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Abstract

Spin dimer compounds are based on pairs of spins with antiferromagnetic exchange.

At low fields the ground state is a product of singlets, with excited triplet states

at higher energies. Application of a magnetic field closes the spin gap between the

excited triplet state and singlet state. Interactions between dimers broaden the triplet

bands, such that above a critical field where the minimum of the triplet band crosses

the singlet, long range magnetic order (LRMO) can arise. The ordered states can

take several novel forms, including a spin superlattice or a Bose-Einstein condensate

of magnons, depending upon the spin Hamiltonian describing the system.

Ba3Mn2O8 is a spin dimer system based on dimers of S = 1, 3d2, Mn5+ ions

arranged on a triangular lattice. A pair of antiferromagnetically linked S = 1 ions

has total spin 0, 1 or 2, leading to, in zero field, excited quintuplet states in addition

to the excited triplet states above the singlet ground state. The triangular lattice is

composed of vertical dimers on hexagonal layers which are stacked according to an

‘ABC’ structure. In this thesis, I describe the results of experiments which probed

this system via different thermodynamic measurements of single crystals, revealing

at least three novel ordered states.

Measurements of heat capacity, magnetocaloric effect, torque magnetometry and

magnetostriction revealed significant anisotropy in the singlet-triplet regime, with a

single ordered state observed for fields along the easy c axis and two states observed

for fields away from that direction. Analysis of the minimal spin Hamiltonian yields

candidate phases for the canted antiferromagnetic order observed, including incom-

mensurate order close to the archetypal 120◦ order for triangular systems as well as

modulated order for fields away from the c axis.
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The triplet-quintuplet regime was probed via heat capacity, magnetocaloric effect

and magnetization measurements, the first experiments to probe such ordered states

of a spin dimer compound. A significant asymmetry in the quintuplet condensate

was revealed in both the magnetization and the phase boundary. This asymmetry

is understood as a consequence of zero point phase fluctuations, which are absent at

the saturation field but present everywhere else.

Finally, the effect of disorder in this spin dimer compound was studied by sub-

stitution of non-magnetic S = 0 3d0, V5+ ions for the S = 1, 3d2, Mn5+ ions in

Ba3(Mn1−xVx)2O8. This work was motivated in part by theoretical predictions that

substitution of non-magnetic species on a square lattice of dimers would result in a

low-temperature ordered magnetic state, for which interactions between the unpaired

magnetic moments is mediated by short range correlations of the background sin-

glet ground state. We do not find any evidence for such a state down to 50 mK.

Rather, the magnetic entropy is progressively removed over an extended range of

temperature, from ∼2 K down. The temperature and doping dependence of the heat

capacity do not conform to expectations for a spin glass, leading us to suggest that

Ba3(Mn1−xVx)2O8 manifests a random singlet state for the range of compositions and

temperatures studied.
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Chapter 1

Introduction

1.1 Motivation

Long range magnetic order is an important and commonplace phenomenon, frequently

found in nature, which underlies many everyday applications. For instance, the fa-

miliar horseshoe magnet is an example of ferromagnetism, in which all the magnetic

moments of a material align to create a large combined external field which can be

felt by other nearby magnets. Ferromagnetic materials are used in a wide array of dif-

ferent applications, from the magnetic strips on credit cards which store the personal

information of the cardholder, to the basic compass, which comprises a magnetized

arrow that aligns with the earth’s magnetic field to point north. A slightly different

example of long range magnetic order is found in the layered systems which exhibit

giant magnetoresistance (GMR). These materials are designed in such a way that thin

ferromagnetic layers align naturally in alternate directions. For a sufficiently large

external magnetic field, the magnetization of each layer aligns in the same direction,

altering the resistance of the device. GMR read heads have been widely used in hard

disk drives since the mid 2000’s. More recently, variants based on tunnel junction

have been used to store as well as read data.

Spin dimer compounds provide a pathway to novel magnetically ordered states.

In the simplest case for these compounds, strong antiferromagnetic exchange between

pairs of S = 1
2

spins (dimers) leads to a groundstate that is a product of singlets with

1
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Figure 1.1: Energy spectrum of an isolated spin dimer composed of pair of S = 1
2

magnetic ions with antiferromagnetic exchange J . Singlet state is solid green line and
Sz = 1 triplet states is solid red line. Including interactions between dimers causes
the triplet lines to broaden into bands, such that as the Sz = 1 triplet band crosses
the singlet state long range magnetic order can arise.

excited triplets. Application of a magnetic field splits the excited triplet states that

are delocazed due to the interdimer exchange due to the basic Zeeman interaction

(see Figure 1.1). Exchange between dimers broadens the triplet bands, and under

specific conditions long range magnetic order can arise above the critical field where

the minimum of the triplet band crosses the singlet band.

A useful analogy can be drawn between a spin dimer system at elevated magnetic

fields and a lattice gas of hardcore bosons [1]. In this equivalence a singlet constitutes

an empty site while a Sz = 1 triplet constitutes an occupied site, with the hardcore

repulsion term maintaining no more than one Sz = 1 triplet on a given site. In such

an analogy the effective Jxy exchange between dimers becomes in bosonic language a

hopping term, and thus the kinetic energy, while the effective Jz exchange between

dimers becomes a nearest neighbor repulsion term, and thus the potential energy.

Depending on the interplay between these terms and the local geometry, different

novel ordered states can arise [2].

If the potential energy of the system dominates, then the Sz = 1 triplets will try

to minimize the repulsion term. This is accomplished by forming a spin crystal, in

2



which Sz = 1 triplets crystallize into a spin superlattice at a fractional filling value.

In such a case, the magnetization would exhibit multiple magnetization plateaus

as successive superlattices are formed for different fractional filling values. Such a

state has been observed in the Shastry-Sutherland compound SrCu2(BO3)2, for which

experiments have revealed several successive magnetization plateaus [3], the spin-

structure of which has been determined by NMR measurements [4].

If alternatively the kinetic energy dominates over the potential energy then canted

antiferromagnetic order can arise. In such states the Sz = 1 triplets are delocalized

and each site supports a coherent superposition of singlet and Sz = 1 triplet states.

TlCuCl3 is a well studied example of such a state, for which canted order develops

above 5.7 T at low temperatures [5, 6, 7, 8]. If the spin-Hamiltonian describing a

material has a U(1) symmetry for the moments in the plane perpendicular to the

field then the canted antiferromagnetic order is a direct realization of a Bose-Einstein

condensate (BEC) of magnons [9]. BaCuSi2O6 is an example of a BEC of magnons

[10, 11, 12]; intriguingly, studies of the system revealed dimensional reduction to a

transition in the 2D BEC class near 0 K, which was attributed to geometric frustration

[13].

One further possibility has been theoretically predicted, in which the interplay

between the kinetic energy, potential energy and the lattice lead to a spin supersolid.

In this case, for specific field ranges, a spin crystal superlattice forms at a fractional

filling value while a magnon BEC superfluid fills in the vacancies [14]. Although this

state has been the subject of considerable theoretical investigation, to date no system

has been found with such order.

While it is clear that spin dimer compounds can provide access to various kinds

of novel ordered states, these systems also have several specific characteristics that

differentiate them from simple magnets. First, the entire phase diagram can be

explored with the simple tuning parameter of an external magnetic field, in contrast

to many other quantum magnets. Specifically, as will be shown in the theory section,

the external magnetic field acts as a chemical potential for the triplets, such that the

material can be tuned through the quantum critical point separating the quantum

paramagnetic singlet state (characterized by short range correlations but no long

3
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J2

Figure 1.2: Schematic diagram showing interdimer exchange directly (J2) and di-
agonally (J3) across between dimers. Magnetic ions shown in blue connected by
intradimer exchange shown in thick red line. Depending on the strength of J2 and J3

the effective exchange between dimers can be Heisenberg, Ising or xy-like, which will
determine which of the various possible forms of long range order will develop for a
lattice of dimers.

range order) to the ordered magnetic state with broken symmetry.

A second intriguing characteristic of spin dimer compounds is that highly anisotropic

effective exchanges can be engineered between dimers. This is significant because Jxy

and Jz component of the effective exchange between dimers set the kinetic and po-

tential energy, respectively, of the Sz = 1 triplets, and thus determine the exact form

of the ordered states. For instance, in the schematic shown in Figure 1.2, each spin of

neighboring dimers has two interdimer exchanges, J2 directly across between dimers

and J3 diagonally across between dimers. The resulting effective exchange between

dimers is given by Jxy
eff=J2 − J3 and Jz

eff = J2 + J3. The theoretical predictions of a

spin supersolid hinge on this ability to generate an anisotropic exchange with a nearly

zero Jxy
eff between dimers. In such a manner multiple Heisenberg interactions for each

magnetic ion can combine to create Heisenberg, Ising or xy-like effective exchanges

between dimers, while preserving a weak spin-orbit coupling.

A final important characteristic of spin dimer systems is that they are protected

from symmetric anisotropies. Symmetric anisotropies, such as dipole-dipole interac-

tions, can constrain moments by making certain directions energetically unfavorable

for the spins to point along relative to the other more favorable directions. This

will break the U(1) symmetry and by extension the magnon BEC language for the

ordered states. However, in spin dimer compounds symmetric anisotropies cannot
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Figure 1.3: Schematic diagram showing how geometrically frustrated triangular lat-
tices composed of Heisenberg spins with antiferromagnetic exchange have a non-
collinear 120◦ groundstate.

directly connect two states of opposite symmetry, and thus cannot directly connect

singlet and triplet states (or triplet and quintuplet states). Symmetric anisotropies

instead enter the effective spin Hamiltonian in second order; thus their constraints

on the ordered states are much smaller and the U(1) symmetry will be preserved to

a much lower energy scale.

In this thesis, I describe the results of experiments probing a new spin dimer com-

pound Ba3Mn2O8, of particular interest because the dimers occupy a geometrically

frustrated lattice, and because the Mn ions carry a higher spin of S = 1.

1.2 A New Spin Dimer Compound: Ba3Mn2O8

Ba3Mn2O8 has several characteristics that make its ordered states unique among

currently known spin dimer compounds: a triangular, frustrated structure; magnetic

Mn5+ ions with S = 1, leading to additional quintuplet states; and finally an easy

axis single ion anisotropy. In this section I will discuss these unique characteristics

as well as a short summary of the previously studies of this system.

The first significant facet of Ba3Mn2O8 is its triangular structure. Antiferromag-

netic exchange on a triangular lattice leads to geometric frustration, wherein all of

the microscopic exchanges cannot be simultaneously satisfied. The classical solution

to a Heisenberg antiferromagnet on a triangular lattice with only nearest-neighbor

interactions is the well-known 120◦ structure (Fig. 1.3). In this case, the main effect

5
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b
a

Figure 1.4: Crystal structure of Ba3Mn2O8 showing ‘ABC’ stacking. Red, blue and
yellow spheres are Mn, O and Ba ions, respectively, while grey pyramids are MnO4
tetrahedra. Bonds show the Mn dimers, separated 3.985 Å.

of the frustration is simply to produce a non-colinear structure. In an early attempt

to find the groundstate of the two-dimensional quantum triangular antiferromagnet,

Anderson proposed the Resonating Valence Bond (RVB) spin liquid state [15]. Sub-

sequent theoretical work has indicated that for the simple case with only nearest

neighbor interactions the classical solution is in fact stable against quantum fluctua-

tions, but with a much reduced ordered moment [16, 17]. Other models corresponding

to more complex lattices and interactions are still the subject of intense theoretical

investigation [18]. This thesis will analyze the novel ways that geometric frustration

is relieved in the ordered states of a spin dimer system.

Ba3Mn2O8 has a rhombohedral R3̄m structure with hexagonal lattice parameters
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Figure 1.5: Crystal structure of Ba3Mn2O8 showing single hexagonal plane. Red,
blue and yellow spheres are Mn, O and Ba ions, respectively, while grey pyramids are
MnO4 tetrahedra.

of a = 5.71 Å and c = 5.71 Å [19]. Each hexagonal plane is decorated by verti-

cal dimers which are staggered according to an ‘ABC’ structure, such that there is

geometric frustration both within a single plane and between planes (see Fig. 1.4).

The dimers are composed of Mn ions in MnO3−
4 distorted tetrahedral coordination,

where the Mn-O bond length is shorter to the apical O than to the planar oxygens.

The bases of the stacked MnO3−
4 tetrahedra both face one another and are rotated

180◦ with respect to each other (see Fig. 1.5). These stacked Mn ions which form

the dimer are separated by 3.985 Å. Each Mn ion has six next nearest neighboring

in-plane Mn ions 5.711 Å away; the Ba ions act as spacers both in plane and between

planes. Each dimer sits either directly above or below the center of a triangle of Mn

ions from an adjacent layer, leading to additional frustrated pathways between planes.

The distance between nearest and next nearest neighboring Mn ion on adjacent layers

is 4.569 Å and 7.313 Å, respectively.
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Figure 1.6: Crystal field splitting of Ba3Mn2O8 showing how the two spins of the 3d2

Mn5+ ion are in the eg states of the distorted tetrahedral coordination.

There is a center of inversion symmetry at the midpoint of the dimer between the

Mn ions of the dominant exchange. This crucial symmetry precludes any Dzyaloshinskii-

Moriya interaction between those spins. There are several additional symmetries, in-

cluding a center of inversion symmetry at the midpoint between nearest neighboring

Mn ions on adjacent layers and a mirror plane at the midpoint of the next nearest

Mn ions in plane, which further constrain possible Dzyaloshinskii-Moriya interactions

between Mn ions.

The Mn5+ ions of this compound have a electron configuration of 3d2, which in

this crystal field coordination leads to total spin S = 1. The crystal field diagram for

a 3d2 ion in a distorted tetrahedral environment is shown in Fig. 1.6. The two spins

are in the split eg orbital, which has quenched the orbital contribution to the moment,

making the total spin S = 1. This larger spin allows for a dimer to have total spin

S = 2 (quintuplets) in addition to the previously considered total spin states of S = 1

(triplets) and S = 0 (singlet). The same interactions that broaden the triplet band

also broaden the quintuplet band, and for fields above those required to saturate the

Sz = 1 triplet states there will be an additional critical field for which the Sz = 2

quintuplet states start to cross the triplet states (see Fig. 1.7). Under nearly the

equivalent energetics as in the lower field regime, new ordered can arise consisting of
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Figure 1.7: Energy spectrum for dimer composed of pair of S = 1 magnetic ions with
antiferromagnetic exchange J . Singlet state is solid green line, Sz = 1 triplet states
is solid red line and S = 2 quintuplet state is solid blue line.

a coherent superposition of quintuplets and triplets..

Only one previous spin dimer compound with S = 1 has been studied, the or-

ganic biradical magnet F2PNNNO [20]. That compound is composed of a strongly

ferromagnetically linked spin 1
2

pair linked antiferromagnetically to another pair such

that it acts as a spin 1 dimer [21, 22]. Magnetization measurements on that system

showed two separate ranges of linearly increasing magnetization, first between 9 T

and 15 T as the Sz = 1 triplet band is populated, then between 25 T and 29 T as the

Sz = 2 quintuplet band is populated.

The total spin of S = 1 for each Mn ion also leads to a single ion anisotropy.

Previously studied spin dimer compounds have been composed of ions of spin S = 1
2
,

which by Kramer’s theorem cannot have a single ion anisotropy. This symmetric

single ion anisotropy will enter the effective Hamiltonian to second order as previously

discussed.

Previous thermodynamic studies of the magnetic properties were performed on

polycrystalline Ba3Mn2O8. These studies revealed a spin gap in Ba3Mn2O8 of Hc1 ∼
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9 T [23]. Further studies revealed a magnetization which rises approximately linearly

with field from Hc1 until the eventual triplet saturation field is reached at Hc2 ∼
26 T [24]. Above Hc2 there is a plateau for which the system is fully in the triplet

state. This plateau extends until the minimum of the quintuplet band at Hc3 ∼ 32

T above which there is a second region of linearly increasing magnetization as the

quintuplet band is filled, saturating at Hc4 ∼ 48 T. Heat capacity measurements of

polycrystalline samples revealed tantalizing evidence for two phase transitions in the

singlet-triplet regime [25]. Initial calculations of the exchange pathways predicted

that this compound falls into the canted antiferromagnetic ordering class where the

kinetic energy dominates over the potential energy. This thesis contains the first

studies on single crystal Ba3Mn2O8, where the effects of the anisotropy are observed

and the full phase diagram is established, including the first direct observation of

triplet-quintuplet ordered states in a spin dimer system.

1.3 Layout of this Thesis

This thesis will follow the following outline: Chapter 2 contains the material and theo-

retical background, first detailing the relevant microscopic interactions of Ba3Mn2O8,

then outlining the energetics of an isolated dimer before finally determining the form

of the effective interaction and the relevant second order processes. Chapter 3 contains

the crystal synthesis and growth techniques used and single crystal characterization

details. Chapter 4 contains the experimental techniques, first detailing the different

magnets used to attain high fields and then the different thermodynamic measure-

ments performed. Chapter 5 contains the results of experiments which probed the

singlet-triplet ordered states of Ba3Mn2O8 and a discussion of those results. Chap-

ter 6 details the results of measurements of the triplet-quintuplet ordered states in

this system. Chapter 7 concerns the experiments which probed the ground state of

Ba3(Mn1−xVx)2O8 at low fields. Finally, chapter 8 summarizes the results provided

here. There are three additional appendices. Appendix A contains a derivation of

the triplet dispersion which was utilized in the analysis of inelastic neutron scattering

studies (INS) to determine the relevant exchange values of this system [26, 27, 28].
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Appendix B contains a derivation of the energy spectrum for a system composed of

two spins with exchange and single ion anisotropy. Appendix C contains preliminary

studies which probed the singlet-triplet ordered states of Ba3(Mn1−xVx)2O8.

The results presented in this have been published in several references [29, 30, 31,

32]. Additional measurements performed by collaborators on crystals grown as part

of this thesis have also been published [26, 27, 28, 33, 34].
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Chapter 2

Theory

This chapter will detail the theoretical underpinning of spin dimers and the specific

energetics of Ba3Mn2O8. First I will outline the basic features of an isolated dimer.

Then I will describe the relevant interactions in the system and express the spin

Hamiltonian. Finally I will demonstrate the transformation from the individual mag-

netic ion basis to the dimer basis for Ba3Mn2O8 with the use of pseudospins. A crucial

part of the transformation is developing the effective exchanges which are necessary

to understanding the phase diagram shown later in this thesis.

2.1 Isolated Spin Dimer Comprising S = 1 Spins

Isolated spin dimer systems are conceptually simple and illustrate many of the basic

properties of interacting spin dimer systems. In this section I will develop several

basic thermodynamic properties of the isolated S = 1 spin dimer system which are to

varying degrees applicable to the interacting dimer system of this work, Ba3Mn2O8.

Antiferromagnetic exchange J within an isolated spin dimer composed of two S =

1 ion leads to a singlet groundstate with a gap of J to the three excited triplet states

and a second gap of 3J to the five excited quintuplet states (Fig. 1.7). Application of

a magnetic field causes the spin gap between the singlet and the Sz = 1 triplet state

(as well as the gap between the singlet and the Sz = 2 quintuplet state) to decrease.

At a critical field of Hc = J/gµ0µB the singlet state and the Sz = 1 triplet state
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become degenerate, and as fields increase above Hc the Sz = 1 triplet state is the

nondegenerate groundstate. AboveHc the gap between the Sz = 1 triplet groundstate

and the excited Sz = 2 quintuplet state decreases as field is increased until a second

critical field H ′
c = 2J/gµ0µB where the Sz = 1 triplet state and the Sz = 2 quintuplet

state become degenerate. For all fields above H ′
c the Sz = 2 quintuplet state is the

groundstate, with gaps to all other states that grow as field is increased.

Several basic thermodynamic properties can be immediately determined from the

isolated dimer energy spectrum through basic statistical mechanics and the canonical

partition function. The functional form of the magnetization as a function of field is:

M =

∑

j,mj
(NgµBmj) e

−(Ej+gµBmjµ0H)β

Z
=
NgµB

Z

∑

j

e−Ejβ
∑

mj

mje
−gµBmjµ0Hβ

=
4NgµB

Z
{cosh (Jβ) sinh (gµBµ0Hβ) + e−Jβ sinh (2gµBµ0Hβ)} (2.1)

Where Z is the canonical partition function

Z =
∑

j,mj

e−(Ej+mjgµBµ0H)β

= e2Jβ + 2 cosh (Jβ) [1 + 2 cosh (gµBµ0H)] + 2e−Jβ cosh (2gµBµ0H) (2.2)

, β = 1/kBT and N is Avogadro’s number.

The magnetization is plotted for several temperatures in Fig. 2.1. The zero tem-

perature magnetization, shown in black, reveals zero magnetization at low fields as

the system is a product of singlets, a step to a plateau of half the full magnetization of

1 µB above Hc as the system has an Sz = 1 triplet on each site, followed by a second

step at H ′
c, above which the system is fully polarized with Sz = 2 quintuplet states

at 2 µB. At higher temperatures these transitions smear out, starting at zero mag-

netization at zero field, before eventually asymptotically approaching the saturation

magnetization at fields above H ′
c, and having the maximal change in magnetization

at the critical fields.

The susceptibility is also easily calculated provided the applied magnetic field is

sufficiently small, H ≪ Hc = J/gµ0µB, and the magnetization is directly proportional
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Figure 2.1: Magnetization of isolated dimer composed of S = 1 spins at several
different temperatures.

to the applied field. The temperature dependence of the low field susceptibility is

χd =
dM

dH
∼= M

H
= 2Ng2µ2

Bβ
1 + 5e−2Jβ

eJβ + 3 + 5e−2Jβ
(2.3)

and is plotted in Fig. 2.2. The susceptibility has an exponential rise at low temper-

atures, T < J/kB, as the spin gaps between the singlet state and the excited triplet

and quintuplet states are populated. At higher temperatures, T > 3J/kB, the sus-

ceptibility shows more Curie-like 1/T behavior as all the states are relatively evenly

populated and paramagnetic behavior is approximated.

2.2 Spin Hamiltonian

Determining all the terms present in the spin Hamiltonian is crucial for theoretical

determination of the ordered ground states. The primary microscopic measurements

used to determine the available terms were inelastic neutron scattering and electron

paramagnetic resonance.

Inelastic neutron scattering (INS) experiments are a very powerful technique for
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Figure 2.2: Susceptibility of an isolated dimer composed of S = 1 spins.

determining the energy spectrum of a system. Both powder and single crystal diffrac-

tion studies were undertaken on this system by collaborators using samples prepared

as part of this thesis work [26, 27, 28]. In these measurements the magnetic energy

dispersion is collected, allowing determination of the relevant exchanges by fitting

to the dispersion (see Appendix A). Further study of the experimental dispersion

and the theoretical fit to that dispersion is in Appendix A. The single crystal stud-

ies yielded a value for the exchange within a dimer, J0 = 1.642 meV, where the

nomenclature for the exchanges taken from previous polycrystalline work [24] (see

Fig. 2.3). Several higher order exchanges were also determined from the fit: the

in-plane exchange between next nearest Mn ions and also between next next near-

est Mn ions, J2 − J3 = 0.1136 meV; the out-of-plane exchange between nearest Mn

ions, J1 = 0.118 meV; and the out-of-plane exchange between next nearest Mn ions,

J4 = 0.037 meV. While the individual values of J2 and J3 could not be fit due to the

equivalent functional dependence of those two exchanges in the magnetic dispersion,

however, measurements of the critical fields yielded estimates for J2 and J3 of 0.256

meV and 0.142 meV, respectively [27, 28]

Electron paramagnetic resonance (EPR) studies measures transitions between

different states, from which additional terms in the effective Hamiltonian, such as

Dzaloshinskii-Moriya and dipole-dipole interactions, can be revealed. Early EPR
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Figure 2.3: Magnetic lattice of Ba3Mn2O8 showing various exchanges. Red spheres
are magnetic Mn ions. Exchange within a dimer (J0) shown as thick line. Exchange
between dimers within a plane directly between tetrahedra (J2) and diagonally across
neighboring dimers (J3) shown as thin black line and long dashed lines. Interdimer
exchange between planes between nearest neighboring spins (J1) and next nearest
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studies were undertaken on lightly doped Ba3(MnxV1−x)2O8 system [35]. These stud-

ies showed the presence of both Mn5+ and Mn4+ with spins of S = 1 and S = 3
2
,

respectively, where the Mn5+ valence is five times more prevalent than the Mn4+

valence (the samples used in this thesis were not found to have significant concentra-

tions of Mn4+ ions, although a small concentration of such ions cannot be ruled out.)

The Mn5+ ions were found to have a nearly isotropic g factor, with gaa=1.9608 and

gcc=1.9722, and an easy axis single ion anisotropy of D=-5.81 GHz, corresponding to

0.024 meV. More recent EPR studies performed by collaborators on single crystals

of Ba3Mn2O8 that I grew confirmed the nearly isotropic nature of the g factor [36].

Those measurements also found a zero field splitting of ‖D‖=0.032 meV; the dif-

ference cannot be accounted for by just the intradimer dipolar interaction, implying

the presence of additional weak interactions that affect the zero field splitting in the

concentrated lattice.

The minimal spin Hamiltonian for this system incorporating all these terms is:

H =
∑

i,j,µ,ν

Jiµjν

2
Siµ · Sjν +D

∑

i,µ

(

Sz
iµ cos θ − Sx

iµ sin θ
)2

−µBH
∑

iµαβ

(

g̃zzS
z
iµ + g̃xzS

x
iµ

)

. (2.4)

The quantization z axis is set by the field direction while θ is the angle between

the field direction and the crystalline c axis. Here g̃zz = gaa sin2 θ + gcc cos2 θ and

g̃xz = (gcc − gaa) sin θ cos θ. i, j designate the dimer coordinates, α, β = {x, y, z} and

µ, ν = {1, 2} denote each of the two S = 1 spins in each dimer. The various exchange

constants shown in Fig. 2.3(a) are defined as follows: J0 = Ji,1,i,2; J1 = Ji,2,j,1

for i, j nearest neighbor dimers between planes; J2 = Ji,µ,j,µ and J3 = Ji,µ,j,ν for

i, j in plane nearest neighbor dimers and µ 6= ν; and finally J4 = Ji,2,j,1 for i, j

next nearest neighbor dimers between planes. Using this Hamiltonian most of the

important features of the phase diagram can be understood.
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2.3 Effective Pseudospin Transformation

Mapping spin dimer systems onto a pseudospin 1
2

model is a convenient method for

qualitatively and quantitatively understanding these systems. This transformation

can be performed in the singlet/Sz = 1 triplet regime for magnetic fields close to Hc1

and sufficiently low temperatures where the higher energy Sz = −1 and Sz = 0 triplet

and quintuplet states can be neglected to a reasonable level of approximation. In such

a case the Hilbert space is spanned by the singlet and Sz = 1 triplet states, and the

pseudospin s̃ = 1
2

represents the system such that the singlet state is the s̃z = −1
2

state,

and the Sz = 1 triplet state is the s̃z = 1
2

state (real spins are represented by capital

letters and pseudospin operators by lowercase letters with tildes) [37]. A similar

mapping is possible for the Sz = 1 triplet and the Sz = 2 quintuplet states in the

regime for which these two states are degenerate (neglecting the four other quintuplet,

two other triplet and singlet states), in which the Sz = 1 triplet state is the s̃z = −1
2

state and the Sz = 2 quintuplet is the s̃z = 1
2

state. This transformation has been

extensively studied for the two-leg ladder systems with S = 1
2

spins under application

of a magnetic field [38, 39]. In this section I will show a detailed demonstration of

the transformation in Ba3Mn2O8 for both the singlet/Sz = 1 triplet regime and the

Sz = 1 triplet/Sz = 2 quintuplet regime by determining the form of the various terms

present before finally presenting the final form of the effective Hamiltonians.

2.3.1 Relationship Between Real Spin and Pseudospin Op-

erators

Before describing in detail the relationship between the real spin and pseudospin

operators it is instructive to describe how the basic pseudospin operators act:

s̃+|↑〉 = 0 s̃+|↓〉 = 1√
2
|↑〉

s̃−|↑〉 = 1√
2
|↓〉 s̃−|↓〉 = 0

s̃z|↑〉 = 1
2
|↑〉 s̃z|↓〉 = −1

2
|↓〉
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Figure 2.4: Clebsch-Gordan table for two S = 1 spins.

Here, s̃α’s are the pseudospin operators while |↑〉 and |↓〉 are pseudospin up and

pseudospin down, respectively. Spin up and spin down correspond to different dimer

states in the two different regimes: in the singlet/Sz = 1 triplet regime, spin up (spin

down) corresponds to the Sz = 1 triplet (singlet); in the Sz = 1 triplet / Sz = 2

quintuplet regime, spin up (spin down) corresponds to the Sz = 2 quintuplet (Sz = 1

triplet). The transformations for these two regimes are nearly identical, with only a

few changes in the prefactors of the terms in the effective Hamiltonians, which vary

because the dimer states are composed of different individual ion states with varying

Clebsch-Gordan coefficients (Fig. 2.4). The relationship between the pseudospin and

real spin operators is determined by comparing how the different operators act on

each of the dimer states. The equivalences between the two different representations

are:

|00〉/|11〉 Regime |11〉/|22〉 Regime

S+
1 = −2√

3
s̃+ S+

1 = −s̃+

S+
2 = 2√

3
s̃+ S+

2 = s̃+

S−
1 = −2√

3
s̃− S−

1 = −s̃−

S−
2 = 2√

3
s̃− S−

2 = s̃−

Sz
1 = 1

2

(

s̃z + 1
2

)

Sz
1 = 1

2

(

s̃z + 3
2

)

Sz
2 = 1

2

(

s̃z + 1
2

)

Sz
2 = 1

2

(

s̃z + 3
2

)
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The pseudospin operators clearly are not uniquely defined in each regime because

each dimer comprises two different spins. Most of the terms of the real spin Hamilto-

nian (Eq. 2.4) are easily converted into the pseudospin language using these relations.

However, the zero field splitting term is not trivially expressed in the pseudospin lan-

guage due to its angular variation. The real spin language expression of the zero field

splitting is:

HSI = D
∑

i,µ

(

Sz
iµ cos θ − Sx

iµ sin θ
)2

= D
∑

iµ

[

(

Sz
iµ cos θ

)2
+
(

Sx
iµ sin θ

)2 −
(

Sz
iµS

x
iµ + Sx

iµS
z
iµ

)

sin θ cos θ
]

(2.5)

The first of these three terms, D
(

Sz
iµ cos θ

)2
, is easily expressed in pseudospin

language. However, the second and third terms are not so easily transformed and will

ultimately enter the Hamiltonian as a result of second order processes. Over the next

two subsections I will first analyze the second term, HSI2 = D
(

Sx
iµ sin θ

)2
and then

third term, HSI3 =
(

Sz
iµS

x
iµ + Sx

iµS
z
iµ

)

sin θ cos θ of the zero field splitting.

2.3.2 Effective Zero Field Splitting for Fields Perpendicular

to the c Axis

For fields perpendicular to the c axis (θ = π/2) the ordered moments of the canted

antiferromagnetic states lie in the plane perpendicular to the field direction. The easy

axis anisotropy in the ordering plane favors spins along the c axis and disfavors spins

perpendicular to both the c axis and field direction. However, HSI3 = 0 for θ = π/2

while HSI2 = D
(

Sx
iµ

)2
cannot directly connect singlets and triplets (or triplets and

quintuplets) because HSI2 is a symmetric operator and those states have different

symmetry, so a second order process is required to mix these various states.

The second order processes connecting the symmetric and antisymmetric states

involves both the application of HSI2 and an exchange term (any of the exchanges

will work). There are two processes in each of the different regimes, depending on
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the order of application of the two interactions.

|00〉/|11〉 Regime

The second order process in which HSI2 is first applied yields the excited intermediate

|22〉i state:

〈22|iD
[

(Sx
1 )2 + (Sx

2 )2] |00〉i =
D√
3

(2.6)

The second half of this second order process is application of a Heisenberg exchange

between neighboring dimer sites i and j. Such an exchange induces a transition

from the virtual state |22〉i|00〉j to the final state |11〉i|11〉j (this subsection will use

solely the J2 interdimer exchange, but the equivalent interaction exists for each of the

interdimer exchange terms):

〈11|j〈11|i
J2

2
(Si,1 · Sj,1 + Si,2 · Sj,2) |22〉i|00〉j =

2J2√
3

(2.7)

The total energy shift of this second order process is calculated by using the value

for the gap between the groundstates and the excited |22〉i quintuplet state in this

regime of J0:

∆E(2) =
M1M2

EGS −Eexcited
=

D√
3
× 2J2√

3
÷−J0 =

−2DJ2

3J0
(2.8)

The other second order process in |00〉/|11〉 regime has the Heisenberg exchange

applied first, yielding an intermediate state of |11̄〉i:

〈11|j〈11̄|i
J2

2
(Si,1 · Sj,1 + Si,2 · Sj,2) |00〉i|00〉j =

−4J2

3
(2.9)

The second half of this second order process is application of the HSI2 term which

induces a transition between the |11̄〉i and |11〉i states:

〈11|iD
[

(Sx
1 )2 + (Sx

2 )2] |11̄〉i =
−D
2

(2.10)

The total energy shift of this second order process is calculated by using a value
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for the gap between the groundstates and the excited |11̄〉i triplet state in this regime

of 2J0:

∆E(2) =
M1M2

EGS − Eexcited

=
−4J2

3
× −D

2
÷−2J0 =

−DJ2

3J0

(2.11)

The energy shifts of each of these processes are doubled because the excited state

can be created on either the i or the j site. For the J2 and J3 exchanges these processes

are doubled again because these are two of these interactions between each pair of

dimers connected by these exchanges. Combining these two processes together, the

effective interaction induced by HSI2 in the |00〉|11〉 regime between the i and j sites

connected by J2 is:

2J2a(θ)
(

s̃x
i s̃

x
j − s̃y

i s̃
y
j

)

(2.12)

where a(θ) = −2D sin2(θ)/J0. The s̃x
i s̃

x
j −s̃y

i s̃
y
j = s̃+

i s̃
+
j −s̃−i s̃−j factor turns neighboring

singlets into Sz = 1 triplets and vice versa.

|11〉/|22〉 Regime

The two processes of this regime have a similar form to the processes of the singlet-

Sz = 1 triplet regime but have different intermediate virtual states. The second order

process in which HSI2 is first applied yields the excited intermediate |00〉i state:

〈00|iD
[

(Sx
1 )2 + (Sx

2 )2] |22〉i =
D√
3

(2.13)

The second half of this second order process is application of a Heisenberg exchange

between neighboring sites i and j. Such an exchange induces a transition from the

virtual state |00〉i|22〉j to the final state |11〉i|11〉j:

〈11|j〈11|i
J2

2
(Si,1 · Sj,1 + Si,2 · Sj,2) |00〉i|22〉j =

2J2√
3

(2.14)

The total energy shift of this second order process is calculated by using a value

for the gap between the groundstates and the excited singlet state in this regime of

J0:
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∆E(2) =
M1M2

EGS −Eexcited
=

D√
3
× 2J2√

3
÷−J0 =

−2DJ2

3J0
(2.15)

The other second order process in |11〉/|22〉 regime has the Heisenberg exchange

applied first, yielding an intermediate state of |20〉i:

〈22|j〈20|i
J2

2
(Si,1 · Sj,1 + Si,2 · Sj,2) |11〉i|11〉j =

−J2√
6

(2.16)

The second half of this second order process is application of the HSI2 term which

induces a transition between the |20〉i and |22〉i states:

〈22|iD
[

(Sx
1 )2 + (Sx

2 )2] |20〉i =
D√
6

(2.17)

The total energy shift of this second order process is calculated by using a value for

the gap between the degenerate groundstates and the excited |20〉i quintuplet state

in this regime of 4J0:

∆E(2) =
M1M2

Eexcited − EGS

=
−J2√

6
× D√

6
÷−4J0 =

DJ2

24J0

(2.18)

The energy shifts of each of these processes are doubled because the excited state

can be created on either the i or j site. For the J2 and J3 exchanges these processes

are doubled again because these are two of these interactions between each pair of

dimers connected by these exchanges. Combining these two processes together, the

effective interaction induced by HSI2 in the |11〉|22〉 regime between the i and j sites

connected by J2 is:

2J2b(θ)
(

s̃x
i s̃

x
j − s̃y

i s̃
y
j

)

(2.19)

where b(θ) = −5D sin2(θ)/4J0. The s̃x
i s̃

x
j − s̃y

i s̃
y
j = s̃+

i s̃
+
j − s̃−i s̃

−
j factor turns neigh-

boring Sz = 1 triplets into Sz = 2 quintuplets or vice versa.
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2.3.3 Effective Zero Field Splitting at Intermediate Angles

At intermediate angles the HSI3 is no longer nonzero (in contrast to its value for fields

along or perpendicular to the c axis, θ = 0, π/2 respectively). The real spin form of

this term is:

HSI3 = −D
∑

iµ

(

Sz
iµS

x
iµ + Sx

iµS
z
iµ

)

sin θ cos θ (2.20)

There is a single second order process in each regime connecting the symmetric

and antisymmetric states through application of this term and a interdimer exchange

term. In contrast to the second order processes associated with the other term from

the zero field splitting, there is only one pathway in each regime and only one order

of application of these terms yields a nonzero value for this term.

|00〉/|11〉 Regime

In the |00〉/|11〉 regime the only second order process that connects the two degenerate

ground states has first application of the interdimer exchange before application of

HSI3.

The intermediate state which can be connected to the final state by this term of

the zero field splitting is |21〉i. However, the interdimer exchanges within a plane (J2

or J3 exchange) cannot induce a transition between the |11〉i and |21〉i states because

the exchange between spins on the top half of neighboring dimers exactly counteracts

the exchange between spins on the bottom half of the neighboring dimers:

〈11|j〈21|i
J2

2
Si,1 · Sj,1|11〉i|11〉j =

J2

8

〈11|j〈21|i
J2

2
Si,2 · Sj,2|11〉i|11〉j =

−J2

8
(2.21)

This cancelation of the exchanges acting on the top and bottom spins of a dimer

contrasts the earlier second order processes, where the interdimer exchange on both

halves of the exchange yielded the same result, doubling the total value. The same
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cancelation does not occur for interdimer exchange between planes because those

terms only connect only the top of one dimer to the bottom of another dimer (this

subsection will use solely the J1 exchange, but the equivalent interaction exists also

for the J4 exchange):

〈11|j〈21|i
J1

2
Si,1 · Sj,2|11〉i|11〉j =

J1

8
(2.22)

Here the i dimer is in the layer below the j dimer. However, if the intermediate

|21〉 state is put in the j dimer instead of the i dimer, the result changes sign:

〈21|j〈11|i
J1

2
Si,1 · Sj,2|11〉i|11〉j =

−J1

8
(2.23)

Thus this term will be positive for the dimer on the i site but negative for the

dimer on the j site. HSI3 transforms the intermediate |21〉 state into the |00〉 state:

〈00|iD [(Sz
1S

x
1 + Sx

1S
z
1) + (Sz

2S
x
2 + Sx

2S
z
2)] cos θ sin θ|21〉i =

−2D√
3

cos θ sin θ (2.24)

The total energy shift of this second order process is calculated by using a value for

the gap between the degenerate groundstates and the excited |21〉i quintuplet state

in this regime of 2J0:

∆E(2) =
M1M2

EGS − Eexcited
=
J1

8
× −2D cos θ sin θ√

3
÷−2J0 =

DJ1 cos θ sin θ

8
√

3J0

(2.25)

Expressing this process in pseudospin language, the final term is:

DJ1

4
√

3J0

cos θ sin θ
(

s̃z
i s̃

x
j − s̃x

i s̃
z
j

)

= J1D̃(θ) · s̃i × s̃j (2.26)

where D̃(θ) = sin(θ) cos(θ) D
4
√

3J0

ŷ. The s̃z
i s̃

x
j − s̃x

i s̃
z
j = ŷ · s̃i × s̃j factor acts differently

depending on which initial state it is acting. If the initial state is neighboring singlets

on sites i and j then the term induces a transformation to a superposition of two

states with half the total amplitude: 1) a Sz = 1 triplet on site i and a singlet on
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site j with positive amplitude and 2) a singlet site i and a Sz = 1 triplet on site j

with negative amplitude. If the initial state is neighboring Sz = 1 triplets on sites i

and j then the term induces a transformation to a superposition of two states with

half the total amplitude: 1) a Sz = 1 triplet on site i and a singlet on site j with

negative amplitude and 2) a singlet site i and a Sz = 1 triplet on site j with positive

amplitude.

|11〉/|22〉 Regime

This second order process for this regime is qualitatively the same as the process in

the |00〉/|11〉 regime: there is only one virtual process connecting these states using

HSI3, only the J1 and J4 exchanges yield nonzero values, the intermediate state is

the |21〉 state, and this term changes sign depending on which side of the dimer it is

acting. Applying first the interdimer exchange to the |22〉 state:

〈11|j〈21|i
J1

2
Si,1 · Sj,2|11〉i|11〉j =

J1

8

〈21|j〈11|i
J1

2
Si,1 · Sj,2|11〉i|11〉j =

−J1

8
(2.27)

HSI3 transforms the intermediate |21〉 state into the |22〉 state:

〈22|iD [(Sz
1S

x
1 + Sx

1S
z
1) + (Sz

2S
x
2 + Sx

2S
z
2)] cos θ sin θ|21〉i = D cos θ sin θ (2.28)

The total energy shift of this second order process is calculated by using a value for

the gap between the degenerate groundstates and the excited |21〉i quintuplet state

in this regime of 2J0:

∆E(2) =
M1M2

EGS − Eexcited
=
J1

8
×D cos θ sin θ ÷−2J0 =

−DJ1 cos θ sin θ

16J0
(2.29)

Expressing this process in pseudospin language, the final term is:
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−DJ1

8J0
cos θ sin θ

(

s̃z
i s̃

x
j − s̃x

i s̃
z
j

)

= J1D̃
′(θ) · s̃i × s̃j (2.30)

where D̃′(θ) = − sin(θ) cos(θ) D
8J0

ŷ. The s̃z
i s̃

x
j − s̃x

i s̃
z
j = ŷ· s̃i× s̃j factor acts in two ways

depending on which initial state it is acting. If the initial state is neighboring Sz = 1

triplets on sites i and j then the term induces a transformation to a superposition of

two states with half the total amplitude: 1) a Sz = 2 quintuplet on site i and a Sz = 1

triplet on site j with positive amplitude and 2) a Sz = 1 triplet on site i and a Sz = 2

quintuplet on site j with negative amplitude. If the initial state is neighboring Sz = 2

quintuplets on sites i and j then the term induces a transformation to a superposition

of two states with half the total amplitude: 1) a Sz = 2 quintuplet on site i and a

Sz = 1 triplet on site j with negative amplitude and 2) a Sz = 1 triplet site i and a

Sz = 2 quintuplet on site j with positive amplitude.

2.3.4 Effective Hamiltonian

The complete form of the effective Hamiltonian in pseudospin language in the |00〉/|11〉
regime is:
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H̃st = J1

∑

l〈〈i,j〉〉

[

1

4
s̃z

ils̃
z
jl+1 +

4

3

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

+J4

∑

l〈〈i,j〉〉′

[

1

4
s̃z

ils̃
z
jl+1 +

4

3

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

+
∑

l〈i,j〉

[

(J2 + J3)

2
s̃z

ils̃
z
jl +

8 (J2 − J3)

3

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

−J1a(θ)
∑

l〈〈i,j〉〉

(

s̃x
ils̃

x
jl+1 − s̃y

ils̃
y
jl+1

)

− J4a(θ)
∑

l〈〈i,j〉〉′

(

s̃x
ils̃

x
jl+1 − s̃y

ils̃
y
jl+1

)

+2 (J2 − J3) a(θ)
∑

l〈i,j〉

(

s̃x
ils̃

x
jl − s̃y

ils̃
y
jl

)

+J1

∑

l〈〈i→j〉〉
D̃(θ) · s̃i × s̃j + J4

∑

l〈〈i→j〉〉′
D̃(θ) · s̃i × s̃j

−Bst (θ)
∑

l,i

s̃z
il. (2.31)

Here, 〈i, j〉, 〈〈i, j〉〉 and 〈〈i, j〉〉′ denote i and j as nearest neighboring dimers in

plane, nearest neighboring dimers out of plane, and next nearest neighboring dimers

out of plane, respectively. The definition of the effective zero field splitting coefficients

are: a(θ) = −2 sin2(θ)D
J0

and D̃(θ) = sin(θ) cos(θ) D
4
√

3J0

ŷ. 〈〈i→ j〉〉 and 〈〈i→ j〉〉′ imply

that the i dimer is always on the lower level relative to the j dimer. The effective

field is Bst = g̃zzµBH − J0 − 3(J2 + J3)/2 − 3(J1 + J4)/4 +D cos2(θ)/3.

The effective Hamiltonian in the |11〉/|22〉 regime is:
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H̃tq = J1

∑

l〈〈i,j〉〉

[

1

4
s̃z

ils̃
z
jl+1 +

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

+J4

∑

l〈〈i,j〉〉′

[

1

4
s̃z

ils̃
z
jl+1 +

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

+
∑

l〈i,j〉

[

(J2 + J3)

2
s̃z

ils̃
z
jl + 2 (J2 − J3)

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

−J1b(θ)
∑

l〈〈i,j〉〉

(

s̃x
ils̃

x
jl+1 − s̃y

ils̃
y
jl+1

)

− J4b(θ)
∑

l〈〈i,j〉〉′

(

s̃x
ils̃

x
jl+1 − s̃y

ils̃
y
jl+1

)

+2 (J2 − J3) b(θ)
∑

l〈i,j〉

(

s̃x
ils̃

x
jl − s̃y

ils̃
y
jl

)

+J1

∑

l〈〈i→j〉〉
D̃′(θ) · s̃i × s̃j + J4

∑

l〈〈i→j〉〉′
D̃′(θ) · s̃i × s̃j

−Btq (θ)
∑

l,i

s̃z
il. (2.32)

The effective zero field couplings are slightly modified in this regime: b(θ) =

−5 sin2(θ)D
4J0

and D̃′(θ) = − sin(θ) cos(θ) D
8J0

ŷ. The effective field is Btq = g̃zzµBH −
2J0 − 9(J2 + J3)/2 − 9(J1 + J4)/4 +D cos2(θ)/3.

These Hamiltonians have proven very powerful in describing much of the behavior

of the ordered states of this system [29, 30, 33, 31].
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Chapter 3

Crystal Growth and

Characterization

Single crystals are critical for performing many different high precision measurements,

including measurements of the crystal lattice anisotropy. In this section I will describe

the crystal growth process and the characterization measurements performed on the

resulting single crystals.

3.1 Single Crystal Growth

Single crystals of Ba3Mn2O8, Ba3V2O8 and substitutional alloy Ba3(Mn1−xVx)2O8

were grown via a two step process. First, polycrystal precursor was synthesized

through a solid state process. Second, the polycrystalline precursor was mixed with

a flux to grow single crystals.

3.1.1 Ternary Phase Diagram

Compounds in the Ba-Mn-O system are represented in a ternary diagram, shown in

Fig. 3.1. The Ba ions have a +2 oxidation state. In transition metal oxides Mn is

often found with a formal valence of +3 or +4 . However, Mn can take a range of

valences, including +2 (Ba2MnO3), +3 (Mn2O3), +4 (BaMnO3) and +7 (BaMn2O8).
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Figure 3.1: Ba-Mn-O ternary diagram showing Ba3Mn2O8 (black star) and other
phases. Compounds with the Mn valence of +2 (red), +3 (green), +4 (blue) and +7
(purple) are grouped by color and connected by dashed lines, while compounds with
mixed Mn valence have a gradient between the colors representing the two different
valences.

Inspection of the chemical formula shows that Mn ions in Ba3Mn2O8, which all occupy

the equivalent crystallographic position, have a formal valence of +5, corresponding

to 3d2. This is a relatively rare and high oxidation state. However, for the equivalent

compound Ba3V2O8, the V ions also have a formal valence of +5, corresponding to

3d0. This is a relative common valence for vanadium.

The phases closest to Ba3Mn2O8 in the ternary phase diagram are the most likely

secondary phases to form during the synthesis and growth process. In particular,

Ba3Mn2O8 is close to the blue line connecting BaO and MnO2, which marks the

phases with +4 Mn valence. Steps must be taken during the growth process measures

to insure that the high Mn5+ oxidation state is formed and not the Mn4+ state.
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3.1.2 Polycrystalline Precursor Synthesis

Ba3Mn2O8 polycrystalline precursor was synthesized following the previously pub-

lished method [24]. The solid state process required several sinters at elevated tem-

peratures with according to the following reaction:

3BaCO3 + Mn2O3 + O2(g) → Ba3Mn2O8 + 3CO2(g) (3.1)

Powders of BaCO3 and Mn2O3 were weighed out according to the stoichiometric

ratios for a total of 22g. The powders were combined and placed inside agate bowls

with several agate balls, which were then ground in a planetary mill. The resulting

mixture was pressed into pellets using a tungsten carbide die set. The pellets were

placed in a horizontal Lindberg tube furnace under flowing O2 and calcined at 900 ◦C

for 30 hours. After the calcination the pellets were removed, reground, and pressed

into pellets for two additional sinters at 1000 ◦C and 1050 ◦C for a total of roughly

100 hours. After the third sinter the pellets were a forest green color and significantly

denser than the starting powders.

For the Ba3(Mn1−xVx)2O8 polycrystalline synthesis, the stoichiometric amount

of V2O5 powder (based on the V concentration) was substituted for Mn2O3 pow-

der. The rest of the synthesis process remains the same, including the flowing O2,

which was found to improve the quality of pure Ba3V2O8. The resulting powders

were green for the syntheses with Mn concentrations of at least 0.5, light blue for

Ba3(Mn0.02V0.98)2O8 and white for pure Ba3V2O8.

3.1.3 Flux Growth

Single crystals were grown via a flux growth by spontaneous nucleation [40]. There

are several advantages of the flux growth method. First, in a flux growth the melting

point of the mixture can be significantly lowered from the melting point of each

composite materials; for example, in this growth, the melting points of each of the

composite starting powders as well as the desired compound Ba3Mn2O8 are above

1500 ◦C, while the use of the flux, in this case NaOH, allows the growth to take

place below 600 ◦C. Second, incongruently melting materials, which decompose into
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a different solid phase and liquid than the stoichiometric compound at temperatures

above the melting point of the stoichiometric compound, can be grown with the use

of a flux below the peritectic temperature. Finally, the resulting crystals from flux

growth are relatively free from thermal strain; there is less twinning and mosaic from

such crystals. The two main drawbacks of flux growth are the relatively smaller size of

the crystals (since the nucleation is not directly controlled), which can be somewhat

improved through a slower cooling rate, and the likely presence of flux inclusions in

the crystals, where a small amount of the solvent flux is often found in the resulting

crystals.

Through significant trial and error, the only flux found to produce single crystals

of the correct material was NaOH. This flux was chosen due to its oxidizing nature, a

characteristic that arises because molten flux loses water to the atmosphere, leaving

the very oxidizing Na2O behind, according to the equilibria:

2NaOH ↔ Na2O + H2O(g)

Na2O ↔ 2Na+ + O2− (3.2)

The best growth process required mixing the polycrystalline precursor powder

(for both the pure Ba3Mn2O8 and the doped Ba3(Mn1−xVx)2O8 material) and the

NaOH flux in a 1:25 ratio. Roughly 13 total grams of material were put into a 20 mL

Al2O3 crucible, with a cap on top to cover. Then the covered crucible was put into a

firebrick enclosure which was then placed inside a Lindberg box furnace. The firebrick

enclosure was necessary to prevent spilling materials inside the furnace due to boiling

of the NaOH flux at elevated temperatures. The heating cycle for the growth began

first with a rise from room temperature to 550 ◦C over 24 hours, followed by a dwell

at 550 ◦C for 5 hours, and then a slow cool over 60 hours to 300 ◦C, after which

the furnace was turned off. The slow heating part of the cycle ensured that the flux,

which is highly volatile above room temperature, did not boil off too quickly. Even

with the slow rise material usually ends up on the outside of the crucibles. The flux

was removed from the resulting material by repeated washes in water, which dissolved
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Figure 3.2: Pictures of (a) Ba3Mn2O8 and (b) Ba3V2O8 crystals, each roughly 1.5
mm in diameter.

the remaining NaOH flux. The resulting crystals were well formed and fully faceted

(Fig. 3.2). The Ba3Mn2O8 crystals have an intense green color, while small flakes

shaved off the crystal appear lighter green. Crystals of Ba3V2O8 are clear due to the

absence of 3d electrons, and small flakes shaved off these crystals appear white.

3.2 Characterization

The primary crystal characterization measurements undertaken were X-Ray diffrac-

tion, which yielded structural information, low field susceptibility, which yielded im-

purity phase information, and electron microprobe analysis, which yielded elemental

composition information.

3.2.1 X-Ray Diffraction

X-Ray diffraction studies were used to verify the structure of the single crystals as

well as the quality of formation. Two types of measurements were undertaken: pow-

der diffraction and single crystal diffraction studies, which yielded complimentary

information about the material.

Powder diffraction studies revealed which structural phases were present in a given

sample. For these measurements, the single crystals were first ground, using a agate
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Figure 3.3: Schematic diagram of single axis diffractometer. X-rays (red dashed
lines) are emitted at left, reflect on sample (rectangular box) at angle ω and are then
collected in detector at angle 2θ. In the simplest diffraction experiments described
here ω was fixed at one half 2θ.

2θ (°)

20 30 40 50 60 70 80

C
o

un
ts

0

200

400

* * *

Figure 3.4: Powder diffraction of ground single crystals of Ba3Mn2O8. The gray
lines are the experimental data and the cardinal lines are the previously reported
pattern [19]. Green asterisks label impurity phases, which correspond to NaOH flux
inclusions.
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mortar and pestle, into a powder. The powder was affixed to a glass slide using vac-

uum grease which was then put inside the X’Pert Pro x-ray diffraction system. The

system sent Cu Kα x-rays through a divergence slit, which then diffracted off the

sample and were finally collected in the detector (Fig. 3.3). For powder diffraction

measurements, the sample angle ω was fixed at one half the detector angle 2θ, and

both angles are scanned in concert. The background was subtracted from the result-

ing powder scan, which yielded the final pattern (grey line in Fig. 3.4). The pattern

was then compared to the previously published data (cardinal lines) [19]. The data

showed an excellent agreement with the previously published data, with less than a

few percent of the total scan corresponding to impurity phases, which were primarily

NaOH flux inclusions (the disagreement in the height of the peaks was due to imper-

fect grinding of the crystals which lead to preferential alignment of individual grains

in the powder).

Single crystal diffraction studies were performed to determine the rocking curve,

and thus the quality of formation, of these crystals. In this measurement, a single

crystal, affixed to a glass slide, was mounted on the diffractometer. A known diffrac-

tion peak is found, with the sample at an angle ω and the detector at an angle 2θ

equal to double ω. Then a sweep of ω was done while keeping 2θ constant. The

resulting peak width in ω revealed the mosaicity of the crystal. The rocking curve

for a single crystal of Ba3Mn2O8 (on the strongest peak of (0,1,5)) is shown in Fig.

3.5. This curve showed a width in ω of 0.06◦; this value is nearly resolution limited,

indicating a very well formed crystal.

3.2.2 Low Field Susceptibility

Low field susceptibility measurements reveal both circumstantial information about

the magnetic energy spectrum as well as the presence of magnetic impurities. Mea-

surements were undertaken in a Quantum Design Magnetic Properties Measurement

System (MPMS). The measurement was based on an extraction method, in which

the sample was withdrawn through a set of three compensated coils to determine the
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Figure 3.5: Rocking curve scan of the (0,1,5) peak of Ba3Mn2O8. Black line shows
experimental data; red line shows Gaussian fit to peak.

magnetization. The susceptibility was defined as the linear response of the magneti-

zation, χ(T ) = M(H, T )/H .

In practice, samples were mounted between two straws which add a small dia-

magnetic background that was negligible relative to the large paramagnetic signal.

The field was aligned along the length of the coil; the sample can be mounted in the

straw in such a way that the field is along any axis. Measurements were performed

typically at 1000 Oe or 5000 Oe for temperatures between 1.8 K and 100 K. M(H, T )

data confirmed that the magnetization varies linearly with field in this field range.

Experimental susceptibility data are shown in Fig. 3.6. These measurements were

taken at 5000 Oe. The theoretical functional form of the susceptibility of a isolated

S = 1 dimer system is described in Eq. 2.3. The key behavior of this model is

the exponential rise of the susceptibility at low temperatures and a 1/T fall at high

temperatures, which is observed in the experimental data. As previously described

for polycrystalline samples [24], the temperature dependence of the susceptibility can

be fit well to the isolated dimer model if one includes a mean field correction as well

as terms relating to both magnetic and non-magnetic impurities:

χ =
χd

1 + λχd
+
C

T
+ χ0 (3.3)
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Figure 3.6: Low field susceptibility of Ba3Mn2O8. Data shown for fields applied both
along the c axis (up triangles) and perpendicular to the c axis (down triangles). Red
line shows theoretical fit to the data as described in the main text.

Here χ′
d = χd

1+λχd
is the mean field correction which accounts for exchange with

neighboring dimers with λ = 3 [J1 + 2 (J2 + J3)] / (Ng2µ2
B). The impurities were

accounted for in the Curie term (C/T ) and the temperature-independent background

χ0. These fits resulted in rough estimates of J0 = 1.44 ± 0.01 meV and gc ∼ ga ∼
2.01±0.03. The fit is rather insensitive to the precise value of λ (which is why this is a

poor method to estimate interdimer exchange coefficients) but nevertheless returns a

best value of λ = 5.0±0.3 mol/emu, which is remarkably close to the calculated value

of 6.6 mol/emu based on estimates of the exchange constants 3J1 + 6(J2 + J3) = 0.83

meV obtained from previously described single crystal INS measurements [27, 28].

The impurity Curie term corresponded to just 0.4% unpaired spins, indicating

the dimers were well formed throughout most of the crystal without many broken

dimers. This sets a rough limit on the concentration of Mn4+ ions which, if randomly

distributed would contribute to the Curie term. The T -independent term has a value

of χ0 = 2 × 10−4 emu/mol.
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3.2.3 Electron Microprobe Analysis

Electron microprobe analysis is a measurement which determines the elemental com-

position of a sample. Highly energized electrons are accelerated towards a solid sample

where they ionize the inner shell of the atoms in the solid. As the atoms decay back

to their ground state the emitted x-rays are measured. Through analysis of the wave-

lengths of the resulting x-rays the exact elemental shells ionized are determined, thus

allowing identification of the amount each element present in the material.

To perform these measurements standard samples were used to determine the

exact wavelengths expected for the pure compounds. For these measurements, the

standards used were the end members of the doping series, Ba3Mn2O8 and Ba3V2O8,

as well as elemental V for several of the samples. There was no significant difference

in the results based on whether the elemental of molecular standard was used. The

samples must have a microscopically flat surface for the electrons to bombard; the

flat surfaces were created by polishing the samples using successively finer and finer

sandpaper grits. Unfortunately, the samples could only be polished to a relatively flat

surface, yielding a small error revealed in the deviation in the total number of atoms

from 13. For these insulating samples a carbon coating was put on so that the charge

would not build on the sample due to the incident electrons. The measurements were

collected for such a time that there were at least 60000 counts of Mn and V ions total.

These measurements ultimately revealed a linear relationship between the nomi-

nal doping level and the measured doping level (fig. 3.7). Uncertainties reflect the

standard deviation between multiple measurements performed at different locations

for individual crystals. Systematic uncertainties for these low concentrations were

likely slightly larger.

40



0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

M
ea

su
re

d 
x

Nominal x

Ba
3
(Mn

1-x
V

x
)
2
O

8

Figure 3.7: Microprobe measurement of real vs. nominal V doping level.
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Chapter 4

Experimental Methods

For the specific systems I have looked at, low temperatures and high magnetic fields

are required in order to reach the ordered states. While much of the important part

of phase space can be accessed at Stanford using the 14 T magnet in the Fisher lab,

other important measurements at higher fields required travel to the National High

Magnetic Field Laboratory (NHMFL) to use higher magnetic fields. In this chapter,

I will describe first the different magnets used for high fields and then the different

thermodynamic measurements performed in these systems.

4.1 Magnets used in different systems

Large magnetic fields are primarily created by electromagnets, typically in a solenoid

geometry wound of either superconducting or resistive wires. The standard magnets

available for use in laboratories are superconducting magnets which can produce mod-

erate fields; larger magnetic fields can be obtained from resistive magnets and pulsed

magnets, which require extensive infrastructure. Typically superconducting magnets

are limited to ∼20T based on the critical current density and strength tolerance of

available materials. Efforts are underway to utilize new materials with higher crit-

ical current densities, such as the cuprate superconductor YBCO, to achieve higher

magnetic fields. Resistive magnets can produce magnetic fields up to 36 T, and if

used in combination with a superconducting “outsert” magnet can produce 45 T in
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a “hybrid” magnet. Finally, pulsed magnets can create even higher magnetic fields

for small bursts at a time. Each of these different types of magnets were used in this

thesis.

4.1.1 Superconducting Magnets

The advantage of superconducting magnets stems from the defining characteristics

of superconductivity: the non-dissipative flow of current in a system. This zero

resistivity allows current, once flowing, to (ideally) flow in perpetuity. Power is needed

only initially to reach the desired current and by extension the desired field, and no

further electrical power is used to maintain that current.

Superconducting magnets only function as intended below the critical tempera-

ture of the superconductor material used. For the typical materials used, Nb3Sn and

NbTi which have critical temperatures of 18 K and 10 K respectively, this requires

cooling the magnets with liquid Helium to 4.2K. The magnet is connected to an ex-

ternal current source which increases the current; once the desired current is achieved

the external current source can be shut off and removed, leaving a closed loop in the

superconducting solenoid. In order to maintain the full level of the non-dissipative

current flow the magnet must be constantly submerged in liquid helium while in use

to avoid warming up the magnet due to various sources of heating. The magnet is

decoupled from the sample chamber via means of a heat switch. Although the elec-

trical power used to run superconducting magnets is limited while sitting fixed at a

field there is a large charge required to maintain the cold temperatures through use of

cryogens. Measurements were performed in several superconducting magnets, includ-

ing a 5 T magnet in the Quantum Design system Magnetic Properties Measurement

System (MPMS), a 14 T magnet in the Quantum Design system Physical Properties

Measurement System (PPMS), and an 18 T magnet at the NHMFL, Tallahasse.

4.1.2 Resistive Magnets

Resistive magnets work by a very simple process: pass as much current as possible

through a conductor. These magnets are termed resistive because in contrast to the
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Figure 4.1: Schematic view of bitter disk, showing the cooling slits. Figure taken
from NHMFL website [41].

superconducting magnets, which have non-dissipative current flow, these magnets

are made of standard ohmic materials. Thus power, proportional to the square of

the current, will be lost while field is being generated in the magnet; at full field a

resistive magnet can use 20 MW. The cost of running a resistive magnet is 100 times

greater than a superconducting magnet due to the expense of the power necessary.

It is the energy cost, as well as the associated cooling water needs, that determines

the maximum field achievable from a resistive magnet.

Resistive magnets are made up of a series of bitter plates interspersed with in-

sulators. Bitter plates are metal discs (made of copper or a copper alloy at the

NHMFL) which form the coils of the solenoid (Fig. 4.1). These discs have small slits

in them. These slits allow deionized water to flow through the magnet at a rate of

15000 liters per minute, which keep the magnet from getting too hot due to resistive

heating induced by the large current. The slit design of the disks serves to maximize

the cooling power while minimizing the increase in resistance relative to other hole

designs. The interspersed insulating layers cover less than a full turn so that current

can flow between the successive layers. The top and bottom disks experience an un-

compensated centripetal force due to the gradient field which can cause these disks to

become misaligned. To account for this misalignment the end disks are slightly bigger

and have larger slits. Several concentric solenoids are nested within each other, and

the current runs in series through these coils to create the full field. Heat capacity,

magnetocaloric effect measurements and dilatometry measurements were performed
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in fields up to 36 T at the NHMFL, Tallahassee.

4.1.3 Hybrid Magnet

The hybrid magnet is, as its name suggests, a hybrid of a superconducting and resis-

tive magnets. The idea behind this magnet is to increase the maximum field of the

system by combining the fields produced by a superconducting magnet and a resistive

magnet. The superconducting magnet is placed concentrically outside the resistive

magnet (Fig. 4.2); the order cannot be switched because the resistive magnet cre-

ates a field larger than the critical field of the superconductor. The superconducting

magnet has an extremely large radius to accommodate the insert resistive magnet,

limiting the total field achievable by the superconducting magnet to 11 T while also

requiring very large amounts of liquid Helium to keep the magnet below the criti-

cal temperature of the superconductor. The field in the superconducting magnet is

ramped very slowly because of its large radius. The full hybrid system at the NHMFL,

Tallahassee, by taking the superconducting magnet in combination with the 34 T re-

sistive magnet, can produce 45T, the largest available DC field in the world. Heat

capacity and magnetocaloric effect measurements were undertaken on this system.

4.1.4 Pulsed Magnet

The pulsed magnets at the NHMFL, Los Alamos, have the ability to reproducibly

generate magnetic fields exceeding those available from DC systems for short dura-

tions, lasting 1-100 ms at full field and between 20-2000 ms for the full period (see

60T pulse profile in Fig. 4.3). These magnets are powered by a series of capacitor

which combined can store 1.6 MJ. The magnets are composed of solenoid coils made

of copper with fiber glass reinforcement between each copper layer to maintain a

more uniform field profile. The materials of the magnet must be able withstand the

exceedingly high pressures of up to 1.4 GPa which are felt by the coils while the mag-

netic field is created. While most of the energy from the capacitor bank is released

as magnetic field a portion is also released as heat into the coils. To combat this, the
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Figure 4.2: Schematic of hybrid magnet, showing both the inner resistive magnet and
the outer superconducting magnet. Figure taken from NHMFL website [41].
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Figure 4.3: Field profile of 60T shot from pulsed magnet.

coils are submerged in liquid nitrogen to maintain a baseline temperature. The fre-

quency at which the magnet can be fired is limited primarily by the need to cool the

coil down to its baseline temperature, and for a full field pulse to ≥ 60T can require

waiting for 1 - 2 hours. These magnets will fail (often spectacularly, including a large

boom followed by melting of the coil) after on average 750 field pulses due to the

repeated mechanical stresses acted on the coils by the large pressures. Magnetization

measurements were undertaken in both 50 T and 65 T pulsed magnets.

4.2 Thermodynamic Measurements

Most of the experiments of this thesis were thermodynamics measurements. These

measurements give information about basic macroscopic quantities, like the magne-

tization, which can often be related to the free energy and ultimately the critical

ordering temperatures.
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4.2.1 Specific Heat and Magnetocaloric Effect Measurements

Heat capacity and magnetocaloric effect (MCE) measurements were undertaken both

in the Quantum Design Physical Properties Measurement System (PPMS) in Quan-

tum Design calorimeters and at the NHMFL, Tallahassee in a home built calorimeter.

The heat capacity and MCE measurements are complimentary and can be performed

on the same calorimeter.

Thermal relaxation specific heat measurements are performed on calorimeters

which have a sample connected by a weak link to the bath. The measurements

are performed by applying a small amount of heat and allowing the temperature to

asymptotically decay to a final temperature (see Fig. 4.4). The decay time constant

τ is then determined from the time dependence of the temperature, while the specific

heat is proportional to that decay constant [42]:

T = T0 + ∆T exp (−t/τ)

C = κτ =
−κ (T − T0)

dT/dt
(4.1)

The constant of proportionality, κ, is the thermal conductivity of the weak link

connecting the sample to the bath. Alternatively, by tracking the amount of heat

pumped into the sample in addition to the temperature the heat capacity can be

directly measured, allowing for a secondary measure of the the thermal conductivity.
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Figure 4.5: Schematic diagram of heat capacity/MCE calorimeter.

The heat capacity typically is measured by computing the averaging value of the

heat capacity over the temperature range of the heat pulse to yield a single data

point, and then taking a series of heat pulses at different starting temperatures to

get a full heat capacity curve. Alternatively, in the large ∆T limit, a larger pulse of

heat is applied, causing the temperature of the sample to track over a larger range.

This yields then a full heat capacity curve from a single heat pulse by computing the

instantaneous decay constant over the entire temperature range. The former method

has better statistics by averaging over an entire range, while the latter method has an

advantage in expediency such that each measurement can be performed more quickly.

A schematic diagram of the heat capacity calorimeter is shown in figure 4.5. The

sample is affixed to the platform using either apiezon N grease, in the case of the

PPMS, or GE varnish, in the case of the calorimeter used at the NHMFL. On the

underside of the platform is both a heater and thermometer. The wires from the

heater and thermometer to the puck frame, which constitutes the thermal bath, can

form the link from the sample to the bath; additional links may be necessary to hold

the platform in place and connect the sample to the bath.

While specific heat measurements give information about the entropy (and by

extension ordering) of a system as a function of temperature, magnetocaloric effect

measurements give similar entropic information but as a function of magnetic field.

MCE measurements are performed under quasi-adiabatic conditions, where the tem-

perature is tracked as the field is swept. The entropy change of a sample is dependent

both on inherent heat capacity of the sample as well as the thermal link to the bath:
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δS = −CδT + κ (T − Tbath)

T
(4.2)

Calorimeters may be in two different regimes: 1) the strong link regime, where

the entropy change of the system is dominated by the connection to the bath (δS ≃
−κT−Tbath

T
) such that a temperature shift associated with a phase transition will be

quickly damped to the bath temperature, or 2) the weak link regime, where the

entropy change of the system is dominated by the inherent heat capacity of the

system (δS ≃ −C δT
T

) such that the sample can maintain an elevated temperature

while scanning field. Each calorimeter used in this thesis was in the strong link

regime.

A crucial parameter for MCE measurements is the rate of change of the magnetic

field with time. This defines what constitutes quick dampening, and by extension

determines the field width of each transition. Additionally, a faster sweep rate will

make a peak or dip associated with a transition larger in temperature while still

containing the same amount of entropy. Measurements conducted in the resistive

and hybrid magnets at the NHMFL, with assistance from M. Jaime, had field sweep

rates of 1-5 T/min, while measurements conducted in the superconducting magnet of

the PPMS had slower field sweep rates of 0.05 - 0.3 T/min.

4.2.2 Magnetostriction Measurements

Magnetostriction measurements are sensitive measures of the change in the lattice

parameters of a system as the field is swept. The method used to measure lattice

expansion is capacitive dilatometry [43]. In this arrangement a sample is connected to

the bottom plate of parallel plate capacitor which follows the well-known expression

for a parallel plate capacitor:

C =
ǫ0A

D
(4.3)

.

Here C is the measured capacitance, D is the distance between the two plates and

A is the area of the plates. The length of the sample directly sets the separation of
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Figure 4.6: Diagram of capacitive dilatometer. The sample is labeled ‘d’, and the
parallel plates are labeled ‘a’ and ‘p’. Figure taken from [43].

the two plate D such that the linear magnetostriction, λ = [L(H) − L(0)] /L(0), can

be easily calculated by relating the length of the sample by measuring the capacitance

C.

The design for the dilatometer is shown figure 4.6. The sample, labeled ‘d’, is

affixed to a screw, labeled ‘e’, with GE varnish. This screw is tightened until the

sample touches the point of ‘b’, the bottom plate of the capacitor which is machined

so that it has a point on the side opposite the capacitor. Springs, labeled ‘c’, attach

the lower parallel plate to outside platform by being held between two washers and

a nut labeled ‘l’. This allows the lower plate to move freely up and down as the

sample expands/contracts while the upper plate of the capacitor, labeled ‘a’, is fixed.

Thus as the sample expands (contracts), the lower capacitor plate will move closer

to (further from) the upper plate, and the change in the distance between the two

plates is the negative of the change in the length of the sample:

L(H) − L(0) = − (D(H) −D(0)) (4.4)

Using this expression and the measured length of the sample at 0 field, the linear

magnetostriction is easily computed as a function of the capacitance C(H):
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Figure 4.7: Schematic design of capacitive magnetomter used for torque magnetiza-
tion measurements. Figure taken from [44].

λ = [L(H) − L(0)] /L(0) =
ǫ0A (C(H) − C(0))

L(0) (C(H)C(0))
(4.5)

Magnetostriction measurements were undertaken with the assistance of G. Schmiedeshoff

in a 3He refrigerator in a 35 T resistive magnet at the NHMFL.

4.2.3 Torque Magnetization

Torque magnetization measurements are very sensitive measures of phase transitions.

For an anisotropic material, principal axes can be found for which the g-tensor is

diagonal (for high symmetry samples, like the rhombohedral system studied here, this

corresponds to the crystalline axes). For fields applied parallel to one of these axes

the resulting magnetization will be parallel to the field, such that the torque, equal

to the crossproduct of the magnetization and the field, will be zero. If, alternatively,

fields are applied away from one of these principal axes, the resulting magnetization

will not be exactly parallel with the applied field. If, for instance, the field is applied

at an angle θ between the crystalline c and a axes, the resulting magnetization has the

following form (the field axis is defined as the z axis, following earlier nomenclature)

[45]:
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Mz = µ0H
[

gcc cos2 (θ) + gaa sin2 (θ)
]

Mx = µ0H [−gcc + gaa] sin (θ) cos (θ) (4.6)

This misalignment between the magnetization and field in turn creates a torque:

τ = M ×H = µ0H
2 sin (θ) cos (θ) [−gcc + gaa] ŷ (4.7)

Torque magnetization measurements are performed by affixing a sample to the

flexible beam (the cantilever), typically with GE varnish, forming one half of a parallel

plate capacitor (see Figure 4.7) [44]. The second plate of the capacitor is fixed to the

header, which is attached to the mounting stage where heaters and thermometers can

be placed. The entire sample stage is encased in a can which is grounded. The torque

range that can be measured is set by the stiffness of the cantilever, which is in turn

determined by its thickness and its material. For this thesis CuBe cantilevers were

used. Measurements were performed with the assistance of Y.-J. Jo and L. Balicas

in a superconducting magnet at the NHMFL in a dilution refrigerator.

4.2.4 Magnetization in Pulsed Fields

Extraction magnetization measurements are conceptually easy measurements which

require careful implementation to extract the data from the noise. A coil is wrapped

around the sample, and during the magnetic field pulse the magnetization will rapidly

change, inducing a voltage in the coil. By measuring both this time derivative of the

magnetization as well as the time derivative of the field, the field derivative of the

magnetization and by extension the magnetization itself are easily calculated [46].

In practice, one must be very careful to separate the signal of the sample from the

signal of the coil alone. This is done by having two counter-wound coils of equal

area such that each coil will pick up the same (opposite) voltage and yield no voltage

due to the external applied field. In addition, an secondary compensation coil is put

around the magnetometer which is used as a background. The outside coil signal is
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subtracted from the inner counter-wound coils, with the difference multiplied through

a 50000x amplifier to yield the final result. In practice, each measurement requires

an additional background shot of the empty magnetometer which is subtracted from

the sample measurement. This requires that the sample can be moved in and out of

the magnetic field in situ such that the rest of the experimental setup can remain

the same. An additional coil must be put outside the main magnetometer to directly

measure time derivative of the field.

The sample is put either directly inside the coils or instead inside a nonmagnetic

plastic case to hold the sample. Each arrangement has benefits: the plastic case setup

leads to lower noise while the setup with the sample directly inside the coil allows

for better thermal contact and ultimately lower temperatures. In both setups it is

crucial to maximize the amount of material inside the coil to get a better signal to

noise ratio. The specific geometry of the resulting samples are cylindrical (or at least

oblong) and roughly 1-1.5 mm long with a 200 µm diameter.

Measurements were performed with the assistance of R. McDonald in pulsed mag-

nets at the NHMFL, Los Alamos in a 3He refrigerator.
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Chapter 5

Singlet-Triplet Regime

The ordered states of the singlet-triplet regime of Ba3Mn2O8 have several charac-

teristics that previously studied spin dimers did not have. I have studied these

ordered states through several different thermodynamic measurements which have

painted a picture about their microscopic nature. In this chapter I will first describe

the numerous measurements undertaken in this regime; then through analysis of the

Hamiltonian I will compare the calculated critical fields to the measured critical fields

and finally I will propose different possible forms for the microscopic nature of these

ordered states. This work is published in refs. [29, 31, 33].

5.1 Experimental Results

A wide variety of measurements were used to probe the singlet-triplet regime, all

requiring fields above 9 T and temperatures below 1 K to access the ordered states.

These measurements mapped out the phase boundary of these ordered states and also

provided further circumstantial information about the nature of the phase transitions.

5.1.1 Heat Capacity and Magnetocaloric Effect

Heat capacity measurements of single crystals of Ba3Mn2O8 in the singlet-triplet

regime were performed both on a home built calorimeter down to 0.35 K for fields up
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to 30 T at the NHMFL and also in commercial PPMS calorimeter at fields up to 14 T

and down to 0.35 K. These measurements revealed significant anisotropy depending

on the direction that field was applied.

The heat capacity, scaled by temperature, is plotted as a function of temperature

and fields for field applied along both the c and a axes in Fig. 5.1 (a) and (b)

respectively. For fields greater than Hc1 applied parallel to the c-axis there is only one

phase transition in this regime. This ordered state is labeled phase I to distinguish

from a second distinct phase observed for fields parallel to the a-axis. The data

show a lambda-like transition, suggestive of 3D XY ordering. The value of the peak

height (in Cp/T ) increases as the field is increased from Hc1 up to the maximum

field for which data was taken for this orientation, indicative of an increasing entropy,

although quantitative estimates are difficult given the small temperature range and

large background associated with gapped magnetic states. These data points are

included as solid square symbols in the phase diagram shown in Fig. 5.6(a).

For fields oriented parallel to the a-axis, heat capacity data were taken up toHc2 ∼
26 T (Fig. 5.1(b)). These data show a remarkable sequence of phase transitions at low

temperature with an unusual division of entropy. For fields between 9 and 11 T just

one transition is observed above 0.35 K; between 11 and 13 T two distinct transitions

are clearly resolved; for intermediate fields, only a single transition; between 24 and

25 T two transitions are again observed; and finally close to the triplet saturation field

of ∼26 T only one transition is observed. Anomalies in the heat capacity marking

these phase transitions are joined by lines in Fig. 5.1(b), and Tc values included

in the phase diagram shown in Fig. 5.6(b) as solid symbols. The heat capacity

anomaly for phase transitions joined by the solid blue line in fig. 5.1(b) are lambda-

like, similar to those observed for fields parallel to the c-axis, and accordingly the

ordered state marked by this transition is labeled phase I. The value of the peak

height of this transition (in Cp/T ) first rises with field, and then after H is increased

beyond the midpoint of this regime, reduces in magnitude again. In contrast, the

anomaly associated with the phase transitions connected by the dashed red lines in

Fig. 5.1(b) are less divergent, and although the data do not permit a critical scaling

analysis, nevertheless are more suggestive of an Ising transition; this state is labeled
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Figure 5.1: Heat capacity (shown as Cp/T ) as a function of temperature and fields
for fields applied (a) parallel and (b) perpendicular to the c axis. The solid blue
(dashed red) indicate the transition into phase I (phase II) from higher temperatures
as determined by peaks in Cp/T as a function of field.
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as phase II. The rise in Cp/T associated with this phase transition does not appear

to vary with field within the uncertainty, indicating that the change in entropy is

only weakly dependent on the applied field. Estimates of the integrated entropy are

difficult due to the close proximity of the second phase transition, and also due to

the large background magnetic contribution to the heat capacity associated with the

other gapped states. However, a crude estimate of this entropy was obtained for

several fields for which the only resolvable transition is between the disordered phase

and phase II (plotted in Fig. 5.2(c) for H = 10.5 T). Upper and lower bounds for the

entropy were determined by assuming a minimum and maximum possible background,

shown as blue and red lines respectively in Fig. 5.2(c), yielding an average of 0.45 ±
0.20 J/molK. Within the uncertainty, this value appears to be symmetric for fields

above and below the midpoint of Hc1 and Hc2 as shown in Fig. 5.2(d), and for this

reason the ordered state on the right hand side of Phase I in Fig. 5.6(b) is labeled as

phase II.

MCE measurements, performed up to 30 T and down to 0.35 K for fields both

parallel and perpendicular to the c axis, also probed the singlet-triplet ordered states.

Phase transitions are evident from a sharp increase (decrease) in the temperature of

the sample on entering (leaving) the ordered state (see Fig. 5.4). In practice, points

on the left (right) hand side of the phase diagram were determined from a sharp

peak (trough) in the first derivative of the temperature with respect to field taken on

up (down) field sweeps, each corresponding to the case of entering the ordered state

(see Fig. 5.3). These data are in close agreement with heat capacity measurements,

with small differences being ascribed to differences in sample alignment and, where

two different calorimeters were used, thermometry (Fig. 5.6). A slight asymmetry in

the magnitude of the change in temperature between up and down sweeps provides

evidence that transitions between the disordered state and phase I, between the dis-

ordered state and phase II, and between ordered phases I and II are all weakly first

order in this temperature range.

Additional temperature independent features were found centered at Hc1 and Hc2.

These features do not mark phase transitions but rather are a consequence of the
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Figure 5.2: Entropy estimates for phase II for fields oriented parallel to the a-axis.
(a) Three representative MCE measurements (dashed lines, right axis) and the corre-
sponding change in entropy, δSi, (solid lines with the same color, left axis). (b) Total
entropy associated with phase transitions seen in MCE measurements, calculated as
described in the main text. Horizontal arrows indicate the entropy associated with
the lower transition. (c) Upper and lower bounds of the integrated entropy associated
with the phase transition observed in heat capacity at 10.5T. (d) Entropy on entering
phase II from MCE (open circles) and Cp (solid squares).
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Figure 5.4: MCE curves for increasing and decreasing fields at different rates for fields
applied parallel (a) and perpendicular (b) to the c axis. Shaded vertical bands are
guides to the eye to draw attention to the broad features observed in MCE measure-
ments centered at 8.8T and 26.5T. MCE traces are shown in green, blue and yellow
for increasing fields for sweep rates of 1, 2 and 5 T/min, respectively and purple and
red for decreasing fields for sweep rates of 2 and 5 T/min, respectively. Representa-
tive data for increasing fields are designated by arrows and shown in blue for sweep
rates of 5 T/min in panel (a) and 2 T/min in panel (b).
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dimer system with interdimer exchange J at several temperatures.

rapidly changing magnetization as a function of temperature. Using Maxwell’s equa-

tions, the change in magnetization with temperature can be related to the change in

entropy with field:
∂M

∂T
|H,P =

∂S

∂H
|T,P (5.1)

This effect is demonstrated in Fig. 5.5 for a model dimer system composed of two

spin 1
2

moments. The excited triplet band is modeled as having a uniform density of

states, which leads to a linearly increasing magnetization between the minimum of

the triplet band Hc1 and the maximum of the triplet band Hc2. The sharp increase

(decrease) in the slope of the magnetization atHc1 (Hc2) at 0 K is rapidly smeared out

at higher temperatures. This change in the slope leads to a peak in the temperature

derivative of the magnetization, which goes from delta like at 0 K to shorter and

broader humps at higher temperatures.

The total change in entropy associated with a phase transition can be calculated
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from MCE measurements by summing the increase in entropy of the system plus the

entropy lost as heat to the bath from the sample stage:

δSi = −C (Ti+1 − Ti) + κ (Ti − Tbase)

Ti
, (5.2)

where i labels successive temperature points taken as the field is swept (typically

40 evenly spaced points per Tesla) and κ is the thermal conductivity of the thermal

link in the calorimeter. A linear interpolation for κ was calculated as a function of

temperature and field for the calorimeter, and values of the heat capacity were taken

from measurements performed in the PPMS calorimeter. Figure 5.2(a) shows three

representative MCE data sets for fields oriented perpendicular to the c-axis (dashed

line, right axis), and the associated change in entropy δSi between successive data

points (solid curves, left axis). All three data sets were taken for increasing fields and

for the same sweep rate of 2 T/min. As can be seen, δSi shows two successive peaks

as a function of field, which correspond to the two phase transitions. A practical

measure of the change in entropy associated with each phase transition is therefore

provided by the integrated entropy up to the minimum in δSi, which is shown in

Fig. 5.2(b). For the lowest temperature data set (black curves) the two transitions

are well separated and the total entropy associated with the first transition exhibits

a clear plateau. For the higher temperature sweeps (lighter color curves) the two

transitions are slightly closer in field, and the total entropy exhibits more of a kink

than a plateau. Nevertheless, these data allow an estimate of the integrated entropy

associated with each transition into phase II from the disordered phase, which are

plotted in Fig. 5.2(d) for these and some additional intermediate temperature sweeps.

Within the uncertainty of this analysis, the change in entropy associated with entering

phase II from the disordered state is essentially independent of temperature, with

an absolute value that agrees remarkably well with the value extracted from heat

capacity measurements (square symbol in Fig. 5.2(d)). In contrast, the change in

entropy associated with entering phase I depends strongly on temperature, consistent

with inspection of the heat capacity data shown in Fig. 5.1(b).
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65



15°

90° 

0°

30°

45°

60°

75° 

    

T (K)
0.45 0.60 0.75 0.90

0

5

10

15

20

C
p
 (J

/K
m

ol
)

Figure 5.7: Representative heat capacity data taken at 12T for fields in the a-c plane.
Labels indicate the angle between the field and the c axis. Successive data sets are
offset vertically by 1.6 J/molK for clarity.

Heat capacity measurements were also undertaken to determine the angular de-

pendence of these two phases. The measurements were performed in the PPMS for

four different fields and seven different angles. The sample was mounted on angled

brackets, machined within 1◦ accuracy, made from oxygen-free high conductivity cop-

per and the field was oriented in the [100]-[001] plane.

Representative heat capacity measurements, taken at 12 T for several angles, are

shown in Figure 5.7. These data show a single peak for fields aligned along the c axis,

a peak and a shoulder for fields 15◦ from the c axis and two peaks for larger angles.

Significantly, comparison of the data at 75◦ and 90◦ degrees shows that the 75◦ data

has both a slightly higher critical temperature between the paramagnetic phase and

phase II (TcII
) and also a substantially lower critical temperature between phase II
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Figure 5.8: (a) Phase diagram showing the transitions between the paramagnetic
state and phase II (TII), and between phase II and phase I (TI), as a function of
temperature and angle in the [100]-[001] plane for various fields, where θ indicates
the angle between the field and the c axis. (b) Width of phase II, ∆T = TcII

−TcI
, as

a function of angle for 11T, 12T, 13T and 14T (black circles, red up triangles, green
down triangles, and blue squares, respectively.)

and phase I (TcI
) than the 90◦ data.

The phase diagram derived from the complete set of angular Cp measurements,

shown in Fig. 5.8(a), reveals the evolution as a function of angle of the two distinct

singlet-triplet ordered states for fields in the [100]-[001] plane. The data show a

single transition for all fields for H‖c and two transitions for H‖a. The extent in

temperature of phase II, ∆T = TcII
− TcI

, is shown in Figure 5.8(b). ∆T increases as

a function of angle as the field is rotated away from the c axis, reaches a maximum

at 75◦, and decreases at the a axis (90◦). For example, for a field of 11T, ∆T is ∼
0.07 K larger at 75◦ than at 90◦.
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Figure 5.9: Linear coefficient of magnetostriction and its first derivative with respect
to field for the three orientations measured. Successive curves offset by 1*10−5, 2*10−5

T−1, 4*10−5, 1.5*10−6 T−1, 6*10−5 and 4*10−6 T−1 for panels a) - f), respectively.

5.1.2 Magnetostriction

Magnetostriction measurements were performed on single crystals of Ba3Mn2O8 for

fields through the singlet-triplet ordered states. Due to limited access to the resistive

magnet at the NHMFL no estimate of the background magnetostriction associated

with the dilatometer was obtained. These measurements were performed for three dif-

ferent field axis / dilation axis orientations: 1) Field along [110], dilation along [110];

2) Field along [100], dilation along [110]; and 3) Field along [100], dilation along [001].

Taken together, these sets of measurements cover all possible dilation directions for

fields applied in the plane (recall that in hexagonal nomenclature the [100] and [110]

directions are perpendicular). Measurements were performed for several temperatures

between 1.1 K and 0.3 K. These measurements revealed two transitions near both Hc1

and Hc2 at low temperatures.

Considering first the magnetostriction for fields applied along [110] and dilation

along [110], the lattice contracts as fields sweep through the singlet/triplet regime

(Fig. 5.9 a)). At 1.05 K, above the ordered states, the magnetostriction continuously
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decreases. At lower temperatures, the lattice shows an equivalent overall contraction

as fields increase, but there is an additional sharp contraction in the magnetostriction

at the transition into the ordered state and a sharp increase at the transition out of the

ordered state, superimposed on top. Overall the lattice contracts by roughly 0.045%

by 30 T. The field derivative of the magnetostriction for this orientation reveals peaks

associated with transitions into both ordered states (Fig. 5.9 (b)). At 0.79 K only

one peak is observed on entering the ordered states, likely due to broadening of the

transition, while at 0.35 K two separate peaks are observed.

The magnetostriction for fields along [100] and dilation along [110] (dilation per-

pendicular to field, both in plane) are shown in Fig. 5.9 (c). The magnetostriction

decreases at fields above Hc1, continues to decrease until roughly the midpoint of the

singlet-triplet regime, and then increases less rapidly until Hc2, contracting the lattice

0.005% at Hc2 relative to Hc1. At lower temperatures the onset of the contraction and

the termination of the expansion become sharper. The field derivative of the mag-

netostriction for this orientation shows peaks associated with onset (termination) of

the lattice contraction (expansion) (Fig. 5.9 (d)). Similar to the first field/dilation

arrangement considered, two (one) peaks are observed at base (intermediate) tem-

perature.

The magnetostriction of the final experimental setup, with fields applied along

[100] and dilation along [001], is plotted in Figure 5.9(e). The lattice begins to expand

from fields above Hc1 until roughly the midpoint of the singlet-triplet regime, and then

begins to contract less rapidly until Hc2, leaving the lattice 0.025% expanded relative

to the beginning of the singlet/triplet regime. At lower temperatures the onset of

the increase and the end of the decrease becomes sharper. Finally, identically to the

other two directions, there are peaks in the field derivative of the magnetostriction at

the phase transitions (Fig. 5.9(f)).

Magnetostrictions for the three different dilation directions, and their first deriva-

tives with respect to field, are plotted together at base temperature in Fig. 5.10(a)

and (b), respectively. The three curves do not add to zero at extended fields. This

could be due to the nonconservation of volume as the field is swept, however it is

more likely due to the lack of a background subtraction associated with the empty
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dilatometer. The primary effect is the lattice expansion along the [001] direction

connected by the J0 bond the strongest antiferromagnetic coupling. By expanding

along this strongest exchange, the exchange penalty from the condensed triplets can

be reduced. The lattice contraction near the middle of the singlet-triplet regime pre-

sumably reflects particle-hole symmetry, such that the singlet sites prefer to contract.

The other two lattice directions compensate for the expansion along [001] by con-

tracting, although because of the lack of background subtraction it is unclear how

perfectly the two directions compensate for the [001] direction.

5.1.3 Torque

Extensive torque magnetization experiments were performed at the NHMFL on a

single crystal of Ba3Mn2O8 for fields up to 15 T and temperatures between 25 mK

and 800 mK. Several different measurements were run: the temperature dependence

of the phase boundary for fields near perpendicular to the c axis; the temperature

dependence of the phase boundary for fields near the c axis; and also the angular

dependence of the phase boundary at 25 mK as fields were rotated from close to the

c axis to nearly perpendicular to the c axis.

Determination of the phase transition from the torque data requires detailed

studying of the data and its field derivatives. Although the torque τ is the quantity

actually measured data is usually analyzed as τ/H because that quantity is roughly

equivalent to the magnetization and under certain circumstances exact (Eq. 4.7). The

magnetization is proportional to the first derivative of the free energy with respect to

field, implying that a second order phase transition would exhibit a delta-like peak in

the second field derivative of the magnetization, as has been observed in BaCuSi2O6

[47]. However there are peaks (and sharp troughs) in the first derivative of τ/H at

all temperatures for the transition between phase I and phase II and at temperatures

above ∼ 150 mK for the transition between the paramagnetic phase and phase II.

Transitions marked by these peaks and troughs in the first derivative are likely first

order, although it could also be evidence of a change in the anisotropy of the system.

There is a further complication to determining the phase boundary: the peaks in the
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Figure 5.11: Torque scaled by field and its first two derivative versus field for fields
applied close to perpendicular to the c axis.
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first derivative (and by extension second derivative) change signs from sharp peak

to sharp trough and vice versa for successive field sweeps as either the temperature

or angle is tuned. To systematically account for this variance a uniform method of

phenomenologically determining the phase transition was devised: a peak or trough

in the second field derivative of τ/H that most closely lined up with the change in

τ/H was chosen as the phase transition. A few representative τ/H curves, and their

first and second field derivatives, taken at several different temperatures are shown

in Fig. 5.11 and illustrate how the phase transitions are ascribed to different features

in the second derivative.

Raw data taken to the highest temperatures measured for fields nearly perpendic-

ular to the c-axis, scaled by the magnetic field strength, are shown as a 3D surface in
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Fig. 5.12. The sharp increase in torque at 8.5 T for the lowest temperatures corre-

sponds to the spin gap closing as the minimum of the the Sz=1 triplet band crosses

the singlet leading to a finite magnetization. As temperature is increased, thermal

effects smear out this rapid increase in torque, and field derivatives of τ/H at Hc1

rapidly broaden with temperature (Fig. 5.13(a) and (b)). Superimposed on top of

the broad rise in torque with field, the two phase transitions seen in heat capacity

and MCE experiments are clearly visible as breaks in the slope of τ/H (Fig. 5.12).

Fig. 5.13 (a) and (b) shows 3D surface plots of the first and second field derivatives

of τ/H respectively for fields applied nearly perpendicular to the c axis for all tem-

peratures measured. These curves demonstrate the smooth evolution of the various

features described above. Points on the resulting phase diagram, extracted as de-

scribed above are shown in Fig. 5.13(c) and are in agreement with points taken from

MCE and Cp measurements up to the inherent angular misalignment in this torque

measurement. No boundary points are plotted in the temperature region where there

is a crossover from second order behavior to first order behavior leading to ambiguity

in the choice of feature marking the phase transition.

Extensive measurements were attempted to determine the critical scaling behavior

of the transitions for fields both nearly aligned with the c axis and nearly perpen-

dicular to the c axis. However, because the scaling behavior can only be fit in the

range where the transition is second order there were not enough data points in the

available temperature range to get reliable estimates of the scaling parameters.

Measurements were also undertaken on the angular dependence of the torque

magnetometry at 25 mK. The measurement was intended to probe the angular de-

pendence in the a-c plane, however the sample was slightly inclined such that the field

did not exactly rotate within the [100]-[001] plane, generating a finite torque for all

angles studied. Angles are quoted in terms of the angular position with respect to the

closest approach to the c axis, but it is important to note that the field was never less

than ∼ 10◦ from the c axis. Consequently two phase transitions are observed for all

angles studied. The sign of the peak in the second derivative marking the transitions

between the paramagnetic phase and phase II (Hc1) and between phase II and phase

I (HII−I) both changed with the evolution of angle, reflecting a change in anisotropy
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relative to the closest approach to the c axis as described in the main text.

for the two different phases. This lead to minor discontinuities in the determination

of the phase boundary (dashed lines in Fig. 5.14).

Similar to the phase diagram obtained from heat capacity measurements (Fig.

5.8), the phase diagram obtained from torque measurements at lowest temperatures

reveals a non-monotonic angle dependence (Fig. 5.14). The maximum value of HII−I

occurs between 65-75◦ from the closest approach to the c axis. This is in agreement

with the heat capacity data, for which the smallest TcI
occurs at 75◦ from the c axis.

Additionally, the field extent of phase II, ∆H = HII−I − Hc1, is largest at 75◦, and

decreases by ∼0.05 T from its maximum value at the highest angles measured.
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5.2 Critical Field

Through consideration of the minimal spin Hamiltonian (Eq. 2.4) it is possible to

calculate the critical field Hc1(θ) corresponding to the value for which the energy of

lowest energy triplet mode becomes equal to zero. The calculation, performed by K.

A. Al-Hassanieh and C. D. Batista, is based on a generalized spin-wave approach in

which only the singlet and the three triplet states of each dimer are kept [48]. The

softening of this triplet mode signals the onset of the magnetic instability towards an

ordered state (phase I for H‖c and phase II otherwise). For field directions along the

principal axes, it is possible to obtain simple analytical expressions for the critical

field [49]. The expression for H‖c is:

(gccµBHc1)
2 =

(

J0 −
D

3

)2

+
8

3

(

J0 −
D

3

)

Jmin, (5.3)

while for H ⊥ c the expression is:

(gaaµBHc1)
2 =

(

J0 +
D

6

)2

+
8

3

(

J0 +
D

6

)

Jmin

−D
2

4
− 4

3
|D||Jmin| (5.4)

where Jmin is the minimum of the interdimer exchange portion of the dispersion

(Eq. A.7) which is fully described in Appendix A. The difference in the first two

terms between these expressions stems from a change in the zero field splitting of an

isolated dimer depending on quantization direction expressed in the reduced basis of

dimer states as described in section B.1 of Appendix B. The two additional terms of

Hc1 for fields perpendicular to the c axis arise from the second order process mixing

singlets and triplets as described in section 2.3 of the Theory chapter. This state

mixing causes the gap between the Sz = 1 triplet and singlet states to close as
√
H −Hc1, as expected for an Ising-like QCP. Evaluating these expressions using the

values of the exchanges and single ion anisotropy yield values for the critical fields

which are in good accord with the measured data. Numerical calculation of Hc1 for

arbitrary field orientations in the [001]-[100] plane yields the red dotted curve shown
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in Fig. 5.14. The calculation was performed using the values of D and the interdimer

couplings given in the introduction while J0 was allowed to vary leading to a fit value

of 1.567 meV. The calculated values agree well with the measured data up to the

inherent uncertainty associated with the misalignment of the sample in the torque

measurements described above.

5.3 Ordered States

A few direct measurements have been undertaken to determine the microscopic na-

ture of the singlet-triplet ordered states of Ba3Mn2O8. Nuclear magnetic resonance

(NMR) studies at high fields revealed a continuously varying local magnetization for

the Ba site, indicative of incommensurate order [33]. In addition, elastic neutron

studies performed for fields perpendicular to the c axis in the ordered states also re-

vealed incommensurate order, with ordering wavevectors aligned slightly away from

(1
3
, 1

3
) [50]. However, due to the incommensurate nature of the ordered states neither

measurement could provide a full microscopic description of the ordered states. In

the absence of such a determination of the ordered states analysis of the spin Hamil-

tonian can provide candidates for the microscopic ordering present. In this section

I will motivate and describe the classical ordered states that were found from the

effective psuedospin Hamiltonian in the singlet-triplet regime, Eq. 2.31.

To understand the origin of the specific structures proposed, it is simplest to first

consider the limiting cases - fields applied parallel and perpendicular to the c-axis.

In each case I first consider the 2D lattice, effectively setting J1 and J4 = 0 (i.e. no

interplane coupling), before considering the full 3D case. After these simple cases I

finally consider the general case of intermediate fields.

5.3.1 Field Parallel to c

Considering first the 2D lattice (effectively setting J1 and J4 = 0), and noting that

the D anisotropy does not act on the sxy components of the pseudospins (i.e. both

a(θ = 0) = 0 and D̃l(θ = 0) = 0), the system consists of independent triangular
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layers of vertical dimers, and the effective Hamiltonian reduces to

H̃ =
∑

l〈i,j〉

[

J2 + J3

2
s̃z

ils̃
z
jl +

8 (J2 − J3)

3

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

− (gccµBH − J0 − 3 (J2 + J3) /2 +D/3)
∑

l,i

s̃z
il (5.5)

The effective exchange anisotropy is easy-plane, i.e., the XY component of the effec-

tive exchange dominates. At T = 0, the triplets condense (canted XY antiferromag-

netic ordering) for H > Hc1 = (J0 − 4 (J2 − J3)) / (gccµB) into a state that can be

approximated by a direct product of single dimer states of the form:

|ψil〉 = cos θil|00〉 + sin θile
−iφil|11〉. (5.6)

The canting angle θil = θ is uniform and is set by the magnetic field, while φil =

φl + Q · ri with Q = (±1
3
,±1

3
)a∗. The relative phase between different layers is

determined by φl, which can take any value for the moment because we are assuming

that J1 = 0. The expectation values of the pseudospins take a simple form

〈ψil|s̃x|ψil〉 =
1

2
sin 2θ cos (Q · ri + φl)

〈ψil|s̃y|ψil〉 =
1

2
sin 2θ sin (Q · ri + φl)

〈ψil|s̃z|ψil〉 = −1

2
cos 2θ. (5.7)

This corresponds to a canted antiferromagnetic state, in which the s̃xy component of

the pseudospins orient 120◦ with respect to each other to minimize the interdimer ex-

change energy (i.e. the s̃xy components of the pseudospins on each triangular plaquet

sum to zero) analogous to the classical solution for a Heisenberg or XY antiferro-

magnet on a triangular lattice [18]. This is illustrated in Fig. 5.15(a). The phase,

corresponding to the angle of the s̃xy component of the pseudospins relative to the

crystal lattice, spontaneously breaks the U(1) symmetry of the effective Hamiltonian,

and the ordered state can be described as a Bose-Einstein condensate. In terms of

the original spins on each Mn site, the ordered state still consists of a canted AF with
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the Sxy component of the spins on adjacent dimers oriented 120◦ with respect to each

other, but with these components reversed for spins on the top and bottom of each

dimer unit. The Sz component of each spin is equivalent for each Mn ion.

Now consider the full 3D lattice with nonzero J1 and J4. The Hamiltonian still

maintains U(1) symmetry, and the ordered state will still correspond to a triplet con-

densate (consistent with the lambda anomaly observed in heat capacity measurements

for this field orientation) because the XY interaction in the Hamiltonian dominates

the Ising interaction. However, the system now has the possibility to gain additional

energy from the interlayer exchange. The s̃xy component of the total spin on any tri-

angular plaquette for the classical case in Fig. 5.15(a) is zero, but if the pseudospins

twist around the z-axis to form a spiral structure in which successive spins along the

[100] and [010] directions rotate by an angle α = 120◦±ǫ in the XY plane, the system

is then able to benefit from the interlayer coupling. There are two degenerate solu-

tions that minimize the total energy. The first solution is characterized by a uniform

phase along the c-axis: φl = 0. In contrast, the phase is staggered φl = lπ, in the

second solution. In addition, the shift of the single-layer ordering wave-vector from

Q = (±1
3
,±1

3
)a∗ to Q = ±(α, α) 2√

3a
(note that a∗ = 4π√

3a
in this non-orthogonal basis)

has opposite signs for the two cases:

cosα = −1

2
− J1

4 (J2 − J3 − J4)
for φl = 0

cosα = −1

2
+

J1

4 (J2 − J3 − J4)
for φl = lπ, (5.8)

corresponding to angles α = 124◦ and α = 116◦ respectively for the values of J1, J4

and (J2 − J3) obtained from single crystal INS [26, 27, 28]. The gain in energy of

this in-plane twisting due to the interlayer interactions scales linearly with ǫ (i.e. for

a given phase relation between adjacent layers there is a “right way” and a “wrong

way” to twist the spiral structure). In contrast, the loss in intralayer energy from

breaking the perfect 120◦ structure scales quadratically with ǫ because α = 120◦ is the

minimum energy structure for J1 and J4 = 0. Hence, an arbitrarily small interlayer

exchange is able to stabilize a spiral phase as indicated by Eq. 5.8. The resulting
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Figure 5.15: Schematic diagrams of the predicted spin structure for field applied along
c-axis. (a) 120◦ structure on a triangular plaquette corresponding to the classical solu-
tion for Heisenberg spins on a 2D lattice. Dashed green and solid red arrows indicate
s̃z and s̃xy components of the pseudospin representing each dimer unit, respectively.
Inset shows crystal axes. Full 3D structure of s̃xy components of pseudospins on
successive layers for values of α more than and less than 120◦ leading to ordering
wavevectors along the z-direction of 0 and 1

2
c∗ are plotted in (b) and (c) respec-

tively. Dashed blue arrows indicate the total pseudospin moment on each triangular
plaquette, illustrating antiferromagnetic interplane coupling.
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phase is incommensurate, in agreement with the previously described NMR [33] and

elastic neutron scattering measurements at high fields [50].

A similar structure, but with antiferromagnetic interplane coupling, has already

been proposed by Uchida et al. following their initial estimation of the exchange

constants in Ba3Mn2O8 [24]. However, two subtleties to the ordered phase were not

anticipated in that earlier paper. The first of these is that ǫ can take both positive

and negative values because there are two degenerate solutions: φl = 0 or φl = lπ.

If α > 120◦, as illustrated in Fig. 5.15(b), then for J1 > 0 the component of the

ordering wavevector along the c direction, qz, is equal to 0 (φl = 0). However,

if α < 120◦, as illustrated in Fig. 5.15(c), then the component of the ordering

wavevector along the c direction, qz, is equal to 1
2
c∗ (φl = lπ), leading to a doubling

of the unit cell along the c-axis. A second subtlety of the ordered phase is that the

resulting structure contains triangular plaquettes on which pair of spins are more

closely antiferromagnetically aligned along specific directions, while other pairs of

spins are less perfectly antiferromagnetically aligned along equivalent crystallographic

directions. Specifically, adjacent spins along the [110] direction have a relative angle

of 2α = 2(120◦+ǫ) ≡ 120◦−2ǫ, in contrast to adjacent spins along the [100] and [010]

directions which have a relative angle of α = 120◦+ǫ. While such “bond order” would

lead to a subtle lattice deformation, this effect was not found in the magnetostriction.

However, such a subtle effect would likely be obscured by the much stronger effect of

the intradimer coupling which dominated the overall behavior of the magnetostriction.

5.3.2 Field Perpendicular to c

For fields oriented away form the c axis, the anisotropy term D breaks the U(1) sym-

metry of the Hamiltonian; in particular for fields applied perpendicular to the c axis

the dominant anisotropy term a(θ = π/2) = −2D
J0

is nonzero (the smaller intermediate

angle term D̃(θ = 0) = 0 is still zero). The anisotropy term induces an easy axis in

the ordering plane which can stabilize an Ising-like modulated structure. To under-

stand the nature of this phase, it is instructive to first consider the case in which D

vanishes on a 2D lattice (J1 and J4 = 0) and a magnetic field is applied perpendicular
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to the crystalline c axis, for instance along the direction midway between [100] and

[110] (i.e. along the “point” of a triangular plaquette). All of the same arguments

given above for the case H‖c and J1, J4 = 0 still apply, but the quantization axis now

lies in the ab plane so the XY order lies in the plane defined by the two vectors [001]

and [010] (Fig. 5.16(a)). Since D = 0, there is no anisotropy in this plane, and the

pseudospins spontaneously break U(1) symmetry – the ordered state is a Bose Ein-

stein condensate. However, a finite value of D in equation 2.31 qualitatively changes

the nature of the ground state. For the specific example of the field oriented along the

tip of the triangular plaquette, a negative value for D, appropriate for Ba3Mn2O8,

implies an easy axis for the s̃xy component of the the pseudospins along the [001]

direction. For the 2D lattice (i.e. J1, J4 = 0), the in-plane interaction between spins

still favors a magnetic structure for which the total spin in the XY plane vanishes.

To minimize both the anisotropy energy and also the in-plane exchange energy, the

system may adopt an inhomogeneous magnetic structure in which the component of

the pseudospins along the hard axis are depressed relative to along the easy axis while

the canting angle along the z-axis is adjusted so as to preserve zero net s̃xy spin on

each triangular plaquette (fig. 5.16(b)).

Considering now the 3D lattice (finite J1 and J4), the general form of the pseu-

dospins describing this modulated behavior in a spin dimer system with uniaxial

anisotropy is

〈ψil|s̃x|ψil〉 =
1

2
sin 2θ cos (Q · ri + φl)

〈ψil|s̃y|ψil〉 =
1

2
cos γ sin 2θ sin (Q · ri + φl)

〈ψil|s̃z|ψil〉 =
±1

2

√

cos2 2θ + sin2 2θ sin2 γ sin2 (Q · ri + φl),

(5.9)

where 0 ≤ γ ≤ π/2 sets the ratio between the maximum amplitude of the s̃y and s̃x

components and consequently the amplitude of the modulation of the s̃z component

(γ = 0 is unmodulated and γ = π/2 is maximally modulated). The positive (negative)

sign in the last line of Eq. 5.9 holds for θ > π/4 (θ < π/4). Minimization of the
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Figure 5.16: Schematic diagram showing spin structure for fields pointing along the
‘point’ of a triangular plaquette obtained by minimizing parameters in Eq. 5.9.
Dashed green and solid red arrows indicate s̃z and s̃xy components of the pseudospin
representing each dimer unit, respectively. (a) Spin structure for D=0 and J1=0 for
H‖[110]. The s̃xy components of the pseudospins are oriented 120◦ from each other,
equivalent to the case shown in figure 5.15(a) for H‖c, but rotated into the [010]-
[001] plane. (b) Partially modulated phase (phase I) for D < 0 and J1 finite. The
s̃xy components of the spin precess along an elliptical path with an incommensurate
wavevector close to (1

3
, 1

3
)a∗. (c) Maximally modulated phase (phase II) stabilized

close to Hc1 and Hc2.
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Hamiltonian (Eq. 2.31) with respect to the different parameters θ, γ, Q and φl yields

the ground state. The optimal values of Q and φl are still very well approximated by

Eq. 5.8. The optimal values of θ and γ as a function of the field H are shown in Fig.

5.17. The ordered ground state has no s̃y component of the pseudospin (γ = π/2)

for H near Hc1 (Fig. 5.16(c)). However the effective exchange anisotropy J2+J3

2
s̃z

ils̃
z
jl

in H̃st (Eq. 2.31) penalizes the modulation of the s̃z component and favors a less

modulated structure (γ < π/2) when the z-component of the real magnetization

becomes large enough, i.e., when H − Hc1 is large enough. This is presumably the

origin of the two distinct phases observed in thermodynamic measurements for fields

oriented perpendicular to the c-axis. The reemergence of phase II close to the top

of the singlet-triplet regime is a consequence of the particle-hole symmetric nature of

this Hamilton where at fields nearHc2 the small singlet density minimizes the effective

exchange anisotropy penalty. A full analysis performed by K. A. Al-Hassanieh and

C. D. Batista including all three triplet states quantitatively accounts for Hc1 [48],

however even without including these terms the agreement with the measured phase

diagram is remarkable. According to the results shown in Fig. 5.17, the transition

between both phases is of second order at T = 0. For H slightly larger than HII−I

(the critical field for the transition between phase II and phase I) the field dependence

π/2 − γ ∝ √
HII−I is characteristic of a mean field transition. Correspondingly, the

total magnetization and θ exhibit a kink at H1,2. The resulting structure stable at

higher fields is still modulated along the z direction but with a finite component along

the y direction (Fig. 5.16(b)). The s̃y component of the pseudospin varies to the s̃x

component as a function of field, yielding an unmodulated structure exactly at the

middle of the dome since s̃z=0 at this field, equivalent to the H‖c structure. At

this field, rotation of field into the H‖c direction therefore occurs without crossing a

phase boundary, consistent with our labeling of phase I in Fig. 5.6(a) and (b). The

energy associated with the anisotropy a(x) (J2 − J3) ∼ D (J2 − J3) /J0 ∼25 mK is

small, consistent with the observation of a λ-like anomaly in heat capacity seen in

Fig. 5.1(b) (i.e the critical scaling associated with the Ising phase transition will only

apparent very close to Tc).
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Figure 5.17: Variational parameters γ and θ and normalized magnetization M/Msat

that result from minimizing the energy (H̃) for the spin configuration described by
Eq. (5.9). The vertical dashed lines mark Hc1 and the transition between phase II and
phase I. Fit values of J0 = 19.1 K, J1 = −1.37 K and J2 − J3 = 1.32 K determined
from preliminary fits of triplet dispersion measured at H = 0 in a single crystal
of Ba3Mn2O8 [27, 28]. The value of J3 = 1.27 K was chosen to fit the measured
optimal field: (Hc1 +Hc2) /2 ∼ 17.3 T. The disagreement between the calculated
Hc1 ∼ 9.6 T and the measured value of ∼ 8.7 T is due to our two-level (singlet-
triplet) approximation. Good quantitative agreement is obtained if the other two
triplets are included.
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The resulting modulated structures are characterized by three separate order pa-

rameters: there is a finite modulation of the magnetization along the field direction

(Ising order), there is also Ising ordering along the easy direction perpendicular to the

field, and finally there is bond order. Referring back to the heat capacity data (Fig.

5.1), the anomaly associated with this phase transition into phase II is clearly different

to the λ anomaly seen for fields oriented parallel to the c-axis, although the data do

not permit a critical scaling analysis. Estimates of the change in entropy through the

transition into phase II vary only weakly with field or temperature, possibly implying

a significant lattice contribution.

5.3.3 Field at Intermediate Angles

At intermediate angles is is expected the width of phase II should primarily vary in

proportion to the strength of a(θ) = sin2(θ)a(π/2), implying monotonic evolution with

field. However, both the torque data (Fig. 5.14) and heat capacity data (Fig. 5.8)

had the maximal width of phase II for fields ∼75◦ from the c axis. This discrepancy

may be caused by the additional effective Dzyaloshinskii-Moriya term arising from the

zero field splitting term present at intermediate fields, D̃(θ) = − sin(θ) cos(θ) D
4
√

3J0

ŷ,

which is only nonzero for intermediate fields.

This effective DM interaction between dimers on adjacent layers is frustrated in

both ordered states at a mean field level (the mean value of J1

∑

l〈〈i→j〉〉 D̃(θ) · s̃i ×
s̃j + J4

∑

l〈〈i→j〉〉′ D̃(θ) · s̃i × s̃j is zero for both phase I and phase II). Therefore, the

small contribution of the effective DM interaction to the ground state energy must

be produced by quantum fluctuations. Because the DM vectors point along the ŷ

direction (perpendicular to the applied field and to the easy c axis) this contribution

term will favor phase II, for which the pseudo-spins only have x and z components

(Fig. 5.18(b)(ii)), as opposed to phase I for which the pseudo-spins have an additional

third component along the y direction (Fig. 5.18(b)(i)). Thus this contribution

strengthens phase II relative to phase I near θ = π/2 and leads to a small non-

monotonic behavior of the HII−I curve (see Fig. 5.14).

Although this simple analysis captures the qualitative non-monotonic behavior of
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Figure 5.18: (i), (ii) Schematic diagram for two pseudo-spins on adjacent dimers con-
nected by the Jl interaction for arbitrary field direction in the a-c plane. Red arrows
show uniform moment, while green arrows show ordered moment. Field direction
along z axis, D̃ along ŷ axis, and c axis vertical.

the HII−I curve, it cannot account for the magnitude of the observed effect. The

amplitude of the effective DM interaction is of order 100 mK for θ ≃ 75◦. Because

the interaction mixes the singlet and Sz = 1 triplet dimer states, the mean value of

the DM term is less than
√
mD(θ) for any state with magnetization m (the mean

density of Sz = 1 triplets). Noting that m ≃ 0.06 at HII−I , the upper bound on the

DM term of ≃ 25 mK is the order of magnitude of the observed non-monotonic effect

of 5-10 mK in the HII−I curve. Given that D(θ) is much weaker than the dominant

terms of Hst, it is clear that the effective DM term can only explain the magnitude of

the non-monotonic effect if it gives a first order contribution to the energy of phase

II. However, as established above for the both phase I and phase II, the effective DM

interaction contributes via a second order correction and must therefore be consider-

ably smaller. This leaves us with two possibilities: a) The magnetic structure of phase

II is different from the simple Ising phase in such a way that the mean value of the ef-

fective DM term is non-zero, or b) The non-monotonic effect is caused by a term that

has not been included in Hst. Currently it is impossible to distinguish between these

possibilities, but ongoing efforts to experimentally determine the magnetic structure
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have the potential to directly address option (a), while EPR experiments should, at

least in principle, be able to determine the energy scale of additional interactions not

considered in the minimal spin Hamiltonian (Eq. (2.4)).
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Chapter 6

Triplet-Quintuplet Regime

The vast majority of previously studied spin dimer compounds are based on pairs of

S = 1
2

spins. A pair of spin S = 1
2

ions can have total spin 0 or 1; interactions between

pairs of spins in a spin dimer system leads to the previously discussed singlet-triplet

ordered states. However, if the dimers are based on a pair of larger spin S = 1

ions, then the dimer can have total spin 0, 1 or 2, such that interactions between

dimers can lead to similar triplet-quintuplet ordered states at higher fields than the

singlet-triplet ordered states. Only one previous S = 1 spin dimer has been studied,

the organic biradical magnet F2PNNNO [21, 22]. In this chapter, I will present the

first direct measurements of a triplet-quintuplet ordered state in a spin dimer system,

then compare and contrast the triplet-quintuplet ordered states to the singlet-triplet

ordered states before finally discussing the fluctuation induced asymmetry at highest

fields. This work has been published in ref. [30]

6.1 Experimental Results

Fields above 35 T are required to access the triplet-quintuplet ordered state, con-

straining the magnets and techniques available to study this regime. Of these limited

choices, magnetization measurements in pulsed fields and heat capacity and magne-

tocaloric effect measurements in the hybrid magnet were performed in this regime.
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Figure 6.1: Magnetization curves for Ba3Mn2O8 taken for fields applied perpendicular
to the c axis. Successive temperature sweeps are offset by 0.2 µB for clarity.

6.1.1 Magnetization

Extraction magnetization measurements were performed in pulsed magnetic fields up

to 60 T in a 3He refrigerator for fields applied perpendicular to the c axis. Data were

obtained by integrating the field derivative of the magnetization and are plotted for

increasing fields in Figure 6.1(c). The data were cross calibrated with low field SQUID

measurements to attain absolute values of the magnetization. Critical fields, evident

as discontinuities in the slope of the magnetization, were determined from peaks in

the second derivative of magnetization with respect to field. At base temperature, the

data show no magnetization up toHc1=8.73 T, followed by roughly linearly increasing

magnetization as the dimers are populated with triplet states, and a plateau at 1 µB

between Hc2=26.46 T and Hc3=32.42 T corresponding to one Sz = 1 triplet per

dimer. There is then a second region of roughly linearly increasing magnetization as

the quintuplet band is filled, before finally reaching the full saturation magnetization

of 2 µB at Hc4=47.9 T.
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The derivative of magnetization with respect to field is plotted in Figure 6.2 for

various temperatures. The data were obtained by measuring the time derivative of

both the magnetization and field, and taking the quotient. The signal to noise ratio

diminishes at high fields, for which the field derivative tends to 0. These curves,

shown for increasing fields, reveal clear peaks associated with each of the critical

fields. For falling fields the field derivative is smaller, resulting in a worse signal to

noise ratio. However, a representative curve for decreasing field at base temperature

is plotted revealing the same qualitative behavior. The data also show a second peak

to the right (left) of Hc1 (Hc2) at low temperatures. These peaks do not mark phase

transitions since there is no temperature dependence and the features are observed

well above Tc,max=0.9 K, the highest ordering temperature. Rather, these features

signify a zero temperature crossover between phase II and phase I of the singlet-triplet

ordered states (leading to the rise in magnetization associated with the crossing of

the singlet and triplet states).

Inspection of Fig. 6.2 reveals that at lowest temperature the peak at Hc4 is

significantly higher than the peaks at the other three critical fields. This critical

field difference is observed on both increasing and decreasing fields, and thus is not

a consequence of the nearly zero dB/dt at maximal applied fields. The origin of

the peak enhancement will be discussed later in the section on asymmetry in the

quintuplet condensate.

6.1.2 Heat Capacity and Magnetocaloric Effect

The high field phase diagram was determined by both magnetocaloric effect (MCE)

and heat capacity experiments performed in a 45T hybrid superconducting/resistive

magnet at 3He temperatures for fields perpendicular to the c axis. For MCE measure-

ments, transitions were determined from peaks in the derivative in the same manner

as in the singlet-triplet regime (see Fig. 5.3(a)). These measurements revealed a

single phase for fields between 34 T and 41 T (Fig. 6.3). The vertical shaded region

corresponds to a temperature independent effect associated with a rapidly changing

temperature derivative of magnetization at Hc3, identical to the features observed in
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Phase transitions can be determined from peaks in derivative with respect to field, and
are shown as open triangles. Vertical shading indicates broad maximum associated
with rapidly changing temperature derivative of magnetization at the critical field.

the singlet-triplet regime (see Fig. 5.5).

Heat capacity measurements were performed using standard thermal relaxation

time calorimetry, in the large ∆T limit. Accordingly, Cp is calculated from the in-

stantaneous time derivative of the calorimeter temperature and the conductance of

the thermal link and not averaged over the entire temperature range. For these

experiments, the primary benefit of this technique is its expediency, which unfortu-

nately comes at the cost of reduced accuracy. The reduced accuracy caused a small

extraneous hysteresis on heating versus cooling. To improve the accuracy, multiple

temperature curves were measured at each field and then averaged. The data taken

on cooling are plotted in Fig. 6.4. They reveal an increasing critical temperature for

fields leading up to 37 T which has the maximum Tc,max of 0.643 ± 0.014 K. Above

37 T the critical temperature begins to decrease again. Tc values extracted from heat

capacity data for both cooling and heating are shown as a lower and upper bound on

the phase boundary in Fig. 6.5. The integrated entropy under the curve appears to

track the critical temperature, such that a higher Tc implies more entropy.
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The entire phase diagram for fields applied perpendicular to the c axis, together

with a magnetization curve taken at 0.50K, are shown in Figure 6.5, revealing the

four critical fields as discontinuities in the slope and the corresponding ordered states.

All told the phase diagram reveals at least three distinct ordered states across a large

field range. Inspection of this figure reveals a striking asymmetry in the quintuplet

condensate, for which Tc,max of the quinton phase is found at H=37 T, less than 5 T

from Hc3 but more than 10 T from Hc4. This effect will also be explored later in the

section on asymmetry in the quintuplet condensate.

6.2 Comparison between Triplet-Quintuplet and

Singlet-Triplet Regimes

The ability to microscopically determine the form of the triplet-quintuplet ordered

state is even more difficult than direct determination of the singlet-triplet states due

to the high fields required. However, predictions for the nature of the quintuplet
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condensate ordered state can be made through analysis of the effective Hamiltonian

(Eq. 2.32). Such predictions yield ordered states in this regime which are very similar

to those found in the singlet-triplet regime (section 5.3) due to the near equivalence

between the effective Hamiltonians of these regimes (Eqs. 2.31 and 2.32). In this

section I will compare and contrast a few of the main features of the ordered states of

both the singlet-triplet and triplet-quintuplet regimes through analyses of the effective

Hamiltonians.

In a layered system such as Ba3Mn2O8, the Tc of the ordered state is primar-

ily determined by the 3D interactions in the system. This is a consequence of the

the Mermin-Wagner-Berezinskii theorem which describes the disordering effects of

thermal fluctuations in 2D systems at finite temperatures (i.e. a 2D system with a

continuous symmetry can only order at T=0 due to the proliferation of spin waves at

finite temperatures) [51]. A smooth evolution of the ordered states with the 3D inter-

actions would dictate that the maximum Tc scales primarily with those interactions.

In this system, the largest 3D interactions are the J1 and J4 exchanges between Mn

ions on successive layers. The effective J1 and J4 interactions in the singlet-triplet

regime are (from Eq. 2.31):

H̃st,3D = J1

∑

l〈〈i,j〉〉

[

1

4
s̃z

ils̃
z
jl+1 −

4

3

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

+J4

∑

l〈〈i,j〉〉′

[

1

4
s̃z

ils̃
z
jl+1 −

4

3

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

(6.1)

The equivalent effective interactions in the triplet-quintuplet regime are (from Eq.

2.32):

H̃tq,3D = J1

∑

l〈〈i,j〉〉

[

1

4
s̃z

ils̃
z
jl+1 −

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

+J4

∑

l〈〈i,j〉〉′

[

1

4
s̃z

ils̃
z
jl+1 −

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

(6.2)
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These relations can be simplified at the middle of each the singlet-triplet and

quintuplet ordered states, roughly where the maximum Tc will occur. Considering

the singlet-triplet regime, at the midpoint of those ordered states the magnetization

is halfway between its value at Hc1 (where Sz
il1 + Sz

il2 = 0 for a given dimer when

all dimers are singlets) and Hc2 (where Sz
il1 + Sz

il2 = 1 for a given dimer when all

dimers are singlets), the average magnetization per dimer will be Sz
il1 + Sz

il2 = 1
2
.

Using the relation between the real spin operators and the pseudospin operators,

Sz
il1 + Sz

il2 = s̃z
il + 1

2
(from section 2.3.1) it is clear that s̃z

il = 0. Thus the ratio of the

3D interactions near the maximum Tc reduces to a simple value:

H̃st,3D

H̃tq,3D

|Tc,max
∼= 4

3
(6.3)

The maximum T st
c,max observed in the singlet-triplet regime is 0.883±0.010 K and

the maximum T tq
c,max in the triplet-quintuplet regime is 0.643±0.014 K (Fig. 6.5).

Thus the ratio of these maximum Tc’s, T
st
c,max/T

tq
c,max = 1.37 ± 0.025, is in good

agreement with the theoretical ratio of these two Tc’s, up to the inherent error in the

measure of the maximum Tc.

The width of the two regimes also follows from the effective Hamiltonians. This

quantity cannot be solely ascribed to a specific term, but must include all terms

contributing to the bandwidth. Short of doing a full spin wave analysis to get an

exact determination of the width of the phases, a first order approximation of the

widths can be obtained with just the strongest interactions acting on the pseudospins,

the J2 and J3 exchanges. The effective J2 and J3 interactions in the singlet-triplet

regime are (from Eq. 2.31):

H̃st,J2J3
=
∑

l〈i,j〉

[

(J2 + J3)

2
s̃z

ils̃
z
jl +

8 (J2 − J3)

3

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

(6.4)

The equivalent J2 and J3 terms in the triplet-quintuplet regime are (from Eq.

2.32):

H̃tq,J2J3
=
∑

l〈i,j〉

[

(J2 + J3)

2
s̃z

ils̃
z
jl + 2 (J2 − J3)

(

s̃x
ils̃

x
jl + s̃y

ils̃
y
jl

)

]

(6.5)
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As opposed to the discussion of the maximum Tc, neither the s̃z nor the s̃x and

s̃y pseudospin operators equal zero across the entire field range where the width is

calculated. However, taking the two limits where either the s̃z pseudospin operator

goes to 0 or the s̃x and s̃y operators go to 0 gives two extremes between which the

measured ratio of the widths will be. Taking first the limit for which both s̃x and s̃y

go to 0, the ratio of the J2 and J3 terms in the two regimes is:

H̃st,J2J3

H̃tq,J2J3

|s̃x=s̃y=0 = 1 (6.6)

The ratio of the J2 and J3 terms in the two regimes in the second limit where s̃z

goes to 0 is:

H̃st,J2J3

H̃tq,J2J3

|s̃z=0 =
4

3
(6.7)

These two values yield a fairly small range for the measured ratio. Using the

critical fields determined from the magnetization, Fig. 6.1, the widths of the singlet-

triplet regime and triplet-quintuplet regime are 17.73 T and 15.48 T, respectively. The

measured ratio of the widths, ∆Hst/∆Htq = 1.15, right in the middle of predicted

range.

The most obvious contrast between the two regimes is the lack of a second or-

dered state in the triplet-quintuplet regime. The effective Hamiltonian in the triplet-

quintuplet regime has the single ion anisotropy term, b(θ) = −5 sin2(θ)D
4J0

, which is 5
8

as large as the equivalent single ion anisotropy term in the the singlet-triplet regime,

a(θ) = −2 sin2(θ)D
J0

. Further, the size of the competing Ising modulation of the pseu-

dospins, (J2+J3)
2

s̃z
ils̃

z
jl, is unchanged between the two regimes, suggesting that a sec-

ond ordered state in the triplet-quintuplet regime should exist and be roughly 40%

smaller in field range than the phase II of the singlet-triplet regime. Additionally,

the field derivative of the magnetization, which shows two peaks on entering and

leaving the singlet-triplet regime that correspond to the zero temperature transition

between phase I and phase II, shows similar pairs of peaks on entering and leaving the

triplet-quintuplet regime. However, neither magnetocaloric effect nor heat capacity
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measurements revealed a second ordered state. The most likely reason for this dis-

crepancy is simply that the noise level associated with the measurements performed in

the challenging high field environment obscured a second ordered state. In particular,

at the high fields where these measurements were performed the field gradient acting

on the liquid helium of the 3He refrigerator was strong enough to cause the liquid

helium to levitate within the 3He pot, minimizing the length of time that the system

could be maintained at base temperature. To accommodate this constraint measure-

ments had to be performed quickly, sacrificing signal for expediency. The baseline

noise level in the MCE measurements would obscure a jump of ∼0.005 K, the size of

the temperature jump in the singlet-triplet regime on entering into phase II at 0.75

K, roughly the same percentage of the maximum Tc of the singlet-triplet dome as 0.5

K is for the triplet-quintuplet dome. The noise in the heat capacity measurement

derive from the experimental method used, the instantaneous derivative technique.

This technique is primarily used to measure first order phase transitions and could

have missed a smaller feature indicative of second ordered state that would have been

captured by the more standard discrete temperature points technique. Thus the most

likely explanation is that a second ordered state was simply below the high noise level

of these measurements, not absent.

6.3 Asymmetry near Hc4

Significant asymmetry was observed in both the field derivative of the magnetization,

where the peak at Hc4 is larger than the peaks at Hc1, Hc2 and Hc3, and the phase

diagram, where T tq
c,max of the triplet-quintuplet ordered states occurs at a field much

closer to Hc3 than Hc4. In this section I will describe how these asymmetries are

a direct result of the asymmetry in the zero-point fluctuations of the paramagnetic

phases at each critical field and induce the observed effects.

The zero-point fluctuations of this system must conserve total Sz because of the

U(1) symmetry in this compound (although the U(1) symmetry is broken by the

zero field splitting for fields away from the c axis, the symmetry will be present for

temperatures above ∼0.37 K, the energy scale of the zero field splitting). Above Hc4

101



each dimer has its maximal Sz = 2 value, precluding any zero-point fluctuations at

that critical field. In contrast, such fluctuations consisting of creation (annihilation)

of Sz = 2 quintuplet-singlet pairs (Sz = 1 triplet-Sz = 1 triplet pairs) are present for

Hc2 ≤ H ≤ Hc3 as well as zero-point fluctuations consisting of creation (annihilation)

of singlet-singlet pairs (Sz = 1 triplet-Sz = −1 triplet pairs) are present for H ≤ Hc1.

These fluctuations, when present, reduce the effective mass of the gapless bosons

which describe the system at each of the critical fields. This can be easily appreciated

by a thought experiment in which the field is fixed at some arbitrary value betweenHc2

and Hc3 and the interdimer exchange couplings are increased by applying pressure.

The applied pressure P will close the gap at a critical point (P = Pc) where Hc2

becomes equal toHc3, causing the single-particle excitation spectrum to become linear

(z = 1). Such an XY quantum phase transition in D = d + 1 = 4 dimensions is

driven by the zero-point (phase) fluctuations under consideration. A simple continuity

argument implies that the boson mass has to be reduced by such fluctuations in

order to get a massless spectrum when they diverge at P = Pc. In general, all

spin dimer compounds should exhibit some degree of asymmetry because zero-point

fluctuations are absent only in the highest field paramagnetic phase. The effect is

especially striking in Ba3Mn2O8 because Hc3−Hc2 ∼ 6T is considerably smaller than

Hc4−Hc3 ∼ 15.5T, implying the gap in energy to create a zero-point fluctuation near

Hc3 is relatively small.

A more quantitative determination of the mass asymmetry was obtained through

analysis of the boson dispersion by K. A. Al-Hassanieh and C. D. Batista [48]. At each

critical field, the gapless bosons have a dispersion relation ων(q) that is quadratic at

low energies. Since each boson is a quasiparticle that carries a unit of magnetization

(Sz = 1) along the field direction, the boson density is the magnetization per site

〈Sz
j 〉. The effective masses are determined from the diagonal components of the

mass tensor, m−1
νi = ∂2ων(q)/∂2qi|q=Q, where i = {x, y, z} and Q is the wavevector

where ων(q) is minimized. In the dilute limit relevant for the regions around each of

the quantum critical points, the inter-particle distance ρ−1/3 (where ρ is the boson

density) is much larger than the scattering length a (lattice parameter) of the hard-

core repulsion between bosons. The effective boson-boson repulsion, v0 = Γ0(Q,Q),
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is obtained from a ladder summation [52]:

Γq (k,k′) = Vq −
∫ π

−π

d3p

8π3
Vq−p

Γp (k,k′)

ων(k + p) + ων(k′ − p)
. (6.8)

Here Vq = U + (J2 + J3) γ
2
q + J1

2
γ1
q + J4

2
γ4
q, where U → ∞ comes from the hard-core

repulsion, the rest of the terms come from nearest neighbor repulsion terms and γn
q ’s

are defined as follows:

γ1
q = cos (q3) + cos (q3 − q1) + cos (q3 − q2)

γ2
q = cos (q1) + cos (q2) + cos (q1 − q2)

γ4
q = cos (q3 + q1 − q2) + cos (q3 − q1 + q2)

+cos (q3 − q1 − q2) , (6.9)

where qn’s refer to the principal reciprocal axes. The dispersions ων(q) were com-

puted by using a generalized spin-wave approach. For the paramagnetic (PM) region

near each QCP, a mean field treatment of the effective interaction v0 leads to a renor-

malized chemical potential µ̃ν = µν − 2v0ρ with µν = gµB (−1)ν (Hcν −H) [5]. Low

temperature thermodynamic properties were computed from the renormalized chem-

ical potential in the PM region around each QCP. The striking asymmetry between

Hc4 and the rest of the critical fields follows from the fact that the corresponding

masses m4‖ = 1.9357K−1 and m4⊥ = 0.4531K−1 are roughly two times larger than

the masses at the other three critical fields: m3‖ = 0.7834K−1, m3⊥ = 0.1833K−1,

m2‖ = 0.6977K−1, m2⊥ = 0.1633K−1, and m1‖ = 0.9133K−1, m1⊥ = 0.2138K−1.

The asymmetry observed in the thermodynamic measurements can be readily

understood in the context of these mass asymmetries, m4i/m3i ≃ 2.4711. Considering

first the field derivative of the magnetization, the magnitude of the peaks at the critical

fields is determined by the number of low-energy excited states available at each

critical point. The larger effective mass at Hc4 thus implies a larger density of states,

reflected in the enhanced peak at that field. The condensation temperature (µ̃(T =

Tc) = 0) near the critical fields for a 3D BEC scaling class is also related to the effective

mass of the bosons at each critical field: Tc ∝ ρ2/3m−1
ν ∝ |H − Hcν|2/3m

−1/3
ν . The
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increased effective mass at Hc4 reduces the ordering temperature, causing the phase

boundary to be steeper near Hc3 than near Hc4. The effect of the entropy tracking

Tc, and not the maximal particle condensation, is also produced by the asymmetry in

the zero-point fluctuations that shift the maximum of the order parameter towards

the critical field with larger fluctuations (Hc3 for the triplet-quintuplet phase).

These mass asymmetries also played a role in the not perfectly symmetric ordered

states of singlet-triplet regime as well. In particular, phase II is slightly narrower closer

to Hc1 than Hc2, which is expected from the different effective masses, m2i/m1i ≃
0.7639.
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Chapter 7

Effect of partial substitution of

non-magnetic ions: Low Field

Behavior of Ba3((Mn1−x)Vx)2O8

Adding disorder to a system can dramatically effect the groundstates that arise. In

the context of spin dimer systems in particular this has not been extensively explored,

with the diluted system TlCu1−xMgxCl3 being the only widely studied example [53].

In this regard, Ba3Mn2O8 provides a wonderful opportunity to explore the effects of

non-magnetic substitution. In particular, Ba3(Mn1−xVx)2O8 is a model diluted spin

dimer compound, for which the partial substitution of non-magnetic 3d0, S = 0 V5+

leads to unpaired 3d2, S = 1 Mn5+ moments. In this chapter I study this compound

in the low field state, observing the effects of disorder on the zero field singlet ground

state. I will first introduce some background on the theoretical groundstates for a

magnetically diluted system, then show extensive susceptibility and heat capacity

studies for several different dilutions at low fields, and finally interpret these results

in terms of the possible ground states. The low field portion of this work has been

published in ref. [32].

In Appendix C preliminary studies of the high field ordered states of this disor-

dered system are presented.
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7.1 Site Diluted Groundstates

Randomness can lead to intriguing magnetic states not typically available to perfectly

ordered systems. The archetypal example is the spin glass state, found for a wide

variety of disordered materials with either site or bond randomness [54]. In contrast,

for gapped systems with a singlet ground state, substitution of non-magnetic elements

can introduce local moments, ultimately leading to long range magnetic order due to

the effective interaction mediated by the background singlet state - one manifestation

of “order by disorder” (OBD). For example, both the Spin-Peierls compound CuGeO3

and the spin ladder compound SrCu2O3 have gapped ground states without long

range order; however diluting either system with a small amount of nonmagnetic

Zn or Mg ions onto the S = 1
2

Cu site induces antiferromagnetic order [55, 56, 57].

It is not clear whether this effect should be uniformly anticipated for all gapped

systems, motivating both theoretical and experimental interest aimed at exploring

the properties of disordered spin-gap materials.

The broad category of spin dimer compounds provides a simple means to study

the effect of non-magnetic substitution on a singlet ground state. Recently, quantum

Monte Carlo (QMC) simulations have been performed for the specific case of spin

dimers arranged on a square lattice with antiferromagnetic nearest neighbor and next

nearest neighbor exchange [58, 59]. These calculations revealed that for an appro-

priate range of concentrations, substitution of non-magnetic impurities leads to long

range order in zero magnetic field. The predicted wave-vector is the same as that

found for the stoichiometric parent compound subjected to fields above the critical

field. It would be highly desirable to experimentally test whether such an OBD state

is found for a real material conforming to the simple effective spin Hamiltonian used in

this calculation. Unfortunately, there are not currently any suitable candidate mate-

rials that match these requirements for which substitution of non-magnetic species is

possible over an appreciable range of concentrations. Conversely, it would be equally

interesting to see how geometric frustration affects the stability of the OBD phase.

Here, unfortunately, quantum Monte Carlo simulations are prohibitively difficult due

to the frustration induced sign problem, and we must resort to experiment to provide
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Figure 7.1: Schematic diagram showing the transition metal sublattice of the dimer
compound Ba3(Mn1−xVx)2O8. Mn ions are shown in red and a single substituted V
ion shown in green. The Mn ion vertically below the V ion is now no longer paired
and hence contributes a local magnetic moment. Distances between the V ion and
its nearest neighbors r0 - r4 are labeled.

insight. In this case, though, there are luckily several candidate materials to which

we can turn. One such material is Ba3(Mn1−xVx)2O8. In this chapter I probe this

compound, revealing that at low temperatures the system does not exhibit long range

order or spin glass behavior but may manifest instead a random singlet phase.

Ba3V2O8 is isostructural to Ba3Mn2O8. However in contrast to the strongly mag-

netic Mn5+ ion, V5+ corresponds to a 3d0 electron configuration and hence is non-

magnetic. Partial substitution of V in Ba3Mn2O8 therefore leads to unpaired Mn

moments (Fig. 7.1) [60].

The probability of finding at least one unpaired moment within a distance ri

of a given unpaired moment, Px,tot(ri), is plotted in Fig. 7.2(a) for the relevant V

concentrations studied here (assuming no clustering as data suggest). This probability

is determined by taking 1 less the probability that no unpaired moment is within a

distance ri of a given a unpaired moment. The probability that no unpaired moments

are within a distance ri of a given unpaired moment is determined by multiplying the

probabilities that there are no unpaired moments at each successive distance rj up
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to ri (j ≤ i), taking account of the number of equivalent sites Zj in the jth shell:

1 − Ptot,x(ri) =
∏i

j=0(1 − x)Zj . For the highest dilution studied here, x = 0.456,

Px,tot(r4) = 0.59.

The probability of the nearest unpaired moment being a distance ri away from a

given unpaired moment, Px(ri), is given by the probability that no unpaired moments

are within a distance ri−1 times the probability that there is an unpaired moment at

a distance ri, again taking account of the number of equivalent sites Zj in the jth

shell: Px(ri) =
(

∏i−1
j=0(1 − x)Zj

)

×
(

1 − (1 − x)Zi
)

. For each of the concentrations

studied here the most likely distance between nearest neighboring V ions is the r2

pairing (Fig. 7.2(b)).

7.2 Experimental Results

Low-field susceptibility measurements of Ba3(Mn1−xVx)2O8 for 0 ≤ x ≤ 0.046 were

performed using a commercial Quantum Design MPMS XL SQUID magnetometer

for fields of 1000 Oe applied perpendicular to the c-axis and are shown in Fig. 7.3(a).

Results were fit to the same dimer model used to fit the undiluted compound, which

included a mean field correction, a term corresponding to Curie-Weiss paramagnetic

behavior and a temperature independent term (Eqs. 2.3 and 3.3). The full model is:

χiso =
2NAβg

2µ2
B

(

1 + 5e−2βJ
)

3 + eβJ + 5e−2βJ

χtotal = α
χiso

1 + λχiso
+

C

T − θ
+ χ0 (7.1)

Here λ = 3 [J1 + J4 + 2 (J2 + J3)] /NAg
2µ2

B is the mean field correction to account

for interdimer exchange. NA is Avogadro’s number, β = 1/kBT and α is the number

of dimers per mole (where 1 mol refers to the formula unit of Ba3(Mn1−xVx)2O8,

such that α = 1 for x = 0). Recent INS studies found a negligible concentration

dependence of both the spin gap ∆ and the triplet bandwidth for x < 0.05 [34].

Therefore values of J0 = 16.42 K, J1 + J4 + 2 (J2 + J3) = 5.31 K and g = 2.07
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Figure 7.2: (a) Probability, assuming no clustering, of finding the nearest neighboring
V ion a distance r from the substituted ion, shown for the specific vanadium concen-
trations (x) studied, and for the specific distances r0 − r5. (b) Probability of finding
at least one V ion within a distance r from the substituted ion.
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Figure 7.3: (a) Susceptibility as a function of temperature for single crystals of
Ba3(Mn1−xVx)2O8 (compositions listed in legend). Successive curves are offset by
0.004 emu/mol for clarity. Data are fit (red lines) by a dimer model, described in the
main text, including a mean-field correction to account for interdimer interactions, a
temperature-independent term, and a Curie-Weiss term to account for the unpaired
magnetic impurities introduced by V-substitution. Values for the exchange constants
were held fixed at the values obtained for the stoichiometric compound. (b) Curie
constant, C (left axis), and the associated effective moment per V, µeff/x (right
axis). Note that V5+ is non-magnetic, and that the moment arises from the unpaired
Mn5+ S=1 spin on the broken dimers. Horizontal line shows the anticipated effective
moment µeff = g

√

S(S + 1)µB = 2.83 µB for Mn5+. (c) The number of dimers per
mole, α.
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determined from the fit of the undiluted Ba3Mn2O8 measurement (solid black circles)

were held fixed in the fits of the other samples. These fixed values are in rough

agreement with the values measured from INS and EPR, of J0 = 18.78 K, J1 + J4 +

2 (J2 + J3) = 11.03 K and g = 1.96, up to the inherent limitations of this fit. The

Curie constant C, extracted from these fits, is plotted against the left axis in Fig.

7.3(b), and varies essentially linearly with V concentration. The effective moment

per mole of V is readily determined from the Curie constant C:

µeff = 2.827
√
CT = g

√

S (S + 1)µB (7.2)

The effective moment, which is plotted against the right axis of Fig. 7.3(b), is in-

dependent of V concentration within the uncertainty of the measurement. Observed

values are close to those anticipated for Mn5+, implying that each V impurity results

in a single unpaired Mn5+ spin. That is, substitution V does not appear to result in

clustering, but rather, as anticipated in Fig. 7.2, the number of doubly-broken dimers

is very small, and the majority of V impurities occupy half of a dimer site paired with

a magnetic Mn5+ ion. The fit parameter α, shown in panel (c), nominally scales with

(1-x), but provides a much less sensitive measure of the number of unbroken dimers

than does the Curie susceptibility for these low concentrations.

Heat capacity (Cp) studies were performed with a Quantum Design physical prop-

erties measurement system (PPMS) using standard thermal relaxation-time calorime-

try. These measurements were performed in temperatures between down to 50 mK

and fields up to 0.5 T parallel to the c axis. Data are shown in Fig. 7.4(a) for the

temperature interval 50 to 500 mK. The stoichiometric parent compound, Ba3Mn2O8

(x = 0, black filled circles) exhibits only a very small heat capacity in this temperature

interval due to the much larger energy scale of the spin gap. A small temperature

dependence due to the phonon contribution is barely discernable, but can be seen

more clearly when similar data for Ba3V2O8 are plotted over a wider temperature in-

terval in Figure 7.6(b). In contrast, samples with x > 0 reveal dramatically different

behavior. The heat capacity is approximately two orders of magnitude larger, and

exhibits a broad maximum centered at approximately 100 mK. For x=0.009 and 0.020
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Figure 7.4: (a) Low temperature heat capacity of Ba3(Mn1−xVx)2O8 in zero field.
Substitution vanadium leads to a substantial increase in the total heat capacity. (b)
Left axis: The same data, plotted as Cp/T and scaled by V concentration, reveal-
ing the evolution in the functional form of heat capacity. Right Axis: Change in
entropy ∆S between 50 mK and 500 mK associated with the total heat capacity.
Despite subtle changes in the functional form of the heat capacity as the vanadium
concentration is increased, the integrated entropy per mole of V over this temperature
window remains remarkably similar.
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there is a slight indication of an additional upturn in the heat capacity at the lowest

temperatures. This is not observed for the higher two V concentrations, x=0.034 and

0.046, which also exhibit a progressive broadening of the feature at 100 mK, and, for

x=0.046, a gradual increase in the heat capacity from 200 mK to 500 mK. Signifi-

cantly, none of the concentrations studied exhibit a sharp anomaly characteristic of

a phase transition.

The same data shown in panel (a) of Fig. 7.4 are replotted as Cp/T normalized by

the vanadium concentration 2x, in panel (b). Scaled in this way, it is clear that Cp ap-

proximately scales with x. The change in entropy, ∆S over this temperature window

can be estimated from the area under these curves, and is plotted against the right

axis of panel (b), also normalized per mole of V. The small phonon contribution has

negligible effect on this estimate over this temperature range, as can be readily appre-

ciated by inspection of the data in panel (a). Inspection of panels (a) and (b) of Fig.

7.4 reveals a progressive change in the T-dependence of the heat capacity and entropy

as the vanadium concentration increases. For the higher vanadium concentrations,

relatively more entropy is removed per increment of temperature at high tempera-

ture than for lower concentrations, and vice versa at the lowest temperatures. This

concentration dependence is, however, rather subtle, and the most remarkable aspect

of the data is that the total entropy removed over this interval is almost identical for

all four compositions, despite a factor of 5 difference in the vanadium concentration.

This value [∼ 6 J/K mole (V)] is approximately 60% of the total magnetic entropy

Stotal = R ln(3) (where R is the molar gas constant) associated with the unpaired

S=1 magnetic Mn ions induced by the vanadium substitution.

The heat capacity data for the V-substituted samples shown in Fig. 7.4(a) reveal

a broad maximum centered at approximately 100 mK for all four compositions. In the

absence of any other interactions, uniaxial single ion anisotropy, represented by a term

D (Sz)2 in the spin Hamiltonian, will split the Sz = 0 and Sz = ±1 triplet states of

unpaired Mn moments. A calculation of the expected contribution to the specific heat

in zero field is shown in Fig. 7.5 for the specific case of x = 0.020 (red line), using the

value of D = -0.024 meV previously determined from EPR measurements of diluted

Ba3(Mn1−xVx)2O8. The maximum value occurs at a temperature very close to that
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Figure 7.5: Heat capacity of Ba3(Mn0.980V0.020)2O8 in magnetic fields of 0 T, 0.25
T and 0.5 T, shown as red, blue and green points, respectively. Lines show the
theoretical heat capacity for the Schottky anomaly associated with an isolated S = 1
spin with single ion anisotropy D = -0.024 meV in the same fields. Inset shows the
appropriate energy spectrum for this calculation. Vertical lines indicate the three
different fields for which measurements were performed.
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observed in experiment (solid red circles), indicating that the experimentally observed

features are likely related to Schottky behavior. To further test this hypothesis, the

heat capacity was also measured in applied field of 0.25 T and 0.5 T (green and blue

data points in Fig. 7.5), and compared with calculated values (blue and green lines).

The applied field splits the Sz = ±1 states (inset to Fig. 7.5), resulting in broadening

of the Schottky anomaly and a shift in the maximum value to higher temperatures.

The experimental data reveal very similar behavior, confirming that this feature is

closely related to the Schottky behavior anticipated for unpaired Mn spins.

The correspondence between the calculated Schottky anomaly and the experimen-

tally determined heat capacity is, however, not perfect. Inspection of Fig. 7.5 reveals

a significant discrepancy between the magnitude of the theoretical curves and the

experimental data, even though the temperature at which the maxima occur agrees.

This difference is particularly striking for the 0 T data, for which the measured heat

capacity is uniformly larger than the theoretical prediction, indicating that the mag-

netic entropy associated with the full triplet S = 1 state is progressively removed

over a fairly broad temperature interval. For non-interacting moments, the doublet

ground state should remain unsplit. Hence the anticipated entropy associated with

the Schottky anomaly in zero field is S⋆ = 2x[R ln(3)−R ln(2)] = 2xR ln(3/2) (where

2x is the number of moles of free Mn ions). In contrast, the measured magnetic en-

tropy between 50 mK and 500 mK (Fig. 7.4(b)) is considerably larger than this value.

Comparison of the measured heat capacity in zero field with the calculated Schottky

behavior indicates that much of this difference occurs at a temperature considerably

above the energy scale set by the single ion anisotropy. Higher order terms in the

crystal field expansion would only lead to splitting on a lower energy scale than the

leading axial term and cannot account for this difference. Nor does it seem likely

that the progressive removal of entropy above 0.2 K is due to a spread of values of

D since the total entropy would still rise to 2xR ln(3/2), and also since the anomaly

centered at 100 mK is not especially broadened. The data therefore indicate that

the interactions between the free moments play a significant role. Indeed, the mag-

nitude of the Schottky anomaly itself appears to be smaller than anticipated for the

given concentration, but superimposed on top of a large and only weakly temperature
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dependent background, which must then arise from these interactions. This is also

borne out by measurements made in applied field.

In the presence of a magnetic field the Sz = ±1 doublet is split, leading to an

overall increase in the magnitude of the calculated heat capacity (blue and green lines

in Fig. 7.5). For 0.25 T the measured heat capacity exceeds the calculated value for

temperatures greater than 0.4 K, indicating the removal of magnetic entropy at higher

temperatures, similar to the zero field data. The area under the calculated blue and

green curves is the full magnetic entropy of the free S = 1 spins, corresponding to

S† = 2xR ln(3). If some of this magnetic entropy is removed at higher temperature

due to interactions between Mn moments, then there will be less magnetic entropy

available at low temperatures, which is presumably why the measured heat capacity

in 0.25 T falls below the calculated curve for temperatures below 0.4 K. Data for

0.5 T appear to follow the same general form: more magnetic entropy is removed

at higher temperature than would be anticipated for isolated Mn ions, reducing the

magnitude of the low temperature Schottky anomaly.

Measurements of the heat capacity for x = 0.020 were extended to higher temper-

atures in order to integrate the magnetic entropy over a wider temperature window

(black data points in Fig. 7.6(a)). Two additional contributions to the entropy be-

come significant above 0.5 K: the phonon contribution, and a magnetic contribution

arising from thermal population across the spin gap associated with the intact dimer

triplet states. However, a reasonably accurate estimate of the magnetic heat capacity

due to the unpaired Mn ions (∆Cmag, blue line) can be obtained by subtracting the

heat capacity of the stoichiometric parent compound, Ba3Mn2O8 (red squares). The

corresponding change in entropy ∆S between 50 mK and 2 K (right hand axis) is

0.291 J/K mol, substantially surpassing S⋆ = 2xR ln(3/2) = 0.135 J/K mol.

For comparison, the heat capacity was also measured over this temperature range

for a crystal with x = 0.980, containing approximately the same concentration of

unpaired Mn moments as the x = 0.020 sample. For x = 0.020 the small concentra-

tions of V impurities introduces unpaired magnetic Mn ions, which interact via the

singlet “sea” arising from the majority of unbroken dimers. In contrast, for x = 0.980,
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Ba3V2O8 provides an “empty” magnetic background in which the Mn impurities in-

teract. Data are shown in Fig. 7.6(b), together with an estimate of the magnetic

contribution to the heat capacity (∆Cmag, blue line) obtained by subtracting the

heat capacity of Ba3V2O8 (red squares). ∆Cmag rises with decreasing temperature,

and appears to begin to curve over below approximately 0.5 K. Below 0.2 K a clear

Schottky anomaly is observed, with the maximum centered at 110 mK. The mag-

nitude of the anomaly is comparable to that found for x = 0.020, presumably for

the same reason that a substantial amount of the total magnetic entropy is removed

at higher temperatures. The integrated entropy between 50 mK and 4 K is 0.271

J/K mol. Measurements to higher temperature are hampered by systematic errors

introduced by uncertainty in measurements of the sample mass for the two crystals

used in these measurements. However, it is clear that the integrated entropy over this

window far exceeds that which would be estimated if the Sz = ±1 doublet remains

degenerate, S⋆ = 0.136 J/K mol. Hence, for both x=0.020 and 0.980, it appears that

interactions between unpaired Mn moments leads to progressive removal of magnetic

entropy over a wide temperature range. And in both cases a relatively small number

of moments remain to a low enough temperature to contribute to the observed Schot-

tky anomaly associated with the single ion anisotropy zero field splitting. In neither

case is there any evidence of a phase transition down to 50 mK.

7.3 Discussion

In the absence of long range magnetic order, it is reasonable to consider whether the

low temperature state of Ba3(Mn1−xVx)2O8 is a spin glass, the archetypal ground-

state for systems with disorder. In canonical spin glass systems, the temperature

dependence of the heat capacity and magnetic entropy scales with moment concen-

tration [61, 62]. Such systems exhibit a only broad feature in the heat capacity, the

maximum of which occurs at a temperature slightly above the freezing temperature,

with roughly 80% of the total magnetic entropy is accounted for above TF . For

example, in CuMn, an increase in the Mn concentration by an order of magnitude in-

creases the freezing temperature by greater than a factor of 5, such that the magnetic
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entropy is collected over a much wider temperature range. However, the behavior

in Ba3(Mn1−xVx)2O8 is quite different; in this case the entropy is collected over an

equivalent temperature range independent of vanadium concentration (Fig. 7.4(b)).

Thus it is unlikely that the groundstate is a canonical spin glass.

An alternative groundstate for disordered systems is the random singlet phase.

This state, which does not exhibit long range order, is characterized by formation

of local singlets [63]. Microscopically, as temperature is decreased the pair of most

strongly coupled moments forms a singlet; then as temperature is further decreased

the pair of remaining moments with strongest coupling forms a singlet, and so on

until all the moments are paired. This state was first proposed to account for the

low-temperature susceptibility and heat capacity of lightly doped semiconductors,

in particular Si:P [64, 65, 66, 67, 68], and has since been of much theoretical and

experimental interest for one dimensional disorder systems [69, 70, 71, 72, 73, 74]. The

dominant thermodynamic signature of this phase is the susceptibility which diverges

as T α with −1 < α < 0 at low temperatures (i.e a sub-Curie law), as observed

in both Si:P, Cd:S and the one dimensional systems MgTiOBO4 and MnMgB2O5

[66, 67, 70, 72]. Additionally, it was found that the heat capacity of Si:P increases

with decreasing temperature for the lowest concentrations over an appreciable range

of temperatures reflecting the progressive removal of magnetic entropy upon cooling

[68].

A scenario in which the ground state of Ba3(Mn1−xVx)2O8 is a random singlet

phase is qualitatively consistent with the experimental observations. Consideration of

the relevant exchange energies serves to illustrate whether collective or local behavior

is expected to dominate. Specifically, a comparison of the maximum exchange energy

between two impurities (JmaxSi ·Sj) with the average total exchange energy resulting

from interaction with all of the neighboring impurities (
∑

i ZiPx,iJij , where Zi is

the number of coordinating sites with exchange Jij and Px,i is the probability that

these sites are occupied) distinguishes whether a random singlet phase or collective

magnetic order (for example a spin glass) is favored. For vanadium concentrations up

to the maximum studied, x = 0.046, it is straightforward to show that the random

singlet phase is favored. As an example, for the case of x = 0.046 we first consider
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a free Mn moment for which the nearest unpaired Mn is a distance r2 away (recall

that J2=0.256 meV is the strongest exchange interaction after J0). In comparison,

the average sum of further interactions acting on the free Mn moment, which would

be appropriate for a mean field treatment, is 3(0.046)J1 + 6(0.046)J3 + 3(0.046)J4

= 0.060 meV. The clear energetic advantage of singlet formation continues when

progressively smaller exchange couplings are considered after removal of all J2-bonded

pairs, and so on (a crude version of the “decimation” procedure first introduced to

describe random singlet formation [63]). This is due to the combined actions of

the hierarchy of exchange interactions found in Ba3Mn2O8, the small size of the Mn

moment (S = 1), and the low concentration of magnetic impurities. This crude

analysis clearly shows that the exchange between a single pair of spins dominates

over more collective behavior, implying that a random singlet state is theoretically

favored over a spin glass state, at least for the concentration regime considered here.

To further test this view, a model of the random singlet phase in Ba3(Mn1−xVx)2O8

was undertaken in order to make a quantitative comparison with the measured heat

capacity data. The model is an approximation of the previously described “deci-

mation” process [63], with three changes: (1) we do not recalculate the probability

of finding successively weaker random singlet pairs after each round of decimation

(this leads to an overestimate of the probability of smaller pairing distances); (2)

the exchange interaction between two unpaired moments forming a singlet is not

renormalized by other exchanges between neighboring moments; and (3) we explic-

itly include the effect of single ion anisotropy. Limitations of this model are discussed

below. The total heat capacity is calculated by summing over the probability that

two moments with exchange J(r) will pair, Px(J(r)) times the heat capacity for two

moments with exchange J(r):

Cp,tot(T ) =
∑

J(r)

Px(J(r))Cp(J(r), T ) (7.3)

Details of the heat capacity calculation for two moments with exchange J are given

in the Appendix B.2. The exchange between neighboring impurities J(r) was de-

termined by the distance between impurities. For neighboring impurities a distance
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r ≤ r4 apart, the exchange was approximated as the exchange determined from

INS measurements of the undiluted system [27, 28]. For neighboring impurities at a

distance r > r4 the effective exchange is approximated as a decaying exponential as

expected for localized moments: J(r) = J ′e−r/r′ , where the parameters J ′ and r′ were

determined from fits of the known exchanges J1 through J4. The probability Px(J(r))

was determined by finding the distance between an impurity and the neighboring im-

purity with which it has the strongest exchange and was calculated similarly to Px(r),

shown in Fig. 7.2(b). An important distinction between Px(J(r)) and the previously

calculated probability Px(r) is that the relative hierarchy of exchange constants does

not exactly follow that of the physical separation of sites, shown in Fig. 7.1 (b).

Specifically, J2 > J3 > J1 > J4, whereas r1 < r2 < r3 < r4. Px(J(r)) is determined

similarly to Px(ri), the probability that the nearest unpaired moment is a distance ri

away from a given unpaired moment: Px(J(ri)) =
(

∏i−1
j=0(1 − x)Zj

)

×
(

1 − (1 − x)Zi
)

.

The probabilities are calculated for a sequence of exchanges, with corresponding dis-

tances and coordination numbers, in which each successive exchange is smaller than

all the previous exchanges. Finally, for r > r4, successive shells of widths drn are

taken, such that the number of atoms in each shell corresponds to a 5% increase in

probability (i.e. Px(J(rn)) = 0.05 where rn = rn−1 + drn).

Both the estimated exchange model and also the probability functions used in this

model are approximations. The “bare” exchange values, determined from INS mea-

surements, were used but effective exchange values between unpaired Mn moments on

broken dimers will be renormalized by the presence of the surrounding singlet states.

In particular, geometric frustration naturally leads to a reduction in the effective ex-

change from the bare values, as can be understood from an example. Two unpaired

Mn moments connected by the J2 exchange have an antiferromagnetic exchange with

the third intact singlet dimer of the frustrated triangular structure. These antiferro-

magnetic exchanges induce an effective second order ferromagnetic exchange between

the unpaired moments, reducing the overall value of the exchange between the un-

paired moments. The model further approximates the exchange for r > r4, in which

the real effective exchange most likely does not vary perfectly exponentially for in-

termediate r since the superexchange depends sensitively on bond angles and bond
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Figure 7.7: Calculated (a) heat capacity and (c) change in entropy of
Ba3(Mn1−xVx)2O8 scaled by vanadium concentration resulting from the random sin-
glet model as described in the text. Experimental (b) heat capacity and (d) change
in entropy shown for comparison.

lengths. Also, Px(J(r)) overestimates the probability of smaller pairing distances.

This can be understood by considering an impurity i with nearest neighboring im-

purity j. If there is a third impurity k which is closer to impurity j than impurity

i, then impurity j pairs with impurity k and not impurity i, implying that impurity

i pairs with a fourth impurity further away than impurity j, shifting probability to

longer pairing distances. Nevertheless, as shown below, this crude model appears to

capture the observed behavior at a semi-quantitative level, justifying its consideration

in terms of an initial description of the data.
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The calculated heat capacity and entropy for the different vanadium concentra-

tions experimentally studied are shown in Fig. 7.7(a) and (c), respectively. The

calculated data are in qualitative agreement with the experimental data, shown for

comparison in panels (b) and (d). For x = 0.009 and x = 0.020, the model heat

capacity increases as temperature decreases, reaching a maximum at the single ion

Schottky peak before decreasing at lower temperatures. For x = 0.034 and x = 0.046

the model heat capacity decreases monotonically as temperature decreases, with a

shoulder at the single ion anisotropy Schottky peak.

The model entropy is also consistent with the experimental data (Fig. 7.7(c) and

(d), respectively). In spite of the five times difference in the vanadium concentration,

which leads to a significant change in the probability distribution of exchange values

of the random singlets, the change in entropy from 50 mK to 500 mK determined

from the model rises to roughly the same value of ∼0.38 J/K mol V = 0.42 R ln(3) in-

dependent of vanadium concentration, in accordance with the experimental data. By

extending the model calculations to both lower and higher temperatures, the change

in entropy for all vanadium concentrations eventually reached the maximum available

entropy, R ln(3). However, the smaller vanadium concentrations recover most of the

unaccounted entropy below 50 mK while the higher vanadium concentrations recover

most of the unaccounted entropy above 500 mK. In this sense it is somewhat coinci-

dental that the experimentally accessible temperature window of 50 - 500 mK leads

to an almost concentration independent change in entropy.

Further calculations of the heat capacity for the x=0.020 vanadium concentration

in fields of 0.25 T and 0.50 T are shown in Fig. 7.8. The calculated heat capacity

matches the qualitative behavior of the experimental data much better than the

previous heat capacity calculations which were based solely single ion anisotropy

(Fig. 7.5). In particular, the random singlet calculation, in addition to matching the

temperature of the maxima of the experimental data, also exhibits a similar peak

height and width as the experimental data.

Despite the successful description of the evolution of the T -dependence of the

heat capacity as a function of composition, both the calculated heat capacity and

entropy are uniformly smaller than the experimental data, reflecting limitations of the
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simplified exchange model used for the calculations. In particular, both the effective

exchange J(r) and the pairing probability Px(J(r)) used in the calculations were

approximations as described earlier. However, the overall agreement is reasonable

based on these approximations, lending considerable weight to the hypothesis that

Ba3(Mn1−xVx)2O8 realizes a random singlet phase at low temperature, at least for the

range of concentrations studied in this report. Ongoing susceptibility measurements

may be able to confirm this hypothesis.

Finally, although the current data clearly indicate the absence of long range order

to 50 mK, an ordering transition cannot be ruled out to occur at a lower temperature.

However, the relatively small magnetic entropy that remains at this temperature,

and the progressively larger physical separation of unpaired moments due to random

singlet behavior, makes long range order at a lower temperature rather unlikely.
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Chapter 8

Summary and Outlook

In this brief chapter I will recap the work presented here before presenting some future

directions to expand off these results.

8.1 Summary

The main thrust of this thesis has been the exploration for novel magnetic states,

in particular in the spin dimer compound Ba3Mn2O8. Some of the order was as

predicted; some was unexpected. Ultimately, both the anticipated and unanticipated

states demonstrate why spin dimer compounds are such a rich playground when

searching for exotic ground states.

The phase diagram for the singlet-triplet regime of Ba3Mn2O8 was mapped out

through several different thermodynamic measurements [29, 31]. The significant

anisotropy of this system, stemming from the easy axis single ion anisotropy, led

to a single ordered state observed for fields parallel to the c axis and two states

observed for fields away from the c axis. Further measurements of the angular evo-

lution of these phases was Analysis of the minimal spin Hamiltonian was performed

based on these thermodynamic results as well as the dominant exchanges pathways

between spins in this system as determined from inelastic neutron scattering studies

[26, 27, 28]. This analysis yielded two candidate incommensurate phases, which for

fields away from the c axis, had modulation of the ordered moment. High field NMR
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[33] and neutron scattering studies [50] circumstantially confirmed these proposed

ordered states.

The triplet-quintuplet regime was explored through both magnetization and heat

capacity measurements [30]. Only one previously spin dimer compound contained

quintuplet ordered states, which were only cursorily studied, making this the first

direct observation of a spin dimer triplet-quintuplet ordered state. Only one ordered

state was found in this regime regardless of field direction. The absence of a second

phase in this regime was attributed to poor signal-to-noise ratio in the high field

environment. Significant asymmetry in this region was observed in both the phase

diagram and the density of states. Zero point fluctuations, which are absent at the

maximum field of this region but present at the minimum field, were found to induce

this asymmetry.

Low field studies of the non-magnetically diluted compound Ba3(Mn1−xVx)2O8 re-

vealed an intriguing ground state without long range order down to 50 mK [32]. Heat

capacity measurements revealed a Schottky anomaly centered at ∼110 mK, induced

by to the single ion anisotropy, superimposed on a slowly varying background without

any sharp features. The total heat capacity did not vary in a manner consistent with

a spin glass phase, the archetypal site disordered ground state. Instead, numerical

studies of the system found that the groundstate was consistent with a random singlet

phase. Ongoing low temperature AC susceptibility measurements have the potential

to confirm this hypothesis.

8.2 Future Directions

There are several clear avenues of further research that could build upon these results

presented here in the search for novel order. The random singlet phase was presented

as the possible groundstate for the lightly diluted system Ba3(Mn1−xVx)2O8. This

state, which has been the subject of much theoretical research [63, 64, 64, 69, ?],

has been previously experimentally observed only in lightly diluted semiconductors,

primarily Si:P [66, 67, 68], and several one dimensional diluted chain compounds

[70, 71, 72]. However, there are not any 3D insulating system with such a groundstate.
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Searching for other materials, with the appropriate range of exchanges and impurity

concentrations, could reveal more about this intriguing phase in a new and different

context.

The effects of disorder in spin dimer compounds can be dramatic. In the most

widely studied site diluted spin dimer compound Tl(Cu1−xMgx)Cl3, disorder in the

form of non-magnetic Mg site dilution induces magnetic order at zero field [53, 75].

This order extends from zero field into the singlet-triplet ordered state, indicating

that the zero field gap between the triplet and singlet states has been destroyed [76].

In contrast, Quantum Monte Carlo simulations of a non-magnetically doped square

lattice spin dimer system predicted long range order at zero field (“order by disorder”)

but with an intact spin gap to the excited triplet states [58, 59]. Such a system still

has a field regime where most of the dimers form singlets without long range magnetic

order, such that the low field ordered state and high field ordered state are separated in

field. Finding a new non-magnetically diluted system with small interdimer exchanges

as compared to the intradimer exchange which also exhibits a zero field ordered state

can elucidate whether the low field state can be purely impurity based ordering which

is separated from the high field ordered state or whether the order must extend over

the entire field range.

Ultimately, spin dimer compounds are worth studying because of the novel field

induced order in these compounds. The form of the ordered states depends inti-

mately on the nature of the microscopic interactions between dimers. The ability

to “engineer” the form of that interaction by finding compounds with the appropri-

ate exchange, or through application of chemical or external pressure on an existing

compound, is what makes spin dimers such an intriguing playground when searching

for novel order. For instance, the supersolid state, which has not been conclusively

observed in any system, would be an exciting ordered state to find in a spin dimer

compound [14]. It is this ability to observe intriguing quantum phases in a different

setting that motivates further study of spin dimer compounds.
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Appendix A

Dispersion of the Triplet Mode

The magnetic excitation dispersion, which is a basic property of a quantum magnet,

is determined from the relevant interactions of the system. In Ba3Mn2O8 the lowest

energy excitation of the zero field singlet groundstate propagate according to the

triplet dispersion. Inelastic neutron scattering studies (INS) performed by M. B.

Stone mapped the complete triplet dispersion [26, 27, 28]. By fitting the experimental

data to the theoretical form of the dispersion the dominant exchanges of this system

were determined. In this appendix I will derive this theoretical form of the triplet

dispersion following the previous derivation of C. D. Batista [49].

The random phase approximation (RPA) has been a useful technique for describ-

ing the dispersion of spin dimer systems including KCuCl3 , TlCuCl3 and BaCuSi2O6

[77, 78, 79, 10]. The RPA dispersion for dimers linked by a Heisenberg exchange is:

~ω(Q) =
√

∆2 +M2∆J (Q)R(T ) (A.1)

Here M2 is the transition matrix element, M2 = 4
3
S[S+1] = 8

3
, J (Q) is the sum of all

the interdimer interactions acting on a dimer, ∆ = J0 in this approximation and R(T )

is the thermal population difference between the ground state and the three excited

triplet states. Through simple analysis of the partition function for an isolated dimer
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Figure A.1: INS studies and fitted form of triplet dispersion versus reciprocal lattice
units (rlu) taken from work by M. B. Stone, et al. [27]. (a)-(d) Scattering intensity
vs ~ω and Q for scans in (hhl) plane. Solid line is the fitted dispersion. (e)-(h)
Integrated scattering intensity from Gaussian fits to constant Q scans. Solid line is
the fitted dispersion. (i) Path through the (hhl) plane shown in (a)-(h).
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r1

r2

r3

Figure A.2: Reduced magnetic dimer lattice illustrating basis vectors used in disper-
sion calculation

system, the form of R(T ) is:

R(T ) =
1 − e−∆β

1 + 3e−∆β + 5e−3∆β
(A.2)

where β = 1/kBT . At T = 0 K in the weakly coupled limit, where the interdimer

exchanges are much less than the zero field gap between the singlet and excited triplet

states, the dispersion simplifies:

~ω(Q) = ∆ +M2J (Q)/2 = ∆ +
4J (Q)

3
(A.3)

Because J (Q) is determined in the dimer basis and the J2 and J3 exchanges

connect the same dimers, it is impossible to extract the dispersion dependence of those

two terms independently. Determining the exact functional form of the J (Q) requires

determining the Fourier sum of all the relevant interdimer exchanges,
Jiµjν

2
Siµ · Sjν .

This is done by accounting for the hopping term of each of the exchanges in the

magnetic dimer lattice (Fig. A.2). Considering first the six neighbors connected by
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the J2 and J3 exchanges, (including a factor of 2 to account for the top and bottom

of the dimer):

ω2(Q) = 2

(

J2 − J3

2

)

[cos(Q · r1) + cos(Q · r2) + cos(Q · (−r1 + r2))

+ cos(Q · (−r1)) + cos(Q · (−r2)) + cos(Q · (r1 − r2))]

= 2 (J2 − J3) [cos(Q · r1) + cos(Q · r2) + cos(Q · (r1 − r2))] (A.4)

Here J3 component is negative because the s+ and s− pseudospin operators of

dimers flip signs from the top to the bottom of a dimer which are connected by this

bond (see theory section) . The J2 component is positive because it connects the

same half of dimer, which will square the sign of the s+ and s−, necessarily leaving

it positive. Considering first the six neighbors connected by the J1 exchange (recall

that each dimer has a J1 exchange with dimers on both the layer above and below):

ω1(Q) =

(

J1

2

)

[cos(Q · r3) + cos(Q · (r3 − r1)) + cos(Q · (r3 − r2))

+ cos(Q · (−r3)) + cos(Q · (−r3 + r1)) + cos(Q · (−r3 + r2))]

= J1 [cos(Q · r3) + cos(Q · (r3 − r1)) + cos(Q · (r3 − r2))] (A.5)

Considering finally the six neighbors connected by the J4 exchange (again recall

that each dimer has a J4 exchange with dimers on both the layer above and below):

ω4(Q) =

(

J4

2

)

[cos(Q · (r3 − r1 + r2)) + cos(Q · (r3 − r1 − r2)) + cos(Q · (r3 + r1 − r2))

+ cos(Q · (−r3 − r1 + r2)) + cos(Q · (−r3 + r1 − r2)) + cos(Q · (−r3 + r1 + r2))]

= J1 [cos(Q · (r3 − r1 + r2)) + cos(Q · (r3 − r1 − r2)) + cos(Q · (r3 + r1 − r2))]

(A.6)

The full dispersion is simply the sum of these three terms:
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J (Q) = ω2(Q) + ω1(Q) + ω4(Q) (A.7)

Initial inelastic neutron scattering data taken on powder samples were fit to this

functional form of the dispersion [26]. Further inelastic neutron scattering data taken

on single crystal samples further refined this fit [27], while an erratum corrected the

sign of some of the exchange constants [28]. This measurements ultimately yielded

best fit values for the relevant exchange constants of: J0 = 1.642 meV, J1 = 0.118

meV, J2 − J3 = 0.1136 meV and J4 = 0.037 meV.
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Appendix B

Isolated Dimer With Single Ion

Anisotropy Energy Spectrum

In this appendix I will calculate the energy spectrum for two spins with an antiferro-

magnetic exchange and a zero field splitting term:

H = JS1 · S2 +D
(

(Sν
1 )2 + (Sν

2 )2
)

(B.1)

This appendix has two parts: the first part, I will calculate the energy spectrum

in the strong coupling limit, where J ≫ |D|, to determine the change in the critical

field for ν = z relative to ν = x; in the second part, I will do the exact calculation of

the energy spectrum for all values of J/|D| for ν = z, and use the energy spectrum

to numerically determine the heat capacity for a range of exchange values J . These

calculations rely heavily on the Clebsch-Gordon coefficients for two S = 1 spins (Fig.

2.4).

B.1 Strong Coupling Limit

Hc1, the critical field determining the onset of the singlet-triplet ordered state, is set

by the exchange within a dimer, the exchange between dimers and zero field split-

ting. Neither the intradimer exchange nor the interdimer exchanges depend on field
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direction. However, the zero field splitting does change depending on field direction

relative to the crystalline easy axis anisotropy. In this section I determine the zero

field splitting for two fields oriented along the c and a crystalline axes. These calcu-

lations are done in the dimer basis in the strong coupling limit where the intradimer

exchange is much larger than the zero field splitting, J0 ≫ |D|, treating the zero

field splitting as a perturbation on the intradimer exchange. The calculations neglect

interactions between dimers, which enter the final form of Hc1 but do not vary based

on field direction independent of the zero field splitting. First I calculate the splitting

for fields along the c axis and then I calculate the splitting for fields along a axis.

B.1.1 Fields along the c axis

For fields along the crystalline c axis, and by extension the quantization z axis along

the c axis, the zero field splitting takes the following form: 〈lm|D ((Sz
1)

2 + (Sz
2)

2) |lm〉.
The calculations for each of the dimers are done by determining the individual spin

states forming each dimer state, yielding the following values:

〈22|D
(

(Sz
1)

2 + (Sz
2)

2
)

|22〉 = 2D 〈21|D
(

(Sz
1)

2 + (Sz
2)

2
)

|21〉 = D

〈20|D
(

(Sz
1)

2 + (Sz
2)

2
)

|20〉 =
2D

3
〈21̄|D

(

(Sz
1)

2 + (Sz
2)

2
)

|21̄〉 = D

〈22̄|D
(

(Sz
1)

2 + (Sz
2)

2
)

|22̄〉 = 2D 〈11|D
(

(Sz
1)

2 + (Sz
2)

2
)

|11〉 = D

〈10|D
(

(Sz
1)

2 + (Sz
2)

2
)

|10〉 = 2D 〈11̄|D
(

(Sz
1)

2 + (Sz
2)

2
)

|11̄〉 = D

〈00|D
(

(Sz
1)

2 + (Sz
2)

2
)

|00〉 =
4D

3
(B.2)

Thus the Sz = ±1 triplet states have a gap of |D| to the Sz = 0 triplet state at

zero field, and the zero field gap between the singlet and the |1±1〉 states is J0−D/3.

The full energy spectrum as a function of field for fields along the c axis is shown in

Figure B.1, with the |00〉, |10〉, |1 ± 1〉 and |2m〉 states shown in red, dashed green,

solid green and blue, respectively.
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Figure B.1: Energy spectrum versus field for fields applied along the c axis in the
strong coupling limit.

B.1.2 Fields along the a axis

For fields along the crystalline a axis, and by extension the quantization z axis along

the a axis, the zero field splitting takes the following form: 〈lm|D ((Sx
1 )2 + (Sx

2 )2) |lm〉.
The calculations for each of the dimers are done by determining the individual spin

states forming each dimer state, converting the Sx operators into S+ and S− opera-

tors, yielding the following values:

〈22|D
(

(Sx
1 )2 + (Sx

2 )2
)

|22〉 = D 〈21|D
(

(Sx
1 )2 + (Sx

2 )2
)

|21〉 =
3D

2

〈20|D
(

(Sx
1 )2 + (Sx

2 )2
)

|20〉 =
5D

3
〈21̄|D

(

(Sx
1 )2 + (Sx

2 )2
)

|21̄〉 =
3D

2

〈22̄|D
(

(Sx
1 )2 + (Sx

2 )2
)

|22̄〉 = D 〈11|D
(

(Sx
1 )2 + (Sx

2 )2
)

|11〉 =
3D

2

〈10|D
(

(Sx
1 )2 + (Sx

2 )2
)

|10〉 = D 〈11̄|D
(

(Sx
1 )2 + (Sx

2 )2
)

|11̄〉 =
3D

2

〈00|D
(

(Sx
1 )2 + (Sx

2 )2
)

|00〉 =
4D

3
(B.3)

139



An important sign of the validity of these results is that the energy of the singlet

state does not change based on quantization axis. An additional check on these

results is that the sum of the energies of the three triplet states is the same as for

the other quantization direction, even though each individual term is different. This

equivalence is required because the three triplet states span the same state space

regardless of quantization direction.

The zero field gap between the |10〉 state and the |1± 1〉 states changes sign from

positive to negative. Additionally, the zero field gap between the singlet and the

|1 ± 1〉 states is J0 + D/6, confirming the functional form of the gap used in fitting

for Hc1 in section 5.2. The full energy spectrum as a function of field for fields along

the a axis is shown in Figure B.2, with the |00〉, |10〉, |1 ± 1〉 and |2m〉 states shown

in red, dashed green, solid green and blue, respectively.

E

H

 |1 0
 |0 0

 |2 m
 |1   1+_

H || a; D < 0

} =D/2

Figure B.2: Energy spectrum versus field for fields applied along the a axis in the
strong coupling limit.

Although the splitting between the doublet and singlet of the triplet states changes

sign depending on quantization axis it is important to note than none of the zero field

properties of this system will change.
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B.2 Exact Energy Spectrum

In the random singlet model used in chapter 7, the heat capacity is solved for at

several different values of the exchange J . To solve for these heat capacities the

exact energy spectrum as a function of the size of the exchange must be known. The

strong coupling limit, used in the first section of this appendix chapter, assumed that

J ≫ |D|. The random singlet model, however, uses a wide range of J values, from

J ≫ |D|, to J ∼ |D| and J ≪ |D|. In this section I derive the exact energy spectrum

of the random singlet model Hamiltonian (Eq. B.1) as a function of the ratio of the

exchange value divided by the single ion anisotropy, J/|D|. This calculation is not

a perturbation on the dimer states, as the first section of appendix was. Once the

functional form of the energy has been solved I will plot the resulting heat capacity

curves for specific J/|D| values.

The energy spectrum for this system is most easily determined initially in the

dimer basis, with the z quantization axis along the crystalline c axis. In this case,

all the dimer states are diagonal with the first term of the Hamiltonian, J(r)Si · Sj .

Further, the single ion anisotropy term D(Sz
i )

2 must conserve total Sz and cannot

connect states of opposite symmetry, implying that only the |00〉 and |20〉 states can

have off-diagonal matrix elements [30]. The matrix elements for all the states are:

H|20〉 =

(

3J +
2D

3

)

|20〉 +
2
√

2D

3
|00〉

H|00〉 =
2
√

2D

3
|20〉 +

4D

3
|00〉

H|2 ± 2〉 = (3J + 2D)|2 ± 2〉
H|2 ± 1〉 = (3J +D)|2 ± 1〉
H|1 ± 1〉 = (J +D)|1 ± 1〉
H|10〉 = (J + 2D)|10〉 (B.4)

The energy eigenvalues for the non-diagonal components is solved by taking the

determinant of for those two states (here the basis is [|00〉, |20〉]):
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(

4D
3
− λ 2

√
2D
3

2
√

2D
3

3J + 2D
3
− λ

)

The resulting energy eigenvalues are:

S± =
1

2

(

2D + 3J ±
√

(2D + 3J)2 − 16DJ

)

(B.5)

. and the resulting eigenvectors are:

|S+〉 = sin(θ)|00〉 + cos(θ)|20〉
|S−〉 = cos(θ)|00〉 − sin(θ)|20〉

tan (θ) =
4
√

2D

6J − 6D +
√

(2D + 3J)2 − 16DJ
(B.6)

A few limits can simplify these expressions. Consider first the strong coupling

limit (J ≫ |D|):

lim
J/|D|→∞

S+ = 3J +
2D

3
lim

J/|D|→∞
|S+〉 = |20〉

lim
J/|D|→∞

S− =
4D

3
lim

J/|D|→∞
|S−〉 = |00〉 (B.7)

These eigenvalues and eigenvectors match those shown in the first section of this

appendix. Now consider the isolated moment limit (J → 0):

lim
J→0

S+ = 0 lim
J/|D|→∞

|S+〉 = −
√

1

3
|00〉 +

√

2

3
|20〉

lim
J→∞

S− = 2D lim
J/|D|→∞

|S−〉 =

√

2

3
|00〉 +

√

1

3
|20〉 (B.8)

These two states reach intuitive limits when written in terms of the original spin

states. In particular, |S+〉 is composed of two Sz = 0 spins while |S−〉 is composed

of the symmetric combination of an Sz = 1 spin on one half of the dimer and an

Sz = −1 on the other half of the dimer.
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Figure B.3: Energy spectrum versus J , normalized by the single ion anisotropy |D|.
Large J/|D| range and small J/|D| range shown in (a) and (b), respectively.

The energy spectrum is plotted versus the size of the exchange J/|D| in Figure

B.3. Panel (a) shows the spectrum for large values of J/|D|. In this limit the system

approaches the isolated dimer model, where the singlet has gaps of J and 3J to the

excited triplet and quintuplet states, respectively. Panel (b) shows the spectrum for

small values of J/|D|. In this limit the system approaches the isolated moment model,

where a dimer has total energy 0, D or 2D if it composed of two, one or zero Sz = 0

spins, respectively.

The energy for a pair of moments with exchange J can be easily calculated as a

function of temperature:

EJ(T ) =

∑

iE|Mi〉e
−βE|Mi〉

∑

i e
−βE|Mi〉

(B.9)

Here, the summation runs over all the different basis states (|Mi〉 = |S±〉, |2±2〉, |2±
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1〉, |1±1〉, |20〉), E|Mi〉 is the energy of a given state and β = 1/kBT . The heat capacity

for a pair of moments with exchange J is easily calculated from the energy:

Cp(J, T ) =
d(EJ(T ))

dT
(B.10)

Several different heat capacity curves for a range of J/|D| values are plotted on a log

scale in Figure B.4. For J = 0 (solid black line), the system reduces to the isolated

moment case and the heat capacity has a peak induced by the two gaps of the single

ion anisotropy (a gap of |D|, 2|D| between the |S−〉, |10〉, |2 ± 2〉 ground states and

the |2 ± 1〉, |1 ± 1〉 first excited states and S+〉 second excited states, respectively).

For the largest J values of J = 30|D|, 10|D| and 3|D| (blue, orange and teal lines,

respectively) there is a single peak centered at roughly 0.4J arising from both the

singlet-triplet and singlet-quintuplet gaps. For J = |D| (red line), there is a single

peak with a shoulder at lower temperatures. For J = 0.3|D| (green line) there are

split peaks, one centered roughly at the same position as the single ion anisotropy

peak and a second at lower temperature. Finally for the smallest non-zero J values of

J = 0.1|D| and 0.03|D| (magenta and gray lines, respectively) there are three peaks

stemming from three gaps from the |S−〉 groundstate: the gap to the first excited

state, |10〉; the gap to the second excited states |2 ± 2〉; and finally the single ion

anisotropy gap to the third excited states, |1 ± 1〉, |2 ± 1〉 and |S+〉. The model

shown in Figs. 7.7 and 7.8 used a superposition of heat capacity curves taken from

exchange values mostly within this range. The different model curves used differently

weighted superpositions, such that the higher (lower) vanadium concentrations are

weighted more towards larger (smaller) J values based on the probability distributions

Px(J(r)).
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Appendix C

Ba3((Mn1−x)Vx)2O8 in

singlet-triplet regime

In chapter 7, I presented studies of the low field properties of the diluted compound

Ba3(Mn1−xVx)2O8. I also performed heat capacity and magnetocaloric effect mea-

surements of the high field behavior of this compound. These measurements revealed

unexpected behavior, including new transitions that I will discuss in this appendix.

Further measurements will be required to determine the exact nature of these new

transitions.

Extensive quantum Monte Carlo studies have been performed on a spin dimer

system based on a square lattice of S = 1
2

spins which have been diluted with non-

magnetic S = 0 sites [58, 59]. Those calculations found that at 0 K, in addition to the

Bose-Einstein condensate ordered state (canted antiferromagnetic order) observed in

the undiluted system, a Bose glass state arises in certain field ranges. The expected

glass states occurs symmetrically at low and high triplet densities, i.e. for fields just

above Hc1 and fields just below Hc2. The field extent of the Bose glass increases with

doping until a critical concentration at which long range order disappears. However,

there have not been any extensive studies of a diluted spin system at high fields. In

this section I present the first extensive studies of the high field properties of a diluted

spin dimer system, including both heat capacity and MCE results.

Heat capacity and MCE measurements of single crystals of Ba3(Mn1−xVx)2O8
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Figure C.1: Heat Capacity of Ba3(Mn1−xVx)2O8 at 13 T for fields applied both parallel
(a) and perpendicular (b) to the c axis.
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were performed in a commercial PPMS calorimeters in fields both parallel and per-

pendicular to the c axis between 10 T and 14 T in both a 3He refrigerator down to

0.35 K and a dilution refrigerator down to 50 mK. These measurements revealed both

strong evidence of a splitting of the λ-like transition into phase I and at a minimum

a broadening, if not a splitting, of the transition into Ising-like phase II.

Heat capacity measurements for fields along the c axis taken at 13 T for several

different vanadium concentrations are presented in Figure C.1(a). The curve with

x = 0, shown in black, reveals a single sharp transition at 0.694 K. As vanadium

concentration increases, the single sharp peak broadens and splits into two peaks at

lower temperatures. The critical temperatures of the two peaks in the x = 0.020

sample are 0.593 K and 0.635 K. The height of the transitions decreases as doping

increases, although because the transitions also broaden it is unclear whether the

total entropy under the transitions changes with doping.

Heat capacity measurements for fields perpendicular to the c axis taken at 13

T for several different vanadium concentrations are shown in Figure C.1(b). The

undiluted sample showed two transitions, a Ising-like transition into phase II at 0.800

K and a λ-like transition at 0.732 K into phase I. As x increases these transitions

broaden as observed for fields along the c axis. The λ-like transition evolves into

two transitions, such that in x = 0.020 sample the split transitions are at 0.573 K

and 0.615 K. However, the Ising-like transition broadens but does not split into two

separate peaks, making identification of the critical field for this transition difficult.

Magnetocaloric effect measurements of the x = 0.020 sample for fields parallel and

perpendicular to the c axis are shown in Figure C.2(a) and (b), respectively. Both

of these measurements exhibited temperature independent features at Hc1 arising

from the same Maxwell’s relation which induced equivalent features in the undiluted

copmound. Split transitions are observed for fields parallel to the c axis, in accor-

dance with the heat capacity data. Phase transitions, determined from peaks in the

field derivative of the temperature in the same manner as done with the undiluted

samples, are marked with open circles. For fields perpendicular to the c axis, mul-

tiple rapid rises and falls of the temperature were observed, indicative of the split

λ-transition and broadened Ising transition observed in heat capacity measurements.
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allel (a) and perpendicular (b) to the c axis. Open circles mark phase transitions. c)
Phase diagram for x=0.020 sample for fields parallel to the c axis determined from
heat capacity (circles) and MCE (squares).
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However, ambiguity in the choice of the appropriate feature in the field derivative of

the temperature made identification of the transitions difficult.

The phase diagram of the x = 0.020 sample for fields parallel to the c axis deter-

mined from both heat capacity and MCE is presented in Figure C.2(c). The splitting

between the transitions, which is independent of field, is 45 mK. Unfortunately, deter-

mining the phase diagram for fields perpendicular to the c axis is much more difficult

because the positions of the critical fields and critical temperatures in both the heat

capacity and MCE measurements are ambiguous due to the broadness of the crit-

ical features. The full phase diagram of critical temperature versus both field and

vanadium concentration for fields along the c axis determined from heat capacity is

presented in Figure C.3. The splitting between the transitions, which is field indepen-

dent, increases with vanadium concentration, while the critical temperatures decrease

with vanadium concentration.

The heat capacity presents no evidence at temperatures above the phase tran-

sitions of Bose glass like behavior, which would exhibit a slow removal of entropy
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without any sharp features. Further experiments will be necessary to determine the

nature of the additional high field magnetic phases induced by disorder in this mate-

rial.
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