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1. Modified OPLS-AA force field parameters for benzonitrile 

All bond-angle parameters were directly used from the classic OPLS-AA force field. To 

build the mass center, M, into the topology, we redistributed the mass along the CM-C≡N bond 

axis. Two atoms were used to describe the total mass of the CM-C≡N bond axis, one is the mass 

center, M, and another is the ring carbon atom, CM. Following the redistribution of mass, M has a 

mass of 24.1223 Da, and CM has a mass of 13.9058 Da. M is positioned at the center of mass of 

the C≡N bond. The distance between the CM and M atoms was set to 0.2212 nm as a constraint 

in the topology. The atoms in the C≡N bond were transformed into virtual atoms that no longer 

have mass but are able to interact with other atoms and molecules in the simulation. M has no 

interactions with other atoms. Note that the redistribution of masses leaves the moment of inertia 

of the benzonitrile molecule unchanged. The procedures for redistributing the atom masses and 

setting the atom positions can be found in Lemkul’s Gromacs simulation tutorials.1 The force 

field parameters are shown in Table S1. 

 

Table S1. Lennard-Jones parameters, partial charges, and atomic masses for the modified OPLS-
AA force field for benzonitrile. 

 
atom ij (Å) ij  (kJ/mol) q  (e) mass (Da) 

CH 3.55 0.29288 -0.115 12.0107 
H 2.42 0.12552 0.115 1.0079 
C 3.55 0.29288 0.050 0 

CM 3.65 0.6276 0.450 13.9058 
M 0 0 0 24.1223 
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N 3.20 0.71128 -0.500 0 

 

2. Comparison of the dynamical properties of benzonitrile from our modified force field 
and other classic force fields 

The thermodynamic and dynamical properties of benzonitrile can be calculated using the 

classic OPLS-AA force field.2 We also calculated these properties of benzonitrile with the classic 

general Amber force field (GAFF)3 and Charmm general force field (CGenFF).4 All of these 

simulations were run for 10 ns in Gromacs with the same control parameters used in our 

modified OPLS-AA force field simulation. The last 2 ns were collected for analysis. These data 

are shown in Table 1 in the main text. In Fig. S1, we further compare an important benchmark 

dynamical property, the mean squared displacement (MSD), for benzonitrile using the modified 

OPLS-AA force field and the other three classic force fields. The details of the modified force 

field are discussed further in the main text and previous section, and the parameters are displayed 

in Table S1. The diffusion coefficient calculated using the modified force field is (8.1 ± 0.2) × 

10-6 cm2∙s-1, which is closest to the experimental value estimated from the Stokes-Einstein (SE) 

equation (see below): 8.3 × 10-6 cm2∙s-1. Overall, the MSDs from OPLS-AA, our modified 

OPLS-AA, and Charmm are in good agreement with each other as shown in Fig. S1. The MSD 

from the generalized Amber force field is significantly steeper than the MSDs from the other 

force fields. This results in a diffusion coefficient (1.2 × 10-5 cm2∙s-1) that is too large compared 

to the experimental value. 

In comparison to these values, the translational diffusion coefficient of benzene at 298 K 

measured with the Carr-Purcell NMR spin echo method was determined to be 2.27 × 10-5 cm2∙s-

1.5 Also, the diffusion coefficient for pentafluorobenzonitrile (C6F5CN) was determined to be 

around 3.71 × 10-6 cm2∙s-1 at 298 K and 1 atm with 19F-NMR Fourier Transform Pulsed Gradient 

Spin Echos.6 Both of these molecules are similar in size and structure to benzonitrile (C6H5CN) 

and are the most reasonable experimental benchmarks available in the literature. The diffusion 

coefficient we obtain using our modified force field is in reasonable agreement with the above 

experimental values, especially that for C6F5CN. 

It is surprising that no translational diffusion coefficient for benzonitrile has been 

reported. However, many researchers have focused on viscosity measurements of neat 

benzonitrile and its mixtures with other solvents.7-8 Since, to our knowledge, no diffusion 

coefficient has been reported for benzonitrile, we obtained it from the available viscosity data by 
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using the Stokes-Einstein equation. The SE equation is given by 6B rD k T  , where Bk  is the 

Boltzmann constant, T  is the absolute temperature,   is the dynamic viscosity, and r  is the 

hydrodynamic radius. The hydrodynamic radius can be determined by calculating the van der 

Waals volume of the benzonitrile molecule. The van der Waals volume was calculated to be 

about 51 Å3 with the Gaussian03 package.9 Hence, the hydrodynamic radius of the molecule is 

about 2.3 Å. The experimental viscosity is 1.155 mPa⸱s.7 Therefore, using the SE equation, the 

calculated value for the diffusion coefficient is 8.3 × 10-6 cm2∙s-1. The diffusion coefficient we 

calculate using the modified OPLS-AA force field is in quantitative agreement with the value 

obtained from the SE equation. 

 

    

Figure S1. Mean squared displacement (MSD) of benzonitrile using our modified OPLS-AA 
force field and other classic force fields. 
 

 In addition to the MSD, we also calculated the orientational correlation function, 2 ( )C t , 

for the C-N bond vector of benzonitrile using our modified OPLS-AA force field and the classic 

force fields, introduced above, in Fig. S2. The trends are similar to the MSD, the Amber force 

field produces faster reorientation than the other force fields, while the remaining force fields are 

in good agreement. As shown in the main text, the anisotropy, 2( ) 0.4 ( )r t C t , from the modified 

OPLS-AA force field is in quantitative agreement with the experimentally measured anisotropy. 

0 200 400 600 800 1000
0

2

4

6

8
 OPLS-AA
 Modified OPLS-AA
 Charmm
 Amber

M
S

D
 (

nm
2 )

 

t (ps)



S4 
 

One needs to carefully use the generalized Amber force field to simulate the dynamics in liquid 

benzonitrile. 

 

  

Figure S2. The orientational correlation functions, 2 ( )C t , for the C-N bond vector of 

benzonitrile using our modified OPLS-AA force field and other classic force fields. 
 

 The simulated OKE signals using the classic (blue curve) and modified (black curve) 

OPLS-AA force fields are compared to each other and to the measured OKE signal (red curve) in 

Fig. S3. The results from the two force fields are similar to each other; however, the modified 

force field obtains slightly better agreement with experiment particularly at intermediate and 

longer times. The polarizability anisotropy time correlation function (PA-TCF), in addition to its 

constituent molecular and interaction-induced auto-correlations and their cross-correlation, is 

shown in Fig. S4 for the classic and modified OPLS-AA force fields. Taken together, the 

comparisons indicate that the modified OPLS-AA force field provides the best agreement with 

the available experimentally measured properties of benzonitrile. Therefore, this force field was 

used to simulate the local intermolecular structures and dynamics in liquid benzonitrile presented 

in the main text. 
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Figure S3. The simulated OKE signal of benzonitrile using the classic OPLS-AA force field 
(blue curve) and the modified OPLS-AA force field (black curve). The modified force field 
achieves slightly better agreement with the experimental OKE signal (red curve). 
 

 
Figure S4. The PA-TCF of benzonitrile at 300 K using the classic OPLS-AA force field and 
modified OPLS-AA force field. The contributions of the molecular and interaction-induced  
autocorrelations and their cross-correlation are displayed for comparison to the PA-TCF. 
 

3. The liquid structure factor of benzonitrile at 300 K 

The liquid structure factor, ( )S q , can be described by the following equation: 
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Here, ( )ijg r  corresponds to the partial radial pair distribution function (rdf) for atomic species of 

type i and type j. Specifically, the indices i and j span the set of constituent atoms that include C, 

H and N. 
ix  and jx  are the fractions of atoms of type i and j. if  and jf  are the x-ray atomic 

form factors and 0  is the total number density of the system. Using this equation in our MD 

simulation, we obtained the structure factor of benzonitrile and compared it to the experimental 

results from Katayama et al.10 The simulation results agree well with the experiment, with only a 

slight difference in the peak height at 2.0 Å-1, which corresponds to a 3.0-4.0 Å periodicity of 

benzonitrile. The good agreement demonstrates that our modified force field can reproduce the 

microstructure of liquid benzonitrile. 

 

 

Figure S5. Liquid structure factor S(q) of benzonitrile using our modified OPLS-AA force field 
(red curve) and comparison to the experiment10 (blue curve) at 300 K. 
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 A comparison of the mass center-mass center radial distribution function between our 

modified OPLS-AA force field and other classic force fields is shown in Fig. S6. The first 

intense peak and second peak locations remain almost unchanged with our modified force field 

and with the other force fields. The decrease in the first peak height using the Amber force field 

indicates that the order is lower and the structure is looser in the simulation. This, in part, 

explains why the simulated dynamical properties with the Amber force field are much faster 

compared to the values obtained with other force fields and experimentally.  

Fig. S7 compares the N-H1 rdf between the simulations with different force fields. The 

N-H1 intermolecular interaction is a significant Coulombic interaction and a key driving force 

for the ordered antiparallel structure found in liquid benzonitrile (see main text). Interestingly, in 

this case the Charmm deviates the most from the other force fields in that the height of the most 

intense peak is comparatively lower. 

 

  

Figure S6. Comparison between the mass center-mass center radial distribution function for our 
modified OPLS-AA force field and other classic force fields at 300 K. 
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Figure S7. Comparison between the N-H1 site-site radial distribution function for our modified 
OPLS-AA force field and other classic force fields at 300 K. 
 

5. Temperature-dependent self-diffusion coefficients 

  The temperature-dependent self-diffusion coefficients for benzonitrile calculated with our 

modified OPLS-AA force field are shown in Fig. S8. The temperature-dependent translational 

diffusion dynamics of benzonitrile follow a classic Arrhenius behavior. The fit equation is 

0 exp( )a BD D E k T  , where 0D  = 342.22 × 10-5 cm2s-1 and the activation energy is aE  = 4.56 

kJ/mol.  

Figure S8. The calculated temperature-dependent self-diffusion coefficients for our modified 
OPLS-AA force field (black points). The red curve is the fit.   
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6. Semi-log plot of the simulated and experimental OKE signal 

 

 

Figure S9. Comparison between the simulated (black curve) and experimental (red curve) OKE 
signal on a semi-log plot. 

 

7. Single-exponential fit to the simulated OKE signal decay 

The OKE signal can be obtained by differentiating the polarizability anisotropy time 

correlation function (TCF), ( )t , according to Eq. (19). We again note that because bulk 

benzonitrile is macroscopically isotropic, we can average together all anisotropic components of 

the collective polarizability tensor when calculating ( )t . The polarizability anisotropy TCF in 

Fig. 5 of the main text appears well-averaged and smooth. However, performing the numerical 

time-differentiation of ( )t  introduces noise and leads to additional roughness in the decay 

curve particularly at long time. This can be seen in Fig. S10, which magnifies the 20 to 80 ps 

region of the decay. Previous OKE simulation studies have taken an alternative approach by first 

fitting an exponential function to ( )t  and then differentiating this exponential fit to obtain the 

final OKE decay, ( )R t .11 Here, we directly differentiated the TCF to obtain ( )R t , which agrees 

well with the experimental data over the entire relaxation process time range (see Fig. 4). 

The collective polarizability anisotropy TCF can be described by a series of power laws 

preceding a single exponential using Mode Coupling Theory.12 The current work focuses solely 

on the exponential region. The long-time portion of the simulated ( )R t  can be fit with a single-
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exponential of the form ( ) exp[ ]cR t A t   . The fit parameters with standard errors are A = 

0.0553 ± 0.003, c  = 28.8 ± 1.1 ps.    

 

 

Figure S10. Single-exponential fit (red curve) to the simulated OKE signal (black curve) from 
20 to 80 ps. 

 

8. Plot of the second-order Legendre polynomial 

 

 

Figure S11. The second-order Legendre polynomial, , versus . 
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9. Single-exponential fit to the simulated 2 ( )C t  for the benzonitrile CN bond unit vector 

 The anisotropy, ( )r t , or equivalently the second order Legendre polynomial orientational 

correlation function, 2 ( ) 2.5 ( )C t r t , tracks the single molecule reorientational dynamics of the 

benzonitrile CN bond unit vector. The decay at long time is dominated by free diffusion and can 

be described well by a single-exponential. This same fitting approach was taken in a previous 

work.13 As discussed in the main text, the long-time decay should be biexponential according to 

the theory originally outlined by Favro.14 However, the amplitude of one exponential is predicted 

to be very small such that it is difficult to detect. Using a single exponential fit of the form, 

2 ( ) exp[ / ]sC t A t   , over the range from 20 to 80 ps, the resulting fit parameters with standard 

errors are A  = 0.617 ± 0.003 and s  = 17.2 ± 0.1 ps. 

 

 

Figure S12. Single-exponential fit (dashed red curve) to the simulated 2 ( )C t  for the CN bond 

unit vector, or z-axis direction (black curve). 
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10. Comparison of MM,s ( )t  and 2 ( )C t  

 

 
Figure S13. Comparison of  (black curve) and  for the C-N bond unit vector of 

benzonitrile (red curve). 
 

11. Velocity autocorrelation function 

 The translational velocity autocorrelation function for benzonitrile is shown in Fig. S14. 

One of the distinctive features of the correlation function is a negative region that occurs after 

several hundred femtoseconds. A low amplitude recurrence is also evident. It has been suggested 

that the negative region becomes more pronounced in high density liquids.15 This region is 

interpreted as arising from the reversal of the velocity of the molecule after interacting with its 

first solvent shell of molecules and is a reflection of so-called “caging” dynamics. It is important 

to note that if the time-sequence of the interactions between the molecule with its surroundings is 

a Gaussian Markov process, the correlation function is a single exponential decay, and no such 

negative region exists.15 
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Figure S14. The simulated translational velocity autocorrelation function for benzonitrile. 

 

12. Rotational mean squared displacement calculation 

To calculate rD , we consider the behavior of a random unit vector ( )iu t


 for molecule i. 

Molecular rotation will change the orientation of the vector. Naïvely, one may define angular 

displacement as ( ) (0)i iu t u
 

. The problem with this definition is that it results in a bounded 

quantity and does not provide a complete picture of the full extent of molecular reorientation. 
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