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S1. Jump Exchange Kinetic Model 

The theory of jump chemical exchange in 2D IR spectroscopy was developed in detail by 

Ji and Gaffney,1 but the relevant results are presented and extended here. For our proposed two-

state system (the H-bonding (HB) and non-bonding (NB) species) the populations obey the 

following analytic equations: 
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Where 
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Here, NHB and NNB are the time-dependent populations of the H-bonding and non-bonding 

populations respectively, A is the isotropic exchange matrix and B is the anisotropic exchange 

matrix. The contributions of these matrices can be isolated with simple manipulations of Eq. S1, 

with: 
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This is equivalent to obtaining the experimental isotropic ( XXXX 2 XXYY )  and 

anisotropic ( XXXX XXYY )  2D spectra through linear combinations of the parallel and 

perpendicular 2D spectra. 

 Both NHB and NNB are further subdivided into populations that have undergone exchange 

(denoted with a * superscript) and have not undergone exchange (no superscript). This 

subdivision is a straightforward modification of the kinetic equations as previously described by 

Ji and Gaffney, who were interested in the amplitudes of the 2D bands but not their shapes. The 

subdivision is critically important for describing the overall line shape, as we need to be able to 

rigorously distinguish between the non-exchanged populations which have non-zero FFCFs and 

populations after exchange, for which the FFCF is zero. There is otherwise no chemical or 

spectroscopic difference between the N and N* populations. From this definition, we can also see 

that both the HB and NB initial subensembles, N* = 0 at t = 0. 

 A is made up of kHB and kNB, which are the population relaxation rates (vibrational 

lifetimes) for the two species, and kHB-NB and kNB-HB which are the rates of chemical exchange 
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between the two species. 2D IR is a non-perturbative measurement, meaning that the experiment 

probes the equilibrium fluctuations between populations also at equilibrium. This introduces the 

additional constraint of 

 
* *( ) ( )HB HB HB NB NB NB NB HBN N k N N k     . (S4) 

The B matrix additionally has DHB and DNB, which are the orientational diffusion constants for 

the two species (multiplied by 6 as the experiments measure the C2 correlation time), and Θ, 

which is the aforementioned “jump” angle associated with the exchange. When Θ = 0, the 

equations simplify to the chemical exchange equations described in Kwak et al.2 

 To determine the overall intensities of the diagonal and cross peaks, it is necessary to also 

introduce the relative transition dipoles, μHB and μNB, of the two species. Further, by replacing the 

population vector in Eq. S1 with a density matrix, it is possible to track the initial and final state 

of populations with respect to time. Thus replacing Eq. S1 with expressions of the form 
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where a = 4/5 for an XXXX  pulse sequence and -2/5 for an XXYY  pulse sequence, as in 

Eq. S1. From here it is possible to read off the relative intensities of the different peaks from the 

time dependent density matrix. For instance, all populations that begin the waiting period H-

bonded will be in column 1, with those that do not exchange by time t in row 1 (diagonal peak), 

those that exchanged once (or an odd number of times) in row 3 (exchange peak), and those that 

have exchanged an even number of times in row 2 (decorrelated diagonal peak). 

 

S2. Determining the Line Shape Parameters 
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 While the kinetic model tells us the relative intensity of the peaks, it is necessary to 

compute the overall line shape to model the observables. The 2D line shapes are calculated 

numerically using the response functions reported in Kwak et al.2 Examples of calculated 

component line shapes are given in Fig. 6. The desired total line shape of a specific peak is a 

particular linear combination of these six component peaks. One contribution to the diagonal 

peaks is from the subensembles of molecules that have not undergone chemical exchange. These 

subensembles exhibit normal spectral diffusion. However, subensembles that have undergone an 

even number of exchanges will give a completely decorrelated contribution to the diagonal 

peaks. Subensembles that have undergone an odd-numbered of exchanges form the off-diagonal 

peaks, which will have a decorrelated 2D line shape.2 These overlapping exchange peaks have 

polarization dependent intensities, which will distort the total line shape differently in the two 

different polarizations and effect the CLS observable accordingly. After determining the impact 

of the exchange peaks on the CLS measurements, the remaining structural spectral diffusion in 

the diagonal peaks can also be calculated. 

 A proper description of the peaks requires good information on the center frequencies, 

inhomogeneous widths, and homogeneous widths of the two populations. From the two 

component fit to the vibrational lifetime and the two-peak fit of the linear FT-IR spectra, it is 

possible to get reasonable values for the center frequencies and total widths of the two 

component peaks from the Gaussian fits to the spectrum. The anharmonic shift (energy 

difference between 0 to 1 and 1 to 2 transitions) can also be directly calculated by the difference 

in frequency between the relevant minimum and maximum in the isotropic pump-probe 

decomposition (Fig. 2). These results are summarized in Table 1. 

 The overall dephasing time, T2 (homogeneous dephasing), can be extracted directly from 

the vibrational echo at short times by measuring the decay time of the time domain 

interferogram’s envelope.3 As the broad, H-bonded peak is the dominant part of the two-

component fits (see Fig. 2), and the observed T2 is much shorter than seen in non-H-bonding 

glass formers at analogous temperatures, it is assumed that the observed T2 is mostly due to the 

H-bonding peak (as reported in Table 3). The dephasing time of the non-H-bonding peak was 

chosen to be identical to that of PhSeCN in other non-H-bonding glass formers at the same 

rescaled temperature relative to their respective Tg’s (values in Table 4).3, 4 This rescaling was 

found to be valid for non-hydrogen bonding glass formers BZP and OTP. With the dephasing 
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time (homogeneous width) determined, it is then straightforward to predict the size of the 

inhomogeneous component that gives the correct total linewidth for each subpopulation by using 

an analytic approximation to a Voigt line shape. 

 The remaining time-independent terms that are needed to describe the total line shape are 

the relative equilibrium population sizes and relative transition dipoles. The intensity of the 

linear FT-IR spectrum depends linearly on population and on the transition dipole squared, while 

the intensity of the third-order pump probe (or 2D IR) signal is also linear in the population but 

depends on the transition dipole to the fourth power.5 By simultaneously fitting the linear 

spectrum and an early time pump-probe spectrum (before chemical exchange takes place), it is 

possible to determine both the relative populations and transition dipoles as reported in Table 1. 

It was found that modest adjustments to the relative dipole ratios did not substantially change the 

overall fit results. 

 

S3. Calculating the XISD Line Shapes 

 At this point, the time dependent terms, the rates and jump angle in the kinetic model as 

well as the frequency amplitudes and time constants in the FFCF of the HB and NB populations, 

need to be determined. As is clearly seen from the experimental data, these parameters will 

generally be highly temperature dependent. While there is a large parameter space, as there are 

potentially two vibrational lifetimes, two orientational diffusion constants, an exchange rate and 

jump angle, and (by assumption from previous experiments) two components with two time 

constants in the FFCF, the problem is constrained by having four time dependent data sets to fit: 

the XXXX  and XXYY  CLS from the 2D IR datasets and the corresponding isotropic and 

anisotropic pump-probe signals. 

 The 2D IR data is simulated by first solving Eq. S5 for a given Tw and polarization to 

determine the relative amplitudes of the diagonal and cross peaks. The non-exchange 

contributions to the diagonal peaks are also calculated from the values of their FFCFs for the 

given Tw. As it is very computationally expensive to calculate an entire dataset’s worth of 2D 

line shapes (frequently over 50 Tw’s were used), a large set of 2D line shapes was pre-calculated 

for a wide range of potential FFCF’s from fully correlated to fully decorrelated. For a given trial 

FFCF, the program would then find the closest match for the value of the FFCF at that Tw and 

make the relevant linear combinations with the other peaks, per Eq. S5. This method reduced the 
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computation time for a trial set of parameters from several minutes to under a second. The Tw 

and polarization dependent CLS can then be calculated in the same manner as used for an 

experimental 2D spectrum. When properly implemented, this technique is capable of 

reproducing the experimental line shapes very well (Fig. 7). 

 The pump-probe data is then calculated by numerically integrating along the ω1 axis of 

the 2D spectra (per the projection-slice theorem5), and the isotropic and anisotropic components 

are determined by Eq. 1. By calculating the pump-probe decays in this manner, the frequency 

dependence (or lack thereof) can also be examined to extract the kinetics of the subcomponents.  

 

S4. Implementing the Homogeneous “Wobbling” Model 

In terms of the wobbling-in-a-cone model,6, 7 the orientational relaxation is given by 

  2 2 2
2 2( ) (1 ) exp( / ) exp( / ) C ( ) exp( / )wob D

w
D

obC t T S t t tS t         , (S6) 

where τD = 1/6Dor, for orientational diffusion constant Dor, and T and S are order parameters of 

the form 
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with a cone half-angle of θ0. 

Wobbling-in-a-cone is introduced into the kinetic equations by making the orientational 

diffusion rates (DHB and DNB) time dependent, in the same manner as Ji and Gaffney.1 Eq. S6 is 

cast in the form of a diffusion equation with a new, time-dependent rate Deff(t): 
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where the latter approximation holds as long as τwob << τD. The approximation for Deff is then 

directly substituted into the anisotropic B matrix for Dor (specifically DHB and DNB). While this 

makes the B matrix time-dependent, the approximation eliminates the need for numerical 

integration of the rate equations. 

The lack of a frequency dependence for the anisotropy also implies that the wobbling 

behavior would have to be the same for both H-bonded and non-bonded probes. We can use this 
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observation to further constrain the influx of new parameters, as T2, S2, and τwob will have to be 

approximately identical in both species. 

 We can now use nonlinear fitting methods to calculate the best fit parameters for a given 

temperature. As was discussed in the main text, we will first use a data set at moderate 

supercooling that shows large differences between the XXXX  and XXYY  CLS curves to 

obtain the magnitudes of the parameters. In addition to the results reported in the main text 

(orientational diffusion arises virtually entirely from chemical exchange, and the systematic lack 

of agreement at intermediate times), a few other additional features were found. First, the 

population decay times (1/kHB and 1/kNB) match very closely to those was measured with the two-

component fit of the population decay, giving 225 and 480 ps respectively. These terms were 

used for all of the remaining fits. As the population sizes are similar (Table 1), the impact of 

differing exchange rates are relatively minimal on the observed population decays, explaining 

why the population decays are generally temperature independent. In addition, the orientational 

relaxation measured by the pump-probe anisotropy is modeled well (Fig. 8B, blue curve). 

 

S5. Implementing Heterogeneous Orientational Relaxation/Chemical Exchange 

 For the first model (top of Fig. 9), in which there is no interconversion between domains 

with fast and slow dynamics on the timescale of the 2D IR experiment, the modification is 

straightforward. The population is split as 

 ( ) (1 ) ( ) ( )tot fast slowt f t f t  N N N   (S9) 

where both Nfast and Nslow are described by Eq. S5, with the only difference being in the values of 

exchange rates 1/kNB-HB and 1/kHB-NB in the A and B matrices. The number of free parameters in 

the model is the same as in the “wobbling-in-a-cone” model, with the “fast” exchange rate 

serving the role of τwob and f serving the role of S2. It is necessary to keep the subpicosecond 

inertial term, T2, as it was introduced in Eq. S6, to describe the deviation from perfect correlation 

at zero waiting time. This is done by using the modification in Eq. S8 but setting S2 (which 

appears in C2
wob via Eq. S6) equal to 1. 

 The second model (bottom of Fig. 9) requires substantial modifications. To maintain the 

same number of parameters as the previous models, it is assumed that there is no chemical 

exchange between members of the slow population, essentially making them immobile until they 
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are moved into the fast population. All chemical exchange and reorientation occurs in the 

subensemble of “fast” liquid domains (fast dynamics in Fig. 9 bottom). The kinetic equations are 

then 
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Where the A and B matrices are now:
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kact corresponds to the rate of “slow” particles becoming “fast,” and kdeact corresponds to the rate 

of “fast” particles becoming “slow.” The N* population distinctions (corresponding to the probe 

molecules that have undergone chemical exchange during the experiment) are neglected here for 

space but can be added in the same straightforward manner as before to yield 8x8 density 

matrices. We will hold the ratios, Nslow/Ntot = f, to be the same for both the HB and NB species, 

as was done in the first heterogeneous model. The exchange rate between the fast and slow 

dynamical populations was also assumed to be the same for the HB and NB chemical species, 
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again justified by the frequency independence of the pump-probe anisotropy. The fast and slow 

populations are taken to be in equilibrium. This latter fact gives 
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Making these assumptions again reduces the number of adjustable parameters to be identical to 

the homogeneous wobbling-in-a-cone model, as the heterogeneity is described completely by 

fraction f and the activation rate kact. In comparisons to the first heterogeneous model, kact 

corresponds to the slow exchange rate kNB-HB. The other terms are directly analogous. 

 It is also assumed that the fast and slow populations have the same spectral diffusion 

dynamics; the spectral diffusion dynamics only depend on whether the species is HB or NB. In 

other words, being dynamically “fast” or “slow” refers only to whether the orientational 

relaxation and jump exchange is fast or slow. Orientational relaxation is determined by very 

local interactions of the probe molecule with its immediate environment. In contrast, spectral 

diffusion is caused by structural fluctuations on mesoscopic distance scales. For example, 

structural fluctuations occurring over a wide range of distances from the probe give rise to 

fluctuating electric fields, which can cause spectral diffusion through the vibrational Stark 

effect.8-10 The mesoscopic scale of spectral diffusion guarantees that the dynamically “fast” 

probes will exhibit some slow spectral diffusion, and vice versa. 

 

S6. Fit Method Details 

 The homogeneous and the two heterogeneous kinetic models were employed to describe 

the pump-probe anisotropy and polarization-dependent CLS decays at a series of temperatures, 

355 K to 270 K, from well above the melting temperature Tm through deep supercooling. As the 

isotropic pump-probe decay was found to be essentially temperature independent, the vibrational 

lifetimes of the two populations were held constant at the 225 and 480 ps values for the HB and 

NB species, respectively. The non-exchanging FFCFs were described as a biexponential for each 

species. These six FFCF parameters (1 amplitude and 2 time constants for each species’ FFCF) 

and the other five kinetic model parameters (exchange rate, jump angle, inertial cone, 

wobbling/fast time, wobbling cone/fast population) were allowed to vary. As having non-zero 

regular orientational diffusion rates (DHB or DNB) for either species did not improve the fits, the 
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two orientational diffusion parameters were held at zero for all temperatures. The insensitivity to 

DHB or DNB indicates that the dominant contribution to the pump-probe anisotropy decay is 

caused by the large-angle exchanges between the HB and NB species, i.e., reorientation of the 

PhSeCN probe is a result of the probe moving to a different chemical environment with a large 

angular jump. 

 As the pump-probe anisotropy only depends on the kinetic model, most of the parameters 

from the kinetic model can be obtained accurately. The inertial cone is set solely by the pump-

probe anisotropy at t = 0, and the other terms, excluding the jump angle, can be obtained from a 

biexponential fit to the anisotropy. The jump angle Θ plays off against the exchange rate: a larger 

jump angle results in a slower exchange rate for the same anisotropy per Eq. 4. 

 As opposed to the kinetic model parameters, which can be accurately set through the 

anisotropy measurements, the parameters that define the SSD are more difficult to extract. The 

two bands are fully overlapped in both the XXXX  and XXYY  measurements, so the best 

fit parameters for the SSD of the HB and NB populations can compensate for each other to a 

degree. The more prominent HB contribution (see Fig. 2) is better defined than the relatively 

smaller NB contribution. Furthermore, as exchange occurs the relative amplitude of the non-

exchanged SSD contribution to the diagonal bands decreases compared to those of the cross 

peaks and exchange contribution to the diagonal peaks. An example of the relative prominence 

of the peaks for the heterogeneous fit to the data at both polarizations at 290 K is illustrated in 

Fig. S1. 
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Fig. S1: Relative intensities of different peaks in the parallel and perpendicular pulse sequences for PhSeCN in 
2BPM at 290 K fit with Heterogeneous Model 1. 
 

 Because of these amplitude effects, a range of SSD parameters will yield fits to the 

experimental data of similar quality. To attempt to quantify this uncertainty, the SSD fit 

parameters were initialized at a large number of values and allowed to converge to their local 

minima. The reported errors in Tables 2 through 5 are then the standard deviations of these 

collections of parameters from between 10 and 30 trials. Significantly increasing the number of 

trials was found to not dramatically change or lower the distribution of parameters. 

 

S7. Additional Notes on Temperature Dependent Parameters 

A. Vibrational Dephasing Times 

As was discussed in Section S2, the dephasing time (T2 in Eq. 2; see Table 3) of the HB 

species dramatically increases as the temperature is lowered. It follows the approximately T2 

power law temperature dependence that is characteristic of these liquids, which has previously 

been associated with Raman-like two-phonon scattering events.3, 11, 12 The dephasing time is 

faster (i.e., the homogeneous line is wider) than has been seen in non-H-bonding glass formers 

when temperature is rescaled relative to Tg, although it makes up an overall smaller fraction of 

the linewidth due to the much broader spectrum of the HB species. This results in the CLS 

starting closer to 1 at Tw = 0 at a given temperature. 
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As was discussed in Section S2, the dephasing time of the NB species (see Table 4) was 

assumed to have approximately the same behavior, following earlier results on non-hydrogen 

bonding supercooled liquids. The values that were employed are the dephasing times of PhSeCN 

in BZP when rescaled to the respective glass transition temperatures of 2BPM and BZP. 

B. Inertial Cones 

 Sub-picosecond inertial motions appear in the pump-probe anisotropy as deviations from 

perfect correlation at zero waiting time, and is somewhat analogous to the effect of the dephasing 

time on the FFCF. As was mentioned in the main text and in Section S4, the frequency 

independence of the anisotropy says that the inertial wobbling must be essentially identical for 

the HB and NB species. It was found that the order parameter associated with this inertial 

motion, T2 (not to be confused with the dephasing time T2), increases monotonically with 

decreasing temperature, corresponding to greater confinement of the probe molecule on the 

shortest timescales. From Eq. S7, these order parameters corresponds to cone half-angles of 21° 

at the highest temperatures to 11° at the lowest temperatures.  

C. Chemical Exchange Jump Angle 

 A potentially important consequence of a near-magic angle jump rate as was observed in 

the model fits is that it will suppress the appearance of cross peaks in the 2D anisotropic spectra. 

The suppressed cross peaks result in a spectra that primarily includes the non-exchanging 

populations. In principle, this could permit a more accurate determination of the SSD of these 

species, although it is similarly difficult to obtain high quality 2D anisotropic spectra for accurate 

line shape determination, especially at long Tw’s where it would be most valuable. Further, fits to 

the simulated and experimental 2D anisotropies did yield good matches for the heterogeneous 

models (Fig. 8C) without further parameter adjustments. 

D. Comparison to the Parameters from the Homogeneous “Wobbling” Model 

 While the heterogeneous models were found to be either equivalent or superior at all 

temperatures, it is worth comparing to the analogous homogeneous model to test the robustness 

of the overall temperature dependence of the model. The kinetic model parameters for the 

homogeneous model are listed in Table S1. All of the timescales involved, in both the kinetic 

model and in the SSDs, were found to be essentially conserved between the two parameters. The 

only one which showed a marked change from the heterogeneous model was the slow timescale 

of the SSD of the HB species, t2,HB, which tended to be faster by a factor of three. This is likely a 
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result of having less density from the exchange peaks at moderate times between 10 and 100 ps, 

so part of the SSD had to become faster to describe the observed decay. 

 The “jump” angle Θ did undergo a significant change, increasing from the 45º ± 5º to 

about 60º ± 5º, although there was once again no significant temperature dependence. Per Eq. 4, 

this shifts the observed anisotropic decay from being slower than the exchange rate in the 

heterogeneous model to being faster than the exchange rate in the “wobbling” model. This 

change is likely in conjunction with complementary changes in the “wobbling” cone order 

parameter, S2
, the direct analogue to the fraction f of the population undergoing slow exchange in 

the heterogeneous model. The predicted amplitude of the restricted angle wobbling motions were 

necessarily smaller than the corresponding fast population fraction, as they contribute less to the 

observed polarization dependence than the analogous large angle motion in the heterogeneous 

model. The smaller contribution from wobbling allows more contribution from the slow, large-

angle exchange, which does produce the large polarization dependence in the CLS decays. 

 

Table S1: Homogeneous “Wobbling” Kinetic Model Fit Parameters 

τex corresponds to 1/kNB-HB. S2, T2, and τwob correspond to what appears in Eq. S6.  

T (K) Θ (º) log[τex/ps]a S2 log[τwob/ps] T2 

355 47 ± 12 1.6 ± 0.1 0.35 ± 0.06 1.2 ± 0.07 0.82 ± 0.01 

345 63 ± 7 1.8 ± 0.1 0.51 ± 0.06 1.0 ± 0.1 0.89 ± 0.02 

335 65 ± 13 1.9 ± 0.1 0.54 ± 0.06 0.9 ± 0.1 0.94 ± 0.02 

325 58 ± 7 1.9 ± 0.1 0.56 ± 0.04 0.8 ± 0.2 0.84 ± 0.02 

315 60 ± 6 2.2 ± 0.1 0.63 ± 0.03 0.9 ± 0.1 0.91 ± 0.02 

300 52 ± 3 2.5 ± 0.1 0.63 ± 0.02 1.3 ± 0.1 0.83 ± 0.01 

290 53 ± 4 2.6 ± 0.1 0.76 ± 0.01 1.0 ± 0.3 0.89 ± 0.02 

280 63 ± 13 3.2 ± 0.1 0.78 ± 0.02 1.4 ± 0.2 0.95 ± 0.01 

270 58 ± 19 3.7 ± 0.4 0.77 ± 0.04 1.5 ± 0.4 0.92 ± 0.02 
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S8. Plots of Homogeneous and Heterogeneous Model Fits at All Temperatures 

Fig. S2: 270 K 

 

Fig S3: 280 K 
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Fig. S4: 290 K 

Fig. S5: 315 K 
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Fig. S6: 325 K 

Fig S7: 335 K 
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Fig. S8: 345 K 

Fig S9: 355 K 
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