
S1 
 

Supporting Information 
 

Complex Formation and Dissociation Dynamics on Amorphous Silica Surfaces 
 

Steven A. Yamada†, Samantha T. Hung†, Jae Yoon Shin,§ and Michael D. Fayer†* 
 

§Department of Advanced Materials Chemistry 
 Korea University, Sejong, Korea 

 
†Department of Chemistry 

Stanford University, Stanford, CA 94305, USA 
*Phone: (650) 723-4446; Email: fayer@stanford.edu 

 

SI. Optical Methods 
A. FTIR Spectroscopy 

 Linear IR absorption spectra were measured with a Thermo Scientific Nicolet 6700 

Fourier Transform IR (FTIR) spectrometer purged with air scrubbed free of CO2 and H2O. The 

measured spectra of Bz, CCl4, and 1:5 Bz:CCl4 were scale subtracted from the spectra of 

MCM41-OD in the same solvents. A small linear baseline correction was included, yielding the 

spectra of the surface Si-OD stretch in the three solvents. 

 
B. Laser System and Optical Setup. 

 The 2D IR pulse-shaping spectrometer has been described in detail previously.1 Briefly, a 

Ti:sapphire oscillator seeds a regenerative amplifier that outputs 600 J pulses at 1 kHz centered 

at 800 nm with 100 fs full-width at half maximum (FWHM) duration. The regen output pumps 

an optical parametric amplifier/difference frequency generation (OPA/DFG) system tuned to 

generate 180 fs (~90 cm-1 FWHM bandwidth) mid-IR pulses centered at 2695 cm-1 with an 

energy of 8 J. The 2D IR spectrometer is configured in a pump-probe geometry.1-3 The mid-IR 

pulses are split into a strong pump and weaker probe pulse (92:8 intensity ratio) with a ZnSe 

beam splitter. The pump pulse is sent into a mid-IR frequency-domain pulse-shaper consisting of 

a germanium acousto-optic modulator (AOM) at the Fourier plane of a 4-f pulse-shaping 

geometry.1, 3, 4 The number, amplitude, phase, and temporal delay of the pump pulse(s) at the 

output are precisely controlled by the AOM. The probe pulse is sent through a precision 

mechanical delay stage that sets the time delay between the pump and probe. The two beams are 
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focused and spatially overlapped in the sample. In the pump-probe geometry, the pump-probe 

and vibrational echo signals are emitted collinearly with the probe pulse.2 After the sample, the 

probe/signal is sent into a monochromator acting as a spectrograph and detected with a liquid 

nitrogen cooled 32-element HgCdTe (MCT) IR array detector. 

 

C. Polarization-Selective Pump Probe Experiments 

 Mid-IR PSPP experiments have been discussed in detail previously.5 Briefly, the pulse 

sequence involves an intense pump pulse followed by a weaker probe pulse a time, t , later. The 

pump is chopped (off) at 500 Hz, or half the laser repetition rate. The probe spectrum, acquired 

when the pump is off, is subtracted from the pump-probe (PP) signal, which is then normalized 

to the probe spectrum. The AOM controls the chopping rate and the absolute phase of the pump 

pulse during the on shots to suppress scattered light.6, 7 For highly scattering samples, an 

additional phase-cycling procedure was used as previously detailed.6 Directly before the sample, 

the probe and pump pulses are fixed at 0° (parallel to the plane of the optical table) and +45° 

linear polarizations, respectively. Directly following the sample, a polarizer in a computer 

controlled rotation mount resolves the signal alternately at +45° or -45°, giving the parallel, ( )S t

, or perpendicular, ( )S t , PP signals, respectively. These signals have contributions from the 

isotropic PP signal decay, ( )P t , and the second order Legendre polynomial orientational 

correlation function of the transition dipole moment, 2 ( )C t ,8, 9 

 2( ) ( )[1 0.8 ( )],S t P t C t          (S1) 

 2( ) ( )[1 0.4 ( )].S t P t C t           (S2) 

The signals are then projected back to 0° linear polarization by a final polarizer before being 

spectrally dispersed and detected with the spectrograph and HgCdTe (MCT) IR array detector. 

This last polarizer ensures that the signals experience identical grating efficiencies in the 

spectrograph. 

 

D. 2D IR Spectroscopy 

 In the 2D IR experiment, two pump pulses (1 and 2) and one probe pulse (3) interact with 

the sample, stimulating the emission of the vibrational echo signal.2, 10, 11 The time between 
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pulses 1 and 2, between 2 and 3, and following 3 are the first coherence period, 1t  , the 

population period, 2 wt T , and the final coherence period, 3t . In the pump-probe geometry, the 

vibrational echo signal is emitted collinearly with pulse 3, which serves as a local oscillator that 

self-heterodynes the echo, providing information on its phase.2, 10 The combined echo/LO signal 

electric field is sent into the spectrograph, which performs an optical Fourier transform of the 

signal with respect to 3t , generating the 3 (vertical) axis of the 2D spectrum. The 1  

(horizontal) axis is obtained by scanning the delay  , which generates a temporal interferogram 

in   for each 3 . The interferograms are numerically Fourier transformed to obtain the 1  axis, 

generating the full 2D spectrum. 

 A complete 2D spectrum is generated by fixing wT  and scanning  . After this,  is 

incremented and another 2D spectrum is obtained. When 2D IR is applied to a system 

undergoing chemical exchange, the vibrational frequency evolution during the wT  period will be 

dictated by two processes: spectral diffusion and chemical exchange.12  

Spectral diffusion of the silanol (Si-OD) vibrational probe is caused by the structural 

evolution of the surrounding solvent and silica framework. The structure is coupled to the 

vibrational frequency, and its evolution determines the -dependence of the diagonal band 

shape for oscillators that have not exchanged.12 At early , very little structural evolution has 

occurred, resulting in a high degree of correlation between the initial (excited) and final 

(detected) frequencies,  and 3 , respectively. The highly correlated spectrum is elongated 

along the diagonal line 3 1  . As  is increased, the initial and final frequencies become 

increasingly uncorrelated, and the 2D band shape becomes increasingly round. Spectral diffusion 

is quantified with the frequency-frequency correlation function (FFCF). Here, the FFCF was 

modeled with the Kubo model2, 13 

 

2 ]FFCF ( ) (0) exp[ /i i
i

t t              (S3) 

 

where the frequency fluctuation, ( ) ( )t t      , is the difference between the instantaneous 

frequency, ( )t , and the time-averaged frequency,   . The ith component of the FFCF is 

wT

wT

wT

1

wT
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specified by a frequency fluctuation amplitude, i , and time constant, i . When 1i i  , a 

component is in the homogeneous limit,2 and i  and i  cannot be independently determined. 

The homogeneous line shape is a Lorentzian with a FWHM given by 21 T   , where 2T   is 

the pure dephasing time.2 The observed homogeneous dephasing time, 2T , is influenced by 2T  , 

the vibrational lifetime, 1T , and the orientational correlation time, orT , according to

1 1 1 1
2 o12 r( ) ( ) (2 ) (3 )T T T T       .11 Components with 1i i   are in the inhomogeneous limit,2 

and the line shape is a Gaussian with standard deviation i . The convolution of the line shapes 

associated with each component in Eq. (S3) produces the linear absorption spectrum. The 

spectral diffusion time scales, i , are determined with the 3  center-line slope (CLS) method.14, 

15 However, the i  do not directly correspond to the amplitudes in the CLS. The proper i , in 

absolute frequency units (cm-1), are determined by reproducing the linear absorption spectrum 

and CLS decay through response function calculations of the 1D and 2D line shapes. 

The second process influencing the vibrational frequency evolution during the wT  period 

is chemical exchange. Chemical exchange produces off-diagonal peaks that initially increase in 

amplitude as wT  is increased. The growth of the off-diagonal peaks directly tracks the formation 

and dissociation of Si-OD/Bz complexes under thermal equilibrium conditions.12, 16, 17 Following 

the theoretical discussion of Kwak et al., we assume that chemical exchange destroys all 

frequency correlation.12 Consequently, the off-diagonal peaks, which arise from an odd number 

of exchanges, and the contribution to the diagonal peaks from exchange, which arise from an 

even number of exchanges, will exhibit completely uncorrelated 2D band shapes. A completely 

uncorrelated 2D band will have a CLS of zero,15 and we have verified that this is the case for the 

off-diagonal peaks in the experimental 2D IR chemical exchange spectra. Note also that the 

contribution from even exchanges on the diagonal will cause the diagonal features to be more 

uncorrelated than if no chemical exchange occurred.12 

The 2D IR experiments were performed with linearly polarized electric fields. To obtain 

reliable spectra from the strongly light scattering MCM41-OD silica powder, the signal was 

acquired in the perpendicular polarization configuration, XXYY  , in which the first two pulses 

were vertically polarized (Y ) and third pulse and the detected component of the signal were 



S5 
 

horizontally polarized ( X ). The XXYY   signal acts as a polarization filter, since the scatter 

from the first two pulses is primarily polarized normal to the detection direction. The signal was 

also acquired using a 4-shot phase cycling scheme that was designed to remove scatter signals 

originating from the pump pulses.3, 6, 7 

 

SII. Heating Signal Subtraction Methods 

A. Polarization Selective Pump-Probe Spectroscopy 

 The pump-probe signals, ( )S t  and ( )S t , for MCM41-OD in pure CCl4 and pure Bz 

exhibited a frequency dependent offset at long time delays (Fig. S1). Consequently, an offset is 

also evident in the un-processed ( )P t  curves shown in Fig. S2. This feature was previously 

observed for the OD stretching mode of HOD in H2O18, 19 and for the μ2-OD stretching mode of 

the metal-organic framework MIL-53(Al).20 The offset has been attributed to a temperature 

increase induced by absorption of the pump pulse, or heating signal. This is an unwanted artifact 

that, if unremoved, leads to an erroneous anisotropy, ( )r t . 

 

Figure S1. Representative PSPP signals for isolated silanols (Si-OD) in benzene at 2057 cm-1. 
The offset at long time in both traces is the result of an isotropic heating signal. 
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Figure S2. Isotropic pump-probe signals, ( )P t , with frequency-dependent heating signals 
evident at long time for isolated silanols (Si-OD) in (a) CCl4 and (b) benzene. 
 

 When the temperature is increased, the OD absorption band blue-shifts.18-20 Because the 

pump-probe signals are obtained by subtracting the signal (probe intensity) when the pump is off 

from that when the pump is on, this appears as a bleach (positive offset) and induced absorption 

(negative offset) on the red and blue side of the transient absorption spectrum, respectively (Fig. 

S2). The temperature increase occurs when the excited vibration relaxes to the ground state and 

releases its energy to the surrounding solvent. The signal thus grows according to the vibrational 

lifetime of the relaxing mode. Since the diffusion of heat out of the excited volume occurs on the 

order of μs to ms, it appears as a static offset within the time-window of the experiment; in this 

case, 0-350 ps. In most situations, including the present one, the heating signal equally influences 

( )S t  and ( )S t  (Fig. S1). In other words, it is isotropic. Anisotropic heating has also been 

reported, but does not need to be considered here.21 

 Here we assume that the excited vibration directly relaxes into the ground-state. In certain 

cases an intermediate state has been invoked to better model the kinetics of the heat-signal 

growth.18, 19 We found that inclusion of an intermediate state is not necessary in the present case. 

As discussed in the main text, we observe two types of surface silanols that have distinctly 

different vibrational lifetimes. Thus, in our model, the heating signal will grow in as a 

biexponential with time constants equal to the two observed lifetimes. The un-processed ( )P t  

were fit to a function of the following form, 
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II I

1 1/ /
II I II I ( )(1 ),( ) ( ) t T t TAf e eA At A            (S4) 

 

where IIA  and IA  are the amplitudes of the vibrational lifetimes II
1T  and I

1T , respectively. This 

equation is simply equivalent to the sum of a biexponential population decay signal and a 

biexponential heat growth signal. If the static heating signal observed at long time in the un-

processed ( )P t  decay is denoted H , then from Eq. (S4) the constant II I )(H A A  . Thus, an 

implicit assumption of Eq. (S4) is that the contribution of a given lifetime component to the 

heating signal is proportional to its normalized amplitude in the ( )P t  decay. In other words, the 

final heating signal contributions of the II
1T  and I

1T  components are respectively given by 

II II I II[ ( )]A A A H a H   and  I II I I[ ( )]A A A H a H  , with II I 1a a  .  

In the main text, the expression for ( )P t  contains a factor of 1/3, in keeping with its 

conventional definition.8 However, throughout this analysis we omit the factor of 1/3, and simply 

use the proportional quantity 
II I

1 1/ /
II I( ) ( ) 2 ( ) t T t TP t A e A et S S t  

   . Subtracting this 

expression from Eq. (S4) gives the time-dependent heating signal: 

 
II I

1 1/ /
II I{ (1 ) (1 )}.( ) t T t Th A e A et            (S5) 

 

Therefore, the un-processed ( )P t  was corrected by subtracting ( )h t . Since the heating signal is 

isotropic (Fig. S1), the un-processed ( )S t  and ( )S t  were corrected by subtracting ( ) 3h t  from 

each signal. Note that the frequency dependence of ( )P t  and ( )h t  have been suppressed in the 

above discussion, but were taken into account in the data processing. The corrected ( )P t  and 

( )r t  observables are shown in Fig. 2 and Fig. 5, respectively. 

 

B. 2D IR Spectroscopy 

 The heating signal discussed in the context of the PSPP experiment will also manifest in 

the 2D IR experiment and distort the 2D band shape. At intermediate time delays, both the 

resonant signal and heating signal will overlap. At very long delays, the resonant signal 

contribution will have decayed completely with the vibrational lifetime, leaving only the heating 
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signal contribution. Representative heating signal 2D IR spectra acquired at wT  = 500 ps for 

MCM41-OD in CCl4 and Bz are shown in Fig. S3(a) and S3(b), respectively. This delay time 

corresponds to ~7 and ~11 factors of the longest vibrational lifetimes in the CCl4 and Bz 

samples, respectively. Thus, in the following, these long time spectra are denoted the wT  =  

spectra. For MCM41-OD in the pure solvents, the heating signal, t
1

hea
3( , ),S   , was removed 

according to, 
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1 1
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 

 

 (S6) 

 

where 1 w 3
obs ( , , )S T   is the observed 2D IR spectrum. In Eq. (S6), IIa  and Ia  corresponding to 

the center frequencies 2723 cm-1 and 2667 cm-1 were used for the CCl4 and Bz samples, 

respectively. 

 

 

Figure S3. Long time ( wT  = 500 ps) heating signal 2D IR spectra for isolated silanols (Si-OD) in 

(a) CCl4 and (b) benzene. 
 

 The MCM41-OD mixed solvent 2D IR spectra (1:5 Bz:CCl4) will also contain a heating 

signal contribution. The removal of this heating signal is less trivial than in the case of the pure 
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solvent spectra discussed above. Whereas the 2D band shape of the heating signal in the pure 

solvents is taken to be time-independent (the amplitude being the only time-dependent quantity), 

this is not so in the case of the mixed solvent. The reason for this is that the heating signals 

corresponding to Bz and CCl4 associated isolated silanols are spectrally distinct and grow in at 

different rates dictated by the vibrational lifetimes of the OD oscillators in the two environments. 

To remove heating from the 1:5 Bz:CCl4 spectra, we must linearly combine the heating signals 

from the pure Bz and pure CCl4 spectra and subtract the result from the observed 1:5 Bz:CCl4 

spectra in a wT  dependent manner. This is clearly a first-order approach to removing the heating 

signal and does not consider higher-order cross-interactions between the two solvents. Even if 

the laser conditions and MCM41-OD samples were identical, with the only variable being the 

solvent, one would still have to adjust the amplitudes of the pure solvent heating signals to obtain 

a reasonable first-order approximation to the heating signal in the 1:5 Bz:CCl4 sample. This is 

because the number of silanols associated with Bz and CCl4 is very different between the mixed 

solvent sample and the pure solvent samples. Fortunately, the wT  dependence is known from 

PSPP experiments on the pure solvent samples. The additional information left to be determined 

is the absolute scale of the Bz and CCl4 heating spectra and their relative ratio in the sum, which 

will then be used to subtract the wT  dependent heating from the 1:5 Bz:CCl4 sample. This will 

require two additional scalar parameters. Therefore, if we denote the heating signals in the 

various cases as 
4 1

heat
CCl 3( ), ,S   , 1

heat
Bz 3, ,( )S   , and 

4 1
heat
Bz CCl 3( ), ,S   , our approach was to 

first reconstruct 
4 1

heat
Bz CCl 3( ), ,S    as a linear combination of the pure solvent heating signals, 

 

 
4 41 3 1 3

heat heat heat
Bz CCl CCl z 1 3B( ) ( ) ( ),, , , , , ,S n S m S             (S7) 

  

where n  and m  are scalar quantities that were determined using a nonlinear least-square solver 

in MATLAB R2019a. Fig. S4(a) displays the long time mixed solvent heating 2D IR spectrum, 

4 1
heat
Bz CCl 3( ), ,S   . The best fit of Eq. (S7) to this spectrum, using the pure solvent heating 

spectra from Fig. S3, is shown in Fig. S4(b). It can be seen that the fit overestimates certain 

positive and negative regions relative to the measured spectrum, but overall the agreement is 
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adequate for significant removal of this relatively small artifact. The heating signal was 

subsequently removed from the 2D IR chemical exchange spectra at all wT  values according to, 
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  (S8) 

 

where the parameters for CCl4 and Bz appearing in Eq. (S8) corresponding to the frequencies 

2717 cm-1 and 2670 cm-1 were used. These frequencies are the closest to the peak maxima 

observed in the mixed solvent linear absorption spectrum (see Fig. 1 and Table 1). 

 

 

Figure S4. (a) Long time ( wT  = 500 ps) heating signal 2D IR spectrum for isolated silanols (Si-

OD) in 1:5 Bz:CCl4. (b) Best fit to the spectrum in (a) using a linear combination of the pure 
solvent heating signal spectra from Fig. S3. 
 

SIII. Chemical Exchange Theory 

A. Dynamic Partition Model 

 The theory of 2D IR chemical exchange experiments was previously presented by Kwak 

et al.12 The discussion that follows is for a single population of vibrational oscillators (for 

example, a single silanol type). A single population in dynamic equilibrium can be divided into 
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six sub-ensembles that contribute to the observed 2D IR line shapes.12 At the beginning of the 

population period, wT  = 0 ps, two diagonal peaks, one originating from the total population of 

free oscillators, fN , and the other from the total population of complexed oscillators, cN , are 

excited and detected. As the population period increases, chemical exchange proceeds as free 

oscillators become complexed, fcN , and vice versa, cfN . If the diagonal peaks arising from fN  

and cN  occur at different frequencies, the populations that have undergone exchange an odd 

number of times during the wT  period, fcN  and cfN , will give rise to off-diagonal cross-peaks. 

Population transfer from a diagonal peak to a cross-peak, or the reverse, can only occur along the 

3  detection axis. This is because peaks exchanging population in the 2D IR spectrum must be 

excited at the same initial frequency, i.e. the same position along the 1  detection axis. 

So far, oscillators that exchange an even number of times before detection have been 

neglected in this discussion. Such oscillators will ultimately end up in the same state that they 

began, either free or complexed. Therefore, the peak corresponding to this population will also 

show up on the diagonal of the 2D IR spectrum. However, the line shape differs from that of the 

sub-ensemble that underwent no exchanges, or those that remained on the diagonal for the entire 

population period (see below).12 Thus, both time-dependent populations contributing to a 

diagonal peak must be modeled to accurately describe the 2D line shape. This can be done by 

first noting that, 

 

ff
s ex
f ,N N N            (S9) 

 

where s
fN  is the population that stayed free for the entire population period (underwent zero 

exchanges), and ex
fN  is the population that were initially free and exchanged an even number of 

times. An analogous equation holds for cN . It will be shown below that both fN  and s
fN  (and 

cN  and s
cN ) can be independently calculated. Using Eq. (S9), ex

fN  (and ex
cN ) can then be 

determined. In summary, for a single type of oscillator, the time-dependence of six sub-

ensembles must be tracked: s
fN  and ex

fN  (free species diagonal peak), s
cN  and ex

cN  (complexed 

species diagonal peak), and fcN  and cfN  (cross-peaks). 
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 The contribution of a given oscillator to the vibrational echo signal is determined by 

several factors including its exchange rate, lifetime, rate of rotation, transition dipole moment 

magnitude, and the polarization configuration of the echo signal being measured. The relevant 

kinetic pathways are depicted graphically in Fig. 7 for the perpendicular ( XXYY  ) polarization 

configuration, where f 1,f1k T  and 1c ,c1k T  are the inverse lifetimes of the free and 

complexed species, respectively, fck  is the rate of complexation, cfk  is the rate of dissociation, 

and  f6D  and c6D  are the rates of rotation for the free and complexed species, respectively. For 

the perpendicular configuration, rotation causes a growth of the echo signal, which is why the 

arrows point inwards.22, 23 For the parallel configuration ( XXXX  ), rotation causes a decay of 

the echo signal,12, 22, 23 and the only change to Fig. 7 would be outward pointing arrows 

accompanying each rotation pathway. The vibrational lifetime causes the signal to decay 

regardless of polarization, so the arrows associated with the vibrational lifetime are always 

outward pointing. 

 The influence of polarization on the effective populations requires ensemble averaging 

over the orientational distribution of the transition dipole moment unit vector, μ̂ . The orientation 

of the unit vector can be specified in spherical coordinates as , )(   . We assume that the 

probability that μ̂  is oriented in the direction   at time t , ,( )P t , is governed by the diffusion 

equation,12 

 

  2( , ) ( , ),P t DI P t
t


   


        (S10) 

 

where I  is the dimensionless orbital angular momentum operator from quantum mechanics.24 

Before performing the ensemble averaging, the populations evolve according to,12, 22 
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where the superscript asterisks in Eq. (S11) denote the populations before the ensemble average 

is taken. The solution to Eq. (S11) can be written in matrix form as, 
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For the parallel and perpendicular polarization configurations, XXXX ZZZZ      and 

XXYY ZZYY     , the initial angular distribution functions are respectively,  
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and 
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where the distributions have been expanded in the spherical harmonics. The ensemble average in 

either case is given by, 

 

 2... [...]cos ,d              (S15) 

 

where 
0

2

0
sind d d

 
     . After substituting the initial conditions, Eqs. (S13) and (S14), 

into Eq. (S12), and using the fact that the spherical harmonics are eigenfunctions of 2I , or 

2 ) ( 1) )( (m m
l lI lY Yl     for 0,1, 2,...l  , the intermediate results for parallel and perpendicular 

are, respectively, 
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where the matrices A  and B  are given by, 
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and  
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 with ffcf 6a k k D   , c cf c6b k k D   , fcc k , cfd k , iso f6a a D  , and ciso 6b b D  . All 

of the anisotropic dynamics are contained in the B  matrix, while the isotropic dynamics are 

contained in the A  matrix, which is independent of the rotational diffusion coefficients. Finally, 

performing the ensemble average, Eq. (S15), on both sides of Eqs. (S16) and (S17) gives, 
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for parallel and perpendicular, respectively. For 2D IR chemical exchange experiments, we also 

have the initial condition: cf fc(0) (0) 0N N  . With this initial condition, the solutions can be 

expressed, 

 

 
 

  4

2 1

3

1

f f

1

3 4 iso 3 iso 4

1 2 1 2( ) (0) ( ) ( )

( ) ( ) ,

t t

tt

N t N e a e a

e a e a

 



   

  



 





      

      
    (S22) 

 

    1 2 43
1 2

1 1

cf c 3 4( ) (0) ,tt t tN t N d e e e e                     (S23) 

 

 
  4

2 1

3

1

c c

1

3 4 iso 3 iso 4

1 2 1 2( ) (0) ( ) ( )

( ) ( ) ,

t t

tt

N t N e b e b

e b e b

 



   

  



 





      

      
    (S24) 

 

    1 2 43
1 2

1 1

fc f 3 4( ) (0) ,tt t tN t N c e e e e                      (S25) 

 

with  

 1/22
1 0.5 ( ) 4( ) ( ) ,a b ab cd a b               (S26) 

 

 12 /2

2 0.5 ( ) 4( ) ( ) ,a b ab cd a b               (S27) 

 

 12 /2

iso iso iso iso iso i o3 s0.5 ( ) 4( ) ( ) ,a b a b cd a b             (S28) 

 

  1/2

iso iso iso iso iso
2

i4 so0.5 ( ) 4( ) ( ) .a b a b cd a b              (S29) 

 

For parallel,   = 4/9 and   = 5/9, while for perpendicular   = -2/3 and   = 5/3. If the system is 

in thermal equilibrium, then the additional relationship also applies, 
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 c fc
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,
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N t k c
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N t k d
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which means that, 

 

 fc (0) (0) .N d N c          (S31) 

 

Consequently, in thermal equilibrium and for a fixed polarization configuration, cf fc( ) ( )N t N t , 

as can be seen by Eqs. (S23) and (S25). This means that the two populations giving rise to off-

diagonal peaks will grow in with the same time-dependence.  

 As mentioned above, oscillators that exchange an even number of times must be 

distinguished from those that do not exchange. The number of free oscillators that do not 

undergo exchange, s
fN , can be determined by setting the dissociation rate constant, cfk , to zero. 

Thus, once an oscillator exchanges from the free to complexed state, it cannot dissociate, or 

return back to the free state. The population s
f ( )N t  is equivalent to the solution to f ( )N t  with the 

added condition cf 0k  , or 

 

 s
f f cf( ) ( ; 0).N t N t k           (S32) 

 

Substituting Eq. (S32) into Eq. (S9) and rearranging gives, 

 

 ex
f f f cf( ) ( ) ( ; 0),N t N t N t k          (S33) 

 

which is the population of oscillators that began free and exchanged an even number of times. 

Analogous equations can be written for the complexed oscillators, but in this case the 

complexation rate constant, fck , is set to zero. 

 

- 
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B. Dynamic Partition Model with Restricted Rotational Diffusion 

 In the above section, we assumed that the transition dipole moment unit vector for each 

type of oscillator was undergoing free orientational diffusion with no boundary condition 

constraining the spatial extent of the motion. However, this assumption is not always accurate, as 

in the present situation where it is clear that the surface silanols are wobbling over a limited 

volume of space. Therefore, the boundary condition that limits the rotational motion to a portion 

of the unit sphere must be incorporated into the kinetic model. To do this, we take the approach 

of Ji et al. by using an effective time-dependent diffusion coefficient, ( )D t  (where   = c or 

f),23 

 

 2,2 ,( ) 6 ( ) ( ),
d

C t D t C t
dt             (S34) 

 2,ln ( )
6 ( ) .

C t
D t

t


            (S35) 

 

In this case, 2, ( )C t  is the wobbling-in-a-cone orientational correlation function for the   state. 

This approximation will only change the anisotropic B matrix in the preceding discussion. The 

modification is very simple; each factor of 6D  occurring in B  is replaced by 6 ( )D t . 

 

C. 3rd-order Response Functions for Chemical Exchange 

 Although the peaks from oscillators that do not exchange and those that exchange an 

even number of times are centered at the same position along the diagonal, their line shapes are 

not equivalent. The reason for this is that the two types of oscillators proceed through different 

quantum pathways.12 Oscillators that do not exchange, s
fN  and s

cN , will undergo spectral 

diffusion.12 The time-dependent band shape is determined by the frequency-frequency 

correlation function (FFCF) for the vibrational mode.2, 11, 12, 14, 15 Here we adopt the usual 

assumption that chemical exchange destroys all frequency correlation.12 This means that the 

probability that an oscillator occupies a given frequency in the new state following exchange is 

determined by the spectral line of the new state. The frequency of the oscillator in its former state 

has no influence on its frequency in the new state. The assumption of no frequency correlation 
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following exchange means that, f f cc ( ) (0) ( ) (0) 0t t         , where the frequency 

fluctuation, ( )t , is the difference between the instantaneous and average frequency, 

( ) ( )t t      . Under this assumption, the diagonal peaks for the populations, ex
fN  and ex

cN , 

exhibit completely de-correlated 2D band shapes that are determined by the product of the linear 

absorption spectrum of that particular species along the 1  and 3  axes.12 For the same reason, 

the cross-peaks arising from cfN  and fcN  will be completely de-correlated, but the 2D band 

shapes will be determined by the product of the linear absorption spectrum of the initial species 

along 1  with that of the final species along 3 .25 

Kwak et al. presented the double-sided Feynman diagrams, and corresponding time-

domain response functions, relevant to 2D IR chemical exchange experiments.12 These can be 

divided into three sets; the general characteristics of the peaks for each set were described 

qualitatively in the previous paragraph. Each contains rephasing and non-rephasing diagrams for 

stimulated emission, ground-state bleach, and excited-state absorption Liouville space pathways 

for a three-level system.2, 10, 12 The three sets of six response functions apply to 1) the portion of 

the diagonal peaks arising from oscillators that do not exchange ( s
fN  and s

cN ) 2) the portion of 

the diagonal peaks arising from oscillators that undergo an even number of exchanges ( ex
fN  and 

ex
cN ), and 3) the cross-peaks (off-diagonal) that arise from oscillators that undergo an odd 

number of exchanges ( cfN  and fcN ). The influence of the transition dipole moment magnitude 

on the strength of the observed signals is contained in the response function expressions. The 0-1 

and 1-2 transitions for the diagonal peaks will scale as 4
,01| |  and 2 2

,01 ,12| | | |   , 

respectively, where the subscript   = c or f. This is identical to the case of a single oscillator in a 

system with no exchange. However, the 0-1 and 1-2 transitions for the cross-peaks will scale as 

2 2
,01 ,01| | | |    and 2 2

,01 ,12| | | |   , respectively, where   and   stand for two different 

species, c or f. 
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SIV. Pure Solvent 2D IR Spectra and CLS 

 

 

Figure S5. 2D IR spectra in the isolated Si-OD stretching region for silanols in (a) CCl4 and (b) 
benzene at wT  = 0.5 ps, 10 ps, and 100 ps. 
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Figure S6. CLS decays for isolated silanols in CCl4 (black squares) and benzene (red circles). 
The curves are triexponential fits with an offset. 

  

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8
 CCl4

 benzene

C
L

S

Tw (ps)



S22 
 

Table S1. Biexponential fit parameters to P(t) for MCM41-OD in pure CCl4. 

frequency (cm-1) 
IIA  II

1T  (ps) IA  I
1T  (ps) 

2768 0.0027 ± 0.0003 17.8 ± 0.8 0.010 ± 0.001 71 ± 2 
2765 0.0028 ± 0.0003 17.8 ± 0.8 0.010 ± 0.001 71 ± 2
2762 0.0036 ± 0.0005 17.8 ± 0.8 0.011 ± 0.001 71 ± 2
2760 0.0039 ± 0.0005 17.8 ± 0.8 0.012 ± 0.001 71 ± 2
2756 0.0043 ± 0.0007 17.8 ± 0.8 0.014 ± 0.001 71 ± 2
2753 0.0047 ± 0.0007 17.8 ± 0.8 0.016 ± 0.002 71 ± 2
2751 0.005 ± 0.001 17.8 ± 0.8 0.020 ± 0.002 71 ± 2
2748 0.006 ± 0.001 17.8 ± 0.8 0.020 ± 0.001 71 ± 2
2745 0.0076 ± 0.0008 17.8 ± 0.8 0.025 ± 0.001 71 ± 2
2742 0.009 ± 0.001 17.8 ± 0.8 0.031 ± 0.002 71 ± 2
2739 0.010 ± 0.001 17.8 ± 0.8 0.040 ± 0.002 71 ± 2
2737 0.013 ± 0.002 17.8 ± 0.8 0.056 ± 0.003 71 ± 2
2734 0.016 ± 0.002 17.8 ± 0.8 0.078 ± 0.004 71 ± 2
2731 0.022± 0.004 17.8 ± 0.8 0.114 ± 0.007 71 ± 2
2728 0.033 ± 0.005 17.8 ± 0.8 0.16 ± 0.01 71 ± 2
2725 0.045 ± 0.007 17.8 ± 0.8 0.21 ± 0.01 71 ± 2
2723 0.061 ± 0.008 17.8 ± 0.8 0.24 ± 0.02 71 ± 2
2720 0.073 ± 0.009 17.8 ± 0.8 0.24 ± 0.02 71 ± 2
2717 0.081 ± 0.008 17.8 ± 0.8 0.22 ± 0.02 71 ± 2
2714 0.087 ± 0.007 17.8 ± 0.8 0.19 ± 0.02 71 ± 2
2712 0.093 ± 0.007 17.8 ± 0.8 0.16 ± 0.01 71 ± 2
2709 0.098 ± 0.007 17.8 ± 0.8 0.13 ± 0.01 71 ± 2
2706 0.104 ± 0.006 17.8 ± 0.8 0.11 ± 0.01 71 ± 2
2704 0.109 ± 0.006 17.8 ± 0.8 0.091 ± 0.009 71 ± 2
2701 0.112 ± 0.007 17.8 ± 0.8 0.076 ± 0.008 71 ± 2
2698 0.114 ± 0.006 17.8 ± 0.8 0.063 ± 0.007 71 ± 2
2696 0.113 ± 0.006 17.8 ± 0.8 0.053 ± 0.006 71 ± 2
2693 0.110 ± 0.006 17.8 ± 0.8 0.045 ± 0.005 71 ± 2
2690 0.107 ± 0.005 17.8 ± 0.8 0.039 ± 0.005 71 ± 2
2688 0.099 ± 0.005 17.8 ± 0.8 0.032 ± 0.005 71 ± 2
2685 0.091 ± 0.004 17.8 ± 0.8 0.028 ± 0.004 71 ± 2
2683 0.082 ± 0.003 17.8 ± 0.8 0.023 ± 0.004 71 ± 2
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Table S2. Biexponential fit parameters to P(t) for MCM41-OD in pure benzene. 

frequency (cm-1) 
IIA  II

1T  (ps) IA  I
1T  (ps) 

2707 0.0062 ± 0.0004 15 ± 1 0.025 ± 0.003 46.7 ± 0.6 
2705 0.0065 ± 0.0004 15 ± 1 0.027 ± 0.004 46.7 ± 0.6

2702 0.0073 ± 0.0007 15 ± 1 0.028 ± 0.004 46.7 ± 0.6

2699 0.0083 ± 0.0007 15 ± 1 0.030 ± 0.004 46.7 ± 0.6

2696 0.0088 ± 0.0007 15 ± 1 0.032 ± 0.004 46.7 ± 0.6

2694 0.0091 ± 0.0009 15 ± 1 0.034 ± 0.004 46.7 ± 0.6

2691 0.0099 ± 0.0009 15 ± 1 0.037 ± 0.005 46.7 ± 0.6

2688 0.011 ± 0.001 15 ± 1 0.040 ± 0.005 46.7 ± 0.6

2686 0.011 ± 0.001 15 ± 1 0.044 ± 0.005 46.7 ± 0.6

2683 0.012 ± 0.002 15 ± 1 0.049 ± 0.006 46.7 ± 0.6

2680 0.012 ± 0.002 15 ± 1 0.053 ± 0.006 46.7 ± 0.6

2678 0.013 ± 0.002 15 ± 1 0.061 ± 0.007 46.7 ± 0.6

2675 0.014 ± 0.002 15 ± 1 0.067 ± 0.007 46.7 ± 0.6

2673 0.014 ± 0.002 15 ± 1 0.074 ± 0.008 46.7 ± 0.6

2670 0.015 ± 0.002 15 ± 1 0.079 ± 0.008 46.7 ± 0.6

2667 0.015 ± 0.003 15 ± 1 0.083 ± 0.009 46.7 ± 0.6

2665 0.015 ± 0.003 15 ± 1 0.086 ± 0.009 46.7 ± 0.6

2662 0.015 ± 0.002 15 ± 1 0.084 ± 0.009 46.7 ± 0.6

2660 0.015 ± 0.003 15 ± 1 0.081 ± 0.009 46.7 ± 0.6

2657 0.015 ± 0.003 15 ± 1 0.075 ± 0.008 46.7 ± 0.6

2654 0.015 ± 0.003 15 ± 1 0.068 ± 0.008 46.7 ± 0.6

2652 0.016 ± 0.002 15 ± 1 0.059 ± 0.007 46.7 ± 0.6

2649 0.016 ± 0.003 15 ± 1 0.052 ± 0.006 46.7 ± 0.6

2647 0.016 ± 0.002 15 ± 1 0.044 ± 0.006 46.7 ± 0.6
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Table S3. Two-component fit parameters to r(t) for MCM41-OD in pure CCl4. 

freq. 
(cm-1) IIa  

II
1T  (ps) II

in  (°) II
1c  (°) II

1c  (ps) 
I

1T  

(ps) 
I
in  (°) I

1c  (°) I
1c  (ps) 

2745 0.23 ± 0.03 17.8 ± 0.8 30 ± 6 40 ± 29 6.5 ± 0.2 71 ± 2 30 ± 5 46 ± 3 1.0 ± 0.1 
2742 0.22 ± 0.03 17.8 ± 0.8 27 ± 5 34 ± 27 6.5 ± 0.2 71 ± 2 31 ± 2 44 ± 3 1.0 ± 0.1
2739 0.21 ± 0.03 17.8 ± 0.8 25 ± 3 32 ± 16 6.5 ± 0.2 71 ± 2 32 ± 1 42 ± 2 1.0 ± 0.1
2737 0.18 ± 0.02 17.8 ± 0.8 14 ± 7 28 ± 14 6.5 ± 0.2 71 ± 2 34 ± 1 39 ± 2 1.0 ± 0.1
2734 0.17 ± 0.03 17.8 ± 0.8 0 ± 5 23 ± 11 6.5 ± 0.2 71 ± 2 33 ± 1 39 ± 1 1.0 ± 0.1
2731 0.16 ± 0.03 17.8 ± 0.8 0 ± 3 0 ± 10 6.5 ± 0.2 71 ± 2 31.6 ± 0.4 39 ± 2 1.0 ± 0.1
2728 0.17 ± 0.02 17.8 ± 0.8 0 ± 0 6 ± 9 6.5 ± 0.2 71 ± 2 30.8 ± 0.8 38 ± 1 1.0 ± 0.1
2725 0.18 ± 0.03 17.8 ± 0.8 0 ± 0 6 ± 9 6.5 ± 0.2 71 ± 2 29.5 ± 0.1 38 ± 1 1.0 ± 0.1
2723 0.21 ± 0.02 17.8 ± 0.8 0 ± 0 10 ± 8 6.5 ± 0.2 71 ± 2 28.6 ± 0.5 39 ± 1 1.0 ± 0.1
2720 0.24 ± 0.02 17.8 ± 0.8 0 ± 0 16 ± 8 6.5 ± 0.2 71 ± 2 28.0 ± 0.5 39 ± 2 1.0 ± 0.1
2717 0.27 ± 0.02 17.8 ± 0.8 0 ± 0 20 ± 5 6.5 ± 0.2 71 ± 2 27.2 ± 0.5 41 ± 2 1.0 ± 0.1
2714 0.32 ± 0.01 17.8 ± 0.8 0 ± 0 22 ± 4 6.5 ± 0.2 71 ± 2 26.2 ± 0.6 42 ± 2 1.0 ± 0.1
2712 0.37 ± 0.01 17.8 ± 0.8 0 ± 0 26 ± 3 6.5 ± 0.2 71 ± 2 26.8 ± 0.2 43 ± 2 1.0 ± 0.1
2709 0.42 ± 0.01 17.8 ± 0.8 9 ± 1 27 ± 2 6.5 ± 0.2 71 ± 2 24.4 ± 0.8 45 ± 2 1.0 ± 0.1
2706 0.48 ± 0.01 17.8 ± 0.8 13 ± 1 28 ± 2 6.5 ± 0.2 71 ± 2 23.2 ± 0.9 46 ± 2 1.0 ± 0.1
2704 0.54 ± 0.01 17.8 ± 0.8 16 ± 1 29 ± 2 6.5 ± 0.2 71 ± 2 19.8 ± 0.7 47 ± 2 1.0 ± 0.1
2701 0.60 ± 0.01 17.8 ± 0.8 18 ± 1 29 ± 1 6.5 ± 0.2 71 ± 2 17 ± 1 48 ± 2 1.0 ± 0.1
2698 0.64 ± 0.01 17.8 ± 0.8 19 ± 2 28 ± 2 6.5 ± 0.2 71 ± 2 11 ± 4 50 ± 3 1.0 ± 0.1
2696 0.68 ± 0.01 17.8 ± 0.8 19 ± 1 30 ± 1 6.5 ± 0.2 71 ± 2 8 ± 2 50 ± 3 1.0 ± 0.1
2693 0.71 ± 0.01 17.8 ± 0.8 19 ± 2 30 ± 1 6.5 ± 0.2 71 ± 2 0 ± 5 50 ± 3 1.0 ± 0.1
2690 0.73 ± 0.02 17.8 ± 0.8 18 ± 2 31 ± 1 6.5 ± 0.2 71 ± 2 0 ± 4 49 ± 3 1.0 ± 0.1
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Table S4. Single-component fit parameters to r(t) for MCM41-OD in pure benzene. 

freq. (cm-1) 
in1  (°) 1c  (°) 2c  (°) 1c  (ps) 2c  (ps) 

2707 24.1 ± 0.4 31.0 ± 0.6 40.8 ± 0.8 4.4 ± 0.1 50 ± 1 
2705 24.1 ± 0.4 30.3 ± 0.6 42.0 ± 0.7   
2702 22.9 ± 0.4 31.0 ± 0.6 42.4 ± 0.7   
2699 22.8 ± 0.4 30.0 ± 0.6 45.4 ± 0.7   
2696 22.1 ± 0.5 29.7 ± 0.6 46.3 ± 0.7   
2694 21.6 ± 0.5 29.9 ± 0.6 45.1 ± 0.7   
2691 20.5 ± 0.5 30.1 ± 0.6 42.6 ± 0.7   
2688 20.0 ± 0.5 29.4 ± 0.6 47.5 ± 0.7   
2686 19.4 ± 0.5 29.2 ± 0.6 46.9 ± 0.7   
2683 18.2 ± 0.5 29.7 ± 0.6 45.8 ± 0.7   
2680 17.8 ± 0.5 28.7 ± 0.6 47.6 ± 0.7   
2678 16.4 ± 0.6 28.9 ± 0.6 46.9 ± 0.7   
2675 15.7 ± 0.6 28.3 ± 0.6 48.3 ± 0.7   
2673 14.8 ± 0.6 28.0 ± 0.6 47.0 ± 0.6   
2670 13.9 ± 0.6 27.9 ± 0.6 48.5 ± 0.6   
2667 13.3 ± 0.7 27.5 ± 0.6 48.4 ± 0.6   
2665 12.8 ± 0.7 27.3 ± 0.6 48.1 ± 0.6   
2662 12.7 ± 0.7 27.1 ± 0.6 48.6 ± 0.6   
2660 12.8 ± 0.7 26.9 ± 0.6 49.0 ± 0.6   
2657 12.9 ± 0.7 26.9 ± 0.6 48.5 ± 0.6   
2654 13.3 ± 0.7 27.0 ± 0.6 48.8 ± 0.6   
2652 13.9 ± 0.6 27.1 ± 0.6 48.8 ± 0.6   
2649 14.4 ± 0.6 27.2 ± 0.6 49.7 ± 0.7   
2647 14.9 ± 0.6 27.4 ± 0.6 49.5 ± 0.7   

 

Table S5. CLS triexponential fit parameters for MCM41-OD in pure solvents. 

solvent 
0y  1A  1t  (ps) 2A  2t  (ps) 3A  3t  (ps) 

CCl4 0.07 ± 0.01 0.18 ± 0.05 0.8 ± 0.3 0.11 ± 0.02 6 ± 1 0.14 ± 0.01 55 ± 7 
Bz 0.12 ± 0.03 0.16 ± 0.08 0.7 ± 0.2 0.22 ± 0.04 7 ± 2 0.23 ± 0.02 37 ± 13 

 

Table S6. FFCF parameters for MCM41-OD in pure solvents. 

 2T  (ps) 1  (cm-1) 1  (ps) 2  (cm-1) 2  (ps) 3  (cm-1) 3  (ps) 4  (cm-1) 

CCl4 0.51 ± 0.3 7 ± 1 0.8 ± 0.3 5.7 ± 0.4 6 ± 1 5.5 ± 0.3 55 ± 7 4.4 ± 0.2 

Bz 0.50 ± 0.2 11 ± 1 0.7 ± 0.2 13.1 ± 0.3 7 ± 2 13.6 ± 0.5 37 ± 13 9.8 ± 0.1 
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