCN- lineshapes in bulk D2O and varying concentration of PAAm in the 

hydrogels, another method was used that was developed for a previous detailed study by Yamada 

et. al. on the SeCN- lineshape and dynamics in pure water.40  
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 In this method, we use the fit to the experimental CLS decay, the CLS data point for one 

chosen waiting time wT  (typically the earliest available point for best results), and the FWHM, 

w , calculated directly from the experimental FTIR absorption spectrum (i.e., not from a fit). 

Assuming a Voigt line shape of width w  (FWHM), Lorentzian (homogeneous) and Gaussian 

(inhomogeneous) widths are calculated for range of ratios of homogeneous to inhomogeneous 

broadening. Diagrammatic perturbation theory is used this time to calculate 2D spectra at a fixed 

wT  while varying the FFCF parameters in equation (S25) for the range of homogeneous and 

inhomogeneous widths chosen. The CLS is taken for each of these calculate spectra and 

compared to the experimental CLS value at this waiting time. The ratio of the homogeneous and 

inhomogeneous linewidths for which the actual CLS value is reproduced is thus the correct one, 

allowing the full FFCF to be calculated. 2D spectra are calculated as a function of waiting time 

for this complete FFCF and compared to the experimental CLS decay as a consistency check, 

with good agreement found for bulk water and all the PAAm concentrations we considered.  

 

E. Frequency-dependent pump-probe analysis of SeCN- 

 In Figure S8, the population relaxation curves of PAAm gels with T = 5% and 40% are 

displayed at three different frequencies: close to the peak center at 2073 cm-1, red side to the 

peak center at 2065 cm-1, and blue side to the peak center at 2092 cm-1. The insets for both the 

concentrations show that the curves at 2092 cm-1 have a growing term in addition to the 

population relaxation, while the curves at 2065 cm-1 decay faster than the curves at 2073 cm-1. 

The linear absorption spectrum of SeCN- in water has a tail on the red side due to increased 

transition dipole moment (non-Condon effect). As the SeCN- population within the absorption 

band was excited by the pump pulse, the SeCN- ions with instantaneous frequency at 2065 cm-1 

would be over-pumped while the ions with instantaneous frequency at 2092 cm-1 would be 

under-pumped. The result is that spectral diffusion would cause a net flow of population from 

2065 cm-1 to 2092 cm-1. At the peak center, this extra population dynamics due to non-Condon 

effect is balanced out by the input of population from the red side and the output of population to 

the blue side, and therefore our data analysis of anisotropy decay and population relaxation were 

performed at the peak center frequency.  

 In Figure S9, we show that the anisotropy decay curves of each hydrogel sample 

measured at different frequencies differ only slightly from each other.  
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Supporting Tables 

 

Table S1. Wobbling-in-a-cone diffusion times for HOD and SeCN- in PAAm hydrogels. 

Sample c  (ps) a c  (deg.) a 1
wD  (ps) b 

HOD in H2O 

10% PAAm 1.0 ± 0.2 21 ± 1 25 ± 5 

25% PAAm 1.4 ± 0.2 28 ± 1 21 ± 4 

40% PAAm 1.8 ± 0.2 33 ± 1 21 ± 3 

SeCN- in D2O 

0% PAAm 

(Bulk Water)  
2.0 ± 0.1 21.5 ± 0.4 51 ± 3 

5% PAAm 2.7 ± 0.2 29 ± 1 39 ± 3 

10% PAAm 2.8 ± 0.2 31 ± 1 36 ± 3 

25% PAAm 2.6 ± 0.2 30 ± 1 36 ± 3 

40% PAAm 3.0 ± 0.2 29 ± 1 43 ± 3 
a Reproduced from Table I, main text. 
b Calculated with Eq. (S6). For HOD, values of 

1
wD

 averaged across detection frequencies. For SeCN-, value is for 

center of absorption band. 
 

Table S2. Characteristic water pool distance scales for hydrogels, equivalent reverse micelle md  

and 0w  values, and geometric interfacial water fractions for the gels and equivalent RMs. 

T (%) mC  (g/cm3) wd  (nm) wl  (nm) gel
md  (nm) a gel

0w  gel
sf  RM

sf  

5 0.05 7.3 13.9 10.6 33 0.02 0.15 

10 0.10 4.7 9.3 7.0 20 0.05 0.22 

25 0.25 2.4 5.3 3.8 9 0.12 0.39 

40 0.40 1.5 3.8 2.6 5 0.22 0.52 

a Mean of wd  and wl , taken as diameter for corresponding reverse micelle (RM) of equivalent confinement length 

scale.  
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Table S3. Summary of orientational relaxation of confined water (HOD in H2O) in a range of 

large to small RMs from polarization-selective IR pump-probe results.34  

md  (nm) 0w  # Components core  (ps) shell  (ps) 

17 a 37 2, bulk like core 2.6 18 

9 a 25 2, bulk like core 2.6 18 

5.9 16.5 2, bulk like core 2.6 18 

4.0 10 2, perturbed core 4.0 26 

2.6 5 1 - 30 b 

1.7 2 1 - 110 b 

a 0w  values outside the range of applicability of Eq. (S20). md  values from Moilanen, et. al.34  
b For 1-component regime, shell refers long-time orientational relaxation of entire water pool, in which all molecules 
are affected by the surfactant interface.  
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Supporting Figures 

Figure S1. Representative anisotropy decays (points) and biexponential fits (solid lines) at 4 detection frequencies 

for HOD in the T  40% hydrogel. Frequencies range from the absorption peak to the blue edge. The global fits, 

sharing the time constants at each T  but allowing the amplitudes to freely vary between the different detection 
frequencies, describe the data extremely well. The fits have similar quality at all frequencies analyzed and for all 
PAAm concentrations.  
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Figure S2. Integrated rotational correlation times for the O-D stretch anisotropy, 2( ) 0.4 ( )r t C t , measured for 

HOD in H2O: 
1

cor 2 20
(0) ( )dC C t t

  . The correlation time for orientational relaxation is drastically slowed 

between 10% and 25% T concentrations. An additional major slowdown occurs between 25% and 40% PAAm. For 
all the gels, there is a trend of faster reorientation towards the blue side of the band. This is caused by the larger 
wobbling cone angles (Figure S4) resulting from weaker H-bonds. The H-bond strength determines the vibrational 
frequency, with bluer frequencies indicating weaker H-bonds and redder frequencies indicating stronger H-bonds.  
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Figure S3. Inertial cone angles, in , for the O-D stretch of HOD in bulk water and all hydrogel concentrations as a 

function of detection frequency. Though the average cone angle has some spread between PAAm concentrations, the 
frequency dependence is essentially identical for all samples. More weakly H-bonded O-D oscillators on the blue 
side have a great deal more inertial rotational freedom on ultrafast timescales (< 100 fs) as compared to those with 
stronger H-bonds on the red side of the absorption band. The inertial cone angles appear somewhat smaller in the 
hydrogel samples than in bulk water, which could indicate some confinement effects even on the shortest of time 
scales. The differences between gel concentrations are not outside the error, however. Uncertainty is between 2 and 
6 degrees, with larger error for the smaller cone angles to the red.  
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Figure S4. Wobbling-in-a-cone half angles, c , for T  10%, 25%, and 40% hydrogels as a function of detection 

frequency. The lowest concentration gel with 5% PAAm did not have an observable wobbling cone; it was likely too 
small to allow the additional exponential decay to be detected. Cone angles increase towards the blue edge of the 
band due to weaker average hydrogen bond strengths allowing more angular space to be sampled. This frequency 
dependence is the source of the faster integrated correlation times on moving to the blue shown in Figure S2.  
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Figure S5. Illustration of cubic lattice for estimation of hydrogel pore size. The box is of length l  on each side. 
Three polymer fibers of radius r  intersect at the center, spanning the length of the box.  
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Figure S6. 2D IR spectra measured on the O-D stretch of HOD for the 5% and 40% PAAm hydrogels at two 
waiting times, Tw = 0.3 and 1.5 ps. Black dashed line is the diagonal, while the solid blue line displays the fit to the 
center line which determines the CLS. The bands change shape with waiting time as single dynamical ensembles.  
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Figure S7. 2D IR spectra measured on the nitrile stretch of SeCN- for the 10% and 40% PAAm hydrogels compared 
at three different waiting times, Tw = 0.5, 5 and 50 ps. Black dashed lines are the diagonals. 
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Figure S8. Population relaxation of SeCN- measured at different frequencies (peak center, red, and blue of the peak 
center). The decay curves were normalized to their maximum values for comparison. The insets display data 
measured at short waiting times with an expanded scale.  
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Figure S9. Normalized anisotropy decay curves of SeCN- measured at different frequencies (peak center, red, and 
blue of the center). The time dependence is essentially unchanged across frequencies.  
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