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Introduction
In most animal species, males and females behave differ-

ently, especially when it comes to sex and related social

behaviors. These behaviors evolved to ensure successful

reproduction and typically include some genetically pre-

programmed displays. There are�25,000 known species of

fishes, by far the largest group of vertebrates, and they

express a remarkable variety of adaptive responses to

aquatic habitats with associated ecological constraints

[1]. Moreover, teleosts have evolved in a relatively short

time (�200 My) [2] producing virtually every reproductive

option open to vertebrates: they bear live young, brood

offspring in their mouths or body cavities, lay eggs (some-

times even out of water) or simply release their gametes

into the plankton. In addition, mating/brood-care systems

range from monogamous bi-parental to polygamous non-

parental. In some species, females can reproduce parthe-

nogenetically, males may become pregnant, and fish of

both genders can change sex [3,4]. This brief summary of

the range of fish reproductive behaviors highlights why

they offer so much as reproductive systems for analysis.

Here we address the following questions: 1) What is

known about the physiological mechanisms underlying

sex determination and sex-specific behaviors in teleost

fish species? 2) How do different sensory inputs and

mating systems interact to influence reproductive func-

tion? 3) How do the special cases of alternative repro-

ductive tactics, sex-role reversal, and sex change in fish

give insight into the vertebrate sexual brain? 4) How can

genomic information and epigenetic change influence

brain areas controlling reproduction?

Sex determination
Some sex-determining mechanisms have been conserved

over vast stretches of evolutionary time. For example, in
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birds and mammals, all extant species share a ZW system of

female heterogamety (e.g., production of 2 kinds of

gametes) and an XY system of male heterogamety. In both

these cases, the different sexes are always represented by

two different individuals (e.g., gonochorism, [1]). By con-

trast, fish show a wide variety of sex determination systems,

some via sex-determining chromosomes, others via auto-

somal genes and still others via environmental or social

signals [4–6]. Numerous studies have shown how morpho-

logical specialization and life-history differences between

fish species translate directly into behavioral differen-

tiation between the sexes. More subtle behavioral differ-

ences may arise as a consequence of the different

reproductive roles taken by males and females. In gono-

choristic fish species, all possible forms of genetic sex

determination have been observed from male and female

heterogamety with or without the influence of autosomal

genes, to more complicated systems involving several loci

but without sex chromosomes or with several pairs of sex

chromosomes [7]. For example, in the striated spined loach

(Cobitis taenia) sex is determined through multiple sex

chromosomes where females have X1X1X2X2 while males

have X1X2Y sex chromosomes [8].

In many fish species temperature and/or pH of the

hatching water determines sex. In a mouthbrooding

cichlid, Oreochromis niloticus, for example, Baroiller et al.
[9] showed that housing mouthbrooding females in higher

temperatures increased the male proportion in their brood

from 33% to 81%. Phenotypic sex can also be fully

reversed by hormone treatment in female Chinook sal-

mon (Oncorhynchus tshawytscha) where a brief treatment

with an aromatase (enzyme that converts T to E2) inhibi-

tor during sex differentiation causes chromosomally

female animals to develop as normal males [10]. None-

theless, the core of the vertebrate sex determination/

differentiation cascade is conserved in fishes [11,12,1].

Dmrt1, named for a common DM domain is considered to

be involved in sex determination and/or sex differen-

tiation and its expression is central to the development of

the male tetrapod phenotype. This gene has a similar role

in sex determination in both hermaphroditic and gono-

choristic fish [13–17]. In the medaka (Oryzias latipes) sex

differentiation is chromosomal (male heterogamy XX-

XY) and recently, functional and expression analyses have

shown that Dmrt1 is the master gene for male sex

determination [18]. However, in many fish species, once

sex has been determined, reproductive ability can be

regulated through social cues (e.g., [19]).

How do social and environmental signals regulate repro-

duction? Little is known about the actual pathways
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through which social signals act, but the final common

output pathway requires hypothalamic gonadotropin-

releasing hormone (GnRH1) signaling. The GnRH1-con-

taining neurons are known to have a variety of inputs that

are sexually dimorphic, change with reproductive status,

and include many well-known neurotransmitters as well

as other signaling molecules [20]. Ultimately GnRH1

expression depends on the integration of this wide variety

of input signals and regulates reproduction.

Sensory inputs regulating reproduction
Sensing potential mates in water offers special challenges.

Underwater optics and lighting are limiting, chemical

signals can diffuse quickly, and other modalities such

as weak electrical signaling and sound have distance

limitations. Nonetheless, teleost fish have adapted to

nearly every kind of water habitat imaginable, including

very cold (�17 8C) and very hot (38 8C) water, low

pressure at the water’s surface and enormous pressures

at 9000 m in depth, and in currents as different as a

stagnant swamp to raging torrents. This diversity of

habitats has result in a spectacular range of adaptations

in teleost vision, particular in those species where seeing

is the most important sense.

Vision

Among teleosts, cichlid fish species have been well stu-

died and, in particular, for Astatotilapia burtoni, a cichlid

fish endemic to Lake Tanganyika in the African Rift

Valley, the visual system is well understood. A. burtoni has

both rods (500 nm) and cone vision with cells tuned to

lmax values of 454 nm, 523 nm, and 562 nm [(for review

see 21)]. In this species, visual cues play a role in female

mate choice [22] and in male assessment of dominance

and fighting ability [23,24]. When a non-dominant male

sees a larger more dominant competitor, he stops display-

ing and courting females, turns off his body coloration,

and acts submissively towards the more dominant indi-

vidual [24]. Visual information is processed by the stan-

dard vertebrate pathway: From the eye to the nuclei of

the accessory optic tract, the dorsal thalamus, the ventral

thalamus, the pretectal region, and the optic tectum [25].

But exactly how and where reproductive information is

collected and processed is not known. No sensory system

operates in isolation, so olfactory, mechanosensory, and

auditory pathways collaborate to provide information

about reproduction.

Olfaction, mechanosensation, electroreception, and

audition

The most ancient of the sensory systems (>500 My) are

chemosensation, olfaction, and gustation, which are the

major sensory pathways for detection and identification of

chemical stimuli in the environment [26]. In teleost fish,

paired olfactory organsare unlike terrestrial vertebrates

since there is no direct contact between the olfactory and

respiratory systems [26]. In crucian carp (Carassius car-
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assius) the olfactory system detects preovulatory phero-

mones reflected in key amino acids in the water [27,28].

Treatment with preovulatory pheromones stimulates tes-

ticular hormone production in goldfish that in turn evokes

increased milt production and courtship behaviors

towards females [29]. Similar findings have been shown

in the Rose bitterling (Rhodeus ocellatus ocellatus) [30],

common carp (Cyprinu carpio) [29], and crucian carp (C.
carassius) [31].

The fish mechanosensory system or lateral line organ,

present in all fishes and aquatic amphibians [32–34],

detects near field water movements relative to the skin

surface [35]. Some fish even use self-induced water

motions to detect stationary objects with the aid of the

lateral line. This ability is well developed in the blind

Mexican cavefish (Astyanax mexicanus), which when con-

fronted with a new object, accelerates and then glides past

it in close proximity. Environmental information is col-

lected by analyzing distortions of the self-induced flow

field using the lateral line [36,37]. In the hime salmon

(Oncorhynchus nerka), sexual behavior depends on the use

of body vibration and electromyographic activity of the

trunk muscles of both males and females. These

vibrations act as timing cues not only to synchronize

the chain reaction of sexual behaviors but also to syn-

chronize gamete release [38]. When using the lateral line,

displacement of hair cells by viscous drag due to water

movements causes modulation of the spontaneous

primary afferent discharges sent to the mechanosensory

processing centers in the hindbrain [39,40].

Electric fish generate weak electric organ discharges from

a muscle-derived electric organ and use these fields for

electrolocation and communication. Use of weak electri-

cal signals has evolved twice, in the mormyriforms and the

gymnotiforms [41]. In both of these groups of fishes,

electric fields are used for sophisticated communication

between individuals and the detection and identification

of nearby objects [42]. The electrical organs are distrib-

uted over the entire body surface of fish and can be

classified into two major classes: tuberous organs, special-

ized to high-frequency self-generated electrical fields and

ampullary organs, specialized for the detection from

external sources, like those generated from other animals

[43]. The information gathered by these specialized

organs is processed in the posterior lateral line lobe that

projects to multiple brain areas [44].

Some teleost fish species generate acoustic signals for

vocal communication. Carp (Cyprinus carpio), cod (Gadus
morhua), and haddock (Melanogrammus aeglefinus) use

sound and can readily discriminate its amplitude and

direction. The Hawaiian sergent fish (Abudefduf abdomi-
nalis) produces sounds at close distances to the intended

receiver with different pulse characteristics that are

associated with aggression, nest preparation, and courship
Opin Neurobiol (2009), doi:10.1016/j.conb.2009.09.015
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behaviors [45]. The plainfin midshipman (Porichthys nota-
tus), a territorial fish uses vocalizations to court females

and defend a territory against conspecific intruders.

There is a direct relationship between rhythmic, pat-

terned output of a brainstem pacemaker circuit and the

physical attributes of species- and sex-specific vocaliza-

tions [46].

How did these sensory systems contribute to
the evolution of mating?
Mating systems

Understanding the evolution of neural control of repro-

duction requires comparing model organisms with a

variety of reproductive systems. Since teleost fish have

the widest range of reproductive behaviors and mating

systems among vertebrates [(c.f., 47)], these species offer

unique opportunities to study both the evolution and the

function of the variation in neural pathways involved in

mating systems. In addition to primary reproductive

strategies, alternative reproductive tactics abound, typi-

cally in species where males compete for access to mating

territories to gain access to females. Smaller males with a

reduced competitive ability may use one of multiple

alternative tactics to achieve fertilization of part of the

clutch [48]. In one cichlid, Telmatochromis vittatus, 4

alternative reproductive tactics exist [49]. Adult males

can be: 1) territorial and defend a nest; 2) ‘pirates’ that

displace territorial males; 3) satellite males, submissive to

territorial and pirate males; and 4) sneaker males, who

parasitize spawnings by releasing sperm when the terri-

torial or pirate is absent [50]. In some species, younger

males adopt a sneaker strategy until they grow big enough

to become territorial (e.g., Pomatochistus microps) [51].

Interestingly, though, sneaker and territorial tactics

may produce equivalent fitness (Lepomis, Oncorhynchus)
[52]. Despite having mature gonads, males using alterna-

tive reproductive tactics do not show secondary sex

characters typical of the dominant males of the species

and the effects of high levels of circulating androgens are

somehow differentially suppressed [53]. It is not known in

these morphs how different aspects of male reproductive

physiology including control of gonadal maturation,

expression of secondary sexual characteristics, and acti-

vation of male sexual behavior are suppressed. For

example, androgen profiles vary according to male mating

tactics and courting males consistently have higher levels

of 11KT (a fish-specific androgen) but not of T than non-

courting males [(c.f., 54)].

Sex-role reversal occurs when females compete more

intensely than males for access to mates, and hence such

females have higher potential reproductive rates than

males [55]. Male pregnancy in pipefishes and seahorses

(Syngnathidae) suggests that females compete most inten-

sely for access to males, because males limit female

reproduction. Mayer et al. [56] measured plasma levels

of androgens in three species of pipefish to discover
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whether sex-role reversal and male pregnancy was corre-

lated with circulating hormone levels. In pipefish, males

had higher levels of 11KT, typical for normal teleosts,

while levels of 17b-estradiol were higher in males than in

females, markedly different from that of the typical

teleost pattern. Although few studies have looked at

the hormonal correlates of sex-role reversal, reversal of

sex roles is not typically associated with dramatic endo-

crinological differences [55].

In addition to the gonochoristic varieties described above,

some fish species are sequential hermaphrodites, in which

individuals at a stage of their life cycle or social status

change sex [57]. There are simultaneous hermaphroditic

species as well as parthenogenic species where all indi-

viduals reproduce asexually (e.g., Amazon mollie: Poecilia
Formosa) [48,58,59]. The change of sex in sequential

hermaphrodites may be genetically controlled or trig-

gered by external events, such as the loss of a dominant

male from a harem or it may be affected by the combi-

nation of these two mechanisms [60]. However, most sex

changing fish rely on social cues to initiate and orchestrate

the development of the dominant phenotype [61], which

requires correlated changes in a suite of characters in-

cluding brain, behavior, hormones, gonads, genitalia, and

other secondary sexual characters [62]. In the dramatic

case of some wrasse species, removal of a dominant male

from his harem produced sex change of the largest female,

who assumed male coloration in four days and full gonadal

maturation including the production of mature sperm in

eight days [63]. The mechanisms of sex change are not

understood and typical hormonal interventions (e.g.,

gonad removal) have no effect [64].

Genomic and epigenetic regulation

Teleost fish have experienced extremely rapid genomic

evolution, with notably fast-paced genic and genomic

duplication [65,66]. Genome-wide duplications increase

the potential for evolutionary flexibility in sex-determin-

ing and other sexually dimorphic pathways [67] but the

diversity of specific strategies through which this has

happened is staggering. The genetic mechanisms under-

lying development or modification of reproductive sys-

tems are due to 1) changes in protein or mRNA

concentration and targeting; 2) modification of protein

trafficking and/or retention, or 3) post-translational modi-

fications. As shown above, measurements of protein or

mRNA level changes have been extensively studied in

fish species in relation to sex, sex change, and changes in

social system (e.g., AVT, GnRH, serotonin, dopamine,

etc.) [20,68]. However, changes in protein processing and

post-translational processes have not been analyzed in

fish reproduction in vivo.

microRNAs (miRNAs) are another possible regulator of

reproductive action. These small non-coding RNAs con-

trol the stability or translation of mRNA transcripts and
Opin Neurobiol (2009), doi:10.1016/j.conb.2009.09.015
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are a recently discovered mechanism. In multicellular

organisms, numerous miRNA genes can act post-transcrip-

tionally to modulate the expression of more than a third of

the coding mRNAs [69] and these miRNAs are expressed

in adult neurons providing local translational control of

plasticity [70,71]. For example, miRNAs are key regulators

in the circadian-timing process: miR-219-1 is a clock con-

trolled gene that plays a role in regulating the length of the

circadian day, while miR-132 is light inducible and modu-

lates the phase-shifting capacity of light [72].

Another potential avenue for regulation of sex and repro-

ductive behavior is the methylation of coding DNA [73].

DNA methylation occurs in the genomes of a wide array of

bacteria, plants, fungi, and animals [74] and the methyl-

ation of cytosine bases represents an important epigenetic

mark that affects gene expression in diverse taxa [74,75].

DNA methylation in vertebrates typically occurs at cyto-

sine-phosphate-guanine sites (CpG) and is catalyzed by

DNA methyltrasferase [76]. In honeybees (Apis mellifera)
Please cite this article in press as: Desjardins JK, Fernald RD. Fish sex: why so diverse?, Curr

Figure 1

Theoretical pathway of the interaction between sensory inputs,

reproductive strategy, genomic information, the brain, and behavior. The

signals received by the sensory system will generate behavioral outputs

based on the reproductive strategy of the species as well as the

encoded genomic information. Once this signal is passed on, neural

change, epigenetic change, the HPG axis, and behavior will change

depending on the state of each. The behavioral output will then in turn

influence how sensory inputs are interpreted.

Current Opinion in Neurobiology 2009, 19:1–6
different levels of methylation have been associated with

different castes within the hive [77] and Kucharski et al.
[78] showed that downregulation of a key DNA methyl-

transferase (Dnmt3) in developing bees resulted in pro-

found changes in developmental trajectories, suggesting

that DNA methylation is widespread and may play a crucial

role in the unfolding of life-history strategies. In rats,

maternal behavior towards pups resulted in stable altera-

tions of DNA methylation and chromatin structure, pro-

viding a mechanism for the long-term effects of maternal

care on gene expression in offspring [79].

Conclusion
Fish express extremely diverse sex determination sys-

tems, mating systems, sensory systems, and reproductive

tactics that have evolved multiple times and account for

their evolutionary success. The fine-tuning of each of

these pathways is unlikely to be genetically determined

but shaped by experience, ongoing behavior, the repro-

ductive axis as well as neural and epigenetic changes

(Figure 1).
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