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S1. Markov Chain Model 

To examine the time dependence of the RISD correlation functions, a numerical Markov 

chain model similar to that developed by Garrett-Roe and coworkers was employed.1 As was 

described in the main text, the Markov chain model describes the orientational relaxation of a 

probe molecule in a given angular potential, V(Ω), as a biased random walk on a discretized unit 

sphere. The Lebedev quadrature was used for the spherical discretization2-4 as it provides a high 

degree of accuracy for angular integrals using a minimum number of points. 

Using the Markov chain model, the probabilistic time evolution of the orientation of the 

probe molecule for a unit time can be encoded into a transition matrix T, where each element of 

the matrix Tij = ρ(Ωj|Ωi) is the probability of the probe molecule diffusing from angular 

orientation Ωi to orientation Ωj in the given time step. The transition matrix is the equivalent to a 

discretized Green’s function, G(Ω(t)|Ω(0),t), in the correlation function definition in Eq. 9 in the 

main text. This probability can be defined using an approximate spherical diffusion propagator5, 6 

and a bias term which satisfies detailed balance at equilibrium:1 
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where τ = 2Dmt is a reduced unit time step, θij is the angular difference between state Ωi and state 

Ωj, and ρ(Ωi) is the equilibrium probability of the probe molecule having orientation Ωi, given a 

certain orientation of the electric field vector and steric restriction vector. 

To conserve probability, the diagonal terms, Tii, were set as one minus the sum of all 

other elements in the matrix column. The eigenvectors of T can be shown to be the equilibrium 

distribution ρ(Ω), and exponentiation of the full transition matrix allows the system to evolve 

through time, where TN corresponds to N unit time steps having occurred. 
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Using the transition matrix, the time dependent RISD expressions can be evaluated: 
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Where ⚬ indicates element-wise multiplication. m and f are the polarization weight and local field 

projection vectors that have elements defined as: 
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 id 


is the unit vector corresponding for orientational microstate Ωi. Ĥ  and F̂  are the 

orientations of the steric alignment potential and the electric field, respectively, and  ˆ ˆ|F H is 

the probability of the electric field having orientation F̂  given the steric alignment is in 

orientation Ĥ . The w terms are the weights for the given microstate in the Lebedev quadrature.2-

4 As these integrals are evaluated in the lab frame, the polarization weight terms can be evaluated 

as follows: 
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The intensity normalization factor I(N) is calculated in an analogous way: 
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The above equation can also be used to calculate the various Legendre polynomial orientational 

correlation functions, Cl(N), by replacing the polarization weights with the appropriate Legendre 

polynomial, Pl(Ω). Eq. S3 can then be used with Eq. 5 to get the fully baselined ( )pR t . 
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For the frequency-dependent orientational dynamics calculations presented in Fig. 5, the 

results for each combined steric/electrostatic potential were placed in a separate bin based on the 

calculated value of cos F  for that particular potential. A dense grid spacing was used for the 

Lebedev quadrature (590 points4) and the bins of cos F  were spaced by 0.1 from -0.9 to 0.9. 

S2. Analytic Calculations with Arbitrary Dipole Moment Orientations 

As was detailed in the main text, expectation values for an azimuthally symmetric 

potential can be written compactly as:7 
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for  l
mnD  is a Wigner rotation matrix and Sl is an order parameter for the lth Legendre 

polynomial Pl(cosθ) in the angular potential V(Ω) as summarized in Table 1. Similarly, in the 

long-time limit the correlation function takes the value:7 
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where the initial and final measurements are independent and both at equilibrium.  

The observables present in the correlation function (Eq. 10) can also be expressed in 

terms of rotation matrices. In particular, the polarization weights can be written most compactly 

as:8 
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Where ΩLT is the orientation of the molecular transition dipole (subscript T) with respect to the 

lab frame (subscript L). Similarly, the Stark effect interaction can be written using: 

  1
00cos ( ) ( )FD FDt D t    (S9) 

Where ΩFD is the orientation of the molecular difference dipole moment (subscript D) with 

respect to the frame of the electric field (subscript F). 

In order to evaluate integrals such as in Eq. S6, it is necessary to change the coordinate 

systems in Eqs. S8 and S9 such that they are in the frame of the potential, V. This change of basis 

between either different reference frames or different molecular axes can be done 

straightforwardly using rotation matrices:8-10 
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The integrals over each basis set can then be calculated in a tedious but straightforward manner 

using:8-10 
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Where the terms in brackets are Wigner’s 3-J symbols and have tabulated values. Importantly, 

the 3-J symbols are zero unless 1 2 3 1 2l l l l l     , 1 2 3 0m m m   , and 1 2 3 0n n n   , 

which reduces the total number of terms to be considered to a small set. 

First we will work out the Stark expectation values for the generic case for the combined 

potential K (Comparable to Eq. 29):  
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The second line uses the change of basis in Eq. S10 twice to go from the frame of the observable, 

ΩFD, to the frame of the potential, ΩKP. The term ΩPD = (ϕPD, ζ, χPD) represents the orientation of 

the molecular permanent dipole relative to the dipole difference vector and the term ΩKF = (ϕKF, 

η, χKF) represents the orientation of the combined potential relative to the orientation of the 

electric field. The third line uses the integration identity in Eq. S11, where the symmetry of the 

potential removes all m and n ≠ 0 and the order of the observable removes l ≠ 1. The fourth line 

uses the definitions of the rotation matrix to put the result in terms of simple trigonometric 

functions. Setting ζ = 0 recovers Eq. 29 in the main text, which can be used to derive the pure 

electrostatic and steric cases as discussed in Section IV.B. 

The analogous calculation can be done for the second Stark expectation value:  
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Where setting ζ = 0 recovers what corresponds to Eq. 33 in the main text. 

The polarization-weighted correlation functions are most easily evaluated by first 

considering a generic case: 
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Where ΩLK is the orientation of the angular potential K in the lab frame. By construction we 

presumed that these potentials are isotropically distributed in the lab frame, so upon integration 

over all orientations we drop the cross terms in line 2 and drop all terms where n ≠ n’. 

Performing the same calculation in the perpendicular polarization weighting gives: 
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Which allows the polarization weighted observables to be written as a sum of an isotropic part 

and an anisotropic part as follows: 
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Where p = +4/5 for parallel and -2/5 for perpendicular as in the main text. 

 The pump-probe correlation function is then easily calculable (A = 1 in Eq. S16). Starting 

with the anisotropic order parameter: 
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Where ΩPT = (ϕPT, ψ, χPT) is the orientation of the molecular permanent dipole relative to the 

transition dipole moment and δ is the Kronecker delta function. Plugging back into Eq. S16 

gives: 
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Which for ψ = 0 yields Eq. 17. The angular dependence in Eq. S18 arises from the fact the 

angular potential is centered on the permanent dipole, µP, instead of the transition dipole, µT. 

 For the numerator of the RISD function Rp(t), A = cos θFD. The isotropic part 
2

cos FD  

is then given by Eq. S12. The anisotropic part is then (cont. on next page): 
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Line 3 follows from the change in frame per Eq. S10. Line 4 has two simplifications. The 

triangle equality in Eq. S11 is employed to drop all terms other than k = –n and j = –m. The 

azimuthal angles are also arbitrary for ΩFK, so all terms that depend on them can be dropped. The 

final line comes from evaluating the integral and rewriting the D matrices in terms of 

trigonometric functions. The pure electrostatic case has η = 0, while the pure steric case is the 

integral over all η such that 2 21 1
cos sin

2 3
   . The simpler cases examined in the main 

text can then be recovered with ζ = ψ = 0. 

 The final, fully general RISD offset is then: 
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Additionally, the same weak-field limit can be examined. Setting S2 and S3 = 0 in Eq. S19 gives: 
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Which gives the same result as the main text, where the pure electrostatic case, η = 0, is exactly 

1.2x the pure steric case, 2 21 1
cos sin

2 3
   . With knowledge of the angles between the 

various dipoles of the given probe molecule, one can then in principle reconstruct the full RISD 

from the appropriate steric case alone. As is discussed in the next section, this is unfortunately 

not trivially done. The polarization differences are then once again driven by the baselining 

procedure, although the Stark effect parameters (Eqs. S12 and S13) have additional dependence 

on the angle ζ between the permanent dipole and difference dipole moments. 

S3. Note on RISD Time Dependence with Arbitrary Dipole Moment Orientations 

 A key fact needed for the development of the time-dependent RISD approximation in the 

main text (Eq. 26) arises from the similarity between the RISD correlation functions in the case 

of free diffusion and the long-time offset of the RISD correlation function in the case of steric 

hindrance. In particular, the free diffusion time dependence for ζ = ψ = 0 is: 
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and the long-time offset is: 
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Significantly, Eq. S23 is the same as Eq. S22 with the identity 2( )l lC t S  . As was 

mentioned in the main text, this is not the case for µT ≠ µD. We will consider the case where µP = 

µT ≠ µD in particular, such that ψ = 0 and ζ ≠ 0 in the notation of the previous section. In this 

case, the identity for Cl examined above still holds, as the angular potentials are oriented with 

respect to the transition dipole. 

 Using the notation of this paper, the RISD correlation function in the case of free 

diffusion for this general case has been previously found to be:8 
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While the offset as calculated from Eq. S20 for a pure steric case is then: 
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where it is apparent that the correspondence that existed between S22 and S23 is broken. This 

result can be understood in part from the RISD correlation functions describing the orientational 

motion of the dipole difference moment, while the pump-probe experiment describes the motion 

of the transition dipole moment. If these dipole moments are not coincident, the one-to-one 

correspondence between the Cl’s in the RISD correlation function expressions and the pump-

probe experiment is broken. 
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In general, one cannot indiscriminately use the analytic results of RISD functions derived 

assuming free diffusion with arbitrary Cl(t) that assume some form of steric hindrance. However, 

Eq. S24 shows one cannot neglect the impact on the time dependence if µT and µD have 

substantially different orientations. While the previous section suggests that similar 

equivalencies can be drawn for ζ = ψ ≠ 0 for RISD between the electrostatic or combined 

potential cases and the pure steric case, it is clear that there is not presently a full description for 

the steric RISD correlation function in this more general case. 

S4. Approximating the Effective Potential VX 

The effective potential VX used in Section IV.B is defined as an integral of the combined 

potential in Eq. 27 over all relative angles of the orientations of the component potentials, γ: 

    exp cos ~ sin exp cos cosX KP K KPV d V           (S26) 

where κ is a parameter that describes the relative alignment between the steric and electrostatic 

potentials. The right hand side was evaluated using Mathematica, and the natural logarithm of 

the expression was expanded in terms of cos θKP, κ, and f, for f = VF/VH.  Taking the term linear 

in cos θKP and to second order in κ and f gives the following approximation for VX: 

 
2 2 2

1
3 45X H

f f f
V V

  
   

 
. (S27) 

This approximation works best for f < 1 and moderate κ, as the term quadratic in cos θKP goes as 

5f 2 – f 2κ2. 

Once VX is calculated, the various order parameters can be estimated using the following 

approximation: 

        sin exp cos cosX K K KPA V d A V V           . (S28) 
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The different moments of cos( ) (describing the angle between each combined potential and its 

electric field component) can also be examined, with: 
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. (S29) 

and 
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S14 
 

S5. Representative 2D Spectra and RISD Fit Residuals 

 
Fig. S1: Representative polarization-selective 2D spectra of PhSeCN in the polystyrene oligomer over three decades 
of time. The blue lines are the center lines used in the CLS analysis. 

Fig. S2: Fit residuals for the two RISD fits demonstrated in Fig. 7 of the main text. Red symbols: XXXX, Blue 
symbols: XXYY. The open symbols are the standard RISD theory which systematically misses the experimental 
data. The filled symbols is the new theory that incorporates electrostatic ordering and steric hindrance. 
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