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ABSTRACT. This paper describes a computational method for the analysis and mitigation via
shape optimization of the sonic boom associated with supersonic flight. The method combines
a CFD approach for determining the near-field pressure field and an acoustic scheme for pre-
dicting the initial shock pressure rise at the ground. Two different venues are considered and
compared for computing the ground signature, one based on a simple linear approximation
method and another on a more complex ray-tracing algorithm. The performance of both ap-
proaches is evaluated using flight test data obtained for two different configurations of an F5
fighter aircraft. The proposed computational technology also features an adjoint method for
accelerating the constrained shape optimization process. Two different approaches are consid-
ered for performing shape transformations, one based on CAD and one on a technique that
operates directly on triangulated surfaces. The resulting computational-based shaping technol-
ogy is illustrated with the sonic boom analysis of an F5 fighter aircraft and the optimization of
its nose section.
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1. Introduction

During the past two decades, simulation-based design methodologies have flour-
ished for a broad range of applications. These methodologies seamlessly connect
computer-aided design (CAD) techniques to numerical schemes for solving partial
differential equations. They also allow engineers to predict the performance of engi-
neering systems and to manipulate their geometry and material composition. Critical
design decisions can be made at early stages in the design process and the number of
costly design iterations involving the fabrication of prototypes can be reduced.

To allow for a formal and systematic design procedure, simulation and CAD tech-
niques have been integrated into mathematical design optimization methods such as
nonlinear programming and genetic and evolutionary strategies. Initially, this ap-
proach was motivated by time savings due to automating standard design problems
and by the possibility of explicitly formulating objectives and constraints. However,
it has been recently recognized that one of the major advantages of optimization-
based design methodologies is their ability to generate non-intuitive solutions that do
not depend on the experience of the engineer. In particular, this potential has been
demonstrated by topology and shape optimization methods for complex single- and
multi-physics applications such as the design of mechanisms for microelectromechan-
ical systems and multi-functional materials (Sigmund, 2001; Pajot et al., 2006; Rupp
et al., 2006). The complexity of these example applications stems from the large num-
ber of candidate designs and/or the coupling of multiple physical fields. Mathematical
optimization methods do not only allow for a systematic exploration of the resulting
design spaces but are also able to find solutions to seemingly irresolvable, contra-
dictory problems such as micro-structured materials with negative Poisson ratios and
refraction indices.

In aerospace engineering, a similar “irresolvable” problem is concerned with the
elimination or reduction of the sonic boom caused by an aircraft at supersonic speed.
The very moment Chuck Yeager broke the sound barrier in 1947, the question was
raised whether or not it is possible to fly supersonic without generating a sonic boom
at the ground. However, already in 1955 Busemann (Busemann, 1955) showed that
eliminating the sonic boom is impossible due to an inescapable lift contribution. Thus,
the question remained how to reduce the sonic boom by optimally shaping the aircraft
and positioning the propulsion system. To understand the complexity of this problem,
one needs to consider the phenomena involved in the generation and propagation of
the acoustic signature of an aircraft. As shown in Figure 1, a moving body causes a
pressure disturbance along its surface at flight altitude. While the near-field pressure
disturbance is propagated down to the ground, shocks coalesce forming typically a
two-shock signature, such as an N-wave, with a front and a rear shock. The strength of
the sonic boom at the ground can be measured, for example, by the total impulse, the
initial shock pressure rise (ISPR), and the maximum pressure as illustrated in Figure
2. Consequently, the solution to designing a low-boom aircraft involves predicting the
near-field and the far-field pressure fields as well as finding the optimal configuration
of the aircraft, including its geometry and propulsion system.
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Figure 1. Propagation of pressure disturbance with overpressure signatures at near-
field, mid-field, and at the ground.
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Figure 2. Overpressure signatures: (1) minimum impulse with an ISPR of ∆p, (2)
minimum ISPR ∆p, (3) minimum overpressure with ISPR ∆p, followed in a finite rise
time τ by a maximum pressure ∆pmax.
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The near-field pressure can be computed by standard numerical flow solvers, typ-
ically based on Euler or Navier-Stokes flow models discretized by finite element or
finite volume methods. In theory, the same or similar approaches could be applied
for computing the far-field pressure fields. This, however, would require the dis-
cretization of the entire space between the aircraft and the ground leading to im-
practical computational problems. Instead, simplified methods are used to propa-
gate the pressure disturbance from the near-field to the ground. The computationally
least expensive and today most commonly used approaches rely on a modified lin-
ear theory (MLT) for predicting the ground signature. This theory was introduced by
Whitham (Whitham, 1952) and later refined by Lomax (Lomax, 1955) and Walkden
(Walkden, 1958). The three-dimensional pressure field is cast into a one-dimensional
function, called the F -function, describing the wave field of an equivalent body of
revolution. The MLT “corrects” the original linearized theory with second-order ef-
fects to track the propagation of near-field waves through an isothermal atmosphere
into the bow and tail shock of the N-wave asymptotic far-field solution. McLean
(McLean, 1965) introduced a formula to compute the strength of the front and rear
shocks for a given F -function, reducing the computational burden of propagating the
pressure disturbance to building and integrating the F -function.

More accurate acoustic propagation methods are not based on the assumption of
a two-shock ground signal and model the propagation of the aircraft acoustic signa-
ture through the real atmosphere. These methods are typically based on ray-tracing
techniques and track individual shocks starting from the near-field pressure distribu-
tion or, alternatively, from the corresponding F -function. They account for second-
order effects associated with the propagation of weak shocks that accumulate to first-
order shocks and real atmosphere models, such as the US Standard Atmosphere.
While more involved and computationally more costly than McLean’s approach, these
acoustic propagation methods allow for considering arbitrarily shaped waves and fine-
tuning the overall ground signature.

Based on the MLT and the two-shock assumption, lower bounds on the minimum
achievable sonic boom were established early on for a given aircraft length, weight,
free-stream Mach number, and altitude (George et al., 1969). This approach allows
for the optimization of the cross-sectional area distribution of an equivalent body of
revolution, separately for one of the performance measures mentioned above (see Fig-
ure 2). However, there is no unique relation between the cross-sectional area dis-
tribution and the corresponding geometry of an aircraft as both the physical volume
and lift distribution contribute to the cross-sectional area distribution of the equivalent
body. Thus, the engineer is left with finding the aircraft geometry that matches the
optimum F -function as well as possible while satisfying structural and aerodynamic
constraints. This approach resulted in the low-boom designs of the 1960s and 1970s
(Carlson, 1964; Darden, 1977; Carlson et al., 1973).

The most significant shortcomings of the two-step procedure outlined above are
two-fold: First, only two-shock ground signatures can be considered. However, these
two-shock signatures are developed assuming that all intermediate shocks generated
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near the vehicle coalesce into the bow and tail shocks before reaching the ground,
representing the worst-case scenario. More complex ground signatures with multiple
shocks typically result in lower total momentum and ISPR. The second shortcoming
is due to an inconsistent subdivision of the overall optimization problem into two
subproblems. Design constraints cannot be accounted for finding the “optimal” area-
distribution. Therefore, the geometry that approximates the “optimum” F -function the
best is not necessarily the solution of the overall constrained optimization problem.

Motivated by the recently revived interest in supersonic aircraft for civil and mil-
itary applications (, High Speed Civil Transport – Program Review, n.d.; , Quiet
Sonic Platform (QSP), n.d.), various optimization approaches have been presented
to overcome the shortcomings of the two-step procedure and other methods based on
finding an “optimal” equivalent body of revolution (Yamaguchi et al., 1998; Farhat
et al., 2002b; Farhat et al., 2004; Farhat et al., 2007; Miles et al., 2002; Farhat et
al., 2002a; Nadarajah et al., 2002; Vázquez et al., 2002; Karr et al., 2003; Vázquez
et al., 2004; Rallabhandi et al., 2006). All of these alternative approaches operate di-
rectly on the true aircraft geometry and integrate a numerical flow solver into a formal
optimization method. Most approaches account for additional aerodynamic perfor-
mance criteria, such as drag and lift, and include these either as part of the objective
or as design constraints. With the exception of a few methods relying on genetic al-
gorithms (Yamaguchi et al., 1998; Rallabhandi et al., 2006), the design problem is
formulated as a nonlinear program and solved by gradient-based optimization meth-
ods. The gradients of the objective and constraints are either evaluated by the direct
approach (Farhat et al., 2002b; Farhat et al., 2002a; Farhat et al., 2004) or the adjoint
method (Nadarajah et al., 2002; Vázquez et al., 2002).

Significant differences, however, exist with respect to the technique for manipu-
lating the shape and the approach for evaluating the strength of the sonic boom at
the ground. Shape variations are described either by a CAD-based approach or by
varying directly the position of the vertices on the surface in the computational mesh.
The latter approach is often labeled CAD-free. CAD-based techniques typically re-
quire a direct link between the original CAD model and the computational mesh.
Alternatively, a simplified CAD model can be reconstructed based on the computa-
tional mesh (Samareh, 1999; Raulli et al., 2002). The main advantages of CAD-
based techniques are that possible shape variations can be defined by a small num-
ber of optimization variables, and tightly controlled to avoid unwanted shapes from
being generated. In comparison, CAD-free approaches allow for a larger variety of
shape changes at the cost of lesser shape control and a larger number of optimiza-
tion variables (Jameson, 1997; Jameson et al., 1998). In addition, varying directly the
vertices in the computational mesh limits the magnitude of shape changes as infea-
sible mesh distortions are likely to happen. Studies on shape optimization for low-
boom design have used either a CAD-based approach (Farhat et al., 2002b; Farhat et
al., 2002a; Farhat et al., 2004; Farhat et al., 2007) or a CAD-free technique (Nadarajah
et al., 2002; Vázquez et al., 2002; Vázquez et al., 2004; Vázquez et al., 2006) but have
not directly compared these approaches for the same design problem. Thus, it is not
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yet clear whether a CAD-based or CAD-free approach is more advantageous for low-
boom design.

A variety of approaches are available for measuring the strength of the sonic boom.
On the other hand, only a few optimization methods that evaluate the entire ground
signature using a ray-tracing algorithm (Rallabhandi et al., 2006) or that approximate
some characteristics of the ground signature such as the ISPR by the MLT (Farhat
et al., 2002b; Miles et al., 2002; Farhat et al., 2002a; Farhat et al., 2004; Farhat et
al., 2007) have been developed. The major challenge with such approaches is the
integration of the ground signature analysis method into the optimization scheme,
in particular when gradients are required. Rallabhandi and Mavris (Rallabhandi et
al., 2006) have alleviated these challenges by embedding a ray-tracing method into a
genetic algorithm. Farhat et al. (Farhat et al., 2002b; Farhat et al., 2004; Farhat et
al., 2007) have evaluated the ISPR using McLean’s formula (McLean, 1965) and have
presented a direct method for evaluating the gradients of the ISPR with respect to the
shape parameters. All other published optimization methods construct a cost function
that is solely based on the near-field pressure and its spatial derivatives. Nadarajah et
al. (Nadarajah et al., 2002) have sought to match an “ideal” near-field pressure distri-
bution while also considering the aerodynamic drag in the objective function. Vazquez
et al. (Vázquez et al., 2002) have constructed an objective function that includes the
norm of the pressure gradients integrated over the reference plane below the aircraft.
In addition, the differences between the lift and drag coefficients with respect to target
values are minimized. Because all of these studies have considered only one particular
formulation of the objective function, it has not yet been established whether mitigat-
ing the sonic boom via shape optimization requires evaluating the ground signature
using a ray-tracing method or whether using McLean’s formula to approximate the
ISPR suffices for this purpose.

Hence, this paper focuses on studying the influence of the chosen objective func-
tion and shape manipulation technique on the optimal shape for low-boom design. It
also presents a general adjoint sensitivity analysis framework for computing the gra-
dients of the sonic boom measure that is independent of the chosen boom analysis
method. However, since an indirect near-field-based approximate formulation of the
ground signature does not offer any significant advantage over the direct evaluation
of the strength of the sonic boom on the ground, such a boom analysis approach is
not considered here. Instead, McLean’s formula (McLean, 1965) and the ray-tracing
algorithm first published in (Hayes et al., 1968) are considered for this purpose. The
accuracy of both of these two approaches is assessed using ground signature test data
obtained for one original F5 fighter configuration and one that was modified to re-
duce the ISPR and achieve a flattop ground signature (Pawlowski et al., 2004). This
test data is also used to compare the results generated by the various optimization
approaches outlined above.

The remainder of this paper is organized as follows. A brief overview of the sonic
boom analysis methods used in this study is given in Section 2. An adjoint formulation
of the design sensitivity analysis is described in Section 3. The techniques considered
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in this work for manipulating shape and shape variations are summarized in Section
4. The optimization results obtained using the various methodologies outlined above
are discussed in Section 5. Finally, conclusions are offered in Section 6.

2. Sonic Boom Analysis

Here, two approaches are overviewed for evaluating the strength of the sonic boom
at the ground, namely, McLean’s simple approximation (McLean, 1965) and a ray-
tracing algorithm implemented in the ARAP code (Hayes et al., 1968). Both ap-
proaches operate on the F -function:

F (y) =
1

2π

∫ y

0

S′′

V (x) + S′′

L(x)√
y − x

dx, [1]

which is defined along an axis whose origin is located at or near the nose of the air-
craft and runs parallel to the fuselage (see Figure 3). Here, a ′ superscript denotes a
derivative with respect to the spatial coordinate x. In equation [1], SV denotes the
cross-sectional area due to the volume of the equivalent body of revolution and is
given by

SV (x) = A(x) sin θ. [2]

The cross-sectional area A(x) is generated by the intersection of the aircraft and the
planes forming a constant angle θ with the x-axis. With α denoting the angle of attack
and µ the Mach angle, the angle θ in [2] is defined as follows:

θ = µ − α with µ = sin−1 1

M∞

, [3]

where M∞ denotes the free-stream Mach number. The cross-sectional area of the
equivalent body of revolution due to lift, SL, is given by

SL(x) =
β

ρ∞U2
∞

∫ x

0

l(ξ) dξ, [4]

where β =
√

M2
∞

− 1 is the Prandtl-Glauert factor and ρ∞ and U∞ are the free-
stream density and speed, respectively. The lift distribution along the x axis is denoted
by l and computed from a CFD approximation of the near-field pressure.

2.1. McLean’s formula

Assuming that multiple shocks present in the near- or mid-field coalesce before
reaching the ground, the sonic boom ISPR on the ground can be approximated by:

∆p =
2

5

4

H
3

4

γ√
γ + 1

(M2
∞

− 1)
1

8

√

papg

∫ y0

0

F (y) dy, [5]
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Figure 3. Definition of the x, y and z axes, Mach angle µ, angle of attack α, and
angle θ.

where H denotes the flight altitude, γ is the ratio of specific heats, pa is the pressure
at the specified flight altitude and pg the pressure on the ground. The integral over
the F -function is evaluated from the nose of the aircraft to the balance point, y0, with
F (y0) = 0, capturing all contributions feeding into the front shock (Whitham, 1952;
McLean, 1965).

2.2. Ray-tracing method

Acoustic ray-tracing methods do not require the assumption on the near- or mid-
field coalescence, yield more accurate results than McLean’s formula and provide the
full shape of the ground signature which can then be further processed to extract per-
formance measures such as the ISPR, the maximum overpressure, etc. In this study,
the ray-tracing algorithm available in the ARAP code (Hayes et al., 1968) is consid-
ered. From the knowledge of the F -function, ARAP generates a ground signature
∆p(z) as a function of z. Treating the underlying ray-tracing method as a black box,
the propagation of the pressure field can be represented as follows:

∆p(z) = M
(

y, F (y)
)

. [6]

The ISPR or the maximum positive overpressure, for example, can then be ex-
tracted from ∆p(z). For optimization purposes, a differentiable approximation of
the maximum such as the Kreisselmeier-Steinhauser (KS) function (Kreisselmeier et
al., 1983) can be used. If the ground signature ∆p(z) is given at Ng distinct locations
zi, i = 1 . . .Ng , the maximum of ∆p(zi) is approximated as follows:

∆pmax =
1

η
ln

(

∑

Ng

eη∗∆p(zi)
)

with η > 1. [7]

In section 5, the maximum overpressure approximated by [7] is used as an alternative
objective to the ISPR evaluated by McLean’s formula.
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modifications

(a) F5−E (b) SSBD

Figure 4. CAD models of the F5-E and SSBD designs.

2.3. Application to the F5 fighter aircraft

To illustrate their accuracy properties, the two sonic boom prediction methods out-
lined above are applied here to the prediction of the ground signatures of two config-
urations of the F5 fighter aircraft: (a) an original type E configuration (F5-E), and (b)
a configuration with a reshaped nose section designed specifically to generate a low
boom with a flattop ground signature (Pawlowski et al., 2004; Plotkin et al., 2004).
In the following, the modified configuration is referred to as the SSBD — that is, the
Shaped Sonic Boom Demonstrator. CAD models of the F5-E and SSBD are shown
in Figure 4. The ground signatures for both aircraft configurations were measured for
M∞ ≈ 1.32 at the altitude H = 9.75 km.

The underlying CFD technology is built around the finite volume code AERO-F
(Farhat et al., 2003) for predicting the near-field pressure distribution and the nu-
merical approximation of the F -function described in (Farhat et al., 2002b; Farhat
et al., 2004; Farhat et al., 2007). The latter can be used either in conjunction with
McLean’s formula for predicting the ISPR on the ground or the ARAP code for com-
puting the ground signature.

Modeling in each case only one half of the aircraft and applying symmetry bound-
ary conditions along the symmetry plane, the computational domain for the F5-E con-
tains 1, 986, 319 tetrahedra and 389, 569 grid points, 98, 643 of which are located on
the surface of the aircraft. The half-model of the SSBD contains 2, 121, 227 tetrahedra
and 417, 017 grid points, 106, 375 of which are surface nodes. Estimating the over-
all weights of the two aircraft configurations (Plotkin et al., 2004), both models were
trimmed for a level steady-state flight at M∞ = 1.32 and H = 9.75 km by adjusting
the angle of attack α so that the lift balances the weight.

The contour plots of the local Mach number are given in Figure 5 for the half-
models including the symmetry planes. The aerodynamic performance of the trimmed
models in terms of lift, drag, and center of pressure measured from the nose of the
aircraft are summarized in Table 1 for the full aircraft counterparts. The drag is under-
estimated as the underlying Euler model accounts only for the wave drag. However,
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Configuration Lift [kN ] Drag [kN ] xcp [m] α [deg]
F5-E (full model) 108.85 28.18 10.30 2.05
SSBD (full model) 108.85 30.53 10.42 2.42

Table 1. Lift, drag, center of pressure and angle of attack for the F5-E and SSBD at
trimmed state-steady flight.

(b) SSBD(a) F5−E

Figure 5. Mach number contour plots for the F5-E and SSBD configurations.

for the purpose of sonic boom analysis and low-boom design, the accuracy of the drag
prediction is not particularly important.

The measured and numerically predicted ground signatures and ISPR values are
reported in Figure 6 (in English units and in pounds per square feet)and Table 2,
respectively. Despite the uncertainty with respect to the exact flight conditions and
estimated weights, the flight test and numerical results appear to be in good agreement.
For the two-shock signature of the F5-E, both McLean’s formula and ARAP predict
very accurately the ISPR. As expected, for the multi-shock signature of the SSBD,
ARAP predicts a lower ISPR value (13% in this case) and McLean’s formula a higher
ISPR value (10% in this case). Considering the aforementioned data uncertainties,
these results not only verify both sonic boom analysis methods but also suggest that
McLean’s formula leads to a satisfactory approximation of the ISPR even in the case
of multiple shocks at the ground.

Configuration ISPR (measured) ISPR (ARAP) ISPR (McLean)
[lb/ft2] [lb/ft2] [lb/ft2]

F5-E 1.21 1.28 1.21
SSBD 0.90 0.78 0.99

Table 2. Comparison of the measured and numerically predicted ISPR values for the
F5-E and SSBD configurations at trimmed state-steady flight.
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Figure 6. Measured and numerically predicted ground signatures of the F5-E and
SSBD configurations.

3. Adjoint Sensitivity Analysis

An accurate and efficient method for evaluating the gradients of the objective func-
tion and constraints with respect to the optimization parameters is a crucial compo-
nent of a gradient-based optimization scheme. Finite-differencing schemes can be
used for low-dimensional problems. They typically diminish the burden of imple-
mentation but incur higher computational costs and can lead to inaccurate gradients
thereby affecting the convergence of the optimization process. For a large number of
optimization variables, such schemes lead to unacceptable computational costs even
for small, low-fidelity, CFD models. The authors’ experience with various types of
flow problems, including those involving coupled fluid-structure interaction (Maute et
al., 2001; Maute et al., 2003), is such that they advocate analytical sensitivity analysis
methods that feature higher accuracy at lower computational costs. While automatic
differentiation tools can alleviate implementation issues, deriving and implementing
the analytical sensitivity equations often result in a computationally more efficient
segment of code.

In previous work on shape optimization for low-boom design (Farhat et al., 2002b;
Farhat et al., 2002a; Farhat et al., 2007), the authors presented a direct formulation for
evaluating the gradients of the near-field pressure, the F -function and the ISPR evalu-
ated by McLean’s formula with respect to optimization parameters defining the shape
of the aircraft and the free-stream conditions (Mach number and angle of attack). In
this paper, an adjoint formulation is introduced allowing the computation of the gra-
dients of the entire ground signature and those of McLean’s ISPR approximation with
respect to a large number of optimization parameters. To this effect and in order to
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keep the presentation as short as possible, a generic optimization criterion q repre-
senting the objective function or a constraint is considered. This criterion depends
explicitly on the F -function and the optimization parameters si, i = 1 . . .Ns and can
be written as

q = q
(

si, F (si, pΓ)
)

. [8]

The F -function, in turn, depends on the geometry of the aircraft, the free-stream Mach
number, density, and angle of attack, and the near-field pressure distribution repre-
sented by the vector of pressure values, pΓ, at the vertices on the surface of the aircraft
Γ. Equation [8] can represent both McLean’s formula [5] as well as any performance
measure extracted from the ground signature computed by a ray-tracing method [6]
such as the maximum overpressure [7].

The derivative of the optimization criterion [8] with respect to the optimization
variable si at a steady-state flow solution can be expressed as follows:

dq

dsi

=
∂q

∂si

+
∂q

∂pΓ

t dpΓ

dsi

, [9]

where the superscript t denotes the transpose operation. The first term collects all
explicit dependencies of q and F on optimization parameters such as the shape of
aircraft and the free-stream conditions. These explicit dependencies include the area
distribution of the equivalent body of revolution A(x) in the volume contribution SV

[2] and its spatial derivatives, as well as the scaling factors in the lift contribution
SL(x) [4] and in McLean’s formula [5]. The only component that depends on the
near-field pressure and the fluid state is the lift distribution l(x) in the lift contribution
SL to the F -function.

Representing symbolically the steady-state conditions of the discrete flow equa-
tions by

R
(

si, w(si)
)

= 0, [10]

where w denotes the vector of fluid state variables in conservative form, the derivative
of the pressure pΓ can be written as follows:

dpΓ

dsi

=
∂pΓ

∂w

dw

dsi

[11]

with

dw

dsi

= −
[

∂R

∂w

]

−1
∂R

∂si

. [12]

Substituting the expressions for the derivatives of the flow state [12] and for the pres-
sure derivatives [11] into the derivative of the design criterion [9] yields the following
equation:

dq

dsi

=
∂q

∂si

− ∂q

∂pΓ

t ∂pΓ

∂w

[

∂R

∂w

]

−1
∂R

∂si

. [13]
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The adjoint of the near-field pressure field a is then computed by solving once:
[

∂R

∂w

]t

a =
∂pΓ

∂w

t ∂q

∂pΓ

[14]

and then evaluating the remainder of [13] for each optimization variable si as follows:

dq

dsi

=
∂q

∂si

− at dR

dsi

. [15]

The main advantage of the adjoint approach is that a linear system of equations involv-
ing the flux Jacobian is solved only once. In contrast, the direct approach described in
(Farhat et al., 2002b; Farhat et al., 2002a; Farhat et al., 2007) requires as many solu-
tions of a linear system of the same size as [14] as there are optimization variables.

The partial derivatives in [14] and [15] can be either evaluated based on the an-
alytically derived discretized fluid equations or by finite differencing. In this work,
all partial derivatives are evaluated analytically, with the exception of the derivatives
of the sonic boom measure using the ARAP ray-tracing method. The gradients of the
F -function and McLean’s formula with respect to the optimization variables and pres-
sure gradients can be derived analytically (Farhat et al., 2002b; Farhat et al., 2007).
Treating the ray-tracing method as a black-box tool requires computing the derivatives
∂q/∂pΓ in [14] and ∂q/∂si in [15] by finite differencing. The evaluation of the ground
signature, ∆p(z), by ARAP only depends on the length of the equivalent body of rev-
olution, y, and the F -function. For both quantities, one can compute the derivatives
analytically (Farhat et al., 2002b; Farhat et al., 2007). A numerically efficient finite
difference scheme for any q = q(∆p) can be constructed by decomposing ∂q/∂pΓ

and ∂q/∂si into contributions with respect to the geometry, y and the F -function as
follows:

∂q

∂si

=
∂q

∂(∆p)

(

∂(∆p)

∂y

∂y

∂si

+
∂(∆p)

∂F

∂F

∂si

)

[16]

and

∂q

∂pΓ

=
∂q

∂(∆p)

∂(∆p)

∂F

∂F

∂pΓ

. [17]

The directional derivatives involving the ground signatures are approximated by a
central difference scheme with a perturbation size ε:

∂(∆p)

∂F

∂F

∂pΓ

≈ ∆p(y, F p+) − ∆p(y, F p−)

2ε
[18]

where

F p+ = F + ε
∂F

∂pΓ

F p− = F − ε
∂F

∂pΓ

[19]
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and
(∂(∆p)

∂y

∂y

∂si

+
∂(∆p)

∂F

∂F

∂si

)

≈ ∆p(ys+, F s+) − ∆p(ys−, F s−)

2ε
[20]

with

ys+ = y + ε ∂y
∂si

ys− = y − ε ∂y
∂si

F s+ = F + ε ∂F
∂si

F s− = F − ε ∂F
∂si

. [21]

The finite difference approach described above requires two ARAP evaluations for
the ±ε perturbations of the pressure values of each vertex on the surface of the air-
craft and for each optimization variable. For applications such as those considered in
this paper, the runtime of ARAP is typically in the order of seconds CPU time. The
aforementioned partial derivatives are computed only once per iteration of the opti-
mization process. The above finite difference scheme is easily parallelized. For all
these reasons, the computational costs associated with this selective finite difference
scheme amount to an insignificant overhead when compared to those of the overall
optimization process.

As for the derivative of the sonic boom measure, the derivatives of the aerodynamic
force and moment criteria such as the drag, lift, and pitch moment can be evaluated
by the adjoint approach. Computing the partial derivatives of these criteria is less in-
volved as they only depend on the integration of a function that explicitly depends on
the vertex pressures over the surface of the aircraft. In this work, the lift, drag, and
pitch moment are considered as constraints. Their derivatives are evaluated by the ad-
joint method based on analytically derived expressions for the partial derivatives. The
reader is referred to Maute et al (Maute et al., 2003) for details about the formula-
tion and implementation of the adjoint sensitivity analysis for aerodynamic force and
moment criteria.

4. Approaches for Handling Shape Variations

Here, a CAD-based method and a CAD-free approach for describing shape
changes for low boom design optimization are compared. In both cases, it is assumed
that the optimization process starts from a well-defined initial design and the initial
shape is defined through the position of the vertices of the surface fluid mesh, x0

Γ.
Even for the CAD-based approach, the authors adopt this problem setup in this work
as it does not require defining shape variations in the original CAD model, which can
be a complex proposition.

In general, parametric shape variations techniques define shape changes via the
motion of the vertices on the surface of the aircraft as a function of the optimization
variables s.

xΓ = x0
Γ + ∆xΓ(si). [22]
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Both of the CAD-based and CAD-free methods considered here are based on a linear
form of ∆x(si):

∆xΓ(s) =
∑

Ns

∆xΓ,i si, [23]

where ∆xΓ,i represents a basis vector of the shape change and the optimization vari-
able si defines the magnitude of the shape change. The main difference between the
CAD-based and CAD-free methods considered herein is the approach for construct-
ing the basis vectors ∆xΓ,i. In both cases, the shape changes are only defined on
the surface Γ of the aircraft. However, to allow for large shape changes, the overall
volume mesh needs to be updated as the positions of the surface vertices change. For
this purpose, a robust and efficient mesh updating strategy developed by Farhat and
co-workers (Farhat et al., 2002; Degand et al., 2002) for the numerical simulation of
fluid-structure interaction problems is adopted. More specifically, the motion ∆xΩ of
the vertices within the computational fluid domain Ω is modeled by the deformation
of a fictitious structure subject to prescribed displacements ∆xΓ on the surface Γ. In
matrix format, the mesh updating procedure can be described as the solution of the
following problem:

KΩΩ ∆xΩ = −KΩΓ ∆xΓ, [24]

where KΩΩ and KΩΓ are the fictitious stiffness matrices associated with the
fluid mesh and constructed using an improved torsional spring approach to prevent
crossovers of fluid cells during the update (Farhat et al., 2002; Degand et al., 2002).
In general, there is no need to solve the fictitious deformation problem [24] with high
accuracy. Usually, a few iterations of a preconditioned conjugate gradient algorithm
suffice to update the mesh positions.

For the adjoint sensitivity analysis, equation [15] calls for the evaluation of the
derivatives of the flow residual vector with respect to the optimization variables,
∂R/∂si. As the flow residual depends explicitly on xΓ and xΩ, the derivative of
the position of the vertices with respect to the shape optimization variables needs to
be computed. Differentiating the generic shape variation equations [22] and [23], the
derivative of the position of the vertices on the surface Γ is:

∂xΓ

∂si

= ∆xΓ,i. [25]

Differentiating the mesh motion equation [24], the derivative of the position of the
vertices in the interior of the fluid domain can be computed by solving:

KΩΩ
∂xΩ

∂si

= −KΩΓ
∂xΓ

∂si

. [26]

4.1. CAD-based shape variation of triangulated surfaces

In order to define shape variations using CAD interpolation schemes such as
splines and Coons patches, a simple CAD model enclosing the segments of the tri-
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modifed

(a) design element model (a) shape variation

original

Figure 7. CAD-based definition of the shape variations based on the design element
concept illustrated with a wing segment.

angulated surfaces whose shape is to be varied can be constructed. This is illus-
trated in Figure 7a using an academic example. Following a design element concept
(Imam, 1982; Bletzinger et al., 1991), the CAD model consists of control nodes, edge
curves and surface patches that form volume design elements. The position of a vertex
xj of the triangulated surface can be uniquely defined by the local coordinate ξj of
the enclosing volume design element:

xj =
∑

Nc

N c(ξj) xc, [27]

where the matrix N c collects the coefficients of all edge, surface, and volume interpo-
lations and xc are the positions of the Nc control nodes of the volume design element.
The motion of the control nodes can be defined as a linear function of the optimization
variables:

∆xc =
∑

Ns

∆xc,i si, [28]

where ∆xc,i denotes the contribution of the ith optimization variable to the change in
the position of the control node ∆xc. Substituting [28] into [27] and comparing the re-
sulting expression with the generic shape variation approach [22] and [23] shows that
in the design element method, the components of the basis vector ∆xΓ,i associated
with the jth surface vertex are constructed as follows:

(

∆xΓ,i

)

j
=

∑

Nc

N c(ξj) ∆xc,i. [29]

The above approach can easily be extended to nonlinear functions linking the opti-
mization variables to the motion of the control nodes. In Figure 7b, the shape changes
due to vertical upward and downward motion of the internal control nodes of the up-
per Bezier splines are shown. For further details, the reader is referred to (Raulli et
al., 2002).
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(a) selected vertex (b) stencil 

(c) scaling field (c) shape variation 

n

Figure 8. CAD-free shape variation technique.

4.2. CAD-free parametric shape variation

To allow for a maximum number of possible shape changes, one can treat the
motion of each vertex normal to the surface Γ as an independent optimization variable.
In this case, the basis vector ∆xΓ,i is simply the normal vector n to the surface at xΓ.
However, this simplistic approach results in an ill-posed optimization problem as the
discretized fluid model cannot resolve all possible shape variations (Jameson, 1997;
Jameson et al., 1998). The shape variations need to be sufficiently smooth with respect
to the spatial resolution of the fluid mesh.

Various schemes have been proposed for smoothing the shape variations generated
by treating the motion of each vertex in normal direction as an independent optimiza-
tion variable (Jameson, 1997; Jameson et al., 1998; Vázquez et al., 2002). However,
depending on the mesh-updating scheme, this approach may either lead to significant
computational costs for computing the mesh motion derivatives or require approxi-
mating the mesh motion derivatives. Using the mesh motion scheme described above,
for example, the linear system [26] needs to be solved as many times as there are
vertices on the surface Γ. In the case of the F5-E model, there are 98, 643 surface
vertices leading to unacceptable computational costs. These computational costs can
be eliminated, for example, by neglecting the mesh motion derivatives in the interior
of the computational domain — that is, by setting ∂xΓ/∂si = 0 — at the risk of
calculating inaccurate sensitivities and possibly deteriorating the convergence of the
overall optimization process.

To overcome the shortcomings of treating the motion of every surface vertex as an
independent optimization variable, the following modified technique is suggested and
illustrated in Figure 8: (a) select Ns surface vertices x0

i where Ns is typically smaller
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than the total number of surface vertices. The surface vertices can be chosen to obtain
either a uniform distribution or one with concentrations in certain areas. (b) Select a
stencil that defines a set of nodes x

j
i in the vicinity of the selected vertex x0

i . These
nodes will move along with x0

i . The vertex sets should have a sufficient overlap. (c)
For each vertex set, construct a smooth scaling field κj

i assigning the center vertex
x0

i the scaling factor κ0
i = 1 and the vertices on the stencil boundary xsb

i the factor
κsb

i = 0. For example, a smooth scaling field can be obtained as the solution of the
Laplace equation with Dirichlet boundary conditions κ0

i = 1 and κsb
i = 0. (d) Build

the components of the basis vector ∆xΓ,i associated with the jth surface vertex in the
ith vertex set as follows:

(

∆xΓ,i

)

j
= κj

i nj , [30]

where nj is the normal vector of the surface Γ at the jth vertex. For vertices located
on a symmetry plane, the motion of these vertices is restricted to in-plane directions.

Using the CAD-free scheme described above, the smoothness of the shape changes
can be increased by increasing the number of optimization variables and the size of
the stencil defining the vertex sets.

5. Application to the Shape Optimization of an F5 Aircraft for Sonic Boom
Mitigation

To illustrate their applicability and performance, the sonic boom analysis method,
adjoint sensitivity analysis approach, and both shape variation techniques described in
the previous sections are applied here to produce an alternative SSBD design of the
F5-E aircraft. The shape variations are restricted to approximately the same surface
sections modified in the SSBD design. Design constraints are imposed on the maxi-
mum feasible drag, minimum feasible lift, and on the location of the center of pres-
sure. Two formulations of the objective function are compared: (a) MCL: minimize
the ISPR predicted by McLean’s formula [5], and (b) RTM: minimize the maximum
overpressure based on ARAP’s prediction of the ground signature and a maximum
approximation by the KS function [7].

Furthermore, the influence of the shape variation technique is studied by compar-
ing the results obtained using the CAD-based (CB) and CAD-free (CF) approaches.
The design element model is constructed around the same front section of the F5-E
that was modified in the SSBD design and is shown in Figure 9a. The design model
contains three volume Coons elements with Coons patches as surface elements. The
edges along the fuselage axis are 4-node cubic Bezier splines. The remaining edges
are represented by 2-node line elements. The volume elements enclose 2, 045 vertices
of the computational surface mesh. The motion of the control nodes is coupled re-
sulting in six basis vectors (29) that are depicted in Figure 9b. Using the CAD-free
approach, the shape variations are defined by 100 (V100) and 1, 000 (V1000) opti-
mization variables. The locations of the center vertices x0

i are shown in Figure 10.
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variable 1 variable 2

variable 4variable 3

variable 5 variable 6

(b) Shape variations associated with the optimization variables

(a) Design element model

Figure 9. CAD-based definition of shape variations for the F5-E configuration.

(a) 100 variables (b) 1000 variables

Figure 10. Locations of the center vertices for the CAD-free approach using 100 and
1, 000 variables.

The two different formulations of the objective function and the CAD-based
and CAD-free shape handling methods result in six optimization problems labeled
here MCL-CB, MCL-CF-V100, MCL-CF-V1000, RTM-CB, RTM-CF-V100, and
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MCL-CB MCL-CF-V100 MCL-CF-V1000
∆pmax - ARAP [lb/ft2] 0.36 0.87 1.05
ISPR - McLean [lb/ft2] 0.64 0.88 1.04

RTM-CB RTM-CF-V100 RTM-CF-V1000
∆pmax - ARAP [lb/ft2] 0.64 0.84 0.77
ISPR - McLean [lb/ft2] 0.91 0.94 1.06

Table 3. Comparison of the maximum overpressure and ISPR values predicted by
ARAP and McLean’s formula, respectively, for the optimized F5 configurations.

RTM-CF-V1000. For all problems, the resulting nonlinear problem can be formu-
lated as follows:

mins Z
s.t. 1 − D

Dmax
≥ 0 drag constraint

L
Lmin

− 1 ≥ 0 lift constraint
1 − xcp

xmax
≥ 0 center of pressure constraint

xcp

xmin
− 1 ≥ 0 center of pressure constraint

si ∈ <|si ≤ si ≤ si

[31]

where Z is the cost function discussed above, D is the drag, L the lift, and xcp the
x-coordinate of the center of pressure. The upper limit of the drag is set to that of
the SSBD — that is, Dmax = 30.53 kN . The lower limit of the lift is set to the
weight of the aircraft and therefore Lmin = 108.85 kN . The center of pressure is
allowed to vary between that of the F5-E and that of the SSBD configuration — that
is, xmin = 10.30 m and xmax = 10.42 m. The upper and lower bounds for the
optimization variables are set so that the shape changes remain sufficiently small and
the mesh update scheme described in section 4 can generate valid fluid meshes.

In all cases, the nonlinear problem (31) is solved by a sequential quadratic program
(Schittkowski, 1985). The optimized shapes and associated Mach contour plots are
shown in Figure 11. The ground signatures evaluated by ARAP are plotted in Figure
12. The maximum overpressures based on the ground signatures predicted by ARAP
and the ISPR values approximated by McLean’s formula are compared in Table 3.
The upper part of the table reports on the MCL formulation and the lower part on the
RTM problems. In all six cases, only the constraint on the minimum lift turns out to
be active.

A dominant design feature characterizing the optimized design and the SSBD is
a blunt nose. Depending on the possible design variations, the bluntness is created
either by tilting up the nose (MCL-CB and RTM-CB) or by moving the vertices
on the upper and lower surfaces near the tip upwards and downwards, respectively
(MCL-CF-100(0), RTM-CF-100(0)). It is noteworthy that the ground signatures of
the optimized designs are remarkably close to the signal produced by the SSBD, as
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MCL−CB

V100 V100

MCL−CF

RTM−CB

V1000 V1000
RTM−CF

RTM−CFMCL−CF

Figure 11. Optimized shapes using the CAD-based and CAD-free approaches and
McLean’s formula and the maximum overpressure predicted by ARAP as objective
functions.

shown in Figure 12. Comparing the shapes of the SSBD and of the optimized designs
using the CAD-based approach shown in Figure 13 shows that the tip of the nose
is shaped in a similar fashion creating almost the same local angles of attack. Both
optimized designs based on the CAD-free shape variation approach show a remarkably
bumpy surface. This effect is particularly pronounced in the cases with 100 design
variables. It also exists in the solutions based on 1, 000 variables. Therefore, the
bumpiness is not solely due to the possible shape changes. As the Mach contour plots
for (MCL-CF-100(0) and RTM-CF-100(0)) shown in Figure 11 show, the bumps
initiate waves that prevent the generation of strong two-shock ground signatures.
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(b) ground signatures of RTM optimization cases

(a) ground signatures of MCL optimization cases
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Figure 12. Comparison of the ground signatures predicted by ARAP for the optimized
configurations.
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F5−E

MCL−CB
RTM−CB

SSBD

Figure 13. Comparison of the shapes of the the F5-E and SSBD configurations against
the optimization results for the CAD-based approach (MCL-CB and RTM-CB).

V100 V1000
MCL−CF RTM−CF

Figure 14. Comparison of the original and optimized shapes at the nose tip for the
MCL-CF-V100 and RTM-CF-V1000 cases

Optimizing for minimum ISPR using McLean’s formula and a CAD-based shape
variation technique leads not only to the lowest ISPR but also to the lowest maximum
overpressure. Using the same shape variation technique, the resulting design is even
better in this case than that obtained by directly minimizing the overpressure.

Using the CAD-free approach, the comparison of the optimization results indi-
cates that the optimum designs for minimum ISPR differ from those for minimum
maximum overpressure. However, the optimization results using the CAD-free ap-
proach are significantly dominated by the box constraints. To avoid fluid cells col-
lapsing because of large mesh distortions, rather small upper and lower bounds on the
optimization variables have to be imposed. The most critical area is at the tip of the
aircraft (see Figure 14). To create a blunt nose, vertices are moved apart in the ver-
tical direction. This creates large mesh distortions and requires limiting the range of
the optimization variables. Using the CAD-based approach, such distortion intensive
shape variations can be avoided allowing for overall larger shape changes, which lead
to larger performance improvements.
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6. Conclusions

This paper has been concerned with the shape optimization of supersonic aircraft
for low boom design. A sonic boom analysis method based on a CFD approximation
of the near-field pressure distribution and two F -function based approaches for pre-
dicting the strength of the ground signature has been presented. Comparing the simu-
lation results against measured data for an F5-E and the Shaped Sonic Boom Demon-
strator (SSBD) F5 aircraft shows that the approximation of the ISPR by McLean’s
formula and the prediction of the maximum overpressure based on the ARAP acous-
tic ray-tracing method lead to satisfactory results.

An adjoint formulation of the sonic boom sensitivity analysis was presented. The
evaluation of the gradients of McLean’s approximation of the ISPR and of the ground
signature predicted by ARAP was also discussed. While treating the ray-tracing
method as a black-box tool necessitates the partial use of finite difference approxi-
mations, the described sensitivity formulations allow for the efficient evaluations of
the gradients of the ISPR and maximum overpressure for a large number of optimiza-
tion variables at acceptable computational costs.

So far, studies on the shape optimization for low boom design have either relied
on CAD-based or CAD-free techniques for describing the shape changes during the
optimization process. A general framework for both approaches was presented, a
CAD-based approach operating on a triangulated surface mesh was discussed, and a
CAD-free technique allowing for selected shape variations was introduced.

The developed optimization methodology was applied to the redesign of the F5-
E configuration allowing for shape changes along the nose section that are similar
to those effected on the SSBD. The influence of the choice of representation of the
objective function and of the shape variation technique on the optimal design was
studied. The ground signatures of the optimized designs are found to be within the
range of the original and SSBD designs and show an improved performance with
respect to the ISPR and maximum overpressure. As with the SSBD design, the sonic
boom is reduced by creating a blunt nose. In particular the optimized designs using the
CAD-based approach show the same effective tip design as the SSBD. The obtained
results also suggest that McLean’s formula is well-suited for minimizing both the
ISPR and the maximum overpressure. Using the maximum overpressure predicted by
ARAP as an objective function seems to result in optimization problems with multiple
local minima. While the CAD-based shape variation technique allowed for rather
large shape changes with significant boom reduction, major problems with the CAD-
free technique were experienced imposing unacceptable mesh distortions at the tip of
the aircraft.
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