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We analyze self-trapping of one-dimensional optical beams in photorefractive, photovoltaic media for open- and
closed-circuit realizations. We show that a passive load (resistor) in the external circuit can be used for
switching of dark photovoltaic solitons. Dark solitons in a short-circuited crystal can be obtained for a much

smaller nonlinearity than in open-circuit conditions.

Shorting the crystal affects bright solitons very little.
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1. INTRODUCTION

Photorefractive spatial solitons' have attracted much in-
terest in the past few years.?3¢ It is now well estab-
lished that photorefractive nonlinearities can support
self-trapping of optical beams in both transverse dimen-
sions and that these solitons can be observed even at very
low power levels (microwatts and lower). At present,
several generic types of photorefractive soliton are
known: quasi-steady-state  solitons,?™!! screening
solitons,'?33 and photovoltaic solitons,?* 3¢ all of which
can form in dielectric photorefractive crystals, and reso-
nant self-trapping, which is unique to photorefractive
semiconductors.?” Following the initial observations of
each type of soliton, recent attention has been paid to vec-
tor solitons and soliton pairs?’ 3 and to soliton
collisions.?*2¢  Finally, a recent observation has been re-
ported of self-trapping of a partially spatially incoherent
beam,®® which was explained theoretically by a quasi-
particles approach.?®

In this paper we revisit one-dimensional bright and
dark photovoltaic solitons and analyze their formation
under open- and closed-circuit realizations. We show
that the open-circuit photovoltaic solitons resemble soli-
tons in saturable Kerr nonlinearities.*’ This similarity
is removed when current is allowed to flow in the external
circuit. We determine the current as a function of the il-
lumination (amplitude and structure), crystal param-
eters, and the external resistance. Finally, we find
bright and dark solitons in the closed-circuit configura-
tion and discuss the possibility of switching by use of the
external resistor.
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2. GENERAL TREATMENT

We start with the standard set of rate and continuity
equations and Gauss’s law, which describe the photore-
fractive effect in a medium in Wwhich the photovoltaic cur-
rent is nonzero and electrons are the sole charge carriers,
plus the scalar wave equation for the slowly varying am-
plitude of the optical fleld. In steady state and two di-
mensions these equations aré 441

(s|A]? + B)Y(Ng — Ng) — yaN, = 0, (1)
V.J=V:[guik + kyTuvi
+ kei(Ng — N)IA[2 =0, @
V.E+ (g/e)(h + Ny - Ng) = 0, (3)
J i & ik .
—_——— = — An(E)A(x, z), (4
(az 2k ax“’)A(x’ ?) ny n(B)A(x, 2

where An(E) = —0.5n,,3reﬁ«ﬁ {s the perturbation in the
refractive index and the independent variables are 2, the
propagation axis, and x, the transverse coordinate. The
five dependent variables areé #, the electron number den-
sity; N/, the number density 6f ionized doners; dJ, the
current density; E, the spaté-charge field inside the crys-
tal; and A, the slowly varying amplitude of the optical
field, defined by Egux, 2, t) = A(x, 2)exp(ikz — iwt)
+ cc. (B = 2mny/\, and o is the frequency). Relevant
parameters of the crystal are N, the total donor number
density; N, , the number density of negatively charged
acceptors that compensate for the ionized donors; f, 'the
dark generation rate; s, the photoionization cross section;
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v, the recombination coefficient; w, the electron mobility;
€, , the low-frequency dielectric constant; r., the effec-
tive electro-optic coefficient; and «.g, the effective photo-
voltaic constant. —gq is the charge on the electron, & is
Boltzmann’s constant, and 7 is the absolute temperature.
Note that x4 is in units of (A cm sc) and is related to the
photovoltaic constant « of Ref. 42 through kg = x(hv),
where A v is the energy of an individual photon contribut-
ing to the photovoltaic current and to the photovoltaic
constant 8 of Ref. 43 through B8 = s«.s. Finally, we de-
fine the optical and the dark irradiances as I = |A|? and
1o = B/s, respectively.

We point out that, in principle, one could add uniform
illumination to increase the uniform background number
density of electrons, in a manner similar to screening soli-
tons. The reason for this as follows: The available non-
linear response is maximized, for bright screening
solitons'® and for both bright and dark open-circuit pho-
tovoltaic solitons,®* when the maximum intensity of the
soliton is comparable with I4,,,. However, 14, is typi-
cally very small (mW/cm?) in all oxide and sillenite
photovoltaic—photorefractive materials. This results in
very long response time (minutes or more) because the di-
electric relaxation time is inversely proportional to the
sum of the optical and the dark irradiances. Additional
uniform illumination (so-called background irradiance)
can be equivalent to effectively increasing 14,4, thus pro-
viding additional control over the photorefractive nonlin-
earity and permitting observation of microwatt solitons
with 0.1-s response times in strontium barium niobate
(see Ref. 15 for the theoretical background; all the experi-
ments described in Refs. 16-26, 32, and 33 have used this
idea in conjunction with screening solitons). It is most
convenient, however, to use this additional (uniform)
background illumination when the background beam it-
self is not affected by the material nonlinearity and when
the background beam does not induce additional nonlin-
ear effects beyond simply increasing the background car-
rier density. For screening solitons these conditions can
easily be obtained in most photorefractive crystals with a
beam that is orthogonally polarized to the soliton beam,®
although some small nonlinear effects are apparent on
the background beam.'® In photovoltaic media the issue
is more complicated because the background beam can in-
duce an additional photovoltaic current [an additional
constant term in Eq. (2)]. In fact, this is the situation
with photovoltaic LiNbOs, for which the photovoltaic co-
efficients for extraordinarily and ordinarily polarized
light are comparable.**

Equations (1)-(4) are supplemented by the relation be-
tween the space-charge field E and the current flowing in
the circuit:

v, .
Vz—f E - dl = RSJ, 5)
-2

where V is the potential measured between the crystal’s
electrodes separated by [, S is the surface area of the elec-
trodes, and R is the external resistance.

We look for stationary (nondiffracting) solutions of the
form

A(x, 2) = u(x)exp(ilz) VI gk (6)

Vol. 14, No. 7/July 1997/J. Opt. Soc. Am. B 1773

where I is the soliton propagation constant. We limit
our analysis to real u(x).*® Inasmuch as I = |A|? de-
pends on x alone, we look for solutions in which the de-
pendent variables, n, N, J, and E depend solely on x
and the only component of E and dJ is in the x direction.
The simplest case is that in which the polarization of the
optical beam and the propagation directions with respect
to the crystalline axes are chosen such that the effective
electro-optic and photovoltaic coefficients are ro g =r;;
and x.¢ = k;, where { is a principal axis parallel to x.46
This configuration is illustrated in Fig. 1.

Next, we define the dimensionless parameter o
= sl4./(yYN4), which scales the optical (+thermal)
excitation with respect to the recombination rate,
where 5 = 1/(yN,) is the recombination time. We now
transform the equations into dimensionless form by the
substitutions n = 7/(aNy), r = Ny/Ny, N = N, IN4,
E = E/Ep, and J = J/iquaNyE,), where E;,
= kegyNalqu) = keglqug), & =x/d, d = (=2kb) 2
is the characteristic length scale, and b = (k/n,)
X (0.5n b3refpr) is the parameter that characterizes the
strength and the sign of the optical nonlinearity. In this
notation the unknowns that characterize the material’s
response, n, N, E, and oJ, are all of order unity. Notice
that d= M[2m(£2Angn,) 2], where Any = 0.5nb3refpr
is the electro-optic change in the refractive index induced
by an external (bias) electric field of amplitude E, and A is
the vacuum wavelength. The sign of r g and «.g deter-
mines the sign (positive or negative) of Any. We there-
fore introduce the dual-sign () notation in the definition
of d, where the upper and the lower signs apply to posi-
tive and negative values, respectively, of b (and, conse-
quently, of An,). Note that the photovoltaic term in the
current [the last term on the right-hand side of Eq. (2)] is
proportional to |A|? and not to I, . This is true for a
fundamental reason: The photovoltaic current is propor-
tional to real illumination and not to thermal excitations;
i.e., there is no thermal photovoltaic current.*’

The dimensionless equations are

n—(1+ u®(1 - N)/(rN) = 0, @)
J =nE + (1 - Nu? + €,(dn/dé) = const., 8)

:> Photorefractive
Light Photovoltaic
Beam Crystal

J

Fig. 1. Illustration of the electrical circuit consisting of a photo-
voltaic crystal (acting as a source when illuminated) and an ex-
ternal resistor R. 1-D, one-dimensional.

o
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(N — 1/r — an) — e5(dE/d€) = 0, 9)
d®u/dg? = =(I'/b + E)u, (10)

1/2d
J=-p E(&€)d¢, (11D

1/12d

where &, = ukpT1p/(kegd) and g4 = £, k.5/(q*ud Ny
are  both  dimensionless parameters and g
= d/(RSquaNy). It is now important to obtain some
quantitative values of the parameters involved. We
therefore consider typical parameters of LiNbOj; in a con-
figuration that can give rise to an index change An, ~ 5
X 10°* that is sufficiently large to support an
~10-pum-wide soliton at A ~ 0.5 um.'®% Recalling that
ny, = n, ~ 2.27 and ra3 ~ 32 X 1072 m/V, we find that
the value of E, required for support of such Ar, is E,
~ 27 kV/em, which is easily attainable in LiNbO;s (in
fact, photovoltaic space-charge fields up to 250 kV/cm and
Any up to 0.003 have been measured*® in LiNbO,).
When the values in Refs. 42 and 43 are used, similar val-
ues correspond to LiNbO;:0.2% Fe, with electron mobility
u~ 001 [em? V1s1] 7, ~276ps, and k.~ 12
X 10”2 [A cm s] (or k ~ 3 X 1077 in the [A em/W] units

of Ref. 42). This implies that for typical values** of
Ik ~ 1 mW/em? and s ~ 3.6[cm®>s ' W 1], we get a
= 107", Further, for E, = 27kV/em we get d

~ 1.67 um. At room temperature, T = 300 K, we find
that &; = 0.005, and with typical LiNbO; values of &,
~ 30gq and Ny ~ 10'8 cm™2 we obtain &5 = 0.0027.
With these parameters in mind we revisit Egs. (7)-(11).
First, we recall that N < 1/r < 1 for light intensities
much smaller than 1 MW/em? Using this inequality in
Eq. (7) provides n = (1 + u?)/(rN). Examining the
terms in Eq. (8) reveals that, because E is of the order of
unity, the last term in Eq. (8) is much smaller than the
first two and can be neglected whenever (dn/dé) < 200
[because nE ~ (1 + u?) and (1 — N)u? ~ u?, whereas
g1(dn/d&) ~ 0.005(1 + u2)]. Furthermore, in Eq. (9) we
can neglect both terms (an)=~ 10"*%(1 + u?) and
eo(dE/d¢) and obtain N ~ 1/r = N4 /N, =~ 0.05 [when-
ever (dE/d¢) < 20]. This means that, to the lowest order
of our approximation, N ~ 1/r = N,/N, ~ 0.05; i.e., the
number density of ionized donors equals the density of ac-
ceptors N, which is a constant and does not vary with
x. Corrections to these approximations (to any desired
order in the smallness parameters £; and &,) can be ob-
tained by use of an asymptotic expansion similar to that
of Ref. 15. For our choice of parameters the approxima-
tions can easily be justified a posteriori, that is, after we
solve for solitons and find the actual waveforms.*® These
approximations can be used in Eq. (8) and yield

J=nE+ (1 - 1Unu?~nE +u?=(1+udE + u?

= const. (12)

Finally, we obtain for the space-charge field E(¢)

J - ué)

T+ a1 (13

E(§)
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which, when substituted into Eq. (10), gives the nonlinear
wave equation that describes stationary (soliton) propa-
gation in this photovoltaic nonlinear medium:

J - u?

+ —u. 14
b (1+u2)u (14)

d®u (F
- = +
dé?

The solutions of Eq. (14), u(é) with the appropriate
boundary conditions, are bright and dark solitons.

So far the current J has been unspecified. Although
J is a constant, it is determined not only by constant
quantities, such as the parameters of the external circuit
(R and S) and of the crystal (a, u, d, and N), all incor-
porated into one constant B, but also by the waveform of
the optical beam. In principle, one should solve Egs. (14)
and (11) in a self-consistent manner. A traditional ap-
proach to solving such problems is to use numerical relax-
ation methods (which are commonly used to solve a re-
lated self-consistency problem of Schrodinger’s and
Poisson’s equations together). In Section 3 we provide a
simple method to evaluate the constant current J without
resorting to an extensive numeric calculation.

3. EVALUATION OF THE CURRENT

Here we evaluate the optically induced current that flows
through the photovoltaic crystal and the external (pas-
sive) resistor connected in series. At steady state, the
continuity equation [Eq. (2)] implies that the current is
constant everywhere, including regions in which the opti-
cal intensity distribution varies with the coordinates. By
substituting the expression for E(¢) [Eq. (13)] into the re-
lation defined by Eq. (11), we find that

J =

v2d o — u?(&)
- f d¢. (15)

“10d [1 + u?(8)]

We now examine three different cases of optical intensity
distribution: uniform illumination, dark solitons, and
bright solitons.

A. Uniform Ilumination

Consider first a uniform beam, polarized at the proper po-
larization, that gives rise to nonvanishing photovoltaic
current (through a nonzero x.) of normalized intensity
u(¢) = u? for all £ The integral in Eq. (15) leads to

7
d

u?

——%
1+ui+(%)

J = (16)

We note two limiting cases. The first occurs when the ex-
ternal resistor is infinite (open-circuit conditions), i.e.,
R — . In this case 8 — 0, which implies that J = 0
and the current is simply zero. The second limiting case
occurs when the electrodes are connected by a perfect con-
ductor, i.e., R — 0. Then (8I/d) > 1 + u2, and we get
J = u%. This means that, although the resistance in the
external circuit is zero, the available current is limited by
the photovoltaic crystal (which acts as a current source)
illuminated at a specific intensity.
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Using the above parameters of LiNbOj at u? = 1000
and Iy = 1 mW/ecm?, we find the maximum short-
cireuit current, J ax ~ 4 nA/cm?. For the current to be
at this limit it is sufficient to require that the external re-
sistance be much smaller than 10¥Q (assuming even
much smaller resistance of the electrodes), which is easily
attainable.

B. Dark Solitons

Consider now a dark solitonlike beam of width Ax and
peak intensity u?, as illustrated in Fig. 2(a). Assuming
that the dark notch borne on this beam has a square
shape, one can perform the integral of Eq. (15) and obtain,
in the limit [ > Ax,

J = : . amn
BAx

2
(1 + ux)( 1+ a4

Once again, it is instructive to discuss limiting cases.
The first case is again simple: R — o, which implies
that 8 — 0 and J = 0; i.e., no current flows through the
crystal (open-circuit configuration). The second limiting
case is R — 0, which gives J — Iu2/[(1 + u?)Ax + I].
Using typical values for the dimensions of the crystal (
=~ 5 mm) and the size of the notch (Ax = 5 um), we find
that whenever u2 < 1000, J ~ u2, whereas when u?
> 1000, J ~ I/Ax ~ 1000.

C. Bright Solitons

Consider now a bright solitonlike beam of width Ax and
peak intensity %, as illustrated in Fig. 2(b). Assuming
that the beam has a square shape, one can perform the
integral of Eq. (15) and obtain, in the limit [ > Ax,

2
u
(a) A
2
u.,
— >
-
AX
2
u
(b) N
2
o
> x
-+
Ax

Fig. 2. (a) Dark solitonlike beam of width Ax and peak intensity

u?2. (b) Bright solitonlike beam of width Ax and peak intensity
2

uy”.
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BAxY
(d -
J = - (18)
l
(1 +udHl1+ %

N BAx’
d

The limiting cases now give (i) R — =, which implies that
B— 0 and J = 0, ie., no current flows through the
crystal (open-circuit configuration), and (ii) R — 0,
which gives J — (Axuy?)/[Ax + (1 + u?)]. Because
1> Ax, J — (Axu2/[I{1 + uy®)] < Ax/l ~ 0.001.

We point out that in all three cases (uniform illumina-
tion and dark and bright solitonlike beams), the current is
positive. This implies that in all cases the photovoltaic
crystal acts as a current source, with current flowing from
its positive electrode. This does not mean that the polar-
ity of the field inside the crystal is the same in all three
cases. On the contrary: it varies from one case to an-
other. With the above estimates for J, we can now re-
write the explicit space-charge field E(£), using Eq. (13)
in the three different cases of uniform illumination, dark
solitons, and bright solitons. We find that whenever the
external resistance is very large (R — «), J — 0 and

E(g) = _uHe 19
[1 + u?(&)]

for all three cases (this result coincides with that for the
case discussed in Ref. 34). However, when the external
resistance is very small (R — 0), the cases differ from
one another considerably, even though the current in all
three cases is positive (J = 0).

First, consider the case of uniform illumination with in-
tensity #2 everywhere and R — 0. If we use the approxi-
mation (Bl/d) > 1 + u? [below Eq. (16)], which leads to
J = u?, we get [by substituting the approximation into
Eq. (13)] E(&) = 0 for all & Obviously, this is incorrect
because whenever current flows (J # 0) the field cannot
be zero. The correct substitution is to use the full expres-
sion for J from Eq. (16) in the expression for E(¢) of Eq.
(13). This leads to E = —u2/(1 + u2 + Bl/d), which
goes to zero for large B (small R). Note that in both lim-
iting cases of R — 0 and R —  the field everywhere in
the crystal is limited by the crystal itself, which acts as a
source. The field in both cases is negative.

Second, consider the field E(£) for R — 0 in the case of
illumination with a dark notch [Fig. 2(a)]. We find that

. w2 — u?(&)] — Ax(1 + uZ)u?(§) o
(&) = [1+ 2O+ udAx +1] 20

It is now instructive to look at two different locations in
the dark-notch-bearing beam. At £ = 0 [where u(0)
= 0] we find that E(0) = J > 0. However, at £ — ©
(where u? = u2) we find that E(£ — ) = —u2Ax/[(1
+ u2)Ax + 11 < 0. This implies that, at some value of
¢ E(§) changes sign. This feature is important when one
calculates the profiles of the dark solitons (for the closed-
circuit configuration) and derives the refractive-index
profiles that support (self-trap) them.

Third, for bright steplike beams [Fig. 2(b)], the field for
R — 0is
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2

E(§) = - uz(f)}/ [1+ %81 @D

0
(1 + uyd)
At £ =0 [where u(0) = uy), E(0) is always negative.
However, if we look at ¢ — = (where u? = 0), we find
that E(¢ — «) = J = Ax/[l(1 + uy?)] > 0. Similar to
the case of closed-circuit dark solitons, at some coordinate
¢ E(€) must change sign.

As a concluding remark to this section, we point out
that the simple method that we used to evaluate the cur-
rent for the cases of dark and bright solitonlike beams
provides only a rough estimate. A more accurate esti-
mate of the current in those cases can be made with the
method used in the appendixes of Refs. 12 and 15 for
screening solitons, which employs the quadrature relation
(described in Section 4) in evaluating the integral of Eq.
(15), without the need to compute the waveforms of the
solitons first. An even more accurate method would be to
calculate JJ in a self-consistent manner, which requires
numerical methods. When comparing the various meth-
ods we find, however, that the estimation methods are ac-
curate for a fairly large range of intensity ratios and
Ax/l < 1 (e.g., comparing the estimates for screening soli-
tons as described in Refs. 12 and 15 with the numerical
methods for the same problem that are used in Ref. 13
gives the same result with less than 1074 error for bright
solitons and less than 1073 error for dark solitons). With
this understanding in hand, we proceed to Section 4 and
look for soliton solutions.

4. SOLITONS: GENERAL TREATMENT

We provide the general treatment that is common to both
dark and bright solitons. We start with Eq. (14).

J — u?

u" = *
14 u?

S+

u, (22)

where the double prime stands for the derivative with re-
spect to the variable ¢, § = I'/b, and the upper (lower)
sign indicates Any > 0 ( < 0). We integrate Eq. (22),
using quadrature, and obtain

pPi—ph==(6- D —uH+(J+1)

u?+1
X In

u? + 1)) 23)
where p = u’, pg = p(¢ = 0), and uy = u(0).

We point out that one-dimensional beam propagation
in open-circuit photovoltaic media (the J = 0 case) is
mathematically identical to that in saturable nonlinear
Kerr media,*’ and thus the features of soliton collisions
should be identical ®® However, when the current is non-
zero (closed circuit) the nonlinearity changes, and the
similarity no longer holds. This result has a dramatic ef-
fect on dark solitons because of the large photoinduced
current, whereas bright solitons are hardly affected (be-
cause the current for bright solitons is small). Another
interesting observation is that, despite the inherent non-
locality in the physics of the photorefractive and photovol-
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taic effects (as manifested in charge transport: electrons
photoexcited at one point move to another point where
they are retrapped, and the space-charge field results
from the charges’ being separated) the steady-state
single-beam optical photovoltaic effects are local (at least
within the regime of our approximations) for both open-
and closed-circuit cases. That is, the photoinduced
change in the refractive index An(x) at a specific coordi-
nate x is a function of the light intensity at that particu-
lar coordinate I(x) only.

5. DARK SOLITONS

For dark solitons one requires the boundary conditions (i)
u(e) = u, # 0, (ii) u'(0) = u"(w) = 0, (iii) uy = 0, and
(iv) a real (nonzero) p,. The first two conditions ensure a
constant value of the wave function far from ¢ = 0; the
last eliminates solutions that are periodic in & Using
boundary conditions (i) and (ii) and substituting & — «
into Eq. (22) lead to & = (w2 — DI + u?). As ex-
plained above, J is always positive, which implies that
0 = § < 1, that the propagation constant I' depends on
u., and that its sign is identical to that of An for all val-
ues of u,, and J. This situation is in contrast to that for
dark screening solitons,'® which all have the same propa-
gation constant regardless of their peak intensity uZ.
Substituting conditions (i)—(iii), the expression we have
just found for 8, and £ — « into Eq. (23) leads to

2

)

— In(u2 + 1)

p02=i{(J+1)1+ . ] (24)

LS

The reality of py [condition (iv)] can be obtained only for
the lower sign, implying that dark solitons can be gener-
ated by use of a negative An, only. Nevertheless, a dark
photovoltaic soliton induces a waveguide structure in the
region of the dark notch in which a second (bright) beam
can be guided efficiently and switched on and off.3536
Therefore photovoltaic dark solitons are solutions of

J— u?

S+
1+ u?

u, (25)

with  z(0) =0, «’(0)=po={(J + 1)[In@? + 1)
- (W®/W? + DN, and 6 = (u2-J)/(1 + u2), or, al-

ternatively, of
12

” , (26)

with ©(0) = 0.
Recall now that J can vary continuously from zero (at
R — ») to the maximum value of J = J,,, — W2/[(1
+ u2)Ax + ] (at R — 0). In what follows we analyze
only these limiting cases, keeping in mind that all inter-
mediate cases can be calculated in a similar manner. We

integrate Eq. (26) numerically for various values of u.,,
J =0, and J = J,, and obtain the waveforms u(¢) of

uz—ui l-i-u?c
2+n
1+u

©

1+ u?

u’:|(J+1)




Segev et al.
1
u(g)/ul
0.5
] 5 10 15 20 25 30
\ g
-0 sy
v Aan(g)
\
~
1L —————————————————————

Fig. 3. Normalized intensity profile (solid curve) of the open-
circuit dark photovoltaic soliton and the induced change in the
refractive index [An(¢&) = E(&); dashed curve], both at u.. = 10
and J = 0.
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(b)
Fig. 4. (a) Normalized intensity profile (solid curve) of the
closed-circuit dark photovoltaic soliton and the induced change
in the refractive index [An(§) = E(§), dashed curvel], both at
u, =10and J = J,,,. (b) Expanded version of (a).

dark photovoltaic solitons. Particular cases of u. = 10
withJ = 0 and J = J,,, are shown in Figs. 3 and 4, re-
spectively. We have assumed that Ax/l = 0.001 (corre-
sponding to a 5-um-wide soliton in a 5-mm-wide crystal).
Figure 3 shows the intensity waveform (solid curve) of the
open-circuit dark photovoltaic soliton and the induced
change in the refractive index [An(£) x —|E(&)|; dashed
curve] between £ = 0 and & = 30. Notice that An(§) is
negative for all £. Nevertheless, it forms an effective
graded-index waveguide that can guide another beam, as
observed in Refs. 35 and 36. The situation becomes very
different for J = J,,, and the same intensity ratio u.
= 10. Figure 4(a) shows the intensity waveform (solid
curve) of the closed-circuit dark photovoltaic soliton and
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the induced change in the refractive index (dashed curve)
between £ = 0 and & = 5. Figure 4(b) is an expanded
version of the same figure.

Several new features of photovoltaic solitons with an
external circuit are now apparent. First, the dark soliton
is much narrower in the closed-circuit case than in the
open-circuit case. This means that a lower nonlinearity
(An,) is now sufficient to self-trap a soliton of the same
width in the same medium (which, of course, has the
same \, n,, Ky, and rog). Furthermore, whereas the
asymptotic value of An(§) at £ — = (or near the elec-
trodes) is negative in both cases, in the J,, case An
changes sign at the vicinity of ¢ = 0 and becomes very
large there. This means that the space-charge field
E(&) changes sign and becomes positive near the center of
the dark notch. The narrow and steep shape of An in
this case gives rise to a much narrower dark soliton (and
to a much narrower induced waveguide) in the J,, case
than in the J = 0 case.

The large difference between the behavior of dark soli-
tons at zero and maximum current strongly depends on
the peak soliton intensity ratio, u?. For example, at a
low intensity ratio, such as that of ©2 = 0.01, the wave-
forms of the dark solitons u(£) and their induced An(§)
for J = J ¢ coincide with those for J = 0 (see Fig. 5).
The functional behavior of the width of the dark soliton as
a function of the soliton’s peak amplitude u., can be cal-
culated by use of numerical integration of Eq. (26). The
result is shown in Fig. 6, where we plot the soliton’s full
width at half-maximum of u? as a function of the ratio be-
tween its peak amplitude and the square root of the back-
ground irradiance (u.,). The curves show J = 0 and J
= Jax- Notice that for small values of u. the two
curves coincide, as can be observed for the particular case
of u, = 0.1 of Fig. 5. On the other hand, the fast in-
crease of the normalized soliton width as a function of
u., which 1is characteristic of saturable Kerr
nonlinearities® and is present in the J = 0 case, is re-
strained by the existence of current through the crystal.
The current gives rise to much slower saturation, which is
manifested in a much slower growth of the soliton width
as a function of u, (although it never reaches the full ar-
rest of saturation that is present in dark screening soli-
tons, as manifested in their asymptotically constant exis-
tence curve at u. > 1).

We point out that the functions shown in Fig. 6 provide
the soliton existence curves and emphasize that for a one-

1
0.8 uﬁ(é)/ui
G.6
0.4
0.2
10 20 30 40 50

g
Fig. 5. Normalized intensity profile of dark solitons at u.
= 0.1 for both J = 0 and J = J,,. The profiles coincide ev-
erywhere.
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Fig. 6. Soliton existence curve for open-circuit (upper curve)
and closed-circuit (lower curve) dark photovoltaic solitons. The
curves show the soliton width (FWHM of the intensity, u2) in
units of Axk On,%(refprr)V2 as a function of the peak soliton am-
plitude u.. , k, being the wave number in vacuum.

dimensional photovoltaic soliton at any particular (al-
lowed) value of current there exists a unique relation be-
tween the soliton width at a particular wavelength A in a
given material (of ny , 7oy, and xop) and the ratio between
the soliton peak intensity and the background irradiance
(the so-called intensity ratio). The existence curve is a
common property of all solitons: It gives the relationship
among the soliton’s amplitude, width, nonlinearity, and
optical wavelength in the medium. For Kerr solitons the
existence curve is simple and is a monotonically decreas-
ing function of peak intensity for both bright and dark
solitons. For screening solitons'®!? the existence curves
of dark and bright solitons are very different from each
other for peak (normalized) intensities larger than unity
(because of different boundary conditions). As is shown
below, the existence curves for photovoltaic dark and
bright solitons resemble each other only in the J = 0
case.

In the limit of low intensity ratio, u? < 1, one can get
an approximate analytic solution for the soliton wave-
forms for both open- and closed-circuit cases. In this
limit and for Ax/l < 1, the maximum current is J = u2.
Equation (25) becomes

u’ = —(u?c - u?u, 27)

with boundary conditions z(0) =0 and u’'(0) = p,
= u2/\2. The normalized propagation constant
& — 0, which implies that, in this limit, all dark solitons
propagate at the same velocity with a propagation con-
stant equal to that of a plane wave propagating in the
same crystal at the absence of the photovoltaic effect.
The solutions of Eq. (27) are the usual solutions for Kerr-
type dark solitons: u(¢) = u, tanh(u.£/\2).

Finally, we point out that to date only dark photovol-
taic solitons have been observed in the open-circuit
realization.?®®® The experiments were carried out with a
finite notch-bearing beam (which covers only a rather
small region in the crystal), and the natural dark irradi-
ance (14, was used without background illumination.
The soliton peak intensity was much larger than the dark
irradiance; thus the experiments were done in the inten-
sity regime where an increase in the intensity (with all
other parameters unchanged) should have made the dark
soliton wider, as expected from the upper curve in Fig. 6.
This did not happen, and instead the dark soliton became
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gray (i.e., with a nonzero intensity at the center of the
dark notch). The reason for the discrepancy between the
experiments and the theory is that a dark soliton borne
on a finite beam (as was used in that experiment) gives
rise to circulation currents (around the beam) that are in-
herently two dimensional; thus the scalar analysis (the
assumption that J and E are parallel to x) is no longer
valid. Similar observations were found with dark screen-
ing solitons: the existence curve of dark solitons was
verified experimentally?® with dark solitons borne on in-
finite beams (which cover the entire crystal), and it agrees
very well with that in the theory,'® whereas dark solitons
borne on finite beams in biased photorefractive crystals
could be observed in quasi-steady state!® but not in
steady state.?® Experiments with notch-bearing infinite
beams targeted to yield the existence curve of dark pho-
tovoltaic solitons are currently under way.

6. BRIGHT SOLITONS

For bright solitons one requires three boundary condi-
tions: (i) u, = u'(x) = u"(») = 0, (i) py = 0, and (ii)
u"(0)/uy < 0. The first ensures the decay of the wave
function and all its derivatives far from ¢ = 0, and the
second and the third ensure a local maximum at ¢ = 0.
Taking the limit £ — » in Eq. (23) leads to 6 =1 — (J
+ 1)In(uy? + 1)/u,%. This means that 6 now depends on
uy? and J. Recalling the possible values of J for bright
solitons (Section 4), which implies that 0 <J
< (Axu /U1 + ug®)] < Ax/l ~ 0.001, we notice that
8> 0 for all uy, > 0.05, whereas for smaller values of
ug, 6 becomes negative.

Substituting for &, setting £ = 0 in Eq. (22), and impos-
ing boundary condition (iii) show that only the upper
(positive) sign can give rise to bright solitons, implying
that bright photovoltaic solitons can be generated with a
positive An, only. Notice that, although & reverses sign
near uy ~ 0.05, the required An is positive for all values
of uy.

Therefore, bright photovoltaic solitons are solutions of

J — u?
14 u?

with w(0) = ug, ©'(0) =0, and 6= 1 — (J + 1)In(z,?
+ 1)/ug? or, alternatively [if we substitute for & and
choose the upper sign in Eq. (23)], of

’ 12

(29)

with ©(0) = ug. We notice that in both Egs. (28) and
(29) and in the expression for é the term J + 1 appears.
However, for bright solitons J lies between 0 and 0.001.
We therefore expect that they will have only a minor ef-
fect on the solitons as long as u is larger than 0.05, the
point at which the propagation constant reverses sign.
We integrate Eq. (28) numerically for various values of
up and for J = 0 and J = J,, = 0.001/(1 + u,?) and
obtain the waveforms u (&) of bright photovoltaic solitons.
We indeed find no significant difference between the
open- and closed- circuit cases; both are identical to the

6+ u, (28)

2
u

In(u? + 1) = —5 In(u® + 1)
Ug

u’:{(J+1)
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waveforms shown in Ref. 34. Equation (28) can also be
integrated numerically to show the soliton existence
curve: the full width at half-maximum of z2 as a func-
tion of the ratio between its peak amplitude and the
square root of the background irradiance (z,). We show
this function in Fig. 7 for u, from 0.5 to 10. The curves
for J = 0 and J = J,, = 0.001/(1 + 1,?) coincide with
each other (within the resolution of the plot), implying
that the bright photovoltaic soliton is not affected by the
external resistor (or by the value of the current in the cir-
cuit) as long as its intensity ratio u, is larger than 0.05.51
It is now important to discuss the u, < 0.05 regime,
which seems to be slightly different because §is negative
there. Before we even specify the value of JJ for bright
solitons, Eq. (22) in this regime (of u> < 1) becomes

u" = =6+ J) — (J + Duu. (30)

Integrating Eq. (30) by quadrature and substituting con-
ditions (i) and (ii) implies that 6 = u,%/2 — J. However,
imposing condition (iii) and using Eq. (30) and & reveal
that the proper sign for bright solitons is still the upper
sign, unaffected by the sign change in 6 near uy =~ 0.05.
Using the maximum allowed value for J ., = 0.001/(1
+ ug4?), we can simplify Eq. (30) into

u” = (ug?2 — udu, (31)

with u(0) = uy and #'(0) = 0. The solutions of Eq. (31)
are u(¢) = u, sech(ugé/ V2), which are identical to Kerr-
type solitons. Interestingly enough, in this limit of
u? < 1 the approximate equation in the J = 0 case is
identical to that of J = J ., [Eq. (31)] and of course pro-
vides the same (analytic, Kerr-like) solutions for the soli-
ton waveforms. This means that the waveforms of the
bright photovoltaic solitons are unaffected by the pres-
ence of current (or of a passive external resistor). There
is, however, an important difference between the induced
waveguides [induced refractive-index change, An(¢)].
For J = 0, An(&)> — E(&) is positive to all £, whereas
for J = J .0, An(&) crosses zero at some point and be-
comes negative for |£| larger than some (nonzero) value.
At this point it is instructive to look at the difference be-
tween the refractive-index changes for the two cases:

14

12

10

(Intensity FWHM)

Width

at

o 2 4 6 3 10
o

Soliton

Fig. 7. Soliton existence curve for open-circuit and closed-circuit
bright photovoltaic solitons (the curves coincide everywhere).
The curves show the soliton width (FWHM of the intensity, u?)
in units of Axkyn bz(refprr)l/ 2 as a function of peak soliton ampli-
tude u, k¢ being the wave number in vacuum.
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Fig. 8. Soliton intensity waveforms u2(£) (solid curve) and the
induced change in the refractive index [100 X An(§) x —E(§)]
foruy = 0.05and J = 0 and J = J,,,. The waveforms u2(¢) co-

incide with each other everywhere, whereas the An(§) curves are
offset by a constant parameter equal to J .

An(€)y=0 = An(E)y=s .,
* [=E(&)-o] = [“E(&)g-s,,]

u? J — u? J
1+u2‘ 1+ u? 1+ u?’

which, for u? < 1, is simply equal to the (constant) cur-
rent, J. This means that the soliton-induced waveguides
are identical in their shape and dimensions, yet they are
shifted (offset) with respect to each other, the offset being
equal to the current J. This explains why the waveforms
of the solitons, which are identical to the waveforms of the
fundamental guided mode in each of the waveguides,?
are identical in both cases. For example, consider the
cases of J = 0 and J = J, = 0.001/(1 + uy®) for a
peak amplitude of ugy = 0.05. The soliton intensity
waveforms [u2(£); solid curve] and 100 X An(£) (dashed
curves) for both cases [as obtained by solution of Eq. (28)]
are shown in Fig. 8. The waveforms coincide with each
other, whereas the An(£) curves are offset by a constant
parameter (equal to J,,), the upper (lower) curve corre-
sponding to the J = 0 (J = J,,) case.

Having examined the entire range of u,, we conclude
that bright photovoltaic solitons of either open or closed
circuit obey the existence curve of Fig. 7. This means
that the waveforms of the solitons of the two cases coin-
cide with each other. Obviously, this observation implies
that, in contrast to the dark photovoltaic solitons, bright
photovoltaic solitons are not favorable for switching
applications.?

Finally, we note that bright photovoltaic solitons have
not been observed yet. The reason for this is simple:
The first attempts to observe photovoltaic solitons were
done in LiNbO;, which possesses the largest known pho-
tovoltaic nonlinearity. However, in all LiNbOy crystals
the refractive-index change caused by the photovoltaic ef-
fect is always negative (An, < 0), which can give rise to
dark solitons only.?>3 We expect that bright photovol-
taic solitons will be observed in crystals other than
LiNDbQ; in the near future.
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7. CONCLUSIONS

We have analyzed dark and bright solitons in open- and
closed-circuit photorefractive—photovoltaic media. We
have shown that the new effects added by permitting a
nonzero current modify the parameters of the solitons,
having a rather dramatic effect on dark solitons and a
small effect on bright solitons. This effect can be used for
switching®™: in the ON situation the operation point lies
on the existence curve, whereas in the OFF case it moves
away from the curve. In general, this switching method
should be useful mostly at large intensity ratios (u..
larger than 5) where even small changes in the current
completely modify the existence curve. At intensity ra-
tios smaller than unity we do not expect efficient switch-
ing because all solitons can tolerate changes within a few
percent in their parameters. An experimental study of
these predictions is currently under way.
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