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1. Density Functional Theory 

A B

 

Figure S1. Optimized structures of PhSeCN and BZN calculated with Density Functional Theory. The functional 
used was B3WP91 and the basis set 6-311G (2df, p). A tight convergence criterion and a superfine integration grid 
were used. The arrows represent displacement vectors for the atoms involved in the CN stretching normal mode. 
Only two displacement vectors are observed in PhSeCN; one for each atom in the CN moiety. In BZN, three 
displacement vectors are observed: one for each atom in the CN moiety, and one for the ipso carbon on the phenyl 
ring. These observations indicate that in BZN, the CN stretching normal mode is not a local mode and that the 
phenyl ring is coupled to the CN vibration. 
 

A vibrational frequency calculation was performed on the optimized structures and an 

anharmonic correction was performed on the CN stretching mode. A summary of the vibrational 

frequency results is presented in Table S1. 
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Table S1. Experimentally determined and harmonic and anharmonic vibrational frequencies calculated 
with DFT vibrational frequencies ( 

Molecule Zero-field (cm-1) Harmonic (cm-1) Anharmonic (cm-1) Percent 
error (%) 

Phenyl selenocyanate 2163.5 2271.8 2237.75 3.4 

Benzonitrile 2234.6 2345.8 2311.0 3.4 

 

2. Line shapes of phenyl selenocyanate in all solvents 

 
Figure S2. Pump-probe signal of the CN stretching vibration of PhSeCN in a series of non-aromatic and non-
hydrogen bonding solvents. Gaussian fits to the 0→1 and 1→2 transition line shapes are shown as solid red lines. A 
summary of the parameters that describe the line shapes for PhSeCN is presented in Table S2. 
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Table S2. Line shape parameters for the 0→1 and 1→2 vibrational transitions of PhSeCN in a series of 
non-aromatic and non-hydrogen bonding solvents. 

Solvent  (cm-1)  01 (cm-1)   (cm-1)  12 (cm-1) 

Dimethyl sulfoxide 2150.3 ± 0.02  10.9 ± 0.05  2124.2 ± 0.06  10.6 ± 0.2 

Dimethylformamide 2152.1 ± 0.02  9.6 ± 0.1  2126.4 ± 0.02  9.5 ± 0.1 

Acetone 2155.2 ± 0.05  3.3 ± 0.06  2129.7 ± 0.05  8.0 ± 0.1 

Dichloromethane 2156.9 ± 0.04  8.5 ± 0.1  2131.4 ± 0.05  8.1 ± 0.2 

Tetrahydrofuran 2154.8 ± 0.04  8.0 ± 0.1  2129.0 ± 0.06  8.1 ± 0.2 

Methyl acetate 2156.8 ± 0.03  7.9 ± 0.1  2131.0 ± 0.06  7.6 ± 0.2 

Chloroform 2157.7 ± 0.03  4.1 ± 0.04  2132.2 ± 0.05  9.7 ± 0.1 

Carbon tetrachloride 2158.9 ± 0.06  6.7 ± 0.1  2133.4 ± 0.04  6.6 ± 0.2 

Cyclohexane 2159.5 ± 0.05  5.8 ± 0.1  2134.1 ± 0.04  5.8 ± 0.2 

Hexane 2160.1 ± 0.03  5.7 ± 0.1  2134.7 ± 0.03  5.7 ± 0.1 
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3. Line shapes of benzonitrile in all solvents 
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Figure S3. Pump-probe signal of the CN stretching vibration of BZN in a series of non-aromatic and non-hydrogen 
bonding solvents. Gaussian fits to the 0→1 and 1→2 transition line shapes are shown as solid red lines. A summary 
of the parameters that describe the line shapes for BZN is presented in Table S3. 
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Table S3. Line shape parameters for the 0→1 and 1→2 vibrational transitions of BZN in a series of non-
aromatic and non-hydrogen bonding solvents. 

Solvent  (cm-1)  01 (cm-1)   (cm-1)  12 (cm-1) 

Dimethyl sulfoxide 2227.4 ± 0.03  6.8 ± 0.1  2203.6 ± 0.02  10.5 ± 0.1 

Dimethylformamide 2228.2 ± 0.03  5.9 ± 0.1  2204.3 ± 0.02  9.6 ± 0.1 

Acetone 2229.9 ± 0.03  5.5 ± 0.1  2206.4 ± 0.03  8.5 ± 0.1 

Dichloromethane 2230.6 ± 0.02  6.3 ± 0.1  2207.4 ± 0.03  8.4 ± 0.1 

Tetrahydrofuran 2229.5 ± 0.05  6.0 ± 0.1  2205.9 ± 0.02  8.9 ± 0.1 

Methyl acetate 2230.7 ± 0.02  5.9 ± 0.1  2207.6 ± 0.02  9.0 ± 0.1 

Chloroform 2231.2 ± 0.04  7.5 ± 0.1  2207.9 ± 0.04  10.2 ± 0.2 

Carbon tetrachloride 2231.9 ± 0.03  6.1 ± 0.1  2208.8 ± 0.04  8.7 ± 0.1 

Cyclohexane 2232.4 ± 0.04  6.4 ± 0.2  2208.8 ± 0.03  9.3 ± 0.1 

Hexane 2232.7 ± 0.02  6.9 ± 0.1  2209.4 ± 0.02  3.0 ± 0.1 
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4. Line shape decomposition 
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Figure S4. (A) Field dependent ( )S  , (B) solvent independent ( )NSC  , and (C) resulting .( )conv   spectra to 

observe the effect of the Stark contribution vibrational frequency shift on the NSC contribution. (D) The frequency 

of ( )NSC   decreases linearly by ( )S  , and the resulting center frequency of the observed spectrum is located at 

the value NSC  – S . (E) As expected, the resulting standard deviation is larger compared to the two individual 

contributions, but it remains fixed and it is not affected by the frequency shift of ( )S  . 

 

Figure S5. (A) Electric field-dependent standard deviation ( )S  , (B) solvent independent ( )NSC  , and (C) 

resulting .( )conv   to observe the effect of the Stark standard deviation on the observed final standard deviation. 

The square of the resulting standard deviation grows linearly with the square of the varying line shape width (E). In 
the limit that the Stark standard deviation is much smaller than the NSC standard deviation, only the latter is visible. 
In the reverse case, only the Stark standard deviation is visible (D). 
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Figure S6. (A) Field dependent ( )S   with moving center and increasing stadard deviation, (B) solvent 

independent ( )NSC  , and (C) resulting .( )conv  . The Stark contribution broadens as it shifts in frequency to 

observe the effect this has on the zero-field spectra. The resulting center frequency is equal to the difference between 
the two input line centers and it incerases linearly with the Stark frequency shifts. The square of the resulting 
standard deviation increases linearly with the square of the Stark contribution standard deviation. In the limit that the 
Stark spectrum is much narrower than the zero-field spectrum, the resulting spectrum only displays the line width of 
the zero-field contribution. Conversely, in the limit that the Stark contribution is much broader than the zero-field 
contribution, the resulting spectrum only displays the standrad deviation of the Stark spectrum. 

 

 

Figure S7. (A) Field dependent ( )S  , (B) solvent dependent ( )NSC  , and (C) resulting .( )conv   to observe 

the effect of varying the center frequency and width of both the Stark and NSC contributions on the final observed 
spectrum. The Stark and NSC contributions were allowed to shift in frequency and broaden at different rates. As 
expected, the center frequency of the resulting spectrum is equal to the difference between the two input spectra (D), 
whereas the square of the standard deviation increases linearly with the addition of the squares of the individual 
input spectra (E). 
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Figure S8. Linear fits to data subsets of (A) field dependent vibrational frequencies, (B) the spectral standard 
deviation of CN in PhSeCN’s 01 and 12 transitions, and (C) the field-dependent CN vibrational frequencies in 
BZN’s 01 and 12 transitions. Panel (D) shows the linear dependence of the spectral standard deviation of 
BZN’s 01 transition (red) obtained approximately by reducing the slope of the equivalent data for PhSeCN 
(black) by the same percentage that BZN’s vibrational frequency shift slope is smaller than in PhSeCN (49 %). The 
blue data in panel (D) corresponds to the linear dependence of the standard deviation in BZN’s 12 transition 
obtained approximately by increasing the slope of its 01 by 10.5 %, which corresponds to the calculated percent 
increase in Stark tuning rate from second-order perturbation and density functional theories. 
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Figure S9. (A) Solvent dependent ( )S  , (B) solvent independent ( )NSC  , and (C) resulting .( )conv   of the 

zero-field model used to attempt a description of the experimental center frequency and standrad deviation data 
obtained from PhSeCN’s 01 transition. The Stark contribution shifts and the standard deviation grows linearly 
with the solvent’s field magnitude, whereas the zero-field spectrum is fixed. The resulting spectra shift in center 
frequency to lower values and broaden with the broadening Stark spectral width. It is shown in the main text that 
this set of spectra fail to reproduce the experimental data and demonstrate that the idea of a fixed zero-field 
contribution is not sufficient to explain the spectroscopic behavior of these vibrational probes. 
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Figure S10. ( )S   and .( )conv   spectral sets for the 01 transition of PhSeCN (A and B) and BZN (C and D) 

using the solvent dependent NSC model described in the main text. The red arrows show the direction in which the 
spectra shift as a function of the solvents’ electric field. The Stark contribution broadens and shifts in frequency 
linearly with the magnitude of the solvents’ electric fields. The convolution result reproduces the experimental data 
perfectly. 
 

 
Figure S11. (A, D) Solvent dependent ( )NSC  , (B, E) Field dependent ( )S  , and (C, F) resulting .( )conv   

used to model the experimental 1-2 transition data obtained from PhSeCN and BZN in the main text. The Stark 
contribution is taken to be linear in the electric field, and it broadens as it also shifts in frequency. The NSC 
contribution also shifts to take on solvent dependent center frequencies and line widths. However, these values do 
not change linearly. The net result is that the final spectra shift to lower frequency values with increasing solvent 
polarity. However, the change is not perfectly linear because the NSC contribution does not change linearly. The 
resulting spectra reproduce the experimental data obtained from the CN pump-probe line shapes in both PhSeCN 
and BZN. The NSC contribution is much broader in BZN than in PhSeCN. The physical origins of this difference is 
the subject of the main text of this manuscript and it is linked to the non-local nature of the CN stretching mode in 
BZN. 
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5. Linear absorption spectra 
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Figure S12. Linear absorption spectra of the CN stretch vibration in PhSeCN (left) and BZN (right) in a series of 
non-hydrogen bonding solvents. These spectra were used to confirm that the pump-probe transition line shapes are 
positioned at the correct vibrational transition values and to ensure that no signal contamination occurred in the 
PSPP experiment due to intramolecular vibrational relaxation of the CN stretching mode. 
 
6. Cubic perturbation to harmonic oscillator 

An anharmonic oscillator was modeled by adding a cubic perturbation, 
3x , to the harmonic 

oscillator Hamiltonian as follows, 
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Where 0H  and 'H are the unperturbed and perturbed Hamiltonians, respectively;   is the 

reduced Planck constant, 0  is the fundamental vibrational frequency of the mode, q  is the 

amplitude of the cubic component, and x is the position quantum operator given by: 
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where a


 and a


 are the raising and lowering quantum mechanical operators, and k  is the 

harmonic spring constant. The cubic perturbation was applied to second order on the energies 

and the eigenkets using the following expressions: 
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where 
0E  is the unperturbed energy of a harmonic oscillator state, 

'
n  is the perturbed 

vibrational energy state of interest, 
0
j  and 

0
m  are vibrational states coupled by the cubic 

perturbation to the unperturbed vibrational state, 
0
n  ; the prime superscript on the summation 

means it is performed over indices of m and j  that are different from n , and 
'
nmH  is the first-

order perturbation given by its expectation value 
3m qx n . To second order, the corrected 

energies and normalized eigenkets are given by  
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 sespectively, where iC  are the coupling coefficients between state n  and other vibrational 

states. The normalized harmonic wave functions, used in Eq. 6 are given by:  
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Where m is the reduced mass of the molecular probe (i.e., approximated as the reduced mass of 

the CN group), and ( )nH x  is the Hermite polynomials. The algebraic expressions for all 

coupling coefficients can be found in Table S4. Eq. 5 is used to determine expressions for the 

01 and 12 vibrational transition frequencies, n m  , of the CN stretching vibration, as well 

as for the molecular anharmonicity,  , as follows, 

n m m nE E        

1n m m m                (9)  

Values of k and q  are needed to generate the anharmonic wave functions given by Eq. 6. These 

values were chosen such that they reproduce the experimentally determined zero-field 

vibrational frequency values of the 01 and 12 vibrational transition frequencies, and their 

anharmonicity (Eq. 9). The zero-field frequencies (obtained from a linear fit to the field 

dependent frequency data) were used because they most accurately correlate with the in-vacuo 

DFT calculations. The values of k and q  are presented in Table 1 of the main text. Once k  and 

q  are known, Eqs. S6-S8 are used to determine analytical expressions for the wave functions of 

states 0 , 1 , and 2 . The resulting wave function probability amplitudes are shown in Fig. 

10 of the main text. Finally, k  and q were used to plot an anharmonic potential for the CN mode 

of PhSeCN and BZN using the following expression: 
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Table S4. Coupling coefficients of wave function obtained from second-order non-degenerate 
perturbation theory. 

Coefficient Expression 
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In parallel, DFT was used to obtain the potential energy surface of the CN stretching normal 

mode for PhSeCN and BZN as a function of normal mode displacement (see experimental 
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section). The two potential energy surfaces are shown in Fig. 10, and the vertical position of each 

wave function probability is determined with Eq. S7. 
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Figure S13. A comparison of the PES of the CN stretching mode in PhSeCN and BZN obtained from (A) 
perturbation theory and (B) DFT shows that the CN stretching mode in PhSeCN is more anharmonic than in BZN. 
These calculations agree with experimental measurements of the anharmonicity (see Fig. 2). 
 
 
 

Fig. 10 shows that DFT and perturbation theory yield quantitatively equivalent potential 

energy surfaces up to the energy of the second excited state, and demonstrate that it is 

appropriate to combine the two types of calculations to perform the desired dipole projection 

weighting calculations (see below). The probability of the wave function at each energy level 

extends out farther for PhSeCN compared to BZN, owing to its more anharmonic potential.  

 Using DFT, the molecular dipole moments of both BZN and PhSeCN were calculated as 

a function of normal mode displacement. The vector coordinates of the molecular dipole 

moment, and the CN atoms were then used to compute the projection of the dipole moment 

along the CN bond axis. The goal of this calculation was to obtain the percent difference of the 

dipole projection vector for the 01 and 12 vibrational transitions of each molecule. The 

molecular dipole and molecular dipole projection onto the CN bond axis are shown in Fig. S14.  
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To determine a single value for the dipole and its projection, the contribution of each dipole 

value along the normal mode was weighted using the wave function probability of each state 

given by 
2' ( )n x . The wave function probability weighted molecular dipole and molecular 

dipole projection were calculated using the following expression, 

    
2'

CN
1

( )
N

i
n i n

i

proj a x x dx 




 
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    (11) 

where x  is the normal mode displacement axis, n  is the vibrational energy level index, 

CN nproj 


 is the weighted average value of the molecular dipole moment projection onto the 

CN bond axis for energy level n , ia  are the coefficients of the polynomial fit to the dipole and 

dipole projection curves, and 
2' ( )n x is the second-order normalized perturbed wave function 

probability for energy level n . In the specific case of PhSeCN and BZN, the dipole and dipole 

projection curves are both best described by a second order polynomial fit, with N = 2, but that 

need not be the case for other chemical structures or vibrational modes. The resulting weight 

averaged dipole and dipole projections are shown in Table 4. 
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Figure S14. Permanent dipole moment and permanent dipole moment projection onto the CN bond axis of both 
PhSeCN and BZN as a function of CN bond length. In BZN, the permanent dipole moment vector is collinear with 
the CN bond axis, so the dipole moment and the dipole moment projection are equal. In PhSeCN, because the two 
vectors are not collinear, the magnitude of the dipole projection by 11 %. 
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7. Mulliken charge analysis 
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Figure S15. Mulliken atomic charges of carbons (A and D), hydrogens (B and E) and non-phenyl ring atoms (C and 
F) for both PhSeCN (left) and BZN (right). The ipso carbon was chosen to illustrate the differences in charge 
separation that result from excitation of the CN mode in both molecules. The charge on this carbon changes 
dramatically in BZN, while it remains constant in PhSeCN. This indicates that the phenyl ring in BZN is involved in 
the CN stretch normal mode vibration. By contrast in PhSeCN, the heavy Se atom decouples the CN vibration from 
the rest of the molecule and prevents the phenyl ring from being involved in this vibration, thus making the CN 
stretch more of a local mode compared to BZN’s. We identify this difference between the two molecules as the 
reason for the larger magnitude of the NSC component and for the greater increase in Stark tuning rate of the 1→2 
transition over the 0→1 transition in BZN compared to PhSeCN. The greater charge separation that occurs in BZN 
upon CN excitation results in a larger permanent dipole moment for BZN. The non-local nature of the CN stretch in 
BZN also allows for the intermolecular interactions that result in the NSC component to the linewidth and center 
frequencies to be stronger because they indirectly involve the phenyl ring and increase inhomogeneous line 
broadening. In PhSeCN, since the CN mode is a local mode, and only interactions directly between the solvent and 
the CN stretch result in inhomogeneous broadening, thus decreasing the magnitude of the NSC component in the 
experimental data. 
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8. Examples of other molecules with similar behaviors. 
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Figure S16. Pump-probe spectra of the CN stretching vibration of a series of p-substituted benzonitrile structures. 
All show the same types of differences in linewidths between the 01 and 12 transitions as BZN. 
 

9. Vibrational transition dependent Stark tuning rate 
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Figure S17. Linear regression fits to the vibrational transition center frequency of the 01 and 12 transitions for 
(A) PhSeCN and (B) BZN. The slope and R2 values of all fits are shown next to the corresponding data sets. It is 
clear that while the data displays a linear trend in the low field regime, there is a significant departure from linearity 
in the high field regime. 


