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SUMMARY

In the spectral stochastic finite element method for analyzing an uncertain system, the uncertainty

is represented by a set of random variables and a quantity of interest such as the system response

is considered a function of these random variables. Consequently, the underlying Galerkin projection

yields a block system of deterministic equations where the blocks are sparse but coupled. The solution

of this algebraic system of equations becomes rapidly challenging when the size of the physical system

and/or the level of uncertainty is increased. This paper addresses this challenge by presenting a

preconditioned conjugate gradient method for such block systems where the preconditioning step is

based on the Dual-Primal (DP) Finite Element Tearing and Interconnecting (FETI) method equipped
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2 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

with a Krylov subspace reusage technique for accelerating the iterative solution of systems with

multiple and repeated right hand-sides. Preliminary performance results on a Linux Cluster suggest

that the proposed solution method is numerically scalable and demonstrate its potential for making

the uncertainty quantification of realistic systems tractable. Copyright c© 2008 John Wiley & Sons,

Ltd.

key words: domain decomposition, FETI, polynomial chaos, stochastic finite element, uncertainty

1. INTRODUCTION

The realistic design and analysis of a physical system must take into account uncertainties

contributed by various sources such as manufacturing variability, insufficient data, unknown

physics and aging. In many probabilistic frameworks, these uncertainties are first modeled

as random quantities with assigned probability distributions. Then, the probabilistic nature

of the system response to a deterministic or random loading is estimated using a stochastic

finite element method (SSFEM). In such a method, the random parameters and external forces

are first modeled using square-integrable random variables and processes. The processes are

further discretized using a denumerable set of random variables known as the set of basic

random variables. Next, the system response is represented using a set of polynomials in these

basic random variables. When these are Gaussian, the natural choice of a set of orthogonal

polynomials in these variables becomes the set of Hermite polynomials. In this case, the

resulting representation is called the polynomial chaos expansion (PCE) [35] method. Once

the coefficients of this representation — referred to as chaos coefficients — are estimated,

any statistical quantity such as the mean, standard deviation and probability density function
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FETI PRECONDITIONER FOR LARGE STOCHASTIC SYSTEMS 3

(PDF) of the system response can be derived in a straightforward manner. When the physical

domain of the problem is also discretized using, for example, deterministic finite element

bases, the approximation space for the entire problem naturally becomes a tensor product

space defined on the cartesian product of the physical and random domains.

Consider a linear elliptic equation with uncertain parameters where the physical domain

is discretized by a finite element model with n degrees of freedom (dof), and the response is

represented by a P -term PCE. To estimate the chaos coefficients, a Galerkin projection can

be applied to minimize the residual of the governing equation [35, 27, 28]. In Section 2, it is

shown that such a procedure transforms the stochastic problem into the following system of

linear deterministic equations

Ku = f , K ∈ R
nP×nP , u, f ∈ R

nP , (1)

where the matrix K has the form

K =

























K11 K12 . . . K1P

K21 K22 . . . K2P

. . . . . . . . . . . .

KP1 KP2 . . . KPP

























, Kij ∈ R
n×n. (2)

The matrix K is block-sparse. Each of its blocks Kij is of size (n× n) and is also sparse. The

block-sparsity results from the properties of the polynomial chaos bases, while the sparsity

within the individual blocks results from the deterministic finite element discretization. The

overall problem size, which is characterized by the product nP , depends on (i) the size of the

physical system and the spatial mesh resolution which affect n, and (ii) the level of uncertainty

which affects P . The majority of the current literature addresses the solution of Eq. (1) for

small- or medium-sized problems. However, as P (and) or n is increased, solving Eq. (1)
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4 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

becomes challenging from both memory and CPU viewpoints. Therefore, the development of

efficient computational techniques for solving problem (1) has emerged as an active research

area in recent years [36, 31, 1, 25].

Previous attempts at solving Eq. (1) have relied on iterative techniques such as block

Gauss-Jacobi [25], MINRES, or the preconditioned conjugate gradient (PCG) algorithm

[36, 31, 1]. In this paper, the latter method is adopted and an incomplete block-diagonal

preconditioner is proposed. When the uncertainty in the system is Gaussian in nature, this

preconditioner coincides with the block-Jacobi preconditioner used in [36, 31], and differs from

that proposed in [1] by a set of scaling factors of the diagonal blocks that significantly enhance

the performance of the preconditioner.

The application of a block-diagonal preconditioner to Eq. (1) requires solving repeated linear

systems of equations with different right hand-sides. The left hand-side of each of these systems

is the mean part of the stiffness matrix and therefore is sparse, symmetric, and positive definite.

In [31], such a preconditioner was based on an approximate inversion technique. In [36], it was

based on a matrix factorization. In [1], a CG algorithm was used for this purpose. In all of

these references, the reported performance results suggest a need for a better preconditioning

step.

In this paper, the scalable domain decomposition (DD) based Finite Element Tearing and

Interconnecting Dual-Primal (FETI-DP) method [12, 13, 6, 14, 5, 26], which is an enhanced

variant of the ubiquitous iterative FETI solver [4, 15, 9, 8, 10, 17, 7, 18, 16, 22, 23, 30, 37, 20, 6],

is proposed as an incomplete block-diagonal preconditioning solver for Eq. (1). It is equipped

with the Krylov reusage technique first proposed in [15, 9] for accelerating its convergence for

systems with multiple and repeated right hand-sides. These typically arise in nested iteration
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FETI PRECONDITIONER FOR LARGE STOCHASTIC SYSTEMS 5

loops for linear problems. It is noted that an overlapping additive Schwarz DD method with a

similar idea of Krylov subspace reusage was recently exploited in [19] for preconditioning

stochastic problems where the uncertainty model is a special case of the general model

considered in this paper and is such that K is block-diagonal. To this effect, the remainder of

this paper is organized as follows.

In Section 2, the SSFEM of interest is presented and Eq. (1) is derived to keep this paper

as self-contained as possible. In Section 3, important issues related to the solution of this

potentially large linear system of equations are exposed, and the incomplete block-diagonal

preconditioner proposed in this paper is introduced. Section 4 overviews the FETI-DP method

which is chosen for computing the preconditioned residuals arising from the chosen PCG

based solution strategy. This section also describes the tailoring of FETI-DP to the solution of

systems with multiple and/or repeated right hand-sides such as those arising from the target

application. Implementational details of the proposed preconditioning step and resulting overall

PCG solver are described in Section 5. A three-dimensional, large-scale application problem

is discussed in Section 6. The performance results obtained for this problem suggest that the

overall PCG solver proposed in this paper is numerically scalable and therefore holds a great

potential for enabling the uncertainty quantification of realistic systems. Finally, Section 7

concludes this paper.

2. SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

Let (Ω,F , P ) denote the underlying probability space of uncertainty, Ω denote the set of

elementary events θ, F denote a σ-algebra on this event set, and µ denote the probability

measure. Let also the physical domain D be a closed interval in the space R
d, where d is 1,
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Prepared using nmeauth.cls



6 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

2 or 3, and x be a point in this domain. Consider the second-order elliptic partial differential

equation defined in Ω:

−∇ · (a(x, θ)∇u(x, θ)) = f(x, θ) x ∈ D, (3)

u(x, θ) = 0 x ∈ ∂D ,

where u(x, θ), f(x, θ) : D × Ω → R. The uncertain parameters in this equation are embedded

in the coefficient and external functions a(x, θ) and f(x, θ), respectively. Here, the process

a(x, θ) is assumed to be bounded away from zero and f(x, θ) is assumed to satisfy the square

integrability condition
∫

Ω

∫

D
f2(x, θ)dxdP (θ) <∞. (4)

Since the random processes a(x, θ) and f(x, θ) are infinite dimensional objects, for

computational purpose they are further discretized using a suitable basis function set in

the space of square-integrable random variables L2(Ω). For example, when the covariance

of a process is know, the Karhunen-Loève (KL) expansion [35] can be used for such a

discretization. A finite-dimensional representation of these processes yields the random vector

ξ = {ξi(θ)}i=mi=1 , which completely characterizes the uncertainty in the underlying system. In

general, these random variables may not be completely independent from each other, and their

joint distribution may be non-Gaussian. However, these random variables can be transformed

into a function of an independent Gaussian vector using various techniques [34]. Therefore,

without loss of generality, ξ can be assumed to be a vector of independent standard normal

random variables. In the literature, m is often referred to as the stochastic dimension of the

problem. Since the response of the system, u, is actually also a function of ξ, it can now be

denoted as u(x, ξ).

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–6

Prepared using nmeauth.cls



FETI PRECONDITIONER FOR LARGE STOCHASTIC SYSTEMS 7

Let the function p(ξ) denote the joint probability density function of the random vector

ξ. In this paper, the integral
∫

Ω
·dµ(θ) or

∫

Rm ·p(ξ)dξ is denoted by the expectation operator

E{·}. Let the physical approximation space be a deterministic finite element space H1
0 (D) with

the shape functions denoted by {Ni(x)}i=ni=1 . The response of the system is next represented

in a tensor product Hilbert space as u(x, ξ) ∈ H = H1
0 (D) ⊗ L2(Ω) where the inner product

is defined as

(u, v)H1

0
(D)⊗L2(Ω) =

∫

Rm

(
∫

D
∇u(x, ξ) · ∇v(x, ξ) dx

)

p(ξ)dξ = E

{
∫

D
∇u(x, ξ) · ∇v(x, ξ) dx

}

.

(5)

A set of basis functions should be chosen in the random space L2(Ω) to represent the stochastic

counterpart of the response u(x, ξ). In this paper, the polynomial chaos basis functions

[32, 38, 35] are used for this purpose. Accordingly, any square integrable random variable,

vector, or process can be represented using a basis function set {ψi(ξ)}i=∞
i=0 , where the basis

functions are chosen to be Hermite polynomials in the set of orthonormal variables ξ. The ψi

functions have the following properties:

ψ0 ≡ 1 , E{ψi} = 0 for i > 0 , and E{ψiψj} = δi,jE{ψ2
i } ,

where δi,j denotes the Kronecker delta function. For computational purpose, only a finite

number P of basis functions is used. P depends on the stochastic dimension of the problem,

m, and on the highest retained polynomial degree which is also referred to as the order of the

expansion. For example, when ξ = {ξ1, ξ2}, the stochastic dimension is m = 2, a second-order

polynomial chaos expansion yields P = 6, and the corresponding polynomials ψi(ξ1, ξ2) are

ψ0(ξ1, ξ2) = 1 , ψ1(ξ1, ξ2) = ξ1 , ψ2(ξ1, ξ2) = ξ2 ,

ψ3(ξ1, ξ2) = ξ21 − 1 , ψ4(ξ1, ξ2) = ξ1ξ2 , ψ5(ξ1, ξ2) = ξ22 − 1 .
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8 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

Besides the Hermite polynomials, other basis functions such as other types of polynomials [24]

or wavelet functions [33] are often employed. Using both the deterministic or physical shape

functions {Ni(x)}i=ni=1 and the stochastic basis functions {ψj(ξ)}j=P−1
j=0 , the approximation

û(x, ξ) of the response u(x, ξ) can be represented as

û(x, ξ) =
i=n
∑

i=1

j=P−1
∑

j=0

ui,jNi(x)ψj(ξ), Ni(x) ∈ V (D), ψj(ξ) ∈ L2(Ω) . (6)

The chaos coefficients u(j)(x) =
i=n
∑

i=1

ui,jNi(x) completely capture the probabilistic description

of the random quantities involved. For example, the mean and variance of the response at a

physical location x can be readily computed from the above expansion as

Mean = ū(x) =

i=n
∑

i=1

ui,0Ni(x), Variance = V ar
(

û(x)
)

=

i=n
∑

i=1

j=P−1
∑

j=1

(

ui,jNi(x)
)2

E{ψ2
j } .

(7)

The statistical moments of the stress and strain quantities can be computed using one of the

numerical techniques discussed in [21].

To evaluate the representation (6), the coefficients ui,j must first be estimated. This can be

achieved using the intrusive or stochastic Galerkin finite element method [35, 27, 28] as follows.

First, define a bilinear form B(u, v) : H ×H → R as

B(u, v) =

∫

Rm

(
∫

D
a(x, ξ)∇u(x, ξ) · ∇v(x, ξ)dx

)

p(ξ)dξ ∀ u, v ∈ H . (8)

Then, construct the variational form as

B(u, v) = V(v) ∀ v ∈ H, (9)
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FETI PRECONDITIONER FOR LARGE STOCHASTIC SYSTEMS 9

where V(v) : H → R is a bounded linear functional defined as

V(v) =

∫

Rm

(
∫

D
f(x, ξ)v(x, ξ)dx

)

p(ξ)dξ . (10)

The positivity and boundedness of the coefficient a(x, ξ) almost everywhere imply the

continuity and coercivity of the bilinear form B(u, v). Under these conditions, the Lax-

Milgram lemma [39] guarantees the existence and uniqueness of the solution of the variational

problem (9).

Let the process a(x, ξ) be represented as

a(x, ξ) =

L−1
∑

i=0

a(i)(x)ψi(ξ) . (11)

Eq. (11) can correspond to, for example, a KL expansion or a PCE. Using Eqs. (8,10,11), the

PCE of u(x, ξ) (6), and choosing v(x, ξ) as Nk(x)ψl(ξ), the variational formulation (9) can

be written as

i=n
∑

i=1

j=P−1
∑

j=0

ui,j

∫

Rm

[K(ξ)]k,iψj(ξ)ψl(ξ)p(ξ)dξ =

∫

Rm

fk(ξ)ψl(ξ)p(ξ)dξ (12)

∀k = 1 . . . n, l = 0 . . . P − 1, and ψl(ξ) ∈ L2(Ω),

where K(ξ) is an (n× n) matrix whose elements are random variables and can be expressed

as

K(ξ) =

L−1
∑

r=0

K(r)ψi(ξ) , K(r) ∈ R
n×n, (13)

where the (i, k)th element of the matrix K(r) is given by

∫

D
a(r)(x)∇Ni(x) · ∇Nk(x)dx , (14)

and

fk(ξ) =

∫

D
f(x, ξ)Nk(x)dx . (15)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–6
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10 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

Eq. (12) can be re-written in the form of Eq. (1). Although described for a second-order elliptic

equation, this equation can be obtained for any elliptic equation of the form L
(

u(x, θ)
)

=

f(x, θ).

In a computer implementation, the matrices K(i), i = 0, . . . , L− 1, are computed by calling

the usual finite element stiffness routines L times and changing only the coefficient a(i)(x) in

each call. Physically, K(0) refers to the mean stiffness and all other K(r) matrices refer to the

random fluctuations around the mean stiffness.

Next, the following notation is introduced

u(i) =















































u1,i

u2,i

·

un,i















































∈ R
n , f(i) =















































E{f1(ξ)ψi}

E{f2(ξ)ψi}

·

E{fn(ξ)ψi}















































∈ R
n , i = 0, . . . , P − 1, (16)

where the functions fk(ξ) are defined in Eq. (15). As mentioned earlier, f(ξ) is also discretized

using KL or PCE. The expectation operations in the above equation can be evaluated using

the orthogonality of the random bases. As a special example, when f(ξ) is deterministic —

say f(ξ) = f — only f(0) survives in the above equation and all other f(i) terms vanish.

Using the above notation, K, u and f in Eq. (1) can now be written as

K =































L−1
∑

i=0

K(i)E{ψiψ0ψ0}
L−1
∑

i=0

K(i)E{ψiψ1ψ0} . . .

L−1
∑

i=0

K(i)E{ψiψP−1ψ0}
L−1
∑

i=0

K(i)E{ψiψ0ψ1}
L−1
∑

i=0

K(i)E{ψiψ1ψ1} . . .

L−1
∑

i=0

K(i)E{ψiψP−1ψ1}

. . . . . . . . . . . .

L−1
∑

i=0

K(i)E{ψiψ0ψP−1}
L−1
∑

i=0

K(i)E{ψiψ1ψP−1} . . .

L−1
∑

i=0

K(i)E{ψiψP−1ψP−1}































,

(17)
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FETI PRECONDITIONER FOR LARGE STOCHASTIC SYSTEMS 11

u =
{

u(0), u(1), . . . , u(P−1)

}T
, f =

{

f(0), f(1), . . . , f(P−1)

}T
. (18)

From the sparsity and other properties of the triple products E{ψiψjψk}, it follows that K is

block-sparse and its diagonal blocks are always non-zero. More specifically, the sparsity pattern

of K depends on the representation described in Eq. (11), the choice of basis functions ψi,

and the order of the expansion. For example, for the linear static problem studied in Section 6

where the random fluctuations of the five Young’s modulis of five structural components are

expressed as second-degree polynomials of Gaussian random variables and the displacement

field is represented by a fourth-order PCE, the sparsity pattern of K is graphically depicted

in Figure 1. Increasing or decreasing the order of the PCE adds or removes branches in K.

Figure 1. Block-sparsity of the stiffness matrix K of the example cylinder head problem.

3. NESTED PCG SOLVERS FOR A SYSTEM OF SYSTEMS

Eq. (1) is actually a system of systems of equations. As shown by Eq. (17), the (P ×P ) blocks

of K of size (n×n) are linear combinations of the finite element stiffness matrices K(i). When

n or P is large, solving Eq. (1) becomes a real challenge.
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12 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

The matrices K(i) are typical finite element stiffness matrices. Therefore, for the elliptic

problems considered in this paper, these matrices are symmetric. Consequently, K is also

symmetric. Here, it is assumed that the chosen uncertainty model is such that K(ξ) (13) is

positive definite, which implies that K is also positive definite. In this case, the PCG algorithm

is the preferred iterative solver for problem (1) and the issue becomes the construction of a

suitable preconditioner. To this end, K is closely examined below.

The matrix K(0) corresponds to the stiffness matrix of the mean system. Hence, it is positive

definite provided the modeled system is properly constrained by sufficient boundary conditions.

Using the orthogonality of the chaos polynomials, it can be shown that K(0) contributes only

to the diagonal blocks of K. In other words, the off-diagonal block matrices have contributions

only from the fluctuations of the system properties. This suggests that the diagonal blocks are

dominant and calls for a block-diagonal preconditioner for K.

Furthermore for large-scale systems, factoring any diagonal block of K can be so

computationally prohibitive that a second iterative solver becomes also necessary for

constructing the desired block-diagonal preconditioner. This is the context of this work which

targets large-scale, large-dimension stochastic problems, and where the second iterative solver

is also chosen to be a PCG algorithm. In this case, the overall iterative solution method has

two nested PCG iterations: an outer one associated with the main solution of Eq. (1), and an

inner one associated with the solution of the auxiliary problem incurred by the block-diagonal

preconditioner.

Nested PCG iterations can be computationally inefficient, unless special care is taken for

accelerating the convergence of one of the two iterative loops. Here, the focus is set on the

inner-PCG iteration. To accelerate its convergence, the following approach is adopted. The

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–6
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FETI PRECONDITIONER FOR LARGE STOCHASTIC SYSTEMS 13

blocks of the block-diagonal preconditioner are chosen to be independent of the index of the

outer-PCG iteration, and the performance of the inner-PCG algorithm is optimized for the

solution of multiple systems with a constant left hand-side but different right hand-sides. More

specifically, the following incomplete block-diagonal preconditioner is proposed

M =

























1
E{ψ2

0
}K

−1
(0) 0 . . . 0

0 1
E{ψ2

1
}K

−1
(0) 0 0

. . . . . . . . . . . .

0 0 . . . 1
E{ψ2

P−1
}K

−1
(0)

























. (19)

The reader can observe that the diagonal blocks of M differ only by scaling factors, and only the

mean part K(0) contributes to them. Because of the latter observation, the M matrix described

in (19) is referred to here as an incomplete block-diagonal preconditioner. It can be shown

that for a Gaussian model for K(ξ), only the term K(0)E{ψ2
j } survives under the summation

operator in the jth diagonal block of K. Hence in this case, the proposed preconditioner

M coincides with the block-Jacobi preconditioner proposed in [36, 31]. It differs from that

proposed in [1] by the presence of the scaling factors 1
E{ψ2

j
} , j = 1, · · · , P in the diagonal

blocks which is due to the presence of the term E{ψ2
j } as the coefficient of K(0) in the jth

diagonal block of K, as described in Eq. (17) (the reader is reminded that ψ0 = 1).

Each i-th application of the preconditioner M described in (19) requires the solution of P

problems of the form

K(0)zj(i) = ej(i) , j = 1, · · · , P (20)

where for large-scale problems K(0) is sparse and large, and the notation (i) is used to

emphasize the dependence of the right hand-side ej on the outer-PCG iteration i. Hence,

Eq. (20) describes a linear system of equations with multiple and repeated right hand-sides:

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–6

Prepared using nmeauth.cls



14 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

the multiple right hand-side aspect derives from the stochastic dimension of the problem

P > 1, and the repeated right hand-side aspect from the outer-PCG iteration associated with

the chosen overall solution strategy. Here, it is proposed to solve this linear system by the

FETI-DP method equipped with a Krylov subspace re-usage technique for accelerating its

convergence in the presence of multiple and/or repeated right hand-sides.

4. FETI-DP AND ITS TAILORING FOR REPEATED RIGHT HAND-SIDES

4.1. FETI-DP: a domain decomposition based iterative solver

During the last two decades, DD methods have emerged as a popular and often efficient

category of algorithms for the solution of large-scale systems of equations. These methods rely

on partitioning the computational domain into a set of subdomains (Fig. 2), and on applying

a divide-and-conquer strategy for solving the associated system of equations. They are usually

more amenable to parallel processing than traditional solution methods, which makes them

attractive particularly for computations on parallel computers.

Figure 2. Decomposition of a physical domain D into subdomains.
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FETI-DP [12, 13, 6, 14, 5, 26] is a third-generation FETI-type [4, 15, 9, 8, 10, 17, 7, 18, 16,

22, 23, 30, 37, 20, 6] DD method — that is, a DD method with Lagrange multipliers and in

which the interface problem is solved by a suitable preconditioned conjugate gradient (PCG)

algorithm — developed for the scalable and fast iterative solution of systems of equations

arising from the FE discretization of static, dynamic, second-order, and fourth-order elliptic

partial differential equations. When equipped with the Dirichlet preconditioner [8] and applied

to plane stress/strain or shell problems, the condition number κ of its interface problem grows

asymptotically as [29]

κ = O (1 + log2 H

h
), (21)

where H and h denote the subdomain and mesh sizes, respectively. When equipped with the

same Dirichlet preconditioner and an auxiliary coarse problem constructed by enforcing some

set of optional constraints at the subdomain interfaces [13], the condition number estimate

(21) also holds for second-order scalar elliptic problems that model three-dimensional solid

mechanics problems [2]. This estimate proves the scalability of the FETI-DP method with

respect to all of the problem size, subdomain size, and number of subdomains. More specifically,

it suggests that one can expect FETI-DP to solve small-scale and large-scale problems in similar

iteration counts, a property often referred to as numerical scalability. This in turn suggests that

when the FETI-DP method is well-implemented on a parallel processor, it should be capable

of solving an n-times larger problem using an n-times larger number of processors in almost a

constant CPU time, a property often referred to as parallel scalability. This property shared

by all FETI methods was demonstrated in practice for many complex structural mechanics

problems
(

for example, see [12, 13, 30] and the references cited therein
)

.
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16 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

4.2. Acceleration of convergence for problems with multiple right hand-sides

Let

Kuj = bj j = 1, ..., Nrhs (22)

denote a series of Nrhs successive problems with different right hand-sides. Solving these

problems by the FETI-DP method requires first transforming them into the interface problems

(for example, see [12, 13, 6, 14, 5, 26])

FIλj = gj j = 1, ..., Nrhs , (23)

where FI is a symmetric positive definite matrix of size nI equal to the total number of degrees

of freedom on the global interface of the mesh decomposition (designated here by I), and λ is

the vector of Lagrange multipliers introduced at the subdomain interfaces to enforce there the

continuity of the solution, then computing the solutions of the above interface problems by a

PCG algorithm. After the vector of Lagrange multiplier unknowns λj is computed, the primal

solution uj is obtained by straightforward and parallel local (subdomain) substitutions.

Solving problems (23) is equivalent to solving the following minimization problems

min
λ∈R

n
I

Φj(λ) =
1

2
λTFIλ− gTj λ j = 1, ..., Nrhs . (24)

Let

V
rj

j = {p1
j , p2

j , ..., pkj , ..., p
rj

j } j = 1, ..., Nrhs (25)

denote the Krylov space consisting of the search directions pkj generated during the solution

of the j-th of problems (24) by rj FETI-DP iterations, and let Vj ∈ R
nI×rj denote the

rectangular matrix associated with V
rj

j . From the orthogonality properties of the conjugate

gradient method, it follows that

VT
j FIVj = Dj j = 1, ..., Nrhs (26)
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FETI PRECONDITIONER FOR LARGE STOCHASTIC SYSTEMS 17

where Dj is the diagonal matrix

Dj =

[

dj1 dj2 · · · djrj

]

. (27)

Suppose that during the solution by FETI-DP of the first problem FIλ1 = g1, the matrices

V1 and FIV1 are stored. Consider next the second problem FIλ2 = g2, which can be also

written as

min
λ∈R

nI

Φ2(λ) =
1

2
λTFIλ− gT

2
λ . (28)

If R
nI is decomposed as follows

R
nI = V r11 ⊕ V r1

∗

1 , dim (V r1
∗

1 ) = nI − r1, V r11 and V r1
∗

1 are FI − orthogonal (29)

then λ2 can be searched for in the following form

λ2 = λ0
2 + µ2, λ0

2 ∈ V r11 , µ2 ∈ V r1
∗

1 , and λ0T

2 FIµ2 = µT2 FIλ
0
2 = 0 . (30)

Substituting the above expression of λ2 into (28), and exploiting the orthogonality conditions

expressed in (30) reveals that λ0
2 is the solution of the uncoupled minimization problem

min
λ∈V r1

1

Φ2(λ) =
1

2
λTFIλ− gT2 λ , (31)

and µ2 is the solution of the uncoupled minimization problem

min
µ∈V r1

∗

1

Φ2(µ) =
1

2
µTFIµ− gT2 µ . (32)

Since λ0
2 ∈ V r11 , there exists a θ0

2 ∈ R
r1 such that

λ0
2 = V1θ

0
2 . (33)

The vector θ0
2 is determined by substituting the above equation into Eq. (31) and solving the

resulting minimization problem, which gives

(VT
1 FIV1)θ

0
2 = VT

1 g2 . (34)
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18 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

From Eq. (26), it follows that θ0
2 is given by

D1θ
0
2 = VT

1 g2 ⇒ θ02j =
[VT

1 g2]j
d1j

j = 1, ..., r1, (35)

and from Eqs. (33,34) it is concluded that

λ0
2 = V1D

−1
1 VT

1 g2 . (36)

Here, it is noted that the evaluation of θ0
2 requires only r1 floating point operations, and

that of λ0
2 a single matrix-vector product.

Next, attention is turned to the solution of problem (32) by the FETI-DP method. Since

the decomposition (30) requires µ2 to be FI -orthogonal to λ0
2, it follows that at each PCG

iteration k, the search directions pk2 must be explicitly FI -orthogonalized to V1. This entails

modifying the PCG-loop of the FETI-DP solver to compute the following “enriched” search

directions p̃k2

p̃k2 = pk2 +

q=r1
∑

q=1

ηqp
q
1, ηq = −p

qT

1 FIp
k
2

p
qT

1 FIp
q
1

= −pk
T

2 FIp
q
1

p
qT

1 FIp
q
1

(37)

instead of the usual search directions pk2 . The right hand-sides of Eq. (34) and Eq. (37) explain

why it was assumed that V1 and FIV1 are stored during the solution by FETI-DP of the first

problem FIλ1 = g1.

Since V r1
∗

1 is only a subspace of R
nI , it follows that the FETI-DP method equipped with the

starting value given by Eq. (36) and the orthogonalization procedure implied by Eq. (37) can be

expected to converge faster for the second problem than for the first one. This was extensively

demonstrated in [15] where this approach was first proposed, and in [9, 30] for various

applications. The extension of this methodology toNrhs > 2 right hand-sides is straightforward

and can be found in [15, 9]. Essentially, the matrices of search directions Vj and products FIVj

generated and performed during the solution of the previous problems are accumulated in two
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matrices V and W = FIV, repectively, and the scope of the orthogonalization procedure (37)

is extended to all accumulated and stored search directions. For many applications, convergence

was observed to be continuously accelerated from one right hand-side to the next one. This

is because for each additional right hand-side, the number of components of the new solution

that are captured by the starting value of the form of λ0
2 increases, and the dimension of the

supplementary space of the form of V r1
∗

1 in which the FETI-DP method is forced to iterate

decreases.

The computational methodology outlined above is applicable to any Krylov based iterative

solver. However, it is feasible only for DD based iterative solvers such as FETI-DP. Indeed,

iterative DD methods iterate only on subdomain interface unknowns whereas global iterative

methods iterate on all unknowns of a given problem. Hence, only in the case of a DD

method the storage of V and W = FIV is feasible, and only in this case the computational

overhead incurred by the inner products associated with the orthogonalization procedure (37)

is affordable.

5. DISTRIBUTED IMPLEMENTATION

The methodology described in the previous sections for solving Eq. (1) can be implemented

in a totally distributed fashion. Therefore, it is particularly suitable for parallel computing on

distributed memory systems including Linux clusters. First, a given FE mesh is partitioned

into subdomains using a mesh decomposer such as that described in [3, 11] or any other similar

software tool. Multiple subdomains are assigned to a given processor depending on the number

of generated subdomains and number of available processors. Each non-zero stiffness matrix

K(i) ∈ R
n×n, i = 0, . . . , P − 1 and associated displacement and force vectors are formed
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20 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

and assembled (if needed) on a subdomain-by-subdomain basis only. Each vector v ∈ R
nP is

divided into P number of n-dimensional blocks as follows

v =















































v(0)

v(1)

·

v(P−1)















































, v(i) ∈ R
n , (38)

and the blocks v(i) are distributed among the processors according to the distribution of the

mesh subdomains.

5.1. Implementation of the outer-PCG algorithm

The solution of problem (1) is initialized with u0 = 0. Convergence is monitored at the outer-

level and in this work, is declared when

‖Ku− f‖2 ≤ 10−8 × ‖f‖2 . (39)

At each outer-PCG iteration, a matrix-vector product of the form Kv is performed at the

block-level using the block partitioning outlined in Eq. (38), as follows

Kv =































































L−1
∑

i=0

P−1
∑

j=0

K(i)E{ψjψjψ0}v(j)
L−1
∑

i=0

P−1
∑

j=0

K(i)E{ψjψjψ1}v(j)

·
L−1
∑

i=0

P−1
∑

j=0

K(i)E{ψjψjψP−1}v(j)































































, v(j) ∈ R
n . (40)

Each block-level matrix-vector product K(i)v(j)
(

i = 0, . . . , L−1, K(i) 6= 0, j = 0, . . . , P−1

)

is performed in parallel on a subdomain-by-subomain basis. The triple products E{ψjψjψk},

0 ≤ i, j, k ≤ P − 1, involving the random variables are computed only once and stored in a

dense three-dimensional array that is replicated in each processor.
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5.2. Implementation of the inner-PCG algorithm

The FETI-DP method for computing the block-diagonal preconditioned residuals is invoked

only when a non-zero right hand-side ej(i)
(

see Eq. (20)
)

is encountered. This DD method,

which incorporates its own PCG solver, is equipped in this work with the Dirichlet

preconditioner [8] and the auxiliary coarse problem described in [12]. Within this DD method,

all local subdomain problems as well as the coarse problem are solved by a direct sparse

algorithm.

Unless otherwise mentioned, a maximum of 1, 000 search directions are accumulated and

stored throughout the calls to the FETI-DP solver in order to accelerate its convergence for

subsequent right hand-sides as described in Section 4.2. For any given problem, the convergence

of FETI-DP is declared when

‖FIλj − gj‖2 ≤ 10−6 × ‖gj‖2 . (41)

6. APPLICATION

The non deterministic static analysis on a Linux Cluster of the cylinder head of a car engine (see

Figure 3) with uncertainties in the material properties is considered here. Given a deterministic

static load, the objective is to estimate the statistics of the structural response using the

SSFEM outlined above. For this purpose, three finite element models of the cylinder head

with three different mesh sizes are considered: model CH1 with 54, 198 dof, model CH2 with

335, 508 dof, and model CH3 with 2, 290, 437 dof. All three models are constructed using three

different types of elements: eight-noded brick elements with three dof per node, three-noded

shell elements with six dof per node, and six-noded pentahedral elements with three dof per
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22 DEBRAJ GHOSH, PHILIP AVERY AND CHARBEL FARHAT

node. The cylinder head is assumed to be made of five different pieces whose Young moduli

Ei are assumed to be independent random variables that can be expressed as

Ei = Ēi +
σEi√

2
(ξ2i − 1) i = 1, . . . , 5 . (42)

In the above equation, Ēi denotes the mean value of Ei, σEi
its standard deviation, and the

ξis are independent standard normal random variables. To ensure the positivity of Ei, it is

assumed that ∀i, σEi√
2
< Ēi. Here, σEi

is assumed to be equal to 20% of Ēi for all i, and therefore

the aforementioned positivity constraint is satisfied. Furthermore, the structure is sufficiently

constrained to remove all possible rigid body modes. The displacement field is represented

by a fourth-order polynomial chaos expansion. The total number of chaos polynomials in this

expansion is P = 126. These are estimated by solving Eq. (1) by the PCG method equipped

with the incomplete block-diagonal preconditioner proposed in this paper.

Figure 3. Finite element discretization of a cylinder head.

First, Eq. (1) is solved for model CH1 using eight processors and four different mesh

decompositions with 22, 44, 90 and 223 subdomains, respectively. In each case, the CPU

time incurred by the preconditioning step is reported in Table I. As for any DD based iterative
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solver, there exists a range of number of subdomains for which the performance of FETI-DP

is optimal. In general, this range depends on many factors including the problem size. In this

case, this range appears to be in the neighborhood of 44 to 90. Figure 4 reports the history

of the number of FETI-DP iterations performed to achieve convergence for problem (20), as a

function of the j-th instance of its application to the solution of a problem of the form given

in (20). The reader can observe that after a few initial calls to the FETI-DP solver, the number

of iterations for convergence of this DD iterative solver drops significantly. This demonstrates

the effectiveness of the technique described in Section 4.2 for accelerating the iterative solution

of a system with multiple and/or repeated right hand-sides.

Ns FETI-DP CPU Time

22 100 sec.

44 82 sec.

90 94 sec.

223 122 sec.

Table I. Model CH1: performance of the FETI-DP solver for one problem of the form (20) using eight

processors.

Similarly, it is found that for models CH2 and CH3, the performance of the FETI-DP

iterative solver is optimal for numbers of subdomains in neighborhoods centered around 229

and 944, respectively. For this reason, all subsequent performance results are discussed for the

partitionings of models CH1, CH2 and CH3 into 44, 229, and 944 subdomains, respectively.

Next, Eq. (1) is solved for all three partitioned models CH1, CH2, and CH3 using an

increasing number of processors. The obtained performance results are reported in in Tables II
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Figure 4. Effectiveness of the Krylov subspace reusage technique for accelerating the convergence of

FETI-DP for problems with multiple and repeated right hand-sides.

and III, respectively, where Ns and Np denote the number of subdomains and processors,

respectively, NPCG
itr denotes the number of iterations for convergence of the overall PCG

method (outer-loop), and NFETI−DP
call and NFETI−DP

itr denote the total number of calls to the

FETI-DP solver and the accumulated number of performed FETI-DP iterations, respectively.

These results reveal XXXXX

Model Ns Np NPCG
itr NFETI−DP

call NFETI−DP
itr FETI-DP Total

and size CPU time CPU time

CH1 44 8 16 301 2,573 82 sec. 109 sec.

54,198 dof 44 4 16 301 2,573 158 sec. 212 sec.

CH2 229 16 17 322 4,520 512 sec. 601 sec.

335,508 dof 229 8 17 322 4,530 912 sec. 1072 sec.

Table II. Performance results for models CH1 and CH2.
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Model Np NPCG
itr NFETI−DP

call NFETI−DP
itr FETI-DP Total

and size CPU time CPU time

CH2 60 17 322 4,531 285 sec. 326 sec.

335,508 dof

CH3 60 16 301 6,432 2,548 sec. 2,863 sec.

2,290,437 dof

Table III. Performance results for models CH2 and CH3.

From the results reported in Table II and Table III, the following observations can be made:

• It is found that for the CH1 model, the solution on four processors of one preconditioning

problem of the form given in (20) consumes 5.5 seconds CPU. The solution on the same

four processors of 301 of such problems during the solution of the global problem (1)

consumes 158 seconds CPU — that is, 0.52 seconds on average per preconditioning

problem. This CPU efficiency of FETI-DP is not only due to the acceleration technique

described in Section 4.2, but also to the fact that the local matrices governing the

subdomain-by-subdomain version of problems (20) are factored only once, during the

first call to the FETI-DP solver.

• Model CH2 has 6.2 times more dof than model CH1. On eight processors, the total CPU

time consumed by FETI-DP during the solution of Eq. (1) for model CH2 is 11.2 times

larger than that consumed by FETI-DP during the solution of Eq. (1) for model CH1.

This illustrates the numerical scalability property of FETI-DP highlighted in Section 4.1.

• Similarly on eight processors, the total CPU time consumed by the overall PCG algorithm

for the solution of Eq. (1) associated with model CH2 is 9.8 times larger than that
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consumed for the solution of the similar equation associated with model CH1. This

suggets that the overall PCG algorithm proposed in this paper for the solution of Eq. (1)

is also numerically scalable.

• Model CH3 is 6.8 times larger than model CH2, and using 60 processors, the total CPU

time elapsed in the solution by FETI-DP of all of the preconditioning problems (1) is

9.1 times larger for CH3 than for CH2. Again, this illustrates FETI-DP’s numerical

scalability.

• Similarly on 60 processors, the total CPU time consumed by the overall PCG algorithm

for the solution of Eq. (1) is 8.78 times larger for model CH3 than for model CH2. Once

again, this suggests that the overall PCG algorithm proposed in this paper is numerically

scalable.

• Even though P = 126 and the proposed overall PCG algorithm converges in one (outer-)

iteration less for model CH3 than model CH2, the number of calls to the FETI-DP solver

is reported to be lower by 21 calls only for the case of model CH3. This is because only

21 of the 126 diagonal blocks in the preconditioner (19) turn out to be non zero.

7. CONCLUSIONS

An incomplete block-diagonal preconditioner and its FETI-DP solver tailored for systems

with multiple and repeated right hand-sides are proposed in this paper for the solution by

an outer PCG algorithm of large-scale block systems of deterministic equations arising from

the finite element stochastic analysis of structural problems with uncertainties. Performance

results obtained for a three-dimensional problem from the automotive industry suggest that

the proposed solution strategy is numerically scalable. These and similar performance results
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obtained for other stochastic problems also suggest that the proposed algebraic solver has the

potential for making the uncertainty quantification of realistic systems tractable.
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