tanaka_eaton_2010

Summary

Sub-Kolmogorov resolution partical image velocimetry measurements of particle-laden forced turbulence. T. Tanaka and J.K. Eaton. Journal of Fluid Mechanics, 643:177-206, 2010. (URL)

Abstract

Previous studies have shown that a dilute dispersion of fine particles can either augment or attenuate the gas-phase turbulent kinetic energy (TKE). However, such turbulence modification is not accurately captured by numerical simulation models. A critical reason is that the models do not incorporate flow distortion occurring at small scales on the order of the particle diameter or the Kolmogorov scale. These scales are too small to be resolved by most experiments and simulations, so the small-scale effects remain poorly understood. The main objective of this study is to investigate experimentally the small-scale turbulence structures that affect the overall turbulence modification to improve understanding and prediction of the macroscopic turbulence modification. A high resolution particle image velocimetry (PIV) system was developed that provided two-dimensional velocity field measurements with a sub-Kolmogorov vector spacing of 60 micron. Measurements of gas-phase isotropic turbulence were performed in the facility developed by Hwang \& Eaton (Exp. Fluids, vol. 36 (3), 2004a, p. 444) in the presence of dispersed 500 micron glass, 250 micron glass or 250 micron polystyrene particles at mass loading ratio up to 0.45. The Reynolds number based on the Taylor microscale was 130 for the unladen case. The TKE was attenuated by up to 25\% in the presence of particles. The high-resolution measurements of the dissipation rate show that changes in the dissipation rate are smaller than changes to the TKE, in contrast to previous underresolved experiments. An analysis of a large set of PIV images allowed calculation of the average turbulence distortion around particles. The measurements also showed strong damping of the TKE and strong augmentation of the dissipation rate in a roughly spherical region surrounding the particles.

Bibtex entry

@ARTICLE { tanaka_eaton_2010,
    AUTHOR = { T. Tanaka and J.K. Eaton },
    TITLE = { Sub-Kolmogorov resolution partical image velocimetry measurements of particle-laden forced turbulence },
    YEAR = { 2010 },
    JOURNAL = { Journal of Fluid Mechanics },
    VOLUME = { 643 },
    PAGES = { 177--206 },
    ABSTRACT = { Previous studies have shown that a dilute dispersion of fine particles can either augment or attenuate the gas-phase turbulent kinetic energy (TKE). However, such turbulence modification is not accurately captured by numerical simulation models. A critical reason is that the models do not incorporate flow distortion occurring at small scales on the order of the particle diameter or the Kolmogorov scale. These scales are too small to be resolved by most experiments and simulations, so the small-scale effects remain poorly understood. The main objective of this study is to investigate experimentally the small-scale turbulence structures that affect the overall turbulence modification to improve understanding and prediction of the macroscopic turbulence modification. A high resolution particle image velocimetry (PIV) system was developed that provided two-dimensional velocity field measurements with a sub-Kolmogorov vector spacing of 60 micron. Measurements of gas-phase isotropic turbulence were performed in the facility developed by Hwang \& Eaton (Exp. Fluids, vol. 36 (3), 2004a, p. 444) in the presence of dispersed 500 micron glass, 250 micron glass or 250 micron polystyrene particles at mass loading ratio up to 0.45. The Reynolds number based on the Taylor microscale was 130 for the unladen case. The TKE was attenuated by up to 25\% in the presence of particles. The high-resolution measurements of the dissipation rate show that changes in the dissipation rate are smaller than changes to the TKE, in contrast to previous underresolved experiments. An analysis of a large set of PIV images allowed calculation of the average turbulence distortion around particles. The measurements also showed strong damping of the TKE and strong augmentation of the dissipation rate in a roughly spherical region surrounding the particles. },
    URL = { http://dx.doi.org/10.1017/S0022112009992023 },
}