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ABSTRACT: The center line slope (CLS) observable has become
a popular method for characterizing spectral diffusion dynamics in
two-dimensional (2D) correlation spectroscopy because of its ease
of implementation, robustness, and clear theoretical relationship to
the frequency—frequency correlation function (FFCF). The FECF

relates the frequency fluctuations of an ensemble of chromophores
to coupled bath modes of the chemical system and is used for |-!

. . . . . N | ' .. .=
comparison to molecular dynamics simulations and for calculating | & e 160 2180

A quency (cm™')

2D spectra. While in the appropriate limits, the CLS can be shown |%gg
to be the normalized FFCF, from which the full FFCF can be 0 5 10
obtained, in practice the assumptions that relate the CLS to the T, (0s)

normalized FFCF are frequently violated. These violations are due

to the presence of homogeneous broadening and motional narrowing. The generalized problem of relating the CLS to the FFCF is
reanalyzed by introducing a new set of dimensionless parameters for both the CLS and FFCF. A large data set was generated of CLS
parameters derived from numerically modeled 2D line shapes with known FFCF parameters. This data set was used to train
teedforward artificial neural networks that act as functions, which take the CLS parameters as inputs and return FFCF parameters.
These neural networks were deployed in an algorithm that is able to quickly and accurately determine FFCF parameters from
experimental CLS parameters and the fwhm of the absorption line shape. The method and necessary inputs to accurately obtain the
FECF from the CLS are presented.

34,35

1. INTRODUCTION as the appearance of cross peaks from coherence transfer””” or
chemical exchange”'”*° and decay in the amplitudes of peaks
due to population relaxation and orientational relaxation.”” Of
particular interest in 2D IR,” and increasingly in 2D ES,** is the
time evolution of the 2D line shape. If the spectrum is
inhomogeneously broadened, the distribution of frequencies in

Two-dimensional correlation spectroscopy (2D CS) has
become a powerful tool for studying the dynamics of a wide
range of chemical systems. While developed first in 2D nuclear
magnetic resonance,’ ultrafast laser equipment has enabled 2D

CS to be performed in the infrared™ (2D IR) and more recently the line shape icallv corresponds to the distribution of
for electronic spectroscopy at ultraviolet/visible frequencies pe typicaly p -

S . chemical environments of the chromophore. This correlation
(2D ES).* 2D IR spectroscopy has been used to examine the : . 3
. T e s ) . o—12 causes the 2D line shape at short times to appear elongated along
dynamics of liquids™ ™" and solute—solvent interactions, ) . . .
. . 13,14 . ) the diagonal. The time evolution of the chemical system can
protein dynamics,”” " and even the dynamics of crystalline . .
11516 . 1718 then cause the chemical environments of the chromophores to
solids " and interfaces. " The development of 2D ES has . .
. . . . change, which decorrelates the frequencies of the chromophores
permitted the study of photoactive systems including dye ) « s, P
19 . Y5001 2253 in a process called “spectral diffusion”. Spectral diffusion causes
molecules, ~ photovoltaics,” "~ quantum dots and wells,”™ . p
. 247 . the frequency of the chromophores to randomize within the
and photosynthetic pathways. A large family of related

techniques are also being developed, including 2D electronic- Lri(())ﬁ(i)feneousd spectrum, ‘.N.hICh. results. in the 2D spectra
. . 28 i X .29 g rounder as the waiting time T,, increases.
vibrational™ and vibrational-electronic,” heterodyne-detected

2D vibrational sum frequency generation,‘w"?’1 and 2D
terahertz,>> which all arise from the same theoretical frame-
work.*?

A 2D CS spectrum is a correlation plot between the
frequencies of an ensemble of chromophores at an initial time
and the frequencies of the chromophores after a “waiting time”
T,.”” There is a high density of information in a 2D spectra, such
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The process of spectral diffusion is quantitatively described by
the frequency—frequency correlation function (FFCF).>* The
FECF is the probability that a chromophore with a given
frequency at time zero will have the same frequency at a time T,
later, averaged over the entire inhomogeneous spectra. In the
appropriate limits, the FFCF also provides the connection
between the given mode and the dynamics of the bath modes
that drive spectral diffusion. The FFCF is then the critical
connection between the experimentally observed 2D line shapes
and the underlying dynamics of the chemical system. This
connection also provides a fundamental relationship between
2D CS studies and molecular dynamics simulations.”**~**
Knowledge of the FFCF is also necessary to accurately employ
analytic theories that describe the FFCF, such as in
reorientation-induced spectral diffusion (RISD).*’

Despite the importance of the FFCEF, it is difficult to extract
because of the nature of 2D line shape analyses. The center line
slope (CLS) method"*** has become prominent in recent years
because of its ease of implementation, robustness to common
artifacts and line shape distortions, and clear theoretical
underpinning to the FFCF. The CLS has been extended to
account for a variety of other effects, including non-Gaussian
dynamics,” two component line shapes,*” and some of the
phenomenology of 2D ES spectroscopy.*®*” The CLS
technique works by taking slices of a 2D spectrum along one
of the frequency axes at a fixed time T, around the center of the
spectrum. The maximum of each slice is then connected into the
center line. In the limit where the 2D spectrum is purely
Gaussian, the slope of the center line with respect to the
frequency axis will be proportional to the normalized FFCF at
that time T, By repeating the procedure at each measured T,
the time dependent normalized FFCF can be extracted for the
chemical system.

However, the direct analytical relationship between the CLS
analysis and the FFCF is only valid if the 2D line shape is purely
inhomogeneously broadened.”** All experimental 2D spectra
also have homogenous broadening from a combination of
lifetime broadening, rotational broadening, and motional
narrowing. Further, some dynamic processes can be partially
motionally narrowed, effectively contributing both an inhomo-
geneous and homogeneous component to the total line shape.
Both homogeneous broadening and partial motional narrowing
make the 2D line shape equations analytically intractable and
cause the CLS to deviate from the normalized FFCF. Partial
motional narrowing can be particularly deceiving. Although the
FFCF time constants are correct, partial motional narrowing
changes the relative amplitudes of various inhomogeneous
components and can give a false impression of the relative
significance of different dynamical time scales. This effect causes
the CLS to no longer be proportional to the FFCF, and generally
causes the algorithmic approach for recovering the FFCF in the
original CLS paper to be inaccurate.**

In this work a new procedure for extracting the FFCF from
CLS analysis is presented. The new algorithm is based on the
empirical observation that the time constants measured by the
CLS match those in the FFCF, while the amplitudes of the CLS
components will scale based on the relative amplitudes of the
FFCF components and the degree of motional narrowing of the
FFCF components. A new set of dimensionless parameters are
motivated for both the FFCF and CLS that reflect the relative
amplitudes and relative degree of motional narrowing of
different line shape components. These new parameters
associate a set of FFCFs with a single rescaled CLS decay.
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The rescaled FFCFs are then distinguishable by the full width at
half-maximum (fwhm) of the associated absorption spectra. The
rescaling greatly reduces the overall FFCF parameter space. The
new parameters also help in determining if an experimentally
measured line shape component is partially motionally
narrowed and immediately enables determination of the FFCF
from the CLS in the absence of partial motional narrowing.

In the presence of partial motional narrowing, the new FFCF
and CLS parameters were found to have a highly nonlinear
relationship with each other. To fully characterize the relation-
ship between the FFCF and CLS, the CLS was extracted from
250,000 sets of numerically modeled 2D line shapes with a wide
range of FECF parameters. The results of these calculations were
used to train artificial neural networks (ANNs) that serve as
functions that take the new CLS parameters as inputs and
returns the corresponding FFCF parameters. By combining the
new FFCF parameters determined by the ANNs with
experimentally determined time constants and the fwhm of
the linear spectrum, the experimental FFCF can be quickly and
accurately calculated. The complete algorithm will also be
available as a standalone application, (CLS ANN FFCF
Extractor or CAFE) for free download at the URL provided in
the ref 50. This algorithm completes the relationship between
the CLS and FFCF for Gaussian relaxation dynamics, which is
the basis for the widely used diagrammatic perturbation theory
of nonlinear spectroscopy,”” employed in the original develop-
ment of the CLS method.**

2. THEORETICAL BACKGROUND OF THE CLS
METHOD

2.1. Response Functions and the FFCF. The linear
absorption line shape can be determined by taking the real part
of the Fourier transform of the first order response function
R'(t). Following the Kubo model for line shapes in the Condon
approximation, the linear first order response function is given

by3,33

RO o <e@[_i/otdf“’(’))> 0

where ®(7) is a fluctuating transition frequency. Analogously,
the 2D spectra for a given transition can be obtained from the
nonlinear third order response functions””’

f T+t
RN,R3(t1, T,, t;) « ( exp iif dro(r) — if dr'w(7’)
0 T,

)
where Ry and Ry are the nonrephasing (negative first term) and
rephasing (positive first term), respectively. To get the
corresponding absorptive 2D spectrum, both Ry and Ry are
Fourier transformed along the coherence times, ¢, and t;. The
two double Fourier transforms are then summed together to get
the final absorptive 2D spectrum.

The above expressions are evaluated by using the cumulant
expansion of the ensemble average truncated at second order.
This allows the linear and nonlinear response functions to be
rewritten in terms of a single line shape function, g(t)***

s = [ d [ dsgous)o0(0) o

where (6w(z;)6w(0))is the FFCF for the given transition
frequency. This result uses the generally accurate assumption
that the FFCF can be described using Gaussian processes of a

https://dx.doi.org/10.1021/acs.jpca.0c04313
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classical stochastic variable dw, such that the entire behavior can
be entirely characterized by a two-point correlation function. In
Section S it will be demonstrated that this assumption still works
to describe the diffusive part of the FFCF for quantum Gaussian
processes. The first order response function is then given by™**

R(t) o exp(—i(w))exp(—g(t)) 4)

The third order response functions have analogous, lengthy
expressions that depend on evaluating the line shape function at
the three time intervals t,, T, and ¢; as well as at sums of these
intervals. The complete expressions can be found else-

3,33,44
where.

The FECEF itself is typically described as a sum of exponential
decays

C(t) = (5w(t)éw(0)) = % + Z Alexp(—t/7)
2 i (5)

where 7; corresponds to the timescale of the decay for the ith
component, A; corresponds to the standard deviation of
frequencies sampled for the ith component, 5(¢) is the Dirac
delta function, and T), is the homogeneous dephasing time. T,
can also be described using the homogeneous line width, I" =
(#T,)™", which allows a direct comparison to the inhomoge-
neous A components.

2.2. Short Time Approximation and the CLS. For the
Fourier transforms containing the line shape function to be
analytically tractable, two approximations are made.*" First, the
homogeneous line width is set equal to zero, thatis, ' = (zT,)™"
= 0. Next, the line shape functions are expanded to second order
in the coherence times, for example,

t T,
g(t) =/(; dTZA drlAzexp(—rl/T)

g(t) = Kut + Kv*(exp(=t/7) = 1) ~ £¢°/2 (6)

The short time approximation implicitly assumes that spectral
diffusion is slow, so that the quantity Az > 1. This
approximation inherently neglects the effects of motional
narrowing from fast dynamics, which will be examined in a
later section. From eq 6 and the definitions of the cumulant-
expanded third order response functions,”**** it is straightfor-
ward to show that the absorptive line shape goes as**

2
c*(0) - cX(t,)
B C(0)(w* + @?) — 2C(T,) 0,0,
( 2(C*0) — CX(T,))

R(w,, T,, w;) =

(7)
From which the principle CLS results can be readily
derived***

0R¥(w,, T,,, wy) do™(0;) _ C(T,)

=0 — CLS a4(T,) =

ow, - dw, c(0)
ORY(w,, T, dw;™ C(T,
7(60; w ©3) =0 - CLSw(T,) = 7(03(1 (@) = (@)

W3 g= o @y C(0)

(8)

The first equation shows that by first finding the position of
the maximum along each frequency w, as a function of w;, and
then finding the slope of the line made by the maxima of @, with
respect to @; (CLS w; or @,,), one rigorously obtains the
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normalized FFCF. The second equation shows that the same
result is true when the frequency axes are switched (CLS @ or
w,). Correlated (C(T,,)/C(0) = 0.8) and decorrelated (C(T,,)/
C(0) = 0) calculated 2D spectra are shown in Figure 1 with the

©;
Figure 1. (A) Example 2D spectrum in the short-time approximation
limit described by eq 7. C(T,,)/C(0) = 0.8, indicating high correlation
in the FECF. The dashed line is the diagonal, @, = w;, which illustrates
the symmetry of the 2D line shape. The blue line is the CLS @; and the
gray line is CLS ), as defined by eq 8. Both lines have slope 0.8 with

respect to the appropriate axis. (B) 2D spectrum as given by eq 7 where
C(T,,)/C(0) = 0, indicating no correlation in the FFCF.

CLS w; in blue and the CLS @, in gray. The symmetry of the
equations arise from the symmetry of the 2D spectra with
regards to the diagonal @, = w; (dashed lines in Figure 1), which
is in turn due to the symmetry of ¢, and t; in the third order
response functions. The fact that the two measurements
generally yield the same result can also be used as a test that
the experimental data is free from systematic errors that would
preferentially distort one frequency axis.

3. CHARACTERIZING THE CLS BEYOND THE
ANALYTICAL LIMIT

3.1. Procedure for Numerically Calculating 2D Spec-
tra. To go beyond the analytically solvable limits of the CLS
described in Section 2, it is necessary to numerically calculate the
line shapes for arbitrary FFCFs. For an FFCF as determined by
the A, 7, and T, in eq S, the third order response functions were
calculated at select T,’s. To avoid accidental apodization, the
range for the coherence times was extended until the rephasing
function for T,, = 0 was below 0.005, that is, Rg*(t,.0 T. = O,
tma) < 0.00S. The time ranges t; and t; were then discretized
into 100 equally spaced intervals. The time domain response
functions were then numerically Fourier transformed along both
the ¢, and t; axes to obtain the corresponding 2D spectra for each
of the T,’s. The CLS as a function of T,, was then calculated
from the 2D spectra along ;. The CLS decay was para-
meterized in an analogous manner to the FFCF

CLS(T,) = ). A; exp(~T,/7)
,. (©)

https://dx.doi.org/10.1021/acs.jpca.0c04313
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where A, is the normalized amplitude of the spectral diffusion
process as measured by the CLS observable, T,, is the waiting
time of the 2D experiment, and 7; corresponds to the timescale
of a spectral diffusion process, which we will show is identically
the 7; in the FFCF (eq 5).

3.2. Homogeneous Component. As was described in the
original CLS paper,44 the introduction of a homogeneous
component to the FFCF will cause the CLS to start below a
perfect correlation of 1 at T,, = 0. This result could be predicted
based on the definition of the FFCF (eq 5) and the CLS (eq 9).
However, the resulting CLS can also be seen to not correspond
to the FFCF normalized to its value at T, = 0.

In the absence of inhomogeneous broadening, the purely
homogeneous 2D line shape will be a T,-independent 2D

.. 3,48
Lorentzian™

1 (/1)
7 ((1/D) + o) (1/T) + o)
(10)

The complete 2D line shape in the presence of both purely
homogeneous broadening and a slow inhomogeneous compo-
nent is then the 2D convolution of the 2D Lorentzian in eq 10
and the correlated 2D Gaussian in eq 7. Unfortunately, the
resulting 2D correlated Voigt line shape is as analytically
intractable as its one-dimensional (1D) counterpart.

Calculating the derivatives to find the CLS values as was done
in eq 8 for the Gaussian line shape shows that the 2D Lorentzian
has a CLS of zero. This suggests that a reasonable approximation
could be made for the 2D convolution by approximating the
Lorentzian contribution as an uncorrelated 2D Gaussian:

[_ (a)12 + w32)]
2w

RL(a)I’ Tw’ 0)3) =

2 .
(1/T)

RL(O)I’ Tw’ 0)3) ~

(11)

which is equivalent to replacing the homogeneous part of the
time domain line shape function, t/T,, with £/(2T,?). The
convolution of eq 11 with eq 7 can then be solved analytically.
Sample line shapes comparing calculated 2D Voigt with the 2D
Gaussian approximations with their CLS curves can be seen in
Figure 2A. It can be seen the Gaussian approximation captures
the behavior of the CLS near the peak center, the region used for
analysis of experimental data, although it misses nonlinearities in
the CLS introduced in the wings by the Lorentzian component.
Analytically calculating the CLS for the approximated line shape
gives the following prediction for the CLS

Z,‘ Ai2 exp(_Tw/Ti)

CLS(T,) ~
(%) (/D) + X, A7

(12)

This prediction is plotted against the CLS calculated for 2D
line shapes with time-independent inhomogeneous broadening
for a range of homogeneous and inhomogeneous components in
Figure 2B (black points). For highly inhomogeneous line shapes
(CLS > ~0.5) the approximation is excellent, and the
approximation remains good even when the FFCF has a large
homogeneous contribution. Significantly, a comparison of the
denominator of eq 12 with the FFCF evaluated at T,, = 0 (eq 5)
shows that the CLS is no longer the normalized FFCF once
homogeneous broadening is introduced.

However, eq 12 shows that the new CLS decay preserves both
the spectral diffusion time constants and the proportionality of
the different decay components in the slow spectral diffusion
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Figure 2. (A) Effect of including a homogeneous component in the
FFCF and an illustration of the Gaussian approximation of the
homogeneous component. The homogeneous component introduces a
2D Lorentzian component (top left) that is convolved with a correlated
Gaussian (e.g., Figure 1A) to yield a 2D Voigt line shape (bottom left).
The 2D Lorentzian can be approximated by a Gaussian function of
similar size (top right) to get a purely Gaussian convolution with a
similar CLS at the center of the line shapes (bottom right). (B)
Comparison of the Gaussian approximation given by eq 12 (black
points) against the CLS of calculated 2D Voigt line shapes (solid black
line). The approximation is of higher quality than the pseudo-Voigt
approximation given by the original CLS paper (red points).

limit. We can also approximate the amplitudes of the
parametrized CLS decay from the FFCF parameters

A2

G= T 0 v A2
(/)" + Zj 4 (13)
For systems with slow spectral diffusion (A7 > ~10), a; were
found to correspond to the CLS amplitudes (4; in eq 9) to
within 0.03, which is often within the range of noise and
systematic errors that are typical of 2D spectroscopy. This
normalized FFCF amplitude will be used as part of the complete
algorithmic determination of the FFCF from the CLS.

https://dx.doi.org/10.1021/acs.jpca.0c04313
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Equation 12 can also be compared against the approximation
for the homogeneous contribution given in the original CLS
. . . 44
paper based on a 1D pseudo-Voigt approximation:

2
CLS(T, = 0) ~ (ﬁ) > A2 I

O

fwhm fwhm

(14)
where fwhm is the full width at half maximum of the linear line
shape as determined from an experimental absorption spectrum
or the Fourier transform of eq 4. Equation 14 is plotted as the red
points in Figure 2B. While the pseudo-Voigt approximation
works well for highly homogeneously broadened lines (CLS <
~0.2), the Gaussian approximation is more accurate across the
entire range.

3.3. Partial Motional Narrowing. As was detailed in the
original CLS paper, the impact of deviations from the short time
approximation on the CLS are very similar to the impact of the
homogeneous line.** These deviations arise in the case of fast
spectral diffusion: when the dimensionless quantity Az becomes
sufficiently small in eq 6, the first, homogeneous broadening-like
term becomes increasingly prominent.” This causes the time-
domain line shape function to decay slower, creating a non-
Gaussian line shape that is narrower than the Gaussian profile
predicted in the short-time approximation (eq 7). Physically this
phenomenon is interpreted as the frequency of the chromo-
phore fluctuating so fast that it effectively only exhibits an
averaged, narrower range of frequencies. Equation 6 also
suggests that motional narrowing is either partially or
completely converting a Gaussian-like FFCF component into
a Lorentzian-like component. This observation correctly
indicates that the impact of motional narrowing will reduce
the initial correlation of the CLS, as in the case of adding a purely
homogeneous line shape component. However, while adding
homogeneous broadening makes the line shape broader,
motional narrowing will cause the resulting line shape to get
narrower. Therefore, it should be possible to distinguish the two
contributions based on a combination of the CLS and the fwhm
of the absorption spectrum.

The amount of motional narrowing can be heuristically
determined for each Kubo line shape component by examining
the quantity Az.” This quantity will be denoted o, = Az, for each
individual line shape components. Empirically, a line shape
component with 6; < 0.1 is generally completely motionally
narrowed, contributing only a homogeneous component of 1/
T, = A7, In this case, it can be treated as described in the
previous section. A component with 0.1 < ¢; < 10 exhibits partial
motional narrowing and contributes both a homogeneous and
an inhomogeneous component. A o; > 10 generally is not
motionally narrowed and contributes only an inhomogeneous
component. As o; gets smaller, the CLS amplitude of that
component will monotonically decrease.

As in the case with adding in the homogeneous component,
the presence of partial motional narrowing can also be
empirically shown to preserve the time constants 7; from the
FFCF (eq S). This effect is shown in Figure 3A. The CLS is
plotted for line shapes with FFCFs with two equal amplitude
components (A, = A, = A) and time constants 7, = 1 psand 7, =
10 ps. The solid lines are fits to the CLS data using eq 9 with the
time constants fixed, showing that the time constants are
preserved over a wide degree of motional narrowing. These fits
also illustrate the utility of parameterizing the FFCF and CLS
with the multi-exponential expansion shown in eq 5 and eq 9,
respectively. The conservation of the FFCF time constants by
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Figure 3. (A) CLS decays from calculated 2D spectra for a range of T,,
with FECFs of the form C(T,) = (2A%)Y? §(T,) + A? exp(=T,/7,) +
A? exp(—T,,/7,), where 7, = 1 ps and 7, = 10 ps for variable values of A.
The solid lines are fits to the equation CLS(T,,) = A, exp(—T,/7,) + A,
exp(—T,,/7,), where the 7’s are held fixed at their FFCF values. The
high quality fits demonstrate that motional narrowing will reduce the
amplitudes at smaller values of A, but the time constants are preserved.
(B) Ratio of the CLS amplitudes as a function of A. As A gets smaller,
A, gets smaller faster than A, because of A; becoming increasingly
motionally narrowed. The dashed line indicates the proportionality of
the FFCF amplitudes.

the CLS will be a key part of the reconstruction of the FFCF
from the CLS in the following section.

While the CLS preserves the time constants from the FFCF,
the proportionality of the amplitudes of the FFCF are not
generally conserved by the CLS amplitudes, A;. This can be seen
immediately by inspection of Figure 3B. Figure 3B shows that
the component with the faster dynamics loses more CLS
amplitude (A,) than the slower component (A,) as A decreases.
This is a facet of the problem that was not considered in the
original FECF paper, as motional narrowing was only examined
in the special case of a one component FECF in addition to a
pure homogeneous component.”* The amplitude of each
individual component get smaller as a function of o, This
means that in an FFCF with two spectral diffusion components,
a fast spectral diffusion process can have its amplitude heavily

https://dx.doi.org/10.1021/acs.jpca.0c04313
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reduced by motional narrowing, while a slow spectral diffusion
process will have minimal motional narrowing and essentially
the amplitude predicted by eq 13.

Although the amplitude of a CLS component is highly
dependent on the value of its ¢, it is also not solely dependent
upon that value. The magnitude of the effect of motional
narrowing on a CLS amplitude is also dependent on the
composition of the rest of the line shape. Figure 4 shows the CLS
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Figure 4. CLS amplitudes, A}, of a partially motionally narrowed FFCF
component for three different FECFs as a function of the motional
narrowing parameter o; = A,7,. The curves are normalized to the value
of the CLS amplitude in the non-motionally narrowed limit (o, goes to
00). All three curves have a sigmoidal shape, but there are notable
differences between them, indicating that the degree of motional
narrowing exhibited depends on the entire FFCF. A large homogeneous
component (black curve) will suppress the effect of motional narrowing
compared to a small homogeneous component (red curve), while a
large static inhomogeneous component (blue curve) will enhance the
effect of motional narrowing.

amplitude A, of an inhomogeneous component as a function of
o, for a set of FFCFs, normalized to the amplitude in the non-
motionally narrowed limit (6, goes to c0). While the amplitude
curves have the same general sigmoidal shape with respect to
log(o,), there are systematic differences between the different
FFCFs. If the FFCF has a large motionally narrowed component
(black curve in Figure 4), the effect of motional narrowing is
suppressed relative to a single component line shape (red curve
in Figure 4) for the same value of 6,. By contrast, if the FFCF has
alarge, static inhomogeneous component, the effect of motional
narrowing will be modestly enhanced (blue curve in Figure 4).
The differing degrees of motional narrowing for the different
FFCFs with the same value of 0, show that the extent of
motional narrowing that appears in the CLS is dependent on the
entire FFCF. Therefore, there cannot be a highly accurate
solution for constructing the FFCF from the CLS or vice-versa
that does not account for the entire line shape.

4. DETERMINING THE FFCF FROM THE CLS

4.1. Reducing the Parameter Space. The ultimate goal of
this section is to take the parametrized CLS decay that is the
observable for the experiment, and use it to obtain the correct
FFCF, which is input into the response function equations to
calculate experimentally measured linear and 2D line shapes. As
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was shown in Figure 4, to accurately reconstruct the FFCF from
the CLS in the case of partial motional narrowing, the entire CLS
has to be considered. In other words, the function to go from a
CLS amplitude to an FFCF amplitude does not only depend on
that CLS amplitude and its associated time constant, but also on
every other CLS amplitude and time constant. To make a
complete empirical characterization of the FFCF parameter
space feasible, new parameters are introduced that capture the
fundamental relationships between the FFCF and CLS decays.

As described in Section 3.2, a useful normalization of the
FFCF amplitudes can be found using a Gaussian approximation
of the 2D Voigt line shape. The rescaled amplitudes of the FEFCF
are given by the @; in eq 13. In the non-motionally narrowed
limit, the rescaled FFCF amplitude @; were shown to be a very
good approximation for the CLS amplitudes A;. As was shown in
Section 3.3, this approximation breaks down dramatically in the
presence of motional narrowing. However, using the normalized
FFCF amplitudes @; allows an infinite set of FFCFs to be
associated with a single CLS curve. The “family” of FFCFs with
the same a;'s and 7;’s will give the same CLS per eq 12, as long as
none of the components of the CLS are motionally narrowed.
The normalization of the FFCF amplitudes also reduces the
number of FFCF parameters that need to be sampled by one and
restricts each amplitude to a range between zero and one.

Accounting for motional narrowing is again more compli-
cated, as the degree of motional narrowing depends both on the
total size of the line shape (through A) and the time scale of the
decay (through 7). Because of motional narrowing, FFCF
families with the same a;s and 7s will have differing CLS
amplitudes (if the A; are sufficiently small) because of
differences in the corresponding motional narrowing terms, o;
= A, As the A/s are already determined by a;s, the best way to
prevent the degree of motional narrowing from changing within
an FFCF family is to then scale the associated time constants. By
rescaling the time constants 7 to preserve each o; = Az, the
amplitudes of the associated CLS decay are then also conserved.
This indicates that o; is the appropriate conserved dimensionless
time scale-like quantity for the family of FFCFs, which are now
defined by the FFCFs with the same ¢;'s and 6;’s. In other words,
each set of FFCFs is uniquely described by the normalized
amplitude and degree of motional narrowing for each
inhomogeneous component.

The above transformation conserves the ratios between
different time constants but scales the time axis. As the purpose
of these rescalings is to find the set of FFCFs that yielded the
same CLS component amplitudes A; and a set ratio between the
time constants 7, the family of FFCFs (as defined by ¢; and o)
should then be related to an associated CLS master curve once
each individual CLS curve’s time axis is scaled by an appropriate
factor. As the FFCF time scale was rescaled by spectral line
widths, a sensible choice for this scaling factor is the fwhm of the
linear absorption spectrum (which can also be derived from the
Fourier transform of eq 4). An experimental CLS curve’s time
domain can be multiplied by the experimental fwhm of the linear
line shape to generate the CLS master curve. An analogous
conserved quantity to o; can be derived for the CLS by then
dividing the fwhm into fractions corresponding to the square
root of amplitude terms (creating a A like term), and
multiplying by the corresponding CLS time constant

1/2
s, = fwhm- Ai/z Al g
j (15)
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Table 1. Rescaled FFCF and CLS Parameters”
parameter FFCF CLS
A}

amplitude

time scale (motional narrowing)

time scale (Gaussian limit) b

&= a7
(I/TZ) + Z}' A}

0;= A

A
g, = 81In(2) !

A

i

1/2
5 = fwhm-[A,,/z Aj] 7
j

2

(fwhm)*

“New FFCF parameters based on FFCF parameters defined in eq S. New CLS parameters based on CLS parameters in eq 9. fwhm is of the linear
1D line shape. bUsed in the algorithmic determination of the FFCF from the CLS, not for describing the FFCF parameter space.

Similar to the FECF a; terms and the CLS A, terms, the ¢, and
s; terms scale roughly linearly with each other in the non-
motionally narrowed limit, but this simple relationship is again
strongly broken in the presence of motional narrowing.

These rescalings reduce the number of parameters in each
FFCF family to two for each inhomogeneous component,
matching the number of parameters in the rescaled CLS decay.
These are split into amplitude-like (@; and A;) and time-like (o;
and s5;) components (see Table 1). By rescaling both the
frequency amplitudes and the time constants in this manner, a
single rescaled CLS curve can then be related to a large family of
FFCFs, which are then only distinguished by the fwhm of the
linear spectrum. Figure 5 shows three separate CLS master
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Figure 5. Rescaled CLS decays for three different FFCF families. Each
curve is related to a group of FFCFs that have the same rescaled @ and &
parameters but varying spectral widths. Scaling the time axis by the
spectral width yields a single CLS master curve for each FFCF family.
The resulting CLS master curves show that a rescaled CLS can then be
related to a rescaled FFCF, which can be distinguished from other
FECFs in its family by the measured spectral width.

curves for three different FFCF families over several orders of
magnitude of spectral widths, illustrating that these new
parameters work as intended. It is important to recognize that
these sets of parameters are not equalities, but functional
mappings. In other words, the a; and o; can be thought of as
single-valued multidimensional functions of all the A; and s,, for
example, a; = (A, A,, ...; 51, Sy-..)- The reverse is also true: the
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parameters A; and s; are functions of the FFCF ¢; and o;
parameters.

4.2. Approximating Functions that Return the FFCF
Parameters with Neural Networks. For the purpose of
determining the FFCF from the CLS, we are interested in
defining functions that take in the CLS parameters A; and the
rescaled s; as inputs and returning an FFCF parameter (&; or 6;).
As there is no known analytic treatment available for evaluating
these functions, the best approach is to find a high quality
empirical approximation that is capable of describing the entire
domain of input CLS parameters.

This problem has characteristics that make it amenable to
solving using ANNs. A simple feedforward ANN with one
hidden layer of neurons is capable of approximating continuous,
single valued functions defined on compact subsets of input
variables to arbitrary precision.”>* Additionally, no knowledge
is required of the underlying functional form of the
approximated function. Therefore, if sufficiently dense and
high quality training data can be applied to training a neural
network of this form, the resulting network can be used as a fast
and highly accurate approximation of the underlying true
function. The problem of determining the underlying function is
then reduced to generating a large and representative data set to
use to train the neural networks.

To generate the training data sets, 2D line shapes were first
calculated for the entire physical range of FFCF parameters. The
amplitude-like components, a;, can vary from O to 1, and their
sums must be <1. The time-like components, ¢, have no upper
bound, but have an empirical lower bound of order 0.1, upon
which the line shape becomes completely motionally narrowed.
In the large o; limit motional narrowing is no longer a concern,
and other approaches (such as the Gaussian approximation
demonstrated in Section 3) can be employed, so a maximum
value of log(c) ~ 4—8 was considered, depending on the line
shape component. A five parameter model (with three a’s and
two o’s) corresponding to at most a biexponential FFCF to an
offset was chosen as a sufficiently complicated representative
system. While preparing a neural network can be done in
principle for any number of parameters, as the number of
parameters becomes larger, the size of the parameter space and
corresponding neural network greatly increases, and similarly
the length of time required to train the network also increases. As
will be shown later, the networks trained from this data set could
be well generalized to a triexponential decay to an offset case
without further modification, and are likely further generalizable.

In the case of a static inhomogeneous component (where 7 is
effectively infinite) or in the case of a very large o that falls

https://dx.doi.org/10.1021/acs.jpca.0c04313
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outside the domain of the simulated parameter space, it will also
be useful to define an alternative version of ¢

Al
G = 8In(2)——
(fwhm) (16)
Like the normal ¢ parameters, this definition will enable
unique determination of the corresponding A without requiring
accurate knowledge of all of the other FFCF amplitudes or the
homogeneous component, as would be required from the
definition of an a parameter. This feature will be of use in
constructing the FFCF from the neural network outputs. For the
training data, the fwhm was determined for an arbitrary FECF by
Fourier transforming the 1D response function (eq 4) to retrieve
the 1D line shape. There is no corresponding s, but the o,
parameter is dependent on all of the other A and s parameters.
To characterize the complete range of parameters for a
biexponential FFCF with a static inhomogeneous component,
250,000 sets of line shapes were generated. For each set of 2D
line shapes, the CLS was then calculated and used to construct
the corresponding CLS parameters. To avoid the effects of
nonlinearity in the center line in highly homogeneous or
motionally narrowed spectra (e.g., Figure 2A, bottom left), the
center line’s range was limited to a quarter of the linear fwhm on
either side of the center frequency. As the FECF’s were made up
of three inhomogeneous components, it was found to be
sufficient to calculate the CLS at three waiting times for each
FFCEF: t, for the fast decay, ¢, for the slow decay, and ¢, for the
static inhomogeneity. The amplitudes of the three CLS

components can be found through simple algebraic manipu-
lation

A, = CLS(ty)
A, = (CLS(ty) — A;)/exp(—t,/1,)
A, = (CLS(t) — A, exp(—t,/1,) — A;)/exp(—t,/7))
(17)

for t; > 1,, 7, > t, > 7, and 7| > t,. This strong separation of
time scales was used to generate the greatest number of CLS
parameters from the fewest calculated 2D spectra. It is worth
stressing that this condition is not assumed by the algorithm, and
the resulting networks were found to perform equally well with
relatively small separation of time scales. Using the amplitudes
and the time constants from the FFCF as well as the calculated
fwhm of the absorption spectra, the rescaled CLS parameters
can be calculated (Table 1) for all 250,000 FFCF’s. The rescaled
CLS parameters can then be related to the original rescaled
FFCF parameters.

An example of calculated mappings between these CLS and
FECF parameters can be seen in Figure 6 for the special case of a
single inhomogeneous component (one @ and one o
parameter). As seen in the plots, the values of @ and ¢ have a
roughly linear dependence on A and s, respectively, when the
value of s is large (non-motionally narrowed limit). As the value
of s gets smaller, the dependencies of both FFCF parameters
become nonlinear. However, knowledge of A and s still
determine a unique pair of @ and ¢ parameters, which, with
knowledge of the experimental time constant, give the unknown
FFCF parameters (A and T,). Additionally, the large empty
quadrant in the upper left of each panel corresponds to CLS
component amplitudes that are not obtainable for a given degree
of motional narrowing and correspond to nonphysical FFCFs.
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Figure 6. Parameter maps relating the rescaled CLS parameters A and s
to the rescaled FFCF parameters a and o for the case of a single
inhomogeneous component FFCF. In the non-motionally narrowed
limit (large s) it can be seen that the amplitude-like and time-like
parameters are mainly independent of each other, but the dependency
becomes highly nonlinear in the motionally narrowed limit. The empty
section in the top left of both plots indicate CLS parameters that do not
correspond to physical FFCFs due to the effects of motional narrowing.
Once the rescaled CLS parameters are used to find the rescaled FFCF

parameters, the full FFCF can be determined from knowledge of the
CLS time constants.

The training of the neural networks was performed after the
training data sets relating the rescaled CLS parameters to the
rescaled FFCF parameters were calculated. The neural networks
were developed using MATLAB’s Neural Network Fitting
Application, which was found to be sufficiently powerful for the
task. The network structure comprised S input neurons
corresponding to the S rescaled CLS parameters, an output
neuron corresponding to a rescaled FFCF parameter, and a
variable number of neurons (20—50) in the hidden layer. Each
input neuron is connected to all of the hidden neurons, and all of
the hidden neurons are connected to the output neuron. Each
neuron also has a bias value. Overall, this results in 7x + 1 fitting
parameters for n hidden neurons, as well as 12 parameters
connecting the input and output layers to the measured

properties. Each neuron’s output depends on its inputs, bias,
and an activation function

3= flb+ 2 My,
j (18)
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where y, is the output value of a neuron, b; is the neuron bias, x; is
an input value from the previous layer, and M;; is the weight for
that input. For the hidden neurons, the activation function is the
hyperbolic tangent function, f(x) = tanh(x). The output neuron
uses a linear activation function, f(x) = .

The 250,000 separate data sets were randomly divided into
70% training, 15% validation, and 15% testing populations and
the network was trained using the Levenberg—Marquardt
algorithm. After training, each of the three ¢ neural networks
calculated had regressions with R values of at least 0.9998,
indicating extremely high correlation. Regressions of the output
of the ANN’s approximating 0, 6,, and ¢, against the calculated
parameters are plotted in Figure 7. The regressions for the

EEN
T

256,174 pts.
R2=0.99989

log(c,) ANN

1 M 1 " 1 " 1 " 1 " 1

-1 0 I 2 3 4
log(o,) Calculated

8
Z 6| 246,505 pts.
< 4[ R2=0.99995
B
70 1 2 3 4 5 6 7 8
log(c,) Calculated
1.0F
7 253,565 pts.
Z R?=10.99995
< 05
08

0.0 0.2 0.4 0.6 0.8 1.0
o, Calculated

Figure 7. Regressions of the outputs of the artificial neural networks
against the calculated FECF o parameters defined in the text. The
regressions include the data used in the training, validation, and testing
populations, all of which have virtually identical statistics. All three
networks were able to produce high quality values for the relevant
rescaled FECF parameter as a function of the rescaled CLS parameters.

separate training, validation, and testing populations had nearly
identical statistics. Complete tables of weights and biases for the
three networks can be found in the Supporting Information. As
there is minimal noise (only computational errors) in the
underlying training data, there is little concern for overfitting.
The results of analogous ANN'’s for the @ parameters were found
to be of somewhat lower quality. This could be due to the fact
that the o parameters depend on all of the underlying A’s and

the homogeneous component T, while the & parameters only
depend on a single A. As all of the A’s can be calculated from the
o’s alone (because all of the 7’s and the fwhm are experimentally
known), the & parameters are only necessary for determining the
homogeneous component. An alternative strategy for determin-
ing the homogeneous component without calculating an ¢,
parameter will be discussed in the next section.

4.3. The Complete Algorithm and Generalizing to
More FFCF Components. With the working neural networks,
a complete algorithm for determining the FFCF from the CLS
and the fwhm of the linear spectrum can be developed. First, the
rescaled CLS parameters are calculated based on the
experimentally determined CLS parameters and the exper-
imentally determined fwhm. The rescaled CLS parameters are
used as input parameters for the ANNs to recover the rescaled
FFCF parameters, 0, with a high degree of accuracy. From the
calculated ¢’s and the experimentally determined 7’s from the
CLS, the A’s of the FFCF can then be determined. The only
remaining term to be solved for is then the homogeneous
component, T,.

If all of the A’s are known, this could in principle be done by
using a neural network that evaluated an @ parameter. This
method of determining both @ and ¢ works extremely well in the
single inhomogeneous component case that was shown in
Figure 6, and can be in principle generalized to an arbitrary
number of components. However, the resulting neural networks
were found to be of relatively low quality compared to those for
the ¢ parameters. An alternative strategy was employed for
determining the complete FFCF after the A’s were determined.
From here, the 1D response function (eq 4) is calculated for an
FFCF with the known A’s and 7’s, but with an arbitrary value for
the homogeneous line. The calculated response function is then
numerically Fourier transformed to yield the linear line shape for
the FFCF given by the set of A, and 7; and the arbitrary T,. The
value of T, is then varied until the fwhm of the calculated line
shape matches the fwhm of the experimental line shape. As the
problem is reduced to a 1D function minimization that is free
from false local minima, this calculation can be performed
extremely quickly, although not as quickly as the ANN
calculations. In practice, it also provides an additional quality
check, as there will be no solution if the calculated FECF is
nonphysical (i.e, in the empty space in the top left of the
parameter maps in Figure 6), and provides an advantage over
more traditional iterative approaches for determining the FFCF
from the CLS. This manifests as the linewidth calculated for the
FFCF with 1/T, set to zero being larger than the experimental
linewidth.

Although many CLS decays can be described with a
biexponential decay to an offset, complicated chemical systems
can often have decays with more time scales. While the most
natural way to approach this problem is to add yet more
parameters to the neural network, the biexponential neural
networks can be easily generalized to accommodate triexpo-
nential decays. The parameters for a triexponential can be
constructed from the previously trained neural networks

0} =f1 (4}, 51, Ay, sy, A+ A4)
0, =1, (A sy Ay, 55 Ay + Ay)
o, =f, (AL + Ay, J5555, Ay, 55, Ay)

0o =f (A, s, Ay + Ay, [5555, Ay) (19)
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where f; corresponds to the neural network function relating to
o; for the biexponential to an offset case described in the
previous section. In short, it groups the slowest components
together as a static offset for the determination of the first two
components, groups the fastest components together for
determining the third component, and groups the second and
third components together for determining the offset. This
parameterization is effective for a wide range of time scales,
including when the third component exhibits partial motional
narrowing. It is likely that tetraexponentials or more could be
accommodated in an analogous fashion. Fortunately, increasing
the number of resolvable exponentials requires a large separation
of time scales between the fastest and slowest exponentials, and
requires a non-negligible amplitude for all components. As the
range of time scales and frequency amplitudes that 2D CS can
measure rarely span more than a few orders of magnitude, both
of these requirements reduce the possibility for requiring
additional FFCF components to characterize experimental data.
As each o still uniquely identifies a corresponding A, the
homogeneous line width can be determined from the calculation
of the 1D line shape as before.

The complete algorithm will also be available as a standalone
piece of software (CAFE) that is available free for download at
the URL provided in the ref 50. The software provides an
intuitive GUI based on the MATLAB GUIDE package and runs
on the freely available MATLAB 2014b 64-bit run time
environment. The software additionally calculates 1D and 2D
spectra based on the FFCF parameters, which provide additional
quality checks by comparison to experimental data.

5. EXAMPLE APPLICATIONS

5.1. Experimental 2D IR Data. To demonstrate the
robustness of the algorithm, two examples from previously
reported 2D IR experiments are presented. The first data set that
will be considered is methylthiocyanate (MeSCN) in H,0.>” As
has been previously reported, the CLS decay for MeSCN in H,O
gives the same time constants as has been previously seen by
other probe molecules.”> However, MeSCN has a dramatically
narrower line width than previously used probes, such as HOD.®
This narrow line width combined with the fast dynamics of
water results in a large degree of motional narrowing of both
FFCF components. The computed rescaled CLS terms log(s,)
and log(s,) are approximately —0.22 and +0.36, respectively. As
seen in Figure 6, this corresponds to an extreme degree of
motional narrowing in both components. Despite these strong
nonlinearities, the neural network algorithm is capable of
producing an FFCF that produces 2D line shapes with the
correct CLS and the correct 1D line shape (Figure 8A). As seen
by the significant deviations from the Gaussian approximation
(blue curve in Figiure 8A, corresponding to eq 12) and the
prominent wings in the 1D spectra, the algorithm can give the
correct results even far from the Gaussian limits that were used
in the original CLS papers.

The second data set that will be considered is for
phenylselenocyanate (PhSeCN) in supercooled benzophenone
(BZP).>* PhSeCN is a vibrational probe with a very long lifetime
that enables multiple decades of 2D spectra to be collected, and
supercooled liquids are known to have decays with complicated
functional forms. At 270 K, the experimental CLS decay requires
three exponential components to fit it. Using the modified
equations given in eq 19, the algorithm can give an accurate
result for this functional form that was not explicitly part of the
training data set (Figure 8B). This is true even when the fastest

5988

MeSCN in H,0, 297 K

A ~~ exp.
é 0.8~ — -calc.
02f &
— S 041
~ ’ Z
A o ? 00 : '
A u 2140 2160 2180
O 0.1f L frequency (cm')
L |
m  exp. data
| ® CLS from calc. FFCF
0.0F Gaussian FFCF approx.
1 10
T,, (ps)
Lo PhSeCN in BZP, 270 K
B Tl g exp.
- = -calc.
08} R
: . ] '. ,Q.
~ I § 0.4+
A [ 0T 0 2160
O 04r frequency (cm')
0.2 m exp. data
[ ® CLS from calc. FFCF
0.0 r Gaussian FFCF approx.
1 10 100 1000

T, (ps)

Figure 8. CLS neural network algorithm applied to 2D IR and Fourier
transform infrared (FTIR) data. Black points are experimental CLS
data, red points are derived from the CLS of 2D spectra generated from
the calculated FFCF, and blue curves are the Gaussian approximation to
the FECF (eq 12). (A) MeSCN in H,O data®® has two components that
have different degrees of partial motional narrowing. The fast
component is highly motionally narrowed, as demonstrated by the
massive deviations from the Gaussian approximation. The calculated
1D absorption spectrum (inset), which displays Lorentzian-like wings,
captures the highly non-Gaussian behavior of the experimental FTIR
spectrum. (B) PhSeCN in BZP data®* has three exponential decays and
partial motional narrowing, illustrating the ability of the neural
networks to describe triexponential decays (eq 19). The calculated
1D absorption spectrum (inset) captures the more Gaussian-like
character of the FTIR spectrum.

dynamics exhibit some degree of motional narrowing (log(s,) =
0.92). It can be seen that the FFCF returned by the algorithm
also gives the correct 1D line shape (Figure 8B inset), which is
much more Gaussian than that of MeSCN in H,O.

5.2. Polarization-Dependent Motional Narrowing
from RISD. The degree of motional narrowing exhibited by a
probe molecule in a 2D experiment can also depend on the
polarizations of light used in the measurements. RISD relates
polarization-dependent spectral diffusion to a combination of
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the solvent’s structural fluctuations and the reorientation of the
probe molecule, which can cause spectral diffusion through the
Stark effect.”” All of the polarization-dependent RISD
components are determined from separate measurements of
the probe’s orientational relaxation made with polarization
selective pump—probe experiments.”’ The effects of RISD cause
the perpendicularly polarized FFCF (“XXYY”) to become faster
than the parallel FFCF (“XXXX”). The perpendicular polar-
ization can experience a greater degree of motional narrowing
than the parallel polarization because of its faster dynamics.
Correctly compensating for this differing degree of motional
narrowing provides an independent quality check on the FFCFs
computed with this algorithm.

The RISD effect is shown in Figure 9, which reexamines data
taken on KSeCN in 1-methylimidazole (1-Melm) from a
previous publication.”” This system should be well described by
the RISD equations as 1-MeIm is a simple liquid without strong
chemical interactions with the KSeCN probe. The best fit to the
CLS data using the RISD equations in Figure 9A systematically

KSeCN in 1-Melm, 297 K

A . —— CLS XXXX
—— CLS XXYY
03F R\ — — RISD Fit to CLS XXXX
— — RISD Fit to CLS XXYY
2
& 02¢f
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O i 1
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Figure 9. Illustration of polarization-dependent motional narrowing
from RISD for experimental data from the CN stretching mode in the
sample, KSeCN in 1-Melm.*® Because of RISD, the perpendicular
XXYY polarization has faster dynamics than the parallel XXXX
polarization, causing a greater degree of motional narrowing in the
XXYY case. The differences in motional narrowing cause systematic
deviations when RISD fits are applied to the CLS decays (top). By
contrast, the RISD fits to the calculated FFCF (bottom) derived from
each CLS decay are almost quantitatively accurate.
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misses both the parallel and perpendicular data. When the CLS
is used in the data analysis rather than the FFCFs, the faster
FFCF decay (perpendicular) causes more extensive partial
motional narrowing, making the difference between the parallel
and perpendicular CLS decays greater. The result is that the best
simultaneous fit to the parallel and perpendicular CLS data is
forced to be too slow for perpendicular and too fast for parallel
(Figure 9A). However, if the parallel and perpendicular CLS
curves are each converted to their corresponding FFCFs, these
FFCFs can then be simultaneously fit using the RISD equations
with the SSD parameters adjustable. The results of this
procedure are shown in Figure 9B. The fit matches the parallel
and perpendicular curves exceedingly well. This provides
validation for both RISD and for the algorithmic determination
of the FFCEF that is independent of the tests used in Figure 8.
Figure 9 also shows that deviations from theoretical descriptions
of the FFCF can occur from analyzing the CLS rather than the
FFCF.

5.3. Motional Narrowing with Stokes Shift and
Underdamped Oscillations. Finally, it is necessary to
examine how deviation from the classical FFCF, which describes
high temperature, weak coupling, and low freguency bath
modes, affects the extent of motional narrowing.33"4 While these
classical conditions are usually applicable in 2D IR spectroscopy,
they are more likely to be violated in 2D ES experiments.” In
particular, two limiting cases of the quantum FFCF components
are important in 2D ES: the overdamped FFCF component
(responsible for both spectral diffusion and Stokes shift) and the
underdamped FFCF component (oscillations from high
frequency coupling, such as in vibronic coupling). These
particular cases have been previously shown to §ive the correct
CLS @, in the non-motionally narrowed limit.*

To examine the impacts of these nonclassical effects on the
CLS of a motionally narrowed line shape, they were introduced
into an FFCF based on the MeSCN in H,O FFCF shown in
Figure 8A. Details of the calculations can be found in the
Supporting Information. Introducing a new, underdamped
FFCF component results in an oscillatory signal in the CLS
(Figure 10, red curve). However, the oscillations are evenly
distributed around the classical FFCF components (Figure 10
black curve), demonstrating that including an underdamped
component does not change the degree of motional narrowing
in the diffusive part of the FFCF, which can then be accurately
extracted.

To implement the Stokes shift, a high temperature limit (kT >
/1) of the overdamped FFCF component was used.”” Within
this limit, the magnitude of the Stokes shift (and coupling

strength), 4, is related to the linewidth by**
A= 2AkT
h (20)

This interplay between temperature, relaxation rate, fre-
quency amplitude, and Stokes shift amplitude also gives an
inequality that must hold within the temperature condition

Ac > 24 (21)

where ¢ = A7 as before. This illustrates that the maximum Stokes
shift possible (in units of A) within this limit is proportional to
the degree of motional narrowing. Using the high temperature
condition with eq 20, for the model FFCF chosen the lowest
temperature that can be considered is ~20 K, and the largest
magnitude Stokes shift is ~0.3 A,. In this case, the CLS (Figure
10, blue points) is indistinguishable from the classical FFCF. As

https://dx.doi.org/10.1021/acs.jpca.0c04313
J. Phys. Chem. A 2020, 124, 5979—5992


http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.0c04313/suppl_file/jp0c04313_si_002.pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?fig=fig9&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c04313?ref=pdf

The Journal of Physical Chemistry A

pubs.acs.org/JPCA

1.0
£
205
03 [ % / N\ -
~ %970 10 0 1020
~ frequency (cm™)
a 02+
—
@)
01F Classical FFCF
= Stokes Shift (. =0.3 A))
[ Underdamped Coupling
1l M | L MR |
0.01 0.1 1
T, (ps)

Figure 10. Comparison of CLS decays with quantum FFCFs
illustrating phenomena common to 2D electronic spectroscopy on a
log plot. The diffusive parts of the FFCF in all cases are the same as in
Figure 8A, and are substantially motionally narrowed. Black curve:
classical FFCF identical to that shown in Figure 8A. Blue points:
overdamped FFCF components demonstrating a Stokes shift. The
largest Stokes shift was used that still satisfies the high temperature
condition (see text). The CLS is virtually identical to the classical case.
Red curve: The FFCF includes an underdamped component (e.g., high
frequency coupling). The oscillations are distributed around the
classical CLS. Inset: Absorption spectra for all three cases,
demonstrating that the fwhm has not changed.

none of these modifications change the absorption spectrum’s
fwhm (Figure 10, inset), the algorithm for retrieving the real
valued, diffusive part of the FFCF from the CLS and absorption
fwhm still holds. While this analysis does not exhaustively cover
all coupling strengths and temperature regimes, it shows that the
procedures developed here should be broadly applicable to
diffusive Gaussian dynamics in 2D ES and 2D IR spectroscopies.

6. CONCLUSIONS

A new algorithmic approach for quickly and accurately
determining the FFCF from experimentally measured CLS
data and the fwhm of the linear absorption spectrum was
presented. Based on empirical observations on the impact of
homogeneous broadening and partial motional narrowing on
the CLS observable, a new set of rescaled parameters was
developed for both the FFCF and the CLS. These new
parameters generate a family of FFCF functions that all yield the
same rescaled CLS but give a distinct linear absorption
linewidth, which enables the correct FECF to be determined.
These parameters also serve to greatly restrict the parameter
space of possible FFCFs by associating many FFCFs with a
single rescaled FFCF, which corresponds to a single rescaled
CLS master curve.

For the case of an FFCF with the functional form of a
biexponential decay to an offset, a large data set of 2D spectra
were calculated from over 250,000 distinct FFCF families. For
each of the 250,000 cases, the rescaled FFCF parameters were
determined and the associated rescaled CLS parameters were
numerically derived from the calculated spectra. These
parameter mappings were used to train feedforward neural
networks to approximate the value of a rescaled FFCF parameter
based on the values of the rescaled CLS parameters. The derived
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neural networks were found to give fast and accurate predictions
for the time-like FFCF parameters. By combining these
networks with the empirical observation that the CLS preserves
the FFCF time constants, the values of each of the
inhomogeneous linewidth components can be readily calculated
from the rescaled CLS parameters. The remaining homoge-
neous component of the total absorption line can be quickly
calculated by adjusting it until a calculation of the 1D line shape
from the response function yields the correct spectral fwhm.
As the CLS observable has grown in popularity as a measure of
spectral diffusion because of its robustness, insensitivity to
experimental issues (e.g., pulse duration), and ease of
calculation, it is important to address any inconsistencies
between the observable and the underlying FFCF it can be used
to determine. It is important to note that the CLS is a useful
observable that provides a great deal of information and that it
can be calculated with simulations. However, until now it has not
been straightforward to go directly from the experimental CLS
to the FFCF except within a limited range of parameters. This
work characterizes the behavior of the CLS far from the limiting
case that was the basis for the original derivation and provides a
method for obtaining the FFCF from the CLS. The rescaled
parameters also reflects the deeper phenomenology of the FFCF
by describing families of FFCFs that yield the same CLS decay.
These phenomenological observations can facilitate deeper
understanding of the CLS observable and the nature of motional
narrowing in addition to providing the framework for fast
algorithmic determination of the FFCF from experimental data.

B ASSOCIATED CONTENT

@ Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313.

ANN Parameters as Excel spread sheet(XLSX)

Complete neural network calculations; complete calcu-
lations for FFCF Delta parameters; complete calculations
for FFCF homogeneous line width; neural network
standard error and error propagation from CLS fits; and
calculations of a quantum FFCF in various limits (PDF)

B AUTHOR INFORMATION

Corresponding Author
Michael D. Fayer — Department of Chemistry, Stanford
University, Stanford, California 94305, United States;
orcid.org/0000-0002-0021-1815; Phone: 650 723-4446;
Email: fayer@stanford.edu

Author
David J. Hoftman — Department of Chemistry, Stanford
University, Stanford, California 94305, United States;
orcid.org/0000-0001-8518-7676

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpca.0c04313

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research by
ONR: N00014-17-1-2656.

https://dx.doi.org/10.1021/acs.jpca.0c04313
J. Phys. Chem. A 2020, 124, 5979—5992


https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.0c04313/suppl_file/jp0c04313_si_001.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.0c04313/suppl_file/jp0c04313_si_002.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+D.+Fayer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-0021-1815
http://orcid.org/0000-0002-0021-1815
mailto:fayer@stanford.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+J.+Hoffman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8518-7676
http://orcid.org/0000-0001-8518-7676
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c04313?fig=fig10&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c04313?ref=pdf

The Journal of Physical Chemistry A

pubs.acs.org/JPCA

B REFERENCES

(1) Ernst, R. R.; Bodenhausen, G.; Wokaun, A. Principles of Nuclear
Magnetic Resonance in One and Two Dimensions; Oxford University
Press: Oxford, UK., 1987.

(2) Park, S.; Kwak, K; Fayer, M. D. Ultrafast 2D-IR vibrational echo
spectroscopy: A probe of molecular dynamics. Laser Phys. Lett. 2007, 4,
704—718.

(3) Hamm, P.; Zanni, M. Concepts and methods of 2D infrared
spectroscopy; Cambridge University Press, 2011.

(4) Brixner, T.; Mancal, T.; Stiopkin, I. V.; Fleming, G. R. Phase-
stabilized two-dimensional electronic spectroscopy. J. Chem. Phys.
2004, 121, 4221—4236.

(S) Tseng, C.-H.; Matsika, S.; Weinacht, T. C. Two-Dimensional
Ultrafast Fourier Transform Spectroscopy in the Deep Ultraviolet. Opt.
Express 2009, 17, 18788.

(6) Asbury, J. B.; Steinel, T.; Stromberg, C.; Corcelli, S. A.; Lawrence,
C. P,; Skinner, J. L.; Fayer, M. D. Water Dynamics: Vibrational Echo
Correlation Spectroscopy and Comparison to Molecular Dynamics
Simulations. J. Phys. Chem. A 2004, 108, 1107—1119.

(7) Eaves, J. D.; Loparo, J. J.; Fecko, C. J.; Roberts, S. T.; Tokmakoff,
A.; Geissler, P. L. Hydrogen bonds in liquid water are broken only
fleetingly. Proc. Nat. Acad. Sci. U.S.A. 2008, 102, 13019—13022.

(8) Kraack, J. P. Ultrafast structural molecular dynamics investigated
with 2D infrared spectroscopy methods. Multidimensional Time-
Resolved Spectroscopy; Springer: Cham, Switzerland, 2019; pp 113—20S.

(9) Zheng, J.; Kwak, K.; Asbury, J. B.; Chen, X,; Piletic, I. R.; Fayer, M.
D. Ultrafast Dynamics of Solute-Solvent Complexation Observed at
Thermal Equilibrium in Real Time. Science 2008, 309, 1338—1343.

(10) Kim, Y. S.; Hochstrasser, R. M. Chemical exchange 2D IR of
hydrogen-bond making and breaking. Proc. Nat. Acad. Sci. U.S.A. 20085,
102, 11185—-11190.

(11) Ji, M.; Odelius, M.; Gaffney, K. J. Large angular jump mechanism
observed for hydrogen bond exchange in aqueous perchlorate solution.
Science 2010, 328, 1003—100S.

(12) Yuan, R; Napoli, J. A; Yan, C.; Marsalek, O.; Markland, T. E.;
Fayer, M. D. Tracking Aqueous Proton Transfer by Two-Dimensional
Infrared Spectroscopy and ab Initio Molecular Dynamics Simulations.
ACS Cent. Sci. 2019, S, 1269—1277.

(13) Kim, Y. S,; Hochstrasser, R. M. Applications of 2D IR
spectroscopy to peptides, proteins, and hydrogen-bond dynamics. J.
Phys. Chem. B 2009, 113, 8231—8251.

(14) Ghosh, A.; Ostrander, J. S.; Zanni, M. T. Watching Proteins
Wiggle: Mapping Structures with Two-Dimensional Infrared Spectros-
copy. Chem. Rev. 2017, 117, 10726—10759.

(15) Yan, C.; Nishida, J.; Yuan, R; Fayer, M. D. Water of Hydration
Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR
Spectroscopy of Rocks. J. Am. Chem. Soc. 2016, 138, 9694—9703.

(16) Nishida, J.; Breen, J. P.; Lindquist, K. P.; Umeyama, D.;
Karunadasa, H. I; Fayer, M. D. Dynamically Disordered Lattice in a
Layered Pb-I-SCN Perovskite Thin Film Probed by Two-Dimensional
Infrared Spectroscopy. J. Am. Chem. Soc. 2018, 140, 9882—9890.

(17) Rosenfeld, D. E.; Gengeliczki, Z.; Smith, B. J.; Stack, T. D. P.;
Fayer, M. D. Structural Dynamics of a Catalytic Monolayer Probed by
Ultrafast 2D IR Vibrational Echoes. Science 2011, 334, 634—639.

(18) Zhang, Z.; Piatkowski, L.; Bakker, H. J.; Bonn, M. Ultrafast
vibrational energy transfer at the water/air interface revealed by two-
dimensional surface vibrational spectroscopy. Nat. Chem. 2011, 3,
888—893.

(19) Nemeth, A; Milota, F.; Mancal, T.; Lukes, V.; Hauer, J.;
Kauffmann, H. F.; Sperling, J. Vibrational wave packet induced
oscillations in two-dimensional electronic spectra. I. Experiments. J.
Chem. Phys. 2010, 132, 184514.

(20) Richter, J. M.; Branchi, F.; Valduga De Almeida Camargo, F.;
Zhao, B.; Friend, R. H.; Cerullo, G.; Deschler, F. Ultrafast carrier
thermalization in lead iodide perovskite probed with two-dimensional
electronic spectroscopy. Nat. Commun. 2017, 8, 1-7.

(21) Bakulin, A. A.; Morgan, S. E.; Kehoe, T. B.; Wilson, M. W. B,;
Chin, A. W.; Zigmantas, D.; Egorova, D.; Rao, A. Real-time observation

5991

of multiexcitonic states in ultrafast singlet fission using coherent 2D
electronic spectroscopy. Nat. Chem. 2016, 8, 16—23.

(22) Caram, J. R;; Zheng, H.; Dahlberg, P. D.; Rolczynski, B. S.;
Griffin, G. B.; Dolzhnikov, D. S.; Talapin, D. V.; Engel, G. S. Exploring
size and state dynamics in CdSe quantum dots using two-dimensional
electronic spectroscopy. J. Chem. Phys. 2014, 140, 084701.

(23) Stone, K. W.; Gundogdu, K.; Turner, D. B.; Li, X,; Cundiff, S. T.;
Nelson, K. A. Two-Quantum 2D FT Electronic GaAs Quantum Wells.
Science 2009, 324, 1169—1173.

(24) Do, T.N.; Khyasudeen, M. F.; Nowakowski, P.J.; Zhang, Z.; Tan,
H. S. Measuring Ultrafast Spectral Diffusion and Correlation Dynamics
by Two-Dimensional Electronic Spectroscopy. Chem.—Asian J. 2019,
14, 3992—4000.

(25) Khyasudeen, M. F.; Nowakowski, P. J.; Nguyen, H. L.; Sim, J. H.
N,; Do, T. N,; Tan, H.-S. Studying the spectral diffusion dynamics of
chlorophyll a and chlorophyll b using two-dimensional electronic
spectroscopy. Chem. Phys. 2019, 527, 110480.

(26) Moca, R; Meech, S. R; Heisler, I. A. Two-Dimensional
Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral
Evolution. J. Phys. Chem. B 2015, 119, 8623—8630.

(27) Wells, K. L.; Zhang, Z.; Rouxel, J. R.; Tan, H.-S. Measuring the
spectral diffusion of Chlorophyll A using two-dimensional electronic
spectroscopy. J. Phys. Chem. B 2013, 117, 2294—2299.

(28) Lewis, N. H. C.; Dong, H,; Oliver, T. A. A;; Fleming, G. R.
Measuring correlated electronic and vibrational spectral dynamics using
line shapes in two-dimensional electronic-vibrational spectroscopy. J.
Chem. Phys. 2015, 142, 174202.

(29) Courtney, T. L.; Fox, Z. W.; Slenkamp, K. M.; Khalil, M. Two-
dimensional vibrational-electronic spectroscopy. J. Chem. Phys. 2018,
143, 154201.

(30) Singh, P. C.; Inoue, K.-i.; Nihonyanagi, S.; Yamaguchi, S.; Tahara,
T. Femtosecond Hydrogen Bond Dynamics of Bulk-like and Bound
Water at Positively and Negatively Charged Lipid Interfaces Revealed
by 2D HD-VSFG Spectroscopy. Angew. Chem., Int. Ed. 2016, SS,
10621—-10625.

(31) Xiong, W.; Laaser, J. E; Mehlenbacher, R. D.; Zanni, M. T.
Adding a dimension to the infrared spectra of interfaces using
heterodyne detected 2D sumfrequency generation (HD 2D SFG)
spectroscopy. Proc. Nat. Acad. Sci. U.S.A. 2011, 108, 20902—20907.

(32) Teo, S. M.; Ofori-Okai, B. K;; Werley, C. A;; Nelson, K. A;
Invited Article. Single-shot THz detection techniques optimized for
multidimensional THz spectroscopy. Rev. Sci. Instrum. 2018, 86,
051301.

(33) Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford
University Press: Oxford, U.K, 1995.

(34) Nee, M. J.; Baiz, C. R.; Anna, J. M.; McCanne, R; Kubarych, K. ]J.
Multilevel vibrational coherence transfer and wavepacket dynamics
probed with multidimensional IR spectroscopy. J. Chem. Phys. 2008,
129, 084503.

(35) Khalil, M.; Demirdoven, N.; Tokmakoff, A. Vibrational
coherence transfer characterized with Fourier-transform 2D IR
spectroscopy. J. Chem. Phys. 2004, 121, 362—373.

(36) Zheng, J.; Kwak, K; Xie, J.; Fayer, M. D. Ultrafast Carbon-
Carbon Single-Bond Rotational Isomerization in Room-Temperature
Solution. Science 2006, 313, 1951—1955.

(37) Tan, H.-S; Piletic, I. R;; Fayer, M. D. Polarization selective
spectroscopy experiments: methodology and pitfalls. J. Opt. Soc. Am. B
2008, 22, 2009.

(38) Finkelstein, L J; Goj, A;; McClain, B. L.; Massari, A. M,;
Merchant, K. A; Loring, R. F,; Fayer, M. D. Ultrafast dynamics of
myoglobin without the distal histidine: Stimulated vibrational echo
experiments and molecular dynamics simulations. J. Phys. Chem. B
20085, 109, 16959—16966.

(39) Kwac, K;; Lee, C. ; Jung, Y.; Han, J.; Kwak, K.; Zheng, J.; Fayer, M.
D.; Cho, M. Phenol-benzene complexation dynamics: Quantum
chemistry calculation, molecular dynamics simulations, and two
dimensional IR spectroscopy. J. Chem. Phys. 2006, 125, 244508.

https://dx.doi.org/10.1021/acs.jpca.0c04313
J. Phys. Chem. A 2020, 124, 5979—5992


https://dx.doi.org/10.1002/lapl.200710046
https://dx.doi.org/10.1002/lapl.200710046
https://dx.doi.org/10.1063/1.1776112
https://dx.doi.org/10.1063/1.1776112
https://dx.doi.org/10.1364/oe.17.018788
https://dx.doi.org/10.1364/oe.17.018788
https://dx.doi.org/10.1021/jp036266k
https://dx.doi.org/10.1021/jp036266k
https://dx.doi.org/10.1021/jp036266k
https://dx.doi.org/10.1073/pnas.0505125102
https://dx.doi.org/10.1073/pnas.0505125102
https://dx.doi.org/10.1126/science.1116213
https://dx.doi.org/10.1126/science.1116213
https://dx.doi.org/10.1073/pnas.0504865102
https://dx.doi.org/10.1073/pnas.0504865102
https://dx.doi.org/10.1126/science.1187707
https://dx.doi.org/10.1126/science.1187707
https://dx.doi.org/10.1021/acscentsci.9b00447
https://dx.doi.org/10.1021/acscentsci.9b00447
https://dx.doi.org/10.1021/jp8113978
https://dx.doi.org/10.1021/jp8113978
https://dx.doi.org/10.1021/acs.chemrev.6b00582
https://dx.doi.org/10.1021/acs.chemrev.6b00582
https://dx.doi.org/10.1021/acs.chemrev.6b00582
https://dx.doi.org/10.1021/jacs.6b05589
https://dx.doi.org/10.1021/jacs.6b05589
https://dx.doi.org/10.1021/jacs.6b05589
https://dx.doi.org/10.1021/jacs.8b03787
https://dx.doi.org/10.1021/jacs.8b03787
https://dx.doi.org/10.1021/jacs.8b03787
https://dx.doi.org/10.1126/science.1211350
https://dx.doi.org/10.1126/science.1211350
https://dx.doi.org/10.1038/nchem.1158
https://dx.doi.org/10.1038/nchem.1158
https://dx.doi.org/10.1038/nchem.1158
https://dx.doi.org/10.1063/1.3404404
https://dx.doi.org/10.1063/1.3404404
https://dx.doi.org/10.1038/s41467-017-00546-z
https://dx.doi.org/10.1038/s41467-017-00546-z
https://dx.doi.org/10.1038/s41467-017-00546-z
https://dx.doi.org/10.1038/nchem.2371
https://dx.doi.org/10.1038/nchem.2371
https://dx.doi.org/10.1038/nchem.2371
https://dx.doi.org/10.1063/1.4865832
https://dx.doi.org/10.1063/1.4865832
https://dx.doi.org/10.1063/1.4865832
https://dx.doi.org/10.1126/science.1170274
https://dx.doi.org/10.1002/asia.201900994
https://dx.doi.org/10.1002/asia.201900994
https://dx.doi.org/10.1016/j.chemphys.2019.110480
https://dx.doi.org/10.1016/j.chemphys.2019.110480
https://dx.doi.org/10.1016/j.chemphys.2019.110480
https://dx.doi.org/10.1021/acs.jpcb.5b04339
https://dx.doi.org/10.1021/acs.jpcb.5b04339
https://dx.doi.org/10.1021/acs.jpcb.5b04339
https://dx.doi.org/10.1021/jp310154y
https://dx.doi.org/10.1021/jp310154y
https://dx.doi.org/10.1021/jp310154y
https://dx.doi.org/10.1063/1.4919686
https://dx.doi.org/10.1063/1.4919686
https://dx.doi.org/10.1063/1.4932983
https://dx.doi.org/10.1063/1.4932983
https://dx.doi.org/10.1002/anie.201603676
https://dx.doi.org/10.1002/anie.201603676
https://dx.doi.org/10.1002/anie.201603676
https://dx.doi.org/10.1073/pnas.1115055108
https://dx.doi.org/10.1073/pnas.1115055108
https://dx.doi.org/10.1073/pnas.1115055108
https://dx.doi.org/10.1063/1.4921389
https://dx.doi.org/10.1063/1.4921389
https://dx.doi.org/10.1063/1.2969900
https://dx.doi.org/10.1063/1.2969900
https://dx.doi.org/10.1063/1.1756870
https://dx.doi.org/10.1063/1.1756870
https://dx.doi.org/10.1063/1.1756870
https://dx.doi.org/10.1126/science.1132178
https://dx.doi.org/10.1126/science.1132178
https://dx.doi.org/10.1126/science.1132178
https://dx.doi.org/10.1364/josab.22.002009
https://dx.doi.org/10.1364/josab.22.002009
https://dx.doi.org/10.1021/jp0517201
https://dx.doi.org/10.1021/jp0517201
https://dx.doi.org/10.1021/jp0517201
https://dx.doi.org/10.1063/1.2403132
https://dx.doi.org/10.1063/1.2403132
https://dx.doi.org/10.1063/1.2403132
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c04313?ref=pdf

The Journal of Physical Chemistry A

pubs.acs.org/JPCA

(40) Kuroda, D. G.; Vorobyev, D. Y.; Hochstrasser, R. M. Ultrafast
relaxation and 2D IR of the aqueous trifluorocarboxylate ion. J. Chem.
Phys. 2010, 132, 044501.

(41) Lee, M. W,; Carr, J. K.; Gollner, M.; Hamm, P.; Meuwly, M. 2D
IR spectra of cyanide in water investigated by molecular dynamics
simulations. J. Chem. Phys. 2013, 139, 054506.

(42) Bakker, H. J.; Skinner, J. L. Vibrational spectroscopy as a probe of
structure and dynamics in liquid water. Chem. Rev. 2010, 110, 1498—
1517.

(43) Kramer, P. L; Nishida, J; Fayer, M. D. Separation of
experimental 2D IR frequency-frequency correlation functions into
structural and reorientation-induced contributions. J. Chem. Phys. 20185,
143, 124508S.

(44) Kwak, K; Park, S.; Finkelstein, L. J.; Fayer, M. D. Frequency-
frequency correlation functions and apodization in two-dimensional
infrared vibrational echo spectroscopy: A new approach. J. Chem. Phys.
2007, 127, 124503.

(45) Kwak, K.; Rosenfeld, D. E.; Fayer, M. D. Taking apart the two-
dimensional infrared vibrational echo spectra: More information and
elimination of distortions. J. Chem. Phys. 2008, 128, 204505.

(46) Roy, S.; Pshenichnikov, M. S.; Jansen, T. L. C. Analysis of 2D CS
spectra for systems with non-gaussian dynamics. J. Phys. Chem. B 2011,
115, 5434—5440.

(47) Fenn, E. E.; Fayer, M. D. Extracting 2D IR frequency-frequency
correlation functions from two component systems. J. Chem. Phys.
2011, 135, 074502.

(48) Sanda, F.; Perlik, V.; Lincoln, C. N.; Hauer, J. Center Line Slope
Analysis in Two-Dimensional Electronic Spectroscopy. J. Phys. Chem. A
2015, 119, 10893—10909.

(49) Nowakowski, P. J.; Khyasudeen, M. F.; Tan, H.-S. The effect of
laser pulse bandwidth on the measurement of the frequency fluctuation
correlation functions in 2D electronic spectroscopy. Chem. Phys. 2018,
515, 214-220.

(50) https://web.stanford.edu/group/fayer/CAFE.html (Accessed
May 12, 2020).

(51) Debao, C. Degree of approximation by superpositions of a
sigmoidal function. Approx. Theor. Appl. 1993, 9, 17—-28.

(52) Hassoun, M. H. Fundamentals of Artificial Neural Networks; MIT
Press: Cambridge, MA, 1995.

(53) Yuan, R; Fayer, M. D. Dynamics of Water Molecules and Ions in
Concentrated Lithium Chloride Solutions Probed with Ultrafast 2D IR
Spectroscopy. J. Phys. Chem. B 2019, 123, 7628—7639.

(54) Hoffman, D. J; Sokolowsky, K. P.; Fayer, M. D. Direct
observation of dynamic crossover in fragile molecular glass formers with
2D IR vibrational echo spectroscopy. J. Chem. Phys. 2017, 146, 1245085.

(55) Shin, J. Y.; Wang, Y.-L.; Yamada, S. A.; Hung, S. T.; Fayer, M. D.
Imidazole and 1-Methylimidazole Hydrogen Bonding and Non-
hydrogen Bonding Liquid Dynamics: Ultrafast IR Experiments. J.
Phys. Chem. B 2019, 123, 2094—2105.

5992

https://dx.doi.org/10.1021/acs.jpca.0c04313
J. Phys. Chem. A 2020, 124, 5979—5992


https://dx.doi.org/10.1063/1.3285265
https://dx.doi.org/10.1063/1.3285265
https://dx.doi.org/10.1063/1.4815969
https://dx.doi.org/10.1063/1.4815969
https://dx.doi.org/10.1063/1.4815969
https://dx.doi.org/10.1021/cr9001879
https://dx.doi.org/10.1021/cr9001879
https://dx.doi.org/10.1063/1.4931402
https://dx.doi.org/10.1063/1.4931402
https://dx.doi.org/10.1063/1.4931402
https://dx.doi.org/10.1063/1.2772269
https://dx.doi.org/10.1063/1.2772269
https://dx.doi.org/10.1063/1.2772269
https://dx.doi.org/10.1063/1.2927906
https://dx.doi.org/10.1063/1.2927906
https://dx.doi.org/10.1063/1.2927906
https://dx.doi.org/10.1021/jp109742p
https://dx.doi.org/10.1021/jp109742p
https://dx.doi.org/10.1063/1.3625278
https://dx.doi.org/10.1063/1.3625278
https://dx.doi.org/10.1021/acs.jpca.5b08909
https://dx.doi.org/10.1021/acs.jpca.5b08909
https://dx.doi.org/10.1016/j.chemphys.2018.06.015
https://dx.doi.org/10.1016/j.chemphys.2018.06.015
https://dx.doi.org/10.1016/j.chemphys.2018.06.015
https://web.stanford.edu/group/fayer/CAFE.html
https://dx.doi.org/10.1021/acs.jpcb.9b06038
https://dx.doi.org/10.1021/acs.jpcb.9b06038
https://dx.doi.org/10.1021/acs.jpcb.9b06038
https://dx.doi.org/10.1063/1.4978852
https://dx.doi.org/10.1063/1.4978852
https://dx.doi.org/10.1063/1.4978852
https://dx.doi.org/10.1021/acs.jpcb.8b11299
https://dx.doi.org/10.1021/acs.jpcb.8b11299
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c04313?ref=pdf

