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Abstract

An increasing number of wholesale electricity markets employ locational pricing mech-

anisms that price aspects of the transmission network configuration. Suppliers that

own generation capacity at one or more locations may have the ability to exercise uni-

lateral local market power by impacting the extent to which these constraints bind. We

extend the residual demand curve measure of the ability to exercise unilateral market

power from a single location market to a residual demand hyper-surface that quantifies

the impact of a supplier’s unilateral output reduction at one location on all locational

prices. Accounting for the fact that suppliers face residual demand hyper-surfaces

improves our ability to explain the offer curves submitted by strategic suppliers and

explains why the locations of a supplier’s generation capacity is an key determinant

of the size and direction of locational price changes associated with the divestment of

a fixed amount of generation capacity. We develop a stochastic equilibrium model of

competition between firms setting locational quantities against a distribution of resid-

ual demand hyper-surfaces to study these same questions.
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1 Introduction

All United States wholesale electricity markets, and an increasing number of foreign mar-

kets, employ mechanisms that explicitly incorporate the impact of transmission network

constraints into the prices paid to specific generation units based on their location in the

transmission network. More granular pricing of energy typically raises concerns about the

exercise of local market power by suppliers that own one or more generation units taking

advantage of their location in the transmission network to increase their profits from selling

energy. This concern implies the need for methods for measuring the ability of a supplier

that owns multiple generation units at different locations in the transmission network to

exercise unilateral market power in a locational pricing market.

This paper derives a general methodology for measuring the ability of suppliers that own

generation units at multiple locations in the transmission grid to exercise unilateral market

power in a locational pricing market. To this end, we extend the concept of a residual demand

curve from a single location market to a residual demand hyper-surface that accounts for

the ability of a supplier that owns capacity at multiple locations to impact all locational

prices from an output change at one location. We demonstrate the usefulness of residual

demand hyper-surfaces for: (1) modeling expected profit-maximizing offer behavior by a

supplier that own generation units a multiple locations, (2) quantifying the impact of this

large supplier divesting itself of a fixed quantity of generation capacity at different locations

in the transmission network, and (3) developing own-location and cross-location measures of

a supplier’s ability to exercise local market power. We also develop a stochastic equilibrium

model of competition between firms setting locational quantities against the distribution

of residual demand hyper-surfaces and use it to determine the equilibrium implications of

different locational capacity divestment scenarios.

Computing the residual demand hyper-surface faced by a supplier in a locational pricing

market with finite transmission capacity across locations is significantly more challenging

than computing a residual demand curve in a single price market with infinite transmission
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capacity across locations. First, it requires constructing a model of the actual price-setting

process in the wholesale electricity market that replicates actual locational prices and output

levels given the offer curves submitted by all market participants. This typically requires

solving a constrained optimization problem that yields locational quantities and prices for

any set of offer curves submitted by all market participants and any set of locational demands

given the configuration of the transmission network. Solving this optimization problem for a

grid of inelastic output levels from zero to the supplier’s installed capacity at all locations that

it owns generation units yields points along that supplier’s residual demand hyper-surface.

Computing an expected profit-maximizing offer curve for a supplier in a locational pricing

market requires finding market clearing prices and quantities for each possible realization of

the distribution of residual demand hyper-surfaces faced by the supplier for any offer curve

consistent with the market rules. An estimate of the supplier’s expected profit for a candi-

date optimal offer curve is equal to the average of the realized profits earned for each possible

residual demand hyper-surface realization in this distribution. The offer curve that respects

the market rules that yields the highest average value of these realized profits is the solu-

tion to this problem. This expected profit-maximizing offer curve problem constrained by

many market-clearing locational prices and quantities problems, one for each possible resid-

ual demand hyper-surface realization, can be merged into a single Mathematical Program

with Equilibrium Constraints (MPEC) problem, the solution to which yields the supplier’s

expected profit-maximizing offer curve.

Applying this expected profit-maximizing offer curve problem to a sample of 175 hours

market outcomes from the Italian day-ahead market, we find that our estimated expected-

profit maximizing offer curves yield a 9.8% higher sample average profit for the largest

supplier [3.6% higher for its main competitor] relative to the sample average profit using the

actual offer curves of both of these strategic suppliers. We then compute best-response offer

curves for these two suppliers assuming infinite transmission capacity between all locations
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in the Italian grid for the same distribution of residual demand curves faced by the supplier.1

For the actual configuration of the transmission network in Italy, we compute the average

profits that the two suppliers would earn in Italian locational pricing market if they submitted

their infinite transmission capacity best response offer curve. The largest supplier’s sample

average profits would be only 5% higher versus 9.8% higher with best response offer curves

for the distribution of residual demand hyper-surfaces. For the main competitor to the

incumbent firm, the corresponding numbers are 1.5% higher versus 3.6% higher. These

results demonstrate the importance of accounting for the fact that suppliers compete against

the residual demand hyper-surfaces determined by the offers of their competitors, locational

demands, and the configuration of the tranmission network, rather than simply an single

aggregate offer curve of its competitors and a single system demand value implied by the

assumption of infinite capacity across locations in transmission network.

Using our residual demand hyper-surface framework to assess the competition effects of

generation capacity divestment from a supplier owning capacity at multiple locations, we

find that divesting the same amount of capacity at different locations in the transmission

network yields very different counterfactual locational prices. Using our best-response offer

curve framework, we find that divesting 1.2 GW capacity from the largest firm in the center

of Italy reduces the average price there by 6.7% and increases the average price in the north

of Italy by 0.7%, both relative the average actual prices at these locations. Divesting the

same amount of capacity in the north of Italy increases the average price in the center of

Italy by 0.3% and reduces the average price in the north of Italy by 8.1%.

We also develop a stochastic equilibrium model of competition between firms setting

locational quantities against the distribution of residual demand hyper-surfaces determined

by the offer curves of their competitors and locational demands. This equilibrium anal-

ysis accounts for the fact that the strategic suppliers’ locational quantity choices jointly

1Note that residual demand hyper-surfaces become residual demand curves under the assumption of
infinite transmission capacity. Consequently.the market-clearing mechanism used to solve this infinite trans-
mission capacity optimal best-reply offer curves always pays the same price to all generation units.
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impact electricity flows in the transmission network through smoothed versions of our resid-

ual demand hyper-surfaces. This model finds qualitatively similar locational price changes

from the divestment scenarios in both locations to our best-response offer behavior analysis,

but smaller average price reductions to load. Our best-response offer curve and locational

quantity-setting equilibrium results both demonstrate the importance of accounting for the

location of generation capacity and demands and the configuration of the transmission net-

work in assessing the competitive impacts of generation capacity divestments.

Our residual demand hyper-surfaces can be used to compute own- and cross-price inverse

semi-elasticities of the residual demand hyper-surface facing a supplier at every location in

the transmission network that it owns generation capacity that measures the ability of that

supplier to exercise unilateral market power at that location. These own- and cross-price

inverse semi-elasticities can be used to design local market power mitigation (LMPM) mech-

anisms and define local markets for merger and antitrust analysis in locational pricing mar-

kets.2 Although developing optimal the mechanism for using these inverse semi-elasticities

to determine when a supplier’s offer price at a location is worthy of mitigation or to define

a local market for electricity generation is beyond the scope of this paper, the examples we

provide are suggestive of the usefulness of these measures for these two tasks.

The remainder of the paper is structured as follows. In Section 2, we extent the residual

demand curve measure of the ability of supplier to exercise unilateral market power in a

single-location market to the residual demand hyper-surface for multiple-location, spatially-

connected markets. In Section 3, we focus on locational pricing electricity markets and

introduce our of model of best-response offer behavior in a market with a potentially con-

gested transmission network based on residual demand hyper-surfaces. Section 4 explains

the mechanics of solving for the best-reply offer curve for a supplier that owns generation

units at multiple locations and faces a distribution of residual demand hyper-surfaces de-

2Graf et al. (2021) point out the necessity of local market power mitigation mechanisms in all offer-based
wholesale electricity markets and survey the range of existing designs in United States locational pricing
markets.
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rived from the offer curves of its competitors, locational demands, given the configuration

of transmission network. In Section 5, we show how best-response offer curves that ignore

the potential for binding transmission network constraints yields lower expected profits than

best-response offer curves that account for the configuration of the transmission network,

locational demands, and location of generation units. In Section 6, we demonstrate how

the best-response offer curves of a large supplier and the locational prices that result from

these offer curves would change because of different locations of the divestment of a fixed

quantity of generation capacity from the largest supplier in the Italian market. In Section 7,

we consider this same problem using a locational quantity-setting equilibrium involving the

two large firms competing against a distribution of residual demand hyper-surfaces. Section

8 introduces residual demand hyper-surface locational own- and cross-price inverse semi-

elasticities and discusses how they might be used in the design of a local market power

mitigation mechanism or to define an antitrust market. Section 9 concludes and suggests

directions for future research.

2 Market Power in Locational Pricing Markets

This section introduces the residual demand hyper-surface as a measure of the ability to exer-

cise unilateral market power in multiple spatially-connected markets. Assume two connected

markets, m = {1, 2}, for a homogeneous good and a firm that owns production capacity in

both markets. For fixed locational demand functions and fixed locational aggregate outputs

of firm i’s competitors in market m, Qm
−i, firm i’s locational inverse residual demand function

in market m can be written as Pm(Q1, Q2) where Qm = Qm
i +Qm

−i and Qm
i is the output of

firm i in market m.

Under the assumption of spatial quantity-setting competition, each profit-maximizing

firm i will solve the following optimization problem assuming the spatial quantity choices of

its competitors are fixed:
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max
Q1

i ,Q
2
i

P 1(Q1, Q2)Q1
i + P 2(Q1, Q2)Q2

i − C1
i (Q

1
i )− C2

i (Q
2
i ), (1)

where the capacity of transportation link between the two markets determines the relation-

ship between P i (i = 1, 2) and Q1 and Q2. In a single integrated market, P 1 = P 2 = P (Q)

where Q = Q1 + Q2, which implicitly means all output is produced and sold at the same

location.3

Before we discuss how the inverse residual demand hyper-surfaces P 1(Q1, Q2) and P 2(Q1, Q2)

are derived, we characterize how the capacity of the transportation link impacts the par-

tial derivatives of these functions with respect to the quantities at each location. If the

transportation link constraint is not binding, or equivalently, if there is infinite costless

transportation capacity between the two markets, ∂P 1

∂Q1
i
= ∂P 1

∂Q2
i
= ∂P 2

∂Q1
i
= ∂P 2

∂Q2
i
= ∂P

∂Qi
, simply

because P 1 = P 2 = P and a change in the firm’s output at either location will have the same

affect on the clearing price P . If the network is constrained, then ∂P 1

∂Q2
i
= ∂P 2

∂Q1
i
= 0 because a

change in the firm’s output in market 2 would not affect P 1 and a change in output in market

1 would not affect P 2, simply because the constraint separates the two markets. The partial

derivatives, ∂P 1

∂Q1
i
and ∂P 2

∂Q2
i
, would equal the slope of the locational inverse residual demand

curve in market 1 and market 2, respectively.

As shown in Wolak (2000), in a single location market the residual demand function

for any supplier has a closed form solution as, DR(p) = D(p) − SO(p), where D(p) is

the market demand curve and SO(p) is the aggregate willingness to supply curve for all

remaining suppliers besides the one under consideration. In multiple-location, spatially-

connected markets this is not possible. Locational prices are the result of solving a spatial

market-clearing optimization problem conditional on Q1
i and Q2

i for a given pair of locational

demand functions and fixed pair of aggregate locational outputs from firm i’s competitors

3This assumption is commonly employed in studies of market power in wholesale electricity markets
such as Ito and Reguant (2016), Bushnell et al. (2008), and Puller (2007). Mercadal (2022) treats P 1(Q1)
and P 1(Q2) as separate pre-determined markets based on transmission network characteristics. Ryan (2021)
proposed an iterative method to model network capacity effects starting with an uncongested market and
then successively breaking off constrained areas and treating them as separate local markets.
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that explicitly takes into account the transportation capacity constraints between the two

markets.

To illustrate this mechanism, assume first that both markets can be described by the

same linear inverse demand curve as depicted in Figure 1. Given a fixed aggregate output of

firm i’s competitors in each market, Q1
−i and Q2

−i, firm i may be able to cause the symmetric

transportation capacity between the two markets, K, to bind by its choice of outputs, Q1
i ,

Q2
i . The price for market 1 is on the left vertical axis and the price for market 2 is on

the right vertical axis in each of the two panels. The total output in market 1 is on the

horizontal axis read from the left to the right and the total output in market 2 is on the

horizontal axis read from the right to the left. The figures in Panel (a) and (b) show how the

two interconnected markets would clear given a fixed amount of transport capacity between

the two markets and a fixed amount of total production in each market, Q1 and Q2. The

transportation capacity, K, is indicated by the line between the equilibrium demand levels

and the output levels in the two markets. Panel (a) shows that given the zonal output of firm

i, the network will be uncongested because the resulting export from market 1 to market

2, r, or equivalently the resulting import from market 2 to market 1, −r, does not exceed

the physical transport capacity limit, K. Although, the transport capacity between the two

markets is unconstrained, some output in market 1 is used to serve demand in market 2.

Holding the total amount of output of firm i in the two markets constant, there are many

combinations of output produced in each market that would leave the transport capacity

between the two markets unconstrained.

This outcome changes if firm i increases its output substantially in market 1 as depicted

in Panel (b). Firm i’s outputs in market 1 and market 2 lead to congestion of the transport

capacity because not all the supply of market 1 can be exported to market 2 and still yield

identical prices in the two markets. Prices in the two markets must differ to accommodate

firm i’s output choices in the two markets.

Whether the transportation network will be congested for a given level of outputs in each
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market, demand curves in each market, and fixed transport capacity connecting the two

markets can be determined by the assumed spatial equilibrium market-clearing optimization

problem which maximizes the sum of consumer surplus in both markets accounting for the

transportation capacity between the two markets. The assumed spatial equilibrium market-

clearing problem for two markets is:

J∗(Q1, Q2) = arg max
r

∫ Q1+r

0

P 1(τ1)dτ1 +

∫ Q2−r

0

P 2(τ2)dτ2 (2a)

subject to −K ≤ r ≤ K, (2b)

Qi + r ≥ 0 i ∈ {1, 2}. (2c)

Problem (2) can be solved for any pair of market-level aggregate outputs, Q1 and Q2, result-

ing in quantities consumed in each market and locational prices. The prices in each market

will be equal if the constraint in (2b) is not binding and will differ otherwise.

This pricing model (2) yields a mapping from the aggregate output in each market to

prices in each market (f : R2
+ 7→ R2

+). Holding Q1
−i and Q2

−i fixed, we can solve it for any

vector of firm i’s market-level outputs. In electricity markets, we assume transport is costless

but the model is easily extendable to connected markets with a non-zero transportation cost.

In the case of a per unit charge to move the product between markets equal to c, the term

c |r| must be added to the objective function (2a). The consequence of a transportation cost

is that less trade will occur.

Note that unlike in the setting studied by Borenstein et al. (2000) we allow each firm to

own production capacity in both locations. The firm’s outputs in market 1 and market 2 will

determine whether the transport capacity between the markets is congested. However, if the

firm had productive capacity in only one market it could cause the transportation capacity

to bind in the manner discussed in Borenstein et al. (2000). However, having production

capacity in both markets is likely to increase the firm’s ability to cause the transport capacity

constraint to bind because it can set output in both markets instead of a single market. This
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becomes evident from Panel (b) of Figure 1. The firm could find it unilaterally profitable to

set a high output in market 1 even when the firm may not be able to recover its market-level

cost at such an output level. This action allows the firm to cause the transportation capacity

between the markets to bind which increases the price in market 2 and increases the firm’s

revenue from sales in market 2.4

The optimization problem in (2) can be solved for many locational output pairs for firm

i to obtain the corresponding pairs of locational market-clearing prices. Hence, there is

a functional relationship between the firm i’s output vector and the market-clearing price

vector, which can be used to construct a residual demand hyper-surface, one for each of the

two connected markets where the firm owns capacity. Visualizing the relationship between

the price at one location and the firm’s two locational outputs can be represented by a three-

dimensional surface where the firm’s zonal outputs are on the horizontal axes (x, y-axes) and

the locational price is on the vertical axis (z-axis). We refer to these graphs as the inverse

residual demand hyper-surface and for the case of two connected markets there will be two

of these three-dimensional surfaces.5

Figure 2, plots the residual demand hyper-surfaces corresponding to the example depicted

in Figure 1. Panel (a) shows the three-dimensional surface for the price in market 1 and

Panel (b) for the price in market 2. Remember that every point on the surfaces in Panel

(a) and Panel (b) for the same level of Q1
i and Q2

i are the result of solving the optimization

problem in (2). In Panel (c), we show the price difference as a function of the two locational

output levels of firm i. This figure illustrates the unilateral ability of firm i to cause the

transportation link to bind. For all output combinations leading to an unconstrained single

market (all the points where P 2(Q1
i , Q

2
i )−P 1(Q1

i , Q
2
i ) = 0 in Figure 2, Panel c), the residual

4In the case discussed in Borenstein et al. (2000), the firm’s zonal residual demand curve is replaced by
the market level residual demand curve for the output range that would lead to a non-binding transportation
capacity constraint. Consequently, points where the slope of the firm’s residual demand curve changes for
the Borenstein et al. (2000) model will be solely determined by the firm’s zonal output for a given transport
capacity limit and the output of the firm’s competitors. This is no longer the case when firms own capacity
in two connected markets.

5We follow the standard economic convention for demand curves of plotting price on the vertical axis
(z-axis).

9



demand surface is effectively the residual demand curve for the unconstrained single price

market. However, it is important to note that whether there is a binding transportation

constraint between the markets depends on the firm’s output in each market, as is evident

from Figure 2.6

We want to emphasize that the residual demand surface, as we define it, is simply the

demand for the firm’s output in each market at a pair of market prices, or equivalently, the

resulting market prices for a given pair of the firm’s market level outputs. This concept allows

us to incorporate a transportation capacity constraint that connects markets in our measure

of the ability of a supplier to exercise unilateral local market power. It also illustrates a

potential important avenue for exercising unilateral local market power by suppliers that

own production capacity in two spatially distinction markets that is particularly relevant to

wholesale electricity markets. This is the ability change the output in one market in order

to change the price in another connected market.

2.1 Residual Demand Hyper-Surface for an Electricity Market

This section generalizes the two-location logic of the previous section to an arbitrary number

of locations for a wholesale electricity market. Computing the residual demand hyper-surface

for a locational pricing electricity market requires solving the market-clearing optimization

problem for a grid of locational output levels for the supplier’s generation units given the

offers of all other suppliers, locational demands, and the configuration of the transmission

network.

Definition 1 Residual demand market-clearing for a locational pricing market given a vec-

tor of Z locational outputs for firm i, Qi = [Q1
i , . . . , Q

Z
i ], using the power transfer distribu-

tion matrix A to map locational net balances to power flows chooses the vector of demand

bid quantities, xb and offer quantities of suppliers besides firm i, x−i, to solve the following

6Figures 3 and 4 provide an example with asymmetric markets.
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linear programming problem given Qi:

maximize
xb,x−i

b⊤
b xb−b⊤

−i x−i

subject to 1⊤ xb−1⊤ x−i −
Z∑

z=1

Qz
i = 0 [λ] (3)

Z∑
z=1

Az
kl

(
Qz

i + 1⊤ xz
−i−1⊤ xz

b

)
− fkl ≤ 0 [µkl], (k, l) ∈ E (4)

xk ≤ gk, k ∈ {b,−i}

xk ∈ R+
0 , k ∈ {b,−i} ,

for a vector of transmission limits f , and locational supply offer price and offer quantity

pairs of firm i’s competitors
{(

bz
−i,g

z
−i

)}Z
z=1

and locational demand bid price and demand

quantity pairs {(bz
b ,g

z
b)}Zz=1 . The corresponding locational market-clearing prices can be de-

rived from the optimal values of the dual variables of (3) and (4). Specifically, P z(Qi) =

λ∗ −∑(k,l)∈E A
z
klµ

∗
kl, z = 1, . . . , Z.

The vector of locational prices and firm output quantities from each solution of this

linear program yields a point on the supplier’s residual demand hyper-surface.7 Solving this

problem for a grid of values of the vector Qi from zero to the generation capacity owned by

firm i at each location z yields the supplier’s residual demand hyper-surface.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

Note that a inverse residual demand hyper-surface can show that the price in a local

market is unresponsive to changes in firm i’s output at all locations. This residual demand

7Appendix C provides more technical details on the locational market-clearing process.
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hyper-surface would be a horizontal plane implying that the firm has no ability to exercise

unilateral market power in the local market associated with that price.

3 Optimal Offer Curve in a Locational Pricing Market

This section presents our model of optimal offer behavior in a locational pricing market.

This model respects both, the market rules governing the set of allowable offer curves that

all suppliers can submit and the actual market-clearing mechanism used to compute the

locational prices and quantities that result from a given offer curve for each residual demand

hyper-surface realization. Because a supplier does not know the offer curves of its competi-

tors, the bid curves of demanders, and locational demands in the transmission network when

it submits its offer curve, the supplier must construct its offer curve to maximize expected

profits given its beliefs about the distribution of the residual demand hyper-surfaces that

results from its uncertainty about these three unknowns.

Competition in a wholesale electricity market is typically modeled using supply functions

with demand uncertainty as described in Klemperer and Meyer (1989). However, there

are at least three reasons why this theoretical framework may not adequately represent

actual outcomes in short-term wholesale electricity markets. First, participants in these

markets actually submit non-decreasing step functions with a finite number of price and

quantity steps. As noted in Wolak (2003b) and Wolak (2007), this requirement invalidates

the approach used by Klemperer and Meyer (1989) to compute a firm’s expected profit-

maximizing offer curve as the envelope of best-reply price-quantity pairs. The Klemperer

and Meyer (1989) approach implies that the supplier’s expected profit-maximizing supply

curve does not depend on the shape of the distribution of residual demand uncertainty.

However, as shown in Wolak (2003b) and Wolak (2007) for a single location market, under

a market rule that requires suppliers to submit non-decreasing step functions, a supplier’s

expected profit-maximizing offer curve generally depends on the distribution of step-function
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residual demand curves that the supplier faces.

A second reason arises even if the supply functions are required to be continuous increas-

ing functions as modeled in, for example Green and Newbery (1992); Sioshansi and Oren

(2007); Anderson and Hu (2008): Transmission constraints cause expected profit-maximizing

offer curves to depend on the probability distribution of random shocks to demand and trans-

mission capacity, and the equations to be solved to compute the resulting offer curves are

highly nonlinear as shown in Wilson (2008).

The economics literature on optimal offer behavior in multi-unit auction markets, such

as wholesale electricity markets, has largely ignored the impact of modeling the impact of

transmission constraints in the pricing of energy (Wolak, 2000, 2007; Hortaçsu and Puller,

2008; Reguant, 2014). We extend the model in Wolak (2000) to the case of a locational

pricing model with a potentially congested transmission network.8

We present our best-response offer curve model for a vertically-integrated firm i operating

in a locational marginal pricing market. We begin by introducing the notation necessary

to present our model. Each firm i = 1, . . . , N operating in the market, offers a vector of

price and quantity increments to the market at each location z, expressing its willingness to

supply energy at location z from its generation units. We assume there are Z possible pricing

locations in the transmission network.9 Let θz
i = {bz

i ,g
z
i } = (bzi,11, . . . , b

z
i,JK , g

z
i,11 . . . , g

z
i,JK)

be firm i’s vector of locational offer prices and quantities. It contains pairs of prices and

quantities for each generator j = 1, . . . , J and each possible quantity and associated price

step k = 1, . . . , K at location z. Stacking the firm’s locational offer curves across the Z

locations yields θi =
⋃Z

z=1 θ
z
i . Furthermore, define θ = θi ∪θ−i ∪θb, the vector of offers

8We focus on a radial transmission network topology. In such a network loops are absent, meaning that
there is a unique path between every two nodes in the network. In a radial transmission network the effect
of congestion on a transmission link is to separate the system into zones at either end of the link, each zone
having its own price for energy. This implies that each zone has an induced net demand for energy—the
original zonal demand plus prescribed exports minus prescribed imports as shown in Wilson (2008). The
market operator determines imports and exports between zones based on minimizing the as-offered costs to
serve demand and subject to the physical capacity limits of the transmission lines.

9Because we can assume firm i a maximum capacity at location z equal to zero, without loss of generality,
we assume firm i owns capacity at all locations.
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of all market participants, where the subscript b denotes demand side bids and subscript

−i the supply offers of firm i’s competitors. For each location z, the elements of θz
i make

up a non-decreasing locational step function offer curve and the elements of θz
b make up a

non-increasing locational step function bid curve for demand.

Define Sz
i (P

z,θi) as the willingness-to-supply function of firm i at location z. This is a

non-descreasing step function that depends on the price at location z parameterized by θi.

Let P z(θ) be the short term price at location z and P (θ) the wholesale energy purchase

price for loads that results from solving the locational pricing market-clearing optimization

problem.10 For the remainder of the paper, the purchase price for loads is assumed to be

the load-share-weighted-average of the zonal prices. Load paying according to this price is a

feature of the Italian market that is the focus of our empirical analysis.11 Having loads pay

the price in their congestion zone would be a straight forward modification of the model.

The variable cost of output level q at location z for firm i is equal to Cz
i (q). Furthermore,

let PC
i equal firm i’s forward contract quantity-weighted average price of fixed-price forward

contracts that settles against the uniform purchase price and QC
i is the net (sales less pur-

chases) quantity of fixed-price forward contracts sold by firm i. In terms of this notation,

the hourly realized variable profit function for firm i is:

Π(θi) =
∑
z

Sz
i (P

z(θ),θi)P
z(θ)−

∑
z

Cz
i (S

z
i (P

z(θ),θi))− (P (θ)− PC
i )QC

i . (5)

The first term is the hourly revenue firm i earns from wholesale electricity sales in the short-

term market. The second term is the hourly variable cost of electricity sold in the short-term

market and the third term is hourly total difference payments associated with settling the

suppliers fixed-price forward contract obligations. PC
i is equal to PC

i =
∑

k PC
ikQ

C
ik

QC
i

, where

10Note that prices at all locations and the purchase price for loads depend on the vector of offers of all
suppliers and bids of all demanders through the locational pricing market-clearing optimization problem.

11See Appendix C.1 for a more detailed description on the computation of locational prices and the
uniform purchase price. In all locational pricing markets in the US, load-serving entities typically pay for
energy according to similar quantity-weighted averages of locational prices. Tanger̊as and Wolak (2018)
demonstrate that this market rule can enhance the competitiveness of short-term market outcomes.
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QC
i =

∑
k Q

C
ik, and PC

ik is the price of forward contract k and QC
ik is the net forward position

of contract k. A contract sold by the supplier is a positive value of QC
ik and a contract

purchased by the supplier is a negative value of QC
ik.

Each firm in the market is assumed to maximize expected profits conditional on its

distribution of beliefs about its competitors’ offers, locational demands in the transmis-

sion network, and demand side bids, which along with configuration of the transmission

network determine the distribution of residual demand hyper-surfaces the supplier faces.

Market-clearing prices and quantities for each residual demand hyper-surface realization are

determined by solving the transmission network-constrained market-clearing optimization

problem with a uniform purchase price for loads but potentially different prices paid to

generation units in each pricing zone.12

Firm i’s expected profit-maximization problem is:

maximize
θi

E [Πi(θi)] (6)

subject to 0 ≤ bi ≤ 1 b̂

0 ≤
∑
k

gi,jk ≤ ĝi,j, ∀j

where E[·] is the expectation taken with respect to the distribution of residual demand

hyper-surfaces facing firm i, b̂ is the scalar offer price cap set by the regulator and ĝi,j is

the maximum capacity of generation unit j owned by firm i. The first set of inequality

constraints require offer prices to be greater than zero and less than or equal to the offer cap.

The second of inequality constraints require the sum of offer quantities for each generation

unit to be less than or equal the capacity of the unit. For the same offer curve for firm i, each

residual demand hyper-surface realization gives rise to potentially different locational prices

and a different quantity-weighted average price, P (θ). For this reason, the term P (θ)QC
i in

(5) matters for determining the firm i’s expected profit-maximizing value of θi.

12Appendix C contains a detailed explanation on how the locational pricing market clears.
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Our model is able to accommodate different firm and market structures. For example,

if a firm is vertically integrated, the variable profit function (5) would be augmented by

the variable profit from retailing,
∑

z(P
R − P z − τi)Q

R,z
i , where PR is the firm’s fixed retail

price, QR,z
i is the firm’s retail load obligation at location z, and the marginal cost of electricity

retailing for firm i is τi.
13 Finally, we note that if transmission constraints are never binding,

and thus P z(θ) = P (θ) = P () for z = 1, 2, . . . , Z, the model simplifies to that described in

Wolak (2000).14

4 Computing Expected Profit-Maximizing Offer Curves

In this section, we describe the mechanics of computing expected profit-maximizing offer

curves given realizations from the distribution of residual demand hyper-surfaces faced by the

firm. This requires choices for the main modeling inputs such as generation unit-level variable

costs estimates, an estimated residual demand hyper-surface distribution, and the fixed-price

forward contract positions held by suppliers. Given this information, we then describe the

formulation of the MPEC problem solved to compute an expected profit-maximizing offer

curve.

Our sample period is from September 1, 2007 to October 31, 2007.15 We only optimize

13Note, that although the demand side pays the uniform purchase price P , if electricity is bought from
the short-term market, a net selling vertically integrated firm can avoid to being exposed to the uniform
purchase price risk if it sells and buys electricity at the same location.

14The model is capable of incorporating physical or financial transmission rights, which can impact the
incentive suppliers have to exercise local market power as discussed in Joskow and Tirole (2000), Cho (2003),
or Gilbert et al. (2004). The Italian market does not have financial transmission rights (FTRs) issued by the
market operator and funded from the merchandising surplus similar to United States locational marginal
pricing (LMP) markets. However, market participants can enter into bilateral locational price difference
hedging instruments. Our understanding is that there is little, if any, volume in these locational price
hedging instruments during our sample period. We have no data on the positions of any firms and therefore
are unable to incorporate them into our model.

15We remove the following set of days from our sample due to a restriction on transmission capacity
between the North (N) and Central North (CN) zones from Oct 22, 2007 to Oct 26, 2007. The sample
average available line capacity between the two zones was approximately 2,500 MW, but it was below
1,700MW on these days. We also remove Oct 29, 2007 to Oct 31, 2007, because we observed significantly
reduced transmission capacity between Calabria (CA) and Sicily (SI) on these days. We believe that these
transmission line de-rates would effect offer behavior because these transmission capacity limits are known
to the market participants before they submit their offer curves to the day-ahead market and this would
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over the peak hours of the day–11, 12, 18, 19, and 20. We eliminated weekends and holidays

from the sample. In total, our sample is composed of 175 hourly markets.

Our reasons for selecting this time period are the following: (i) hydro production usually

peaks in spring after the snow-melt and thus its influence on the market is reduced; (ii) a

relatively stable amount of imports exists from France and Switzerland; and (iii) electricity

production from intermittent renewable sources, such as wind or solar is negligible at this

time.

We have selected two strategic firms, Enel and Edison, which we refer to as the incumbent

and the main competitor, respectively. We calculate best-response offer curves for each firm

separately assuming that each firm maximizes expected profits given the distribution of

residual demand hyper-surfaces that it faces. We focus on the day-ahead market as this is

by far the largest in terms of traded quantities and its weighted average clearing price is

the reference price for clearing fixed-price forward contracts. A detailed description of the

Italian electricity supply industry can be found in Appendices B.1 and B.2.

We optimize only over offer prices of relevant thermal units. The criteria we use to

determine whether a unit is relevant is the unit’s share of day-ahead market sales relative to

real-time energy production. Thermal units below a 50% share or above a 150% share are

treated as non-relevant for our analysis. Over- and under-selling in the day-ahead market

can be related to the INC/DEC game where market participants offer into day-ahead market

recognizing the probability earning higher profits in re-dispatch market as shown in Graf et

al. (2020b). We do not explicitly account for this incentive in our analysis but limit its

impact by focusing on the units that optimize their offers to participate mainly in the day-

ahead market. We do not remove offers from non-relevant units from the realized residual

demand hyper-surfaces. However, we include the actual energy sold by non-relevant units in

the day-ahead market in each firm’s objective function treating it as infra-marginal energy

impact the distribution of residual demand hyper-surfaces for the same assumed distribution of competitor
offers curves, demand bids and locational demands. Hence, including scenarios with substantially different
transmission capacity limits would likely bias our results.
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that is valued at the associated locational market-clearing price. This relevant unit criteria

selects on average 55% of thermal capacity and 82% of energy sold in the day-ahead market

by thermal units owned by our two strategic firms.

As pointed out previously, we focus on peak hours in which storage units are typically

considered to be marginal suppliers. Furthermore, storage units are typically assumed to offer

based on an opportunity cost logic. Modeling independent storage units would have their

offer behavior depend on expected future electricity prices as discussed in (Graf and Wozabal,

2013). Endogenizing storage unit offer decisions in this manner would severely complicate

our model. Therefore, we leave actual storage offers in the residual demand hyper-surface

and include the actual energy sold in the day-ahead market in the firm’s objective function

treating it as infra-marginal capacity that is valued at the relevant zonal market-clearing

price. However, we emphasize that storage units not only transfer energy from low price

periods to high price periods, but they also provide operating reserves or real-time balancing

services because of their flexibility. The average day-ahead quantity of energy sold by storage

units is 0.8 GWh, which is about 13% of the total storage generation capacity and only 1%

of the total generation capacity which suggests that storage units typically do not play a

major role in determining day-ahead market outcomes during our sample period.

Our approach of fixing the offer quantities of relevant thermal units at their actual val-

ues and only optimizing offer prices would be problematic if significant physical capacity

withholding were present in the Italian market. However, the coefficient of variation of to-

tal hourly offered quantity over the sample period is only 5% in the case of the incumbent

and 10% in the case of the main competitor. Because generation units are taken out of

service for maintenance and unplanned outages, these numbers are consistent with our ex-

pectations for the impact of these outages and therefore increase our confidence that these

market participants maximize expected profits by offering all of their available capacity to

the short-term market and setting their offer prices in response to distribution of residual
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demand hyper-surfaces they face.16

4.1 Marginal Cost of Electricity Generation

We calculate the marginal cost of production for each thermal generation unit using data on

its thermal efficiency and monthly prices for fuel and CO2 certificates. The firm’s aggregate

marginal cost function is a non-decreasing step function with the quantity step equal to

the available capacity of the unit and height equal to the marginal cost of the generation

unit. For thermal plants that are not optimizing the offer prices of their units, we replace

the marginal cost estimate by the actual offer price in the firm’s aggregate marginal cost

function.

4.2 Eliciting Fixed-Price Forward Contract Positions

For a fixed distribution of residual demand hyper-surfaces, a supplier’s best-reply offer curve

depends on its quantity of fixed-price forward contract obligations.17 Fixed-price forward

positions are typically only known to the firm. However, the price at which a firm is offers

its production capacity into the day-ahead market can reveal information about the quantity

of fixed-price forward contract obligations it holds. As discussed in Wolak (2000), it would

not be expected profit-maximizing for a supplier to offer capacity below its marginal cost

if a supplier had zero fixed-price forward contract obligations, but it is expected profit-

maximizing to offer capacity beyond a supplier’s QCi value above the unit’s marginal cost.18

For this reason, we set QCi equal to the sum of offer quantity steps of thermal units offered

below 30 EUR/MWh, which is the approximate marginal cost of a coal power plant. Offers

at this price will be inframarginal almost with certainty because our analysis focuses on peak

16Note that this logic implies that suppliers withhold capacity from the market by setting a high offer
price. Endogenizing the quantity decision for each offer step could increase the firm’s expected profit, but it
would also massively increase the computational complexity of solving of our optimal offer curve problem.

17Wolak (2000) demonstrates this point empirically for a large supplier in the Australian electricity market.
18Wolak (2003a) finds that this approach to estimating half-hourly values of QCi matches the average

pattern of the actual values of QCi during the day and week for a large supplier in the Australian National
Electricity Market.
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hours.19 We elicit the values of QCi for each firm for each hour in our sample using this rule.

The incumbent sells an average of 11.4 GWh and the main competitor sells an average

of 8.0 GWh to the day-ahead market in each hour of our sample. Our estimate of the

average hourly hedged quantity of energy for the incumbent is 8.1 GWh and 6.4 GWh for

the main competitor. These estimates of QCi for each supplier mean that an average 71%

of the incumbent’s and 80% of the main competitor’s production during our sample period

is hedged in fixed-price forward contracts.

4.3 Scenario Selection

Each firm maximizes expected profits conditional on its estimate of the distribution of the

residual demand hyper-surfaces that it faces. Selecting a reasonable residual demand hyper-

surface distribution is critical because it determines the distribution of variable profit realiza-

tions for firm i for the same offer curve. We select a sample of equally weighted “like-markets”

for this estimated distribution.

The day-ahead market clears using the hourly offer curves and hourly demand curves

submitted. Therefore, we treat every hour of the day for each weekday in our sample

as independent events. We then select “like-markets” for a given hour of the day from

these weekdays and that same hour of the day to obtain the residual demand hyper-surface

realizations used to derive the best-reply offer curve. We cap the number of “like-markets”

at 20, including the actual residual demand hyper-surface for that hour of our sample.20

4.4 Best-Response Offer Curve

We solve for the best-response offer curve that maximizes the twenty realized values of the

profit function in Equation (5) for the twenty like-markets. A detailed technical description of

19The minimum hourly price in the largest bidding zone (North) was 49 EUR/MWh during our sample
period.

20Because the share of electricity generated from renewable sources was negligible in 2007, so we do not
account for renewable energy production when selecting “like-markets.”
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the reformulation of the model into a mixed integer program can be found in Appendix D.21

We account for potential offer price and quantity indeterminacy by using the merit order

number set by the market operator to guarantee uniqueness of each market-clearing outcome.

The merit order number orders offers and bids in case of a tie—when their submitted offer

prices are equal.22 For the offer curve optimization problem we enforce a merit order of

generation units at the zonal level according to our estimated short-run marginal costs.

The advantage of the mixed integer problem formulation is that we are not required to

smooth the problem or make any assumptions about the functional form of the residual

demand. This allows us to model the optimal step function offer curve the problem as it

appears to firms participating in the day-ahead market. Furthermore, we are able to assess

the quality of the solution indicated by the optimality gap (MIP gap) which is the difference

in the objective function value between the current best integer solution and the optimal

value of a linear program (LP) relaxation. If the gap is zero the resulting solution is the

proven global optimum.

The optimal best-response offer curve may not be unique for several reasons. First,

optimal offer prices are undefined for offers that are infra-marginal or extra-marginal for all

residual demand hyper-surface realizations. For example, if it is optimal to withhold capacity,

then any offer price larger than the maximum zonal price and smaller than the price cap

is optimal. Likewise, if an offer is accepted in all scenarios, the offer price can be between

the minimal locational price and the offer price floor. We set the prices of extramarginal

offers to the price cap and prices of inframarginal offers to the price floor.23 Second, even

21Note that we are dealing with piece-wise constant residual demand hyper-surfaces to find a piece-wise
constant offer curve and as such its derivatives with respect to the parameters of the offer curve are either
zero or infinity. Hence, this rules out optimization techniques relying on derivatives.

22See Appendix C.3 for a more detailed description on this rule.
23A different but also plausible approach would be to set the offer prices of inframarginal [extramarginal]

offers epsilon below [above] the lowest [highest] realization of locational best-response prices. Note that
both ways to define best-response offer curves will lead to the same best-response market-clearing results.
However, the choice of how to deal with inframarginal and extramarginal offers can lead to different best-
response market-clearing results when we compute the offer curves where the firm ignores its impact on
transmission constraints when determining its best-response offer curve. We tried both ways to deal with
inframarginal and extramarginal offers and find that in both cases the firm’s best-response expected profits
are significantly higher when network effects are accounted for in the firm’s optimal offer curve optimization
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for marginal units there can be several combinations of optimal offer prices that lead to

the same expected profits. This can be the case, if there are large gaps in the offer prices

where the optimal offer curve intersects with the inverse residual demand hyper-surfaces.

Moreover, it could be theoretically possible that a best-reply offer curve that will congest

the network gives the same expected profit as a best-reply offer curve that does not congest

the market. However, because we fix offer quantities at their actual values and use twenty

“like markets” to estimate expected profits, and require offer prices to be greater than or

equal to the unit’s marginal cost, we limit the risk of non-unique solutions. Even though we

are able to solve almost all instances to global optimality, we also re-run the optimization

problem changing the random seed used to initialize the MIP solver to be reassured that our

results are numerically stable.24

5 Best-Response Offer Curve Results

In this section, we compute market outcomes using the expected profit-maximizing offer

curves, actual offer curves, and profit-maximizing offer curves assuming infinite transmission

capacity. In Figure 5, we show the optimal locational offer curves (green) for our assumed

distribution of residual demand hyper-surfaces for the incumbent for Hour 12 of September 5,

2007 for our three locations–North, Center, and Sicily. We also show the actual offer curves

(blue), marginal cost curves (orange), and the optimal locational offer curves under the as-

sumption that there is infinite transmission capacity (red) for the same distribution of“like

markets” assumed to compute our optimal offer curves with the actual transmission network

capacity. This figure shows that the optimal locational offer curves accounting for trans-

mission constraints is different from the optimal offer curve assuming infinite transmission

capacity, and generally appears to be closer to the actual offer curve.

problem.
24All our models are implemented in Python 3.8 and use Gurobi 9.5 as a solver for the linear programs

as well as the mixed integer programs. We run the mixed integer programs using four to ten cores for each
market instance with a time limit of 20,000 seconds.
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In order to demonstrate the importance of accounting for the configuration and capacity

of the transmission network on offer behavior over a wide range of system conditions, we

compute the absolute differences between the actual offer curves and the optimal offer curves

as well as the absolute difference between the actual offer curves and the optimal offer curves

assuming infinite transmission capacity across our 175 market instances.

We find the following inequality between the two metrics:

∑
i,z,t

wz
it

(∫ qzit

0

∣∣∣b̃zit(τ)− b̃
z,∗(f)
it (τ)

∣∣∣ dτ) <
∑
i,z,t

wz
it

(∫ qzit

0

∣∣∣b̃zit(τ)− b̃
z,∗(f∞)
it (τ)

∣∣∣ dτ) ,

where b̃zit(q), b̃
z,∗(f)
it (q), and b̃

z,∗(f∞)
it (q) denote firm i’ actual, optimal, and optimal offer curve

assuming infinite transmission capacity, respectively, at location z and hour of sample t.

The weighting factor wz
it denotes the firm-location and hour-of-sample capacity share. Be-

cause the best-response offer curves are undefined for offers that are infra-marginal or extra-

marginal under all scenarios we cap all offer curves at the maximum observed hourly loca-

tional price.

The above inequality for a fixed value of i, also holds for the main competitor but not

for the incumbent because of its high best-reply offer prices in Sicily (see Table 1, Panel A,

Row P SI , Column 3). It turns out that the incumbent offers more aggressively than is

unilaterally profitable. A potential explanation of restrained market power is regulatory

threat that could be triggered if locational prices were raised too aggressively as discussed

in (Hobbs et al., 2005).

In Table 1, we present average zonal best-response prices as well as the average uniform

purchase price and average profits for the incumbent firm and its main competitor across

the 175 markets. Column (1) shows the result of market clearing when offer prices of the

relevant units are replaced by our marginal cost estimate. Column (2) shows the market

clearing results using the actual offer curve. Column (3) shows the results of the optimal

best-response offer curve accounting for transmission constraints. Column (4) presents the
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results with the best-response offer curve computed assuming there is infinite transmission

capacity between zones. Note that all four sets of locational offer curves are evaluated

using the market-clearing mechanism that accounts for the configuration and capacity of

the transmission network and actual offer curves of competitors, actual bid curves, and

locational demand for that hour of the sample. In Panel A, we present the average best-

response prices, average best-response awarded quantities of the relevant units, as well as

the average best-response profit for the incumbent. The same set of variables is presented

for the main competitor in Panel B.

From columns (1) and (2), we are comforted to learn that offering at marginal cost would

lead to a lower average profit compared to the average profit evaluated at actual offers.

In case of the incumbent this difference is substantial. Comparing the actual offer curves

to our optimal offer curves, the average profit using the optimal best-response offer curves

(column 3) is about 9.8% [3.6%] larger for the incumbent [main competitor] compared to

the average profit using actual offer curves (column 2). In column (4), we show the result of

market-clearing assuming the firm uses the optimal offer curves computed assuming infinite

transmission capacity. Comparing Columns 2 and 4, the optimal best-response offer curve

computed assuming infinite transmission capacity only increases average profits relative to

average profits with the actual offer curve by 5% for the incumbent and 1.5% for the largest

competitor. From this we conclude that a significantly higher average profit increase is

possible when accounting for transmission constraints in computing best response offer curves

than is achieved if infinite transmission capacity is assumed in computing the firm’s optimal

offer curve. This result emphasizes the importance accounting for the actual configuration

transmission network when offering computing optimal offer curves for the day-ahead market.

[Figure 5 about here.]
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Table 1: Best-Response Offer Results

(1) (2) (3) (4)
J({ci,gi}) J(θi) J(θ∗

i (f)) J(θ∗
i (f∞))

Panel A. Incumbent
P 78.9 103.1 105.5 102.7
PC 82.5 119.8 115.3 111.9
PN 74.5 90.1 92.8 94.6
P SI 96.8 123.5 165.1 121.8

QC
i 3, 134 2, 348 2, 805 2, 740

QN
i 3, 805 3, 400 3, 386 3, 229

QSI
i 1, 249 1, 104 899 1, 166

Qi 8, 189 6, 853 7, 091 7, 136

Πi
1 505, 401 540, 887 593, 202 568, 178

Panel B. Main competitor
P 97.2 103.1 105.9 101.0
PC 119.7 119.8 120.0 119.9
PN 80.0 90.1 94.8 86.5
P SI 121.3 123.5 122.7 121.7

QC
i 2, 237 2, 232 2, 233 2, 232

QN
i 4, 302 3, 893 3, 917 4, 129

QSI
i 461 311 462 453

Qi 7, 000 6, 436 6, 612 6, 815

Πi
1 370, 080 370, 438 383, 644 376, 081

Notes: Average market outcomes (N = 175). Prices in EUR/MWh, profits in
EUR, and quantities in MWh. J(·) denotes the market clearing parametric on a
firm’s offer curve. Col (1): Firm’s offer prices of relevant units replaced by their
marginal cost estimate. Col (2): Firm’s actual offer curve as observed in the
data. Col (3): Firm’s best-response offer curve. Col (4): Firm’s best-response
offer curve computed under the assumption of infinite transmission capacity.
Almost all solutions of best reply offer curves supplied to J(·) are proven global
maxima (2 cases out of 350 cases have a MIP gap larger than 0.09% where the
maximum value is 0.3%).

1 Profits adjusted by QC ·PC with PC set to the average actual uniform purchase
price (103 EUR/MWh) in our sample. Only thermal units considered including
adjustments for costs and revenues of non-relevant thermal units.
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6 Location and the Price Effects of Divestment

This section analyzes how the same amount of capacity divestment in different zones would

change the incumbent’s optimal best-reply offer curves and resulting locational prices. The

locations in the transmission network where the same number of megawatts (MWs) of gen-

eration capacity divestment takes place determines the extent of unilateral locational market

power the divesting supplier is able to exercise.

We focus on the incumbent because it owns a substantial amount of thermal capacity in

all zones. We consider four scenarios, two where we divest about 1.2 GW of the incumbent’s

thermal capacity first in the North and then in the Center, respectively. In the remaining

two scenarios, we divest about 2.4 GW in each of the two zones. In order to make the

counterfactuals comparable to the status quo, we adjust the firm’s forward positions using

the procedure described in Section 4.2 for each modified generation portfolio. We also assume

that the capacity is divested to a fringe player, meaning that the divested capacity is offered

at marginal cost to the market. In order to make this exercise as realistic as possible, we

divest whole units.25

Table 2 presents our results. As expected, divesting the incumbent of thermal capacity

leads to lower best-response prices. However, the zonal configuration of the market turns

out to be a an important determinant of which divestment scenario lowers prices the most

in which zone. Divesting 1.2 GWs of the incumbent’s thermal capacity in the North or in

the Center (Panel A) leads to a larger reduction in the uniform purchase price relative to

the status quo relative to divesting the same amount of capacity in the North. Compare

columns (2) and (5) to column (1) in Table 2). Although the channels leading to this result

are slightly different, divestment in the North would lead to a lower average zonal price in

this zone and a slightly higher price in the Center as well as a larger price in Sicily. Hence,

25We selected mostly coal plants and one economic gas plant to ensure that we are divesting inframarginal
capacity. In the North, units 1 to 4 of the Fusina plant and unit 3 of the plant in La Spezia were divested.
For the larger divestment we added units 3, 4, and 6 of the Genoa plant and units 3 and 4 of the Porto
Corsini plant. In the Center we divested units 1 and 3 of the Brindisi plant, and for the large divestment we
added unit 4 of the Brindisi plant and unit 3 of Sulcis plant.
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the incumbent’s unilateral incentive to drive prices in these three zones apart would increase.

Because the North zone is larger than the Center zone (and much larger than Sicily), the

decrease of the zonal price in the North dominates the slight increase in the Center and

hence, the uniform purchase price would be lower. When divesting in the Center, the price

in the Center would decrease, and so would the best-response uniform purchase price.

Applying a large divestment counterfactual scenario (2.4 GW) leads to even lower uniform

purchase prices. We provide the average results of this exercise in Panel B of Table 2.

Divesting a large amount of the incumbent’s thermal capacity in the North leads to a smaller

change in the uniform purchase price in comparison to the small divestment (compare row

P , column (5) in Panel A to the same row and column in Panel B in Table 2). Overall,

the average effect on the uniform purchase price is about the same. The locational price

dispersion is larger when divesting in the North than when divesting in the Center.

These results demonstrate that the same number of MWs of divestment in different zones

would yield different counterfactual prices, highlighting the importance of the location of

demands, generation units owned by other firms and the divesting firm, and the configuration

of the transmission network when assessing the competitive impact of a fixed GW divestment

action. The finding that capacity location may be critical when measuring market power is in

line with Bigerna et al. (2016) who assess the ability of suppliers to exercise unilateral market

power in the Italian day-ahead market using zonal Lerner indices. Their results show that

generators are only able raise prices above competitive levels in specific congestion zones.

The importance of network considerations in the Italian day-ahead market is also confirmed

by Fianu et al. (2022).

7 Locational Quantity-Setting Equilibrium Model

This section constructs an equilibrium model where strategic firms make locational output

choices to impact locational prices through a potentially congested transmission network.
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Table 2: Divestment of Incumbent’s Capacity

(1) (2) (3) (4) (5) (6) (7)
Baseline Divestment in the Center Divestment in the North

J(θ∗
i ) J(θ∗

i ) ∆ ∆(%) J(θ∗
i ) ∆ ∆(%)

Panel A. Thermal capacity divestment of about 1.2 GW

P 105.5 103.5 −2.0 −1.9% 101.9 −3.6 −3.4%
PC 115.3 107.6 −7.7 −6.7% 115.7 0.4 0.3%
PN 92.8 93.4 0.7 0.7% 85.2 −7.6 −8.1%
P SI 165.1 172.7 7.6 4.6% 174.7 9.6 5.8%

Πi 593.2 495.6 −97.6 −16.4% 533.3 −59.9 −10.1%
Total Cost1 723.1 725.9 2.7 0.4% 721.8 −1.3 −0.2%

Panel B. Thermal capacity divestment of about 2.4 GW

P 105.5 101.1 −4.4 −4.2% 100.8 −4.7 −4.4%
PC 115.3 103.4 −11.8 −10.3% 115.9 0.6 0.6%
PN 92.8 91.6 −1.2 −1.3% 82.5 −10.2 −11.0%
P SI 165.1 176.3 11.1 6.7% 180.5 15.4 9.3%

Πi 593.2 438.6 −154.6 −26.1% 499.8 −93.4 −15.7%
Total Cost1 723.1 725.8 2.7 0.4% 723.7 0.6 0.1%

Notes: Average market outcomes (N = 175). Prices in EUR/MWh, costs and profits in kEUR. J(·) denotes
the market clearing, parametric on a firm’s offer curve. Col (1): Market clearing evaluated at incumbent’s best
response offer curve. Col (2): Market clearing evaluated at incumbent’s best response offer curve assuming that
coal capacity in the Center was divested. Col (3): Actual change between Col (1) and Col (2). Col (4): Relative
change between Col (1) and Col (2). Col (5): Market clearing evaluated at incumbent’s best response offer curve
assuming that coal capacity in the North was divested. Col (6): Actual change between Col (1) and Col (5).
Col (7): Relative change between Col (1) and Col (5). All solutions of best reply offer curves supplied to J(·) are
proven global maxima with the exception of 3 cases out of 1,050 with MIP gap larger than 0.09%. Maximum MIP
gap of these 7 cases is equal to 0.38%.

1 Includes costs of explicitly modeled thermal units as well as costs of remaining supply capacity (including imports)
assuming that this capacity is offered at short run marginal costs.

Multiple suppliers own productive capacity in multiple locations and compete against one

another through a smoothed version of our residual demand hyper-surfaces.26 We use this

model that to assess the impact of the same divestment actions by the incumbent firm

considered in the previous section assuming that the two large strategic firms each set their

vector of locational quantities to maximize expected profits given the locational quantity

26Quantity-setting models with producers behaving as price takers relative to the price of transmission
can be found in Hobbs et al. (2005); Neuhoff et al. (2005); Hobbs and Pang (2007); Yao et al. (2008).
Quantity-setting models where suppliers compete through a potentially constrained transmission network
can be found in Oren (1997); Borenstein et al. (2000); Willems (2002); Gilbert et al. (2004).
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choices of their competitors and the distribution of smoothed residual demand hyper-surfaces

created by the offers of the remaining firms, locational demands, and the configuration of

the transmission network.

We begin by describing the multivariate Nadaraya-Watson (N-W) estimator that we use

to smooth the residual demand hyper surfaces. For that purpose we briefly switch notation

and detail the estimator in the common kernel regression analysis notation (see,e.g., Liu and

Yang, 2008; Racine, 2008). Consider an n × p matrix of continuous covariates, X, and a

n× 1 vector of dependent variables, Y . The N-W estimator is defined as

m̂(x) =

∑n
i=1

(∏p
j=1

[
k
(

xj−Xij

hj

)]
yi

)
∑n

i=1

(∏p
j=1

[
k
(

xj−Xij

hj

)]) , (7)

where k(t) is a univariate kernel function, h = (h1, h2, ..., hp)
′ a vector of bandwidths, Xij

is the jth element of the ith row of X, and yi is the ith row of Y . We assume a standard

Gaussian kernel k(t) = 1√
2π
e−

t2

2 .

In the context of residual demand hyper surfaces, the rows of X are locational quan-

tity values on a grid and the rows of Y are the corresponding locational prices P z. The

spacing of the grid will be a parameter of the model and so will be the bandwiths used for

smoothing. In Figure 6, we show actual residual demand surfaces based on a finite grid of

locational quantity vectors (Panel a) together with its smoothed versions (Panel b) using

the multivariate smoothing approach outlined above.

[Figure 6 about here.]

We assume that firms simultaneously choose locational quantities rather than offer curves

to maximize expected profits given the locational quantity choices of their strategic competi-

tor and the smoothed inverse residual demand hyper-surfaces created by offers of the remain-

ing competitors, locational demands, and the configuration of the transmission network. Let

the realized smoothed inverse residual demand hyper-surface for zone z which is the function

of the vector of aggregate locational quantities Q equal P̃ z(Q, ϵ) and the quantity-weighted
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average price equal P̃ (Q, ϵ). Each firm i’s objective function is:

maximize
Qi

Eϵ

[
Z∑

z=1

P̃ z(Q, ϵ)Qz
i − Cz

i (Q
z
i ) − (P̃ (Q, ϵ) − PC

i )QC
i

]
(8a)

subject to 0 ≤ Qz
i ≤ Q

z

i , ∀z ∈ V(i), (8b)

where ϵ parameterizes the distribution of residual demand uncertainty.

The first order necessary conditions of (8) for each strategic firm i and assumed distri-

bution of residual demand hyper-surfaces using S smoothed residual demand hyper-surface

realizations are:

Qz
i ≥ 0 ⊥S−1

S∑
s=1

(
Z∑

k=1

(
∂P̃ k

s (Q)

∂Qz
i

Qk
i

)
+ P̃ z

s (Q)− ∂P s(Q)

∂Qz
i

Qc
i

)

− dCz
i (Q

z
i )

dQz
i

− µz
i ≤ 0, ∀i, z = 1, . . . , Z. (9a)

0 ≤ µz
i ⊥Qz

i ≤ Q
z

i , ∀i, z = 1, . . . , Z. (9b)

Solving the nonlinear complementary problem (9) should lead to stationarity points that

are mutual best-responses. However, because residual demand hyper-surfaces are smoothed

but not shape constrained we cannot provide any guarantee that the resulting stationarity

points are unique. Kolstad and Mathiesen (1987) show that quasi-concavity of the expected

profit function is a necessary condition for a unique equilibrium in the single zone case. Note

further that even if zonal (1-dimensional) residual demand functions are linear our problem

can have multiple or no pure strategy equilibria (Yao et al., 2008).

To circumvent the issue of uniqueness, we deploy an extensive search strategy using

different starting value combinations to trace out potentially multiple stationarity points.27

27We derive all permutations of an aggressive quantity choice (80% of a firm’s available capacity) and
an defensive quantity choice (20% of a firm’s available capacity). We permute over locations as well as
firms which yields 2Z×N = 64 combinations in our setting with two strategic firms (N = 2) and both firms
controlling capacity in each of the three zones (Z = 3). Inspecting the computational solutions, we find that
99% of runs in the baseline case converge. Excluding the solutions that did not converge, 82% of all 175
market instances in our sample converged to the same stationarity point.
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Dropping solutions that are dominated in terms of expected profits of both firms, we find that

95% of all market instances converged to the same stationarity point. The proportions are

similar for the counterfactual runs where we divest capacity in different locations analogous

to Section 6.

We compute the inverse residual demand hyper-surfaces on a grid of locational quantity

values. For each zone we select 20 points equally spaced between zero and 110% of joint

maximum available capacity of the two strategic firms. The rationale behind using a value

that is larger than the joint maximum available capacity is that kernel smoothing typically

underperforms at the border of the support of the function so that extending the maximum

values is a way to avoid this behavior for the economically relevant range of output values.

Because two strategic firms compete in three zones, Z = 3, this implies 203 = 8,000

market-clearing solutions per market instance to obtain a smoothed inverse residual demand

hyper-surface. For the S = 20 ”like markets” used to model distribution of the inverse

residual demand hyper-surfaces, our approach requires clearing the market 8,000 · 20 =

160,000 times to solve for a stochastic equilibrium in quantities for one market instance. We

choose the smoothing parameters that enters the kernel for zone z, hz = 0.05
∑

i Q
z

i , that is

5% of the maximum of output quantities of the two firms in zone z.28 In order to simplify the

problem, we replace zonal piece-wise constant short run marginal cost curves by increasing

and convex quadratic short run marginal cost curves. The parameters of these functions

are obtained through least squares fitting a curve to the piece-wise constant functions. In

Figure 7, we plot the zonal marginal cost functions and their fitted counterparts for the

incumbent firm.29

[Figure 7 about here.]

28In Table 9, we present equilibrium results using hz = 0.1
∑

i Q
z

i as a smoothing factor to check the
sensitivity of our approach with respect to this parameter choice. The entries in this table should be
compared to values in Column (1) in Table 3. We find that a more smoothing leads to average prices that
are lower and that deviate more from actual observed prices. However, the average price differences between
zones before versus after divestment are preserved.

29We solve the nonlinear complementarity problem (9) using the solver PATH (version 5.0.05; Dirkse and
Ferris, 1995) with its default parameter settings.
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We perform the same two divestment analyses for two locations for the incumbent firm

described in Section 6, 1.2 GW and 2.4 GW in the Center and in the North, and analyze

their effects on equilibrium prices, quantities, profits, and total costs. In Table 3,30 Panel

A, we show that divesting about 1.2 GW of the incumbent’s coal capacity in the Center

(Columns 2–4) would reduce the average equilibrium price relevant for the demand side

by 3.5% compared to the simulated baseline market outcomes (Column 1). The average

zonal price in the Center would decrease by 6.2% while zonal prices in the North would

only slightly decrease by 2.5%, and the price in Sicily would increase by 2.4%. Prices

are averaged over all market instances and are the market-clearing prices computed using

unsmoothed inverse residual demand surfaces for that market instance evaluated at the

optimal quantities obtained from solving (9) for the two strategic firms. The total average

output of both strategic firms is predicted to decrease by 7.9%—a result that is partially

driven by our assumption that the divested capacity is purchased by a competitive fringe

firm and would be offered at marginal cost. Average profits of both firms would decrease by

10.1% and the total costs to serve demand would slightly decrease by 0.8%. A more aggressive

divestment of about 2.4 GW of the incumbent’s coal capacity in the Center (Panel B) would

even further decrease the average equilibrium price relevant for demand by 4.7% compared

to the simulated market outcomes under the status quo.

The second counter-factual deals with a divestment of the incumbent’s capacity in the

North (Columns 5–7). Although, for the small divestment (Panel A), as well as for the

sizeable divestment (Panel B), the average equilibrium price in the North decreases by 3.1%

and 6.9% respectively, the effect on the weighted average zonal prices (relevant for the

demand-side) decreases much less compared to when the divestment would take place in the

Center. Comparing the average price dispersion between zonal prices we find that divesting

in the North would drive prices between the North and the Center further apart while the

30We do find a few instances with multiple stationarity points and we select those with the largest joint
expected profits. However, we also employed a different equilibrium selection criterion, where expected con-
sumer surplus is maximized. These results are presented in Table 8. The results are almost indistinguishable
and the qualitative interpretation of the results is independent of the two equilibrium selection methods.
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opposite effect is observed when divestment takes place in the Center.

Discussion of DWL In terms of the average cost to serve load we find an even slight

increase relative to the simulated status quo outcome.

Our equilibrium analysis confirms the same quantitative results as our best response

analysis that the largest percentage zonal price reduction occurs in the zone where the

divestment occurs, and there can be price decreases and even price increases in other zones.

However, equilibrium analysis finds smaller quantitative results in terms of the percentage

price effects relative to the best response analysis. This could be due to a number of factors:

(1) our two-strategic firm equilibrium analysis, (2) the fact that strategic firms pick locational

quantities rather than offer prices, and (3) our use of smoothed inverse residual demand

hyper-surfaces for each strategic firm’s vector of locational quantities.

8 Own- and Cross-Price Residual Demand Elasticities

This section describes how the residual demand hyper-surfaces can be used to compute

own- and cross-price inverse semi-elasticities that could be an input to the design of a local

market power mitigation mechanism and used to define local markets for merger and antitrust

analysis. All United States locational pricing markets have local market power mitigation

mechanisms that limit the offer price a supplier can submit when it is deemed to have a

substantial unilateral ability to exercise local market power. In an uncongested market

withholding output at one location impacts all locational prices by the same amount as

discussed in Section 2. In a congested network this is not always the case because binding

transmission constraints segment the market. Hence, withholding output in one location

may only increase the price in that location but not impact prices at other locations in the

network by the same amount or at all.

Building on the inverse semi-elasticity measure of the ability of a supplier to exercise

unilateral market power in a single location market from McRae and Wolak (2014), we
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Table 3: Simulated Market Outcomes under Quantity Competition

(1) (2) (3) (4) (5) (6) (7)
Baseline Divestment in the Center Divestment in the North

J({0,Q∗
i }) J({0,Q∗

i }) ∆ ∆(%) J({0,Q∗
i }) ∆ ∆(%)

Panel A. Thermal capacity divestment of about 1.2 GW
P 98.7 95.2 −3.5 −3.5% 98.2 −0.5 −0.6%
PC 105.6 99.1 −6.5 −6.2% 107.6 2.0 1.9%
PN 87.7 85.5 −2.2 −2.5% 85.0 −2.7 −3.1%
PSI 160.0 163.9 3.9 2.4% 164.5 4.5 2.8%

QC(Strategic Firms) 4, 892 3, 939 −953 −19.5% 4, 839 −53 −1.1%
QN (Strategic Firms) 7, 226 7, 164 −61 −0.8% 6, 402 −824 −11.4%
QSI(Strategic Firms) 1, 167 1, 131 −36 −3.0% 1, 136 −30 −2.6%

Q(Strategic Firms) 13, 285 12, 235 −1, 050 −7.9% 12, 377 −908 −6.8%

Profit(Strategic Firms)1 916 824 −92 −10.1% 851 −65 −7.1%

Total Cost2 945 938 −7 −0.8% 950 4 0.5%

Panel B. Thermal capacity divestment of about 2.4 GW

P 98.7 94.1 −4.6 −4.7% 96.9 −1.8 −1.9%
PC 105.6 97.1 −8.5 −8.1% 108.7 3.1 3.0%
PN 87.7 84.6 −3.1 −3.5% 81.7 −6.1 −6.9%
PSI 160.0 166.3 6.3 3.9% 167.2 7.2 4.5%

QC(Strategic Firms) 4, 892 3, 288 −1, 604 −32.8% 4, 787 −105 −2.1%
QN (Strategic Firms) 7, 226 7, 145 −81 −1.1% 5, 723 −1, 502 −20.8%
QSI(Strategic Firms) 1, 167 1, 111 −56 −4.8% 1, 117 −50 −4.3%

Q(Strategic Firms) 13, 285 11, 544 −1, 740 −13.1% 11, 627 −1, 657 −12.5%

Profit(Strategic Firms)1 916 769 −147 −16.0% 811 −105 −11.5%

Total Cost2 945 936 −9 −0.9% 951 6 0.6%

Notes: Average market outcomes (N = 175). Equilibrium selection criteria is maximized joint profits. Prices
in EUR/MWh, costs and profits in kEUR, and quantities in MWh.

1 Profits adjusted by QC ·PC with PC set to the average actual uniform purchase price (103 EUR/MWh) in our
sample. Only thermal units considered including adjustments for costs and revenues of non-relevant thermal
units.

2 Includes the variable costs of strategic firms computed using the assumed functional form as well as the costs
of remaining firms including imports assuming that this energy is offered at short run marginal costs.

compute both inverse own- and cross-price semi-elasticities for each strategic supplier and

each location. More precisely for each strategic supplier i we compute

ηz,z′(i) = (Qz
i /100)

∂P z′(Qi)

∂Qz
i

, (10)

for any two locations z and z′. If z = z′ then ηz,z′(i) is the own-price elasticity, otherwise it

is cross-price elasticity of an output increase by firm i at location z on the price at location
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z′.

The own-price inverse semi-elasticity, ηz,z(i), measures the EUR/MWh change in the

price at location z associated with supplier i increasing its output by 1 percent at that

location. The cross-price inverse semi-elasticity ηz,z′(i) measures the EUR/MWh change in

price at location z′ associated with supplier i increasing its output by 1 percent at location

z.

Because we model the Italian market with three locations, the Center (C), North (N),

and Sicily (SI), there are three inverse own-price semi-elasticities and six inverse cross-price

semi-elasticities, two for price changes at two locations with respect to a quantity change

at the remaining location for three locations. We compute the inverse semi-elasticities for

each of the 175 market outcomes using the step function residual demand hyper-surfaces

with discrete changes in Qz
i . To obtain a non-zero own-price response for step function

residual demand hyper-surfaces, we vary each strategic firm’s output at location z between

zero and its maximum capacity at that location in 1 MWh steps upward from the firm’s

actual output level and in 1 MWh steps downward from the firm’s actual output until two

different prices at location z are obtained. We then take ∆P z as the difference between

these two prices and ∆Qz
i as the difference in the output levels associated with these two

prices. We replace ∂P z(Qi)
∂Qz

i
by ∆P z

∆Qz
i
in (10). For ∆P z′ for the other two locations we use the

difference in prices at location z′ associated with the two output levels at location z used to

compute ∆Qz
i . We replace ∂P z′ (Qi)

∂Qz
i

by ∆P z′

∆Qz
i
in (10). This approach ensures that if market

is unconstrained ηz,z(i) = ηz,z′ for z′ ̸= z. To estimate ∂P z

∂Qz
i
and ∂P z′

∂Qz
i
using the smoothed

residual demand hyper-surfaces these two partial derivatives are computed directly from the

smoothed residual demand hyper-surface functions.

Figures 8 and 9 present box and whiskers plots31 for the 175 values of the own- and cross-

price inverse semi-elasticites for the incumbent and main competitor for the step function and

smoothed residual demand hyper-surfaces, respectively. The inter-quartile range of values

31Sample average hourly values and standard deviations for these inverse semi-elasticities are displayed
in Tables 10 and 11.
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for both the own- and cross-price inverse semi-elasticites for both firms and both residual

demand hyper-surfaces are small relative the 90th to 10th range of values. Particularly for the

own- and cross-price values based on the step function residual demand hyper-surfaces there

are number of extremely large values. For example, for the North zone and main competitor,

the distribution of hourly values of the own-price inverse semi-elasticity in Figure 8 indicates

a substantial ability to exercise unilateral market power during more than 25 percent of the

hours in our sample. The absolute value of ηN,N(i) is greater than 2 for the vast majority of

these hours, implying that one percent reduction of output in the North would increase the

price by 2 Euros per MWH. The cross-price elasticities for the other two zones. ηN,C and

ηN,S, imply that prices in these two zones are largely unaffected by the main competitor or

incumbent withholding output in the North.

[Figure 8 about here.]

[Figure 9 about here.]

The 10th to 90th percentile range of the own-price inverse semi-elasticites in Figure 8

contains values that are significantly larger in absolute value than the 10th to 90th range

of cross-price inverse semi-elasticites. This is consistent with transmission congestion being

prevalent during the hours of our sample, so that the ability of a supplier to exercise unilateral

market power is confined to a local market. Nevertheless, many of the cross-price elasticities

are significantly different from zero for the step function residual demand hyper-surfaces and

smoothed residual demand hyper-surfaces. For example, a value of 0.1 EUR/MWh for the

cross-price semi-elasticity of an output in change in the Center zone on the price in Sicily for

the incumbent implies that a 10% decrease in this supplier’s output in the Center increases

the price in Sicily by 1 EUR/MWh.

Consistent with the fact they are derived from taking the partial derivative of a smoothed

residual demand hyper-surface, the inverse semi-elasticies in Figure 9 tend to have a smaller

inter-quartile range and significantly smaller 10th to 90th percentile range that the corre-
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sponding inverse semi-elasticities in Figure 8. However, similar to Figure 8, the own-price

inverse semi-elasticities in Figure 9 have significantly larger 10th to 90th range than any of

the cross-price inverse semi-elasticities.

A local market power mitigation mechanism could be designed around the selection of

critical values the hourly value of these own- and cross-price inverse semi-elasticities that

would deem supplier worthy of mitigation. For example, if the absolute value of the own-

price inverse semi-elasticity exceeded certain value, that suppliers offer price at that location

would be mitigated. More sophisticated approaches could use functions of the own- and

cross-price inverse semi-elasticities with respect to an output change at a location to de-

termine when offer mitigation is appropriate. This approach to measuring the ability of a

supplier to exercise unilateral market recognizes that output decisions at one location can

impact locational prices throughout the transmission network. As the frequency and pat-

tern of transmission congestion become less predictable because of the increasing amounts

of intermittent renewable resources, understanding and mitigating local market power in

locational pricing markets becomes increasingly important.

Following the logic of Scheffman and Spiller (1987) these own- and cross-price residual de-

mand hyper-surface elasticities can be used to determine the geographic market definition for

the purposes of merger analysis in a wholesale electricity market. Different from Scheffman

and Spiller (1987), these measures are produced on an hourly basis, so assessments on the

extent of the geographic market following their approach can be made on a hourly basis. The

cross-price residual demand hyper-surface elasticities also provide additional information on

frequency that the entire market separates across locations.

9 Discussion and Conclusion

We have introduced residual demand hyper-surfaces, which are the natural extension of the

residual demand curve concept developed for single location markets for locational markets
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connected with finite transmission capacity. These hyper-surfaces make it possible to infer

the effect of a firm’s locational quantity choice on the price at that location and the price

at all other locations. Residual demand hyper-surfaces provide measures of the ability of a

supplier to exercise unilateral market power at each location.

We have adapted the best-response offer curve model to incorporate these transmission-

constrained residual demand hyper-surfaces. We found that taking transmission constraints

into account helps explain actual offer behavior in the Italian wholesale market better than

expected profit-maximizing offer curves constructed assuming infinite transmission capacity.

We have shown the importance of taking the location of a firm’s capacity into account

when assessing the impact of divestment scenarios to enhance market competitiveness in

locational pricing market with finite transmission capacity. We developed a stochastic lo-

cational quantity-setting equilibrium model of competition that accounts for the fact that

firms compete through a potential congested transmission network. Using this model we

confirmed the qualitative features of the results our best response offer model of the impact

of different locational divestment actions on locational prices.

Finally, we introduced quantitative measures of the unilateral ability of supplier to ex-

ercise locational market power. These own-price and cross-price inverse semi-elasticities

quantify the impact on prices at all locations of a supplier withholding a certain percentage

of its output at one location. These measures are likely to be a useful input to a design of

a local market power mitigation mechanism and the process of geographic market definition

for merger and antitrust analysis.

Our results rest on a several assumptions that we hope to relax in future research. Our

analysis does not capture the repeated game nature of supplier interactions, as well the

market for fixed-price forward contracts or the market for real-time re-dispatch. Finally, we

do not account non-convexities in cost of the operating thermal generation units.
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Online Appendix

A Introduction

This appendix is organized as follows. In Section B, we give a detailed description of the

Italian electricity market. Section C describes the zonal market-clearing engine used by the

market operator. In Section D, we show how to reformulate the best-response offer curve

problem into a mixed integer program and solve for best-response offer curves in a locational

pricing market.

B Market Description

B.1 The Italian Electricity Market

The Italian spot market for electricity began operation in April 2004. It is organized in

a sequential manner, similar to the Spanish power market described in Ito and Reguant

(2016). More precisely, it consists of a day-ahead market, an adjustment market,32 and an

ancillary services market, also known as re-dispatch market. After the day-ahead market

has cleared, market participants have the opportunity to alter their day-ahead schedules in

the adjustment market. Eventually, Terna, the Italian transmission system operator, builds

up reserves and resolves congestion in the so-called ancillary services or re-dispatch market.

The Italian day-ahead market for electricity is a non-compulsory net-pool zonal market

administrated by the market operator. The market splits into several market zones when

congestion is present. In that case, producers receive a different price depending on the

zones where they are producing energy. The demand side is paid a uniform purchase price

(UPP). Retailers and large consumers bid a non-increasing demand curve. Suppliers submit

32The adjustment market has been replaced by a series of intra-day markets in later years. The Italian
Power Exchange provides a detailed description on their website, see http://www.mercatoelettrico.org/
En/Mercati/MercatoElettrico/MPE.aspx.
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non-decreasing energy offer curves that do not include a start-up or minimum load cost.

Demand bid and supply offer prices are floored at zero and capped at 500 EUR which was

lifted to 3,000 EUR in 2008. In 2007 the maximum observed UPP was 242.4 EUR/MWh

(Bosco et al., 2013). For each production or consumption unit a maximum of four offer steps

is allowed. In the day-ahead market electricity is traded for the 24 hours of the next day and

there are no inter-temporal constraints, such as block bids,33 or ramp rates to consider when

clearing the market. Assuming that non-convexities as discussed in Graf et al. (2020a) are

a minor concern for suppliers when formulating their offer curves implies that we can treat

each hour of the day as independent from one another.

Many market participants have fixed-price long-term contract obligations to supply and

purchase electricity. In the day-ahead market, participants may self-schedule (a part of)

their bilateral commitments. Self-scheduled demand and supply enter the day-ahead market

as price inelastic bids.34 Following the definition in Anderson et al. (2007), the day-ahead

market can therefore be described as a “net-pool”. In case of transmission congestion, an

explicit transmission capacity fee (CCT)35 is due for the self-schedules. The CCT is defined

as the difference between the hourly purchase price in the withdrawal zones of the contract

and the hourly electricity selling price in the injection zones of the contract. Hence, the

CCT translates into a cost for injections into exporting zones, because it contributes to

increasing congestion; and it translates into a subsidy for injection into importing zones, as

it contributes to relieving congestion. The CCT is zero if no congestion is present. Note that

regular day-ahead market transactions pay/receive an implicit congestion fees based on the

zonal price difference (for further details see Ardian et al., 2018).36

In 2007, the Italian market consisted of seven domestic zones, five limited production

33See, e.g., Reguant (2014), for a description of block bids in the Spanish day-ahead market.
34There is the theoretical possibility to self-schedule demand or supply at a positive price but this option

is hardly used by market participants.
35Those charges are called Corrispettivo per l’assegnazione dei diritti di utilizzo della capacit’a di trasporto

(CCT). See http://www.mercatoelettrico.org/en/tools/glossario.aspx.
36For more details on the market we refer to http://www.mercatoelettrico.org/En/MenuBiblioteca/

documenti/20111216Annual_Report_2010.pdf.
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zones and six foreign virtual zones to organize imports and exports. The network structure

relevant for the day-ahead market-clearing was radial. Congestion between zones mostly

took place between the North bidding zone and the rest of the mainland as well as between

the mainland and the islands of Sicily and Sardinia. During our sample period congestion

between the North bidding zone and the and the rest of the mainland occurred over 80%

of the hours. We refer to Appendices B.4–B.6 for more details on the transmission network

and the prevalence of congestion.

B.2 Market Structure

In 2007, annual electricity demand reached about 340TWh net of energy for pumping and

before transmission line losses. Peak demand was in December with about 56.8GW. Avail-

able installed capacity was 77.6GW. The demand in the day-ahead market reached 330TWh,

whereas about 2/3 of the demand was fulfilled through market transactions and the remain-

der through self-schedules.

All customers have the right to choose their electricity supplier since July 2007. However,

most domestic consumers had not opted for this option at the time. For those households

and small companies, the single buyer—a state controlled entity—is in charge for procuring

electricity from the day-ahead market and reselling it to retailers (ARERA, 2008a).

In 2007, 85% of gross electricity production came from thermal plants and 13% from hydro

(including some pumped-hydro storage units). The remaining share came from geothermal

sources and wind power. In terms of thermal capacity, the majority uses natural gas followed

by coal and fuel oil. See ?? for more details. Compared to Italy’s neighbors in the North—

with nuclear power as the dominant source in France and hydro power in Switzerland—this

is a rather expensive power production mix which explains the large amount of imports.

The incumbent firm in the Italian market is Enel—the former state-owned monopolist.

Its share of electricity generation was about 31% in 2007. Enel’s main competitor at the time

was Edison. It was controlled by Aem—a Milan based utility and Edf—the French state-
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owned company. Furthermore, Edison controlled half of Edipower’s capacity via a tolling

agreement. Edipower is a generation company with capacity in the North zone as well as

in Sicily. Furthermore, Aem controlled 20% of Edipower. We decided to model Edison,

Aem, Edf, Edipower as one company construct, which we refer to as Edison in the paper.37

Edison’s market share in generated electricity was about 13.7% in 2007 and Edipower’s 8%.

Both the incumbent (Enel) and main competitor (Edison) operate hydro plants for other

firms in the north of the country. However, in most of the cases the two firms hold also

shares of these other firms. We therefore decided to add this hydro capacity to each of these

firms’ generation capacity.

Some thermal plants in the Italian market are operated by a state-owned entity due to

a special regime called CIP-6/92.38 The state-owned entity signed contracts for differences

with the owners of these thermal plants and in exchange offered the capacity at zero to the

market. This leaves the state-owned entity with the price risk of the short-term market.

If reselling of contracts were forbidden, CIP-6 contracts would enter the firms’ objective

function. However, only the net-position of contracted quantity matters when offering to

the short-term market and therefore, we do only implicitly account for the contracts signed

with the state-owned entity. We explain how we elicit the net contract position from a firm’s

offer data in Section 4.2.

In Table 4, we show the zonal distribution of production capacity by generation type,

location, and firm.39 The data in the table reveals that the incumbent has a very dominant

37See the European Commission’s merger case “COMP/M.3729–EDF/AEM/EDISON” for more details
on the firm construct including the tolling agreement.

38This is a controversial resolution put in place before the market liberalization, with the purpose to
subsidize the production of electricity from renewable and “assimilated” sources. In practice, many thermal
plants, such as co-generation plants, managed to benefit from the CIP-6 subsidy by claiming to be “assimi-
lated” to renewables. The electricity produced from “assimilated” sources under the CIP-6 agreement is not
negligible as it comprised approximately 15% of the domestic thermoelectric production in 2007, (see, e.g.,
ARERA, 2008b). Note that this law is in stark contrast to EU law and was therefore phased out.

39We elicit capacity data from the day-ahead offer data by taking the maximum offers per unit, day,
and hour during our sample period. This method yields a total supply capacity of 70.7GW. This value is
slightly lower than the reported number of total net capacity of 77.6GW reported by ARERA (2008a) for
the whole year of 2007. Possible explanations for the difference are that we derive capacity value estimates
only by using offer data from the fall 2007 and not the whole year. Typically, available hydro capacity peaks
in the spring after the snow melt and therefore a reduced value of available capacity in the fall is credible.
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position in the Center zone. Capacity shares of both firms are more balanced in the North

zone. Market concentration is particularly high in Sicily.

Table 4: Capacity and Peak Demand

Type/Zone C1 N2 SI1 Total

Panel A. Incumbent

Thermal 11.0 6.9 2.1 20.0
Storage3 1.6 4.0 0.4 6.0
Other4 1.7 3.8 0.2 5.7

Total 14.3 14.7 2.7 31.7

Panel B. Main competitor

Thermal 3.7 7.6 1.2 12.5
Storage3 0.3 0.3
Other4 0.3 2.3 2.6

Total 4.0 10.2 1.2 15.4

Panel C. Fringe

Total 9.6 13.2 1.1 23.9

Panel D. Market

Total 27.8 38.1 4.8 70.7

Notes: Capacity values in GW are derived by aggregat-
ing maximum offered quantities in the day-ahead mar-
ket during our sample period. Capacity estimates in-
clude capacity contracted under the CIP-6 regime.

1 Center (C) zone includes zones CN, CS, CA, S, and SA
and limited production poles therein.

2 Includes capacity in limited production poles.
3 Production capacity of largest pumped-hydro storage
plants.

4 Includes run-off the river plants, hydro systems with
dams and reservoirs, capacity from geothermal, wind,
and photovoltaics, and capacity from small and un-
matched thermal power plants.

B.3 Day-Ahead Market Offers and Transactions

Table 5 shows market offers and transactions for the sample period. A large share of domes-

tic supply offers is price inelastic and domestic demand bids are almost entirely inelastic.

Furthermore, the value provided by the regulator does not account for planned outages during our sample
period.
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Imports play a considerable role in the Italian market as 14% of electricity consumed is

imported. The amount of electricity from pumped storage units is negligible because our

sample is restricted to peak hours only.

Table 5: Day-Ahead Market Offers, Bids, and Transactions

GWh Share N

Panel A. Market Offers and Bids

Domestic supply offers 54.0 1.00 194,506
Price inelastic 23.9 0.44 83,587

Import offers 6.8 1.00 23,637
Price inelastic 5.9 0.86 20,469

Pumping bids 0.1 1.00 7
Price inelastic 0

Export bids 0.8 1.00 1,825
Price inelastic 0.2 0.22 334

Domestic demand bids 44.9 1.00 72,933
Price inelastic 44.9 1.00 72,274

Panel B. Transactions

Domestic Sales 39.0 0.87 147,488
Imports 6.2 0.14 21,744
Pumping −0.1 0.00 7
Exports −0.2 0.00 553
Domestic Purchases 44.9 1.00 72,274

Notes: Average offer and bid quantities, and average
transactions per market instance (hour of a day) in our
sample. Aggregate number of observations (N).

B.4 Transmission Network

Figure 10 shows the transmission network structure in 2007 relevant for the day-ahead mar-

ket clearing. It is a radial representation where nodes are aggregated to zones. The zones

can be subdivided into domestic zones, limited production zones and foreign zones.40 Do-

40Domestic zones are: North (N), Center-North (CN), Center-South (CS), Sardinia (SA), South (S),
Calabria (CA), and Sicily (SI); Limited production zones are Brindisi, Foggia, Monfalcone, Priolo Gargallo,
Rossano, Turbigo-Ronco; and Foreign zones are: France (FRA) including Corsica (CO), Switzerland (CHE),
Austria (AUT), Slovenia (SVN), and Greece (GRC). A detailed list of market zones can be found here:
http://www.mercatoelettrico.org/en/mercati/mercatoelettrico/zone.aspx.
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mestic zones contain generation as well as load while limited production zones only contain

generation. The Italian power system is highly interconnected with its neighboring countries

in the North, especially, France (FRA) and Switzerland (CHE). Italian as well as foreign

players can make sale offers or purchase bids for electricity in the foreign virtual zones.

[Figure 10 about here.]

B.5 Zonal Prices

Figure 11 shows the distributions of zonal day-ahead market prices during our sample. Two

things are notable from this figure: (i) the zonal prices appear to follow a bimodal distribution

that is less pronounced in the North zone (N) and (ii) the uniform purchase price (UPP)

does a good job in absorbing the high prices frequently observed in all the zones south of

the North zone.

[Figure 11 about here.]

B.6 Prevalence of Congestion

Table 6 shows the zonal price differences and occurrences of congestion during our sample

period. The data in the table reveals that in about 80% of the cases, the price in the mainland

zones except North (CN, CS, S, CA) is higher than in the North zone (N). Conditional on

observing a higher price in all other zones except the North zone, the price difference is

relative to other zones is about 35 EUR/MWh.

C Market Clearing

The market operator’s objective function is to maximize the sum of as offered and as bid

consumer and producer surplus accounting for transmission grid constraints.41 Market par-

41As offered and as bid means that supply offer curves are treated as marginal cost curves and demand
bids are treated as true demands in optimization problem.
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Table 6: Prevalence of Congestion

N CN CS S SA CA SI

Panel A. Row price higher than column (Share)

N 0.00 0.00 0.00 0.00 0.06 0.00 0.00
CN 0.80 0.00 0.00 0.01 0.18 0.01 0.01
CS 0.80 0.00 0.00 0.01 0.18 0.01 0.01
S 0.80 0.00 0.00 0.00 0.18 0.00 0.00
SA 0.76 0.03 0.03 0.05 0.00 0.04 0.03
CA 0.80 0.01 0.01 0.01 0.19 0.00 0.00
SI 0.97 0.60 0.60 0.61 0.73 0.59 0.00

Panel B. Row price less column price, conditional on being higher
N 26.95
CN 36.87 1.11 45.44 1.11 0.61
CS 36.87 1.11 45.44 1.11 0.61
S 36.85 45.44
SA 30.27 0.67 0.67 0.78 0.73 0.64
CA 37.06 14.31 14.31 14.86 43.55
SI 34.28 6.36 6.36 6.31 16.34 6.15

ticipants submit an offer curve and/or a demand curve, respectively. Given an aggregate

supply function θo = (bo,go) and an aggregate demand function θb = (bb,gb), the market

operator solves the following linear program

maximize
xb,xo

b⊤
b xb−b⊤

o xo (11a)

subject to 1⊤ xb = 1⊤ xo (11b)

Z∑
z=1

Az
kl

(
1⊤ xz

o −1⊤ xz
b

)
≤ fkl, (k, l) ∈ E (11c)

xk ≤ gk, k ∈ {b, o} (11d)

xk ∈ R+
0 , k ∈ {b, o} . (11e)

The values of x that maximize (11a) have to be balanced, i.e., demand equals supply

(Equation 11b). Furthermore, these quantities must satisfy the network feasibility con-
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straints, that is, the resulting power flows should not exceed the thermal limits fkl of the

transmission lines. The matrix A in Equation 11c gives the contribution of a net injection

in zone z to transmission line (k, l) ∈ E , where the E contains all transmission lines of the

system. Market-clearing quantities x must be non-negative and less than or equal to their

offered quantity levels (g). Let λ be the dual multiplier of the balance constraint (11b) and

µij the duals of the transmission constraints in (11c). The optimal zonal prices are given as

P z = λ−
∑

(k,l)∈E

Az
klµkl, z = 1, 2, . . . , Z. (12)

If all of the constraints in (11c) are not binding, their multipliers (µkl, (k, l) ∈ E) would be

zero and hence the market clearing price is the same in each zone.

C.1 Uniform Purchase Price

The Italian day-ahead market for electricity has demand side bidders face a uniform purchase

price (UPP). The historical reason for this rule is that consumers on remote islands or the

poorer South should not be disadvantaged. From a modeling perspective this implies that

the following additional constraint needs to hold

P
∑
r∈BR

xr =
Z∑

z=1

∑
r∈Br(z)

P zxr, (13)

where BR is the subsets of demand bids containing only regular demand bids. Regular

demand bids originate from a domestic zone and are not from a pumped-hydro storage unit.

Equation (13) can be interpreted as money conservation law. On the ride hand side of (13)

we could also sum over all offers. However, incorporating (13) into Problem 11 renders the

problem non-linear. There are three possibilities for computing a UPP: (i) Search for an

optimal solution that fulfills (13) by solving the problem for different UPP candidates,42 (ii)

42This iterative approach is the method used by the Italian power exchange. A more detailed description
of the algorithm can be found here: http://www.mercatoelettrico.org/En/MenuBiblioteca/Documenti/
20041206UniformPurchase.pdf.
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set-up the problem as a bi-level problem which can be translated into a single level problem

and solved with off-the shelf mixed integer programming solvers (see, e.g., Savelli et al., 2017),

or, (iii) calculate the UPP as the demand quantity weighted zonal price. In this paper, we

went for the last option because of its simplicity and high accuracy (see Section C.4).

C.2 Price/Quantity Indeterminacy

Market participants submit step-functions. Hence, rules that define what to do when aggre-

gated supply and demand step-functions overlap are necessary. The rules applied by market

operator are the following: In case supply and demand curves intersect at a horizontal por-

tion of both curves, the market-clearing solution is where allocated quantity is maximized.

In case supply and demand curves intersect at a vertical portion of both curves the market-

clearing solution is where the price is minimal. Practically this is achieved by shifting the

curves by a small amount.43

C.3 Uniqueness

The offer data come with a merit order number which is used to prioritize amongst marginal

supply and demand bids. For equal marginal supply/demand bid prices, the merit order

number acts as a tie breaking rule that is necessary to guarantee unique solutions of the

market-clearing in the setting of piece-wise constant offer/bid curves.44. According to the

Decision 111/06, Article 30.7, published by the Italian Regulatory Authority for Electricity

Gas and Water, the following priority is considered in case the same price is offered: offers

from essential units, offers from non-programmable renewables, combined heat and power

plants, incentivized power plants (e.g., CIP-6/92), power plants using national fuels, and

then all other plants. In cases where offers/bids have equal priority, the chronological order

43More details can be found under: http://www.mercatoelettrico.org/En/MenuBiblioteca/

Documenti/20100429MarketSplitting.pdf and Tribbia (2015).
44See Kastl (2011) on the importance of tie-breaking rules in obtaining a unique equilibrium with discrete

bids
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of receipt of bids and offers acts as a tie-breaker (first in, first out).

C.4 Accuracy

We are able to solve the Italian day-ahead market for electricity with perfect accuracy for

all market instances in our sample. Table 7 shows the mean absolute deviation between the

actual zonal prices and the replicated zonal prices in the domestic demand zones and the

mean absolute deviation between the actual and replicated uniform purchase price (UPP).

Table 7: Mean Absolute Deviation between Actual and Replicated Prices

Hour Count UPP CA CN CS N SA SI S

11 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 175

C.5 Simplifications to Reduce Model Complexity

Wemake two modifications of the original data and setting that greatly reduce the complexity

of solving our best-response offer curve model. First, we use a simpler transmission network

configuration. Second, we restrict best-response offer prices to be multiples of one Euro

rather than multiples of one Euro cent which is the restriction on offer prices set by the

market platform.

Regarding the simpler network configuration, we conclude from Figure 11 and Table 6

that congestion is mainly a concern between the North bidding zone and the Center-North

bidding zone, as well as between the Calabrian bidding zone and the Sicily bidding zone.

This inspired us to reduce the complexity of the problem by replacing the actual transmission

configuration relevant for the day-ahead market by a simpler three-national-zone network

model.

53



Italy is importing electricity in almost all cases in our sample (see Table 5). We also find

instances where the transmission constraint between the North bidding zone and Switzerland

is binding. We therefore cap all imports offers at the level of the actual quantity dispatched

to avoid situations where more electricity would be imported than is actually possible. To

sum up, the simplified transmission network configuration consists of: (i) the North zone

which includes virtual foreign trading zones, (ii) the Center zones which covers all national

zones on the mainland except the North zone plus Sardinia and the virtual trading zone

with Greece, and (iii) Sicily. We refer to these bidding zones as North (N), Center (C), and

Sicily (SI).

Clearing the market with the underlying simpler network configuration captures the

clearing prices and quantities sufficiently well. The patterns congestion for the relevant

period does not appear to change and the average uniform purchase price is 103.0EUR/MWh

as compared to the average actual uniform purchase price of 102.9EUR/MWh. Rounding the

original offer price data to the nearest euro and using the three-zone network configuration

leads to an average uniform purchase price of 103.1EUR/MWh.

D Best-Response Offer Function Calculation

We adapted the best-response bidding problem for a generation company as described in

Ruiz and Conejo (2009). The best-response offer problem for supplier i is to find the value

of θi, the vector of offer prices and quantities for all generation units owned by the firm

i, that maximizes the expected value of the firm’s variable profit function given in (5).

The expectation of this variable profit function is taken with respect to the distribution

of residual demand hyper surfaces faced by firm i. Each possible residual demand hyper

surface realization for a given value θi gives rise to a set of zonal prices and generation

unit-level dispatch quantities for all generation units through the locational market-clearing

mechanism. For the case of Italy, the market-clearing mechanism takes the bid and offer
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curves of market participants and solves the optimization problem described in Section C.

The resulting prices and dispatch levels from the market-clearing optimization problem

for each residual demand hyper-surface realization are substituted into (5) to obtain the

realized variable profit function for that residual demand surface realization. Repeating this

process for all possible residual demand surface realizations for fixed value of θi and averaging

these realized variable profit values yields our expected profit for firm i at θi. Finding the

value of θi that maximizes this function yields firm i’s expected profit-maximizing offer

curves for all of its generation units.

In order to facilitate readability of the mathematical presentation of the solution to this

problem we omit the fact that for each value of θi the market-clearing problem must be solved

for each residual demand hyper-surface realization in order to determine the zonal prices and

generation unit-level dispatch quantities necessary to compute the realized variable profit of

firm i for that residual demand surface realization. For our choice of 20 residual demand

surface realizations, this logic implies that we must solve 20 market-clearing problems each

time we compute the expected profit function for firm i for given value of θi. The solu-

tions to these 20 market-clearing problems are formulated in terms of Karush-Kuhn-Tucker

(KKT) conditions, which implies that the firm’s expected profit offer curve problem is a

mathematical program with equilibrium constraints (MPEC).

The market operator’s necessary Karush-Kuhn-Tucker (KKT) conditions are45

45Note that we minimize the negative sum of consumer and producer surpluses instead of maximizing the
sum of consumer and producer surpluses.
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bi−WiP− µ
i
+ µi = 0, (14a)

b−i −W−iP− µ−i
+ µ−i = 0, (14b)

− bb+WbP− µ
b
+ µb = 0, (14c)

1⊤ xb−1⊤ x−i −1⊤ xi = 0, (14d)

0 ≤ xi ⊥ µ
i
≥ 0, (14e)

0 ≤ gi −xi ⊥ µi ≥ 0, (14f)

0 ≤ x−i ⊥ µ−i
≥ 0, (14g)

0 ≤ g−i −x−i ⊥ µ−i ≥ 0, (14h)

0 ≤ xb ⊥ µ
b
≥ 0, (14i)

0 ≤ gb−xb ⊥ µb ≥ 0, (14j)

0 ≤ fkl −
∑
z∈V

Az
kl

(
1⊤ xz

i +1⊤ xz
−i −1⊤ xz

b

)
⊥ µkl ≥ 0, (k, l) ∈ E , (14k)

whereas the matrixW maps bids to zones, P is the vector of zonal prices, and µ(·) and µ
(·) are

the dual variables of (11d) and (11e) respectively. Note further, that we split θo = (bo,go)

into θi = (bi,gi) and θ−i = (b−i,g−i). The market operator’s program is a strictly concave-

maximization problem, so the KKT conditions are also sufficient.46 Note that problem

(14) can be formulated as a mixed integer linear program by introducing additional binary

variables able to deal with the either/or nature of the complementarity constraints.

In a second step we rewrite the firm’s expected profit maximization problem and include

the twenty KKT conditions as constraints, one for residual demand surface realization. Firm

i’s expected profit function is the sample average of 20 variable profit function values asso-

ciated with the 20 residual demand surface realizations.

46Note that we have implemented all mathematical programs accounting for uniqueness as described in
Sections C.2 and C.3. We decided to omit these additional constants in the notation to make it easier to
follow.
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E Additional Figures and Tables

Table 8: Simulated Market Outcomes under Quantity Competition (Maximized Expected
Consumer Surplus)

(1) (2) (3) (4) (5) (6) (7)
Baseline Divestment in the Center Divestment in the North

J({0,Q∗
i }) J({0,Q∗

i }) ∆ ∆(%) J({0,Q∗
i }) ∆ ∆(%)

Panel A. Thermal capacity divestment of about 1.2 GW
P 98.6 95.2 −3.4 −3.5% 98.1 −0.6 −0.6%
PC 105.6 99.1 −6.5 −6.2% 107.4 1.8 1.7%
PN 87.7 85.5 −2.2 −2.5% 85.0 −2.7 −3.1%
PSI 158.5 163.2 4.7 3.0% 163.9 5.4 3.4%

QC(Strategic Firms) 4, 884 3, 929 −955 −19.5% 4, 832 −52 −1.1%
QN (Strategic Firms) 7, 225 7, 163 −62 −0.9% 6, 401 −823 −11.4%
QSI(Strategic Firms) 1, 192 1, 161 −31 −2.6% 1, 154 −39 −3.2%

Total 13, 301 12, 253 −1, 048 −7.9% 12, 388 −914 −6.9%

Profit(Strategic Firms)1 916 825 −91 −9.9% 851 −65 −7.1%

Total Cost2 944 936 −8 −0.8% 949 5 0.5%

Panel B. Thermal capacity divestment of about 2.4 GW

P 98.6 94.0 −4.6 −4.6% 96.9 −1.8 −1.8%
PC 105.6 97.0 −8.6 −8.1% 108.7 3.1 3.0%
PN 87.7 84.7 −3.1 −3.5% 81.7 −6.1 −6.9%
PSI 158.5 165.4 6.9 4.4% 166.8 8.3 5.3%

QC(Strategic Firms) 4, 884 3, 280 −1, 605 −32.9% 4, 782 −102 −2.1%
QN (Strategic Firms) 7, 225 7, 143 −82 −1.1% 5, 723 −1, 502 −20.8%
QSI(Strategic Firms) 1, 192 1, 136 −56 −4.7% 1, 131 −61 −5.1%

Total 13, 301 11, 559 −1, 742 −13.1% 11, 636 −1, 665 −12.5%

Profit(Strategic Firms)1 916 770 −146 −16.0% 811 −105 −11.4%

Total Cost2 944 935 −9 −1.0% 950 7 0.7%

Notes: Average market outcomes (N = 175). Equilibrium selection criteria is maximized joint profits. Prices
in EUR/MWh, costs and profits in kEUR, and quantities in MWh.

1 Profits adjusted by QC ·PC with PC set to the average actual uniform purchase price (103 EUR/MWh) in our
sample. Only thermal units considered including adjustments for costs and revenues of non-relevant thermal
units.

2 Includes costs of explicitly modeled thermal units as well as costs of remaining supply capacity (including
imports) assuming that this capacity is offered at short run marginal costs.
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Table 9: Simulated Market Outcomes under Quantity Competition with Higher Smoothing
Parameter Value

Baseline
J({0,Q∗

i })
P 94.9
PC 102.4
PN 84.0
P SI 151.5

QC(Strategic Firms) 4, 911
QN(Strategic Firms) 7, 282
QSI(Strategic Firms) 1, 188

Q(Strategic Firms) 13, 381

Profit(Strategic Firms)1 903

Total Cost2 938

Notes: Average market outcomes (N =
175). Relative smoothing parameter is
set to 10% of maximum domain value in
each location. Equilibrium selection cri-
teria is maximized joint profits. Prices in
EUR/MWh, costs and profits in kEUR,
and quantities in MWh.

1 Profits adjusted by QC ·PC with PC set
to the average actual uniform purchase
price (103 EUR/MWh) in our sample.
Only thermal units considered including
adjustments for costs and revenues of non-
relevant thermal units.

2 Includes costs of explicitly modeled ther-
mal units as well as costs of remaining
supply capacity (including imports) as-
suming that this capacity is offered at
short run marginal costs.
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Table 10: Average Own- and Cross-Price Inverse Semi-Elasticites of Residual Demand Sur-
faces

(1) (2) (3)

C N SI

Panel A. Incumbent

ηC,col −17.76 −0.04 −10.07
(86.32) (0.27) (66.81)

ηN,col −0.05 −0.86 −0.00
(0.33) (1.65) (0.02)

ηSI,col −5.28 −0.00 −6.47
(34.78) (0.02) (35.05)

Panel B. Main competitor

ηC,col −0.27 −0.05 −0.07
(1.10) (0.62) (0.62)

ηN,col −0.02 −5.90 −0.00
(0.14) (22.05) (0.01)

ηSI,col −0.00 −0.00 −0.42
(0.01) (0.00) (2.21)

Notes: Averages taken over the sample
(N = 175). Standard deviations below
in parentheses.
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Table 11: Average Own- and Cross-Price Inverse Semi-Elasticites of Smoothed Residual
Demand Surfaces

(1) (2) (3)

C N SI

Panel A. Incumbent

ηC,col −0.63 −0.09 −0.23
(1.12) (0.29) (0.69)

ηN,col −0.15 −0.55 −0.02
(0.47) (0.67) (0.10)

ηSI,col −0.11 −0.01 −0.48
(0.03) (0.05) (0.71)

Panel B. Main competitor

ηC,col −0.06 −0.01 −0.01
(0.23) (0.07) (0.06)

ηN,col −0.02 −1.08 −0.00
(0.14) (1.53) (0.00)

ηSI,col −0.00 −0.00 −0.14
(0.01) (0.00) (0.53)

Notes: Averages taken over the
sample (N = 175). Standard de-
viations below in parentheses.
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Table 12: Paired Sample Test of Mean Own- and Cross-Inverse Semi-Elasticites of Residual
Demand Hyper-Surfaces

(1) (2) (3)

C N SI

Panel A. Incumbent

ηC,col −2.71 −0.93
ηN,col −6.32 −6.84
ηSI,col −0.32 −2.44

Panel B. Main competitor

ηC,col −2.25 −2.07
ηN,col −3.52 −3.53
ηSI,col −2.47 −2.48

Notes: Two-sided Welch t-test as-
suming unequal standard devia-
tions.

Table 13: Paired Sample Test of Mean Own- and Cross-Price Inverse Semi-Elasticites of
Smoothed Residual Demand Hyper-Surfaces

(1) (2) (3)

C N SI

Panel A. Incumbent

ηC,col −6.09 −3.95
ηN,col −6.40 −10.26
ηSI,col −6.06 −8.61

Panel B. Main competitor

ηC,col −2.49 −2.53
ηN,col −9.09 −9.32
ηSI,col −3.49 −3.53

Notes: Two-sided Welch t-test as-
suming unequal standard devia-
tions.
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Figure 1: Market-Clearing in Transportation Capacity Constrained Symmetric Markets
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Panel (a): Uncongested market, Panel (b): Congested markets.
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Figure 2: Inverse Residual Demand Surfaces in Symmetric Markets
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Panel (a): Market 1, Panel (b): Market 2, and Panel (c): Price difference between Market 2 and Market 1.
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Figure 3: Market Outcomes in Transport-Capacity-Constrained Asymmetric Markets
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Panel (a): Uncongested market, Panel (b): Congested markets.
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Figure 4: Inverse Residual Demand Surfaces in Asymmetric Markets
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Panel (a): Market 1, Panel (b): Market 2, and Panel (c): Price difference between Market 2 and Market 1.

65



Figure 5: Incumbent’s Optimal Zonal Offer Curves
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Notes: September 5, Hour 12. Panel (a): North; Panel (b): Center, Panel (c): Sicily. Only relevant thermal
units. Quantities are in GWh and prices in EUR/MWh.
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Figure 6: Actual versus Smoothed Residual Demand Surfaces (North/Center)

(a) (b)

(c) (d)

Notes: Panel (a) and (c): Actual inverse residual demand surfaces on 2007-09-21, hour 11 for both strategic
firms; Panel (b) and (d) Smoothed residual demand surfaces using normal kernel and bandwidth equals to
5% of total available capacity in each zone. Supply in Sicily fixed to its actual level. Quantities are in GWh
and prices in EUR/MWh.
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Figure 7: Zonal Marginal Cost Functions
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Notes: Incumbent’s piece-wise constant marginal cost curves and fitted convex and increasing marginal cost
curves in the Center (Panel a), North (Panel, b), and Sicily (Panel, c) for 2007-09-21, Hour 11. Quantities
are in GWh and marginal costs in EUR/MWh.
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Figure 8: Own- and Cross-Price Inverse Semi-Elasticites of Step-Function Residual Demand-
Hyper Surfaces

(a) (b)

Panel (a): Inverse Semi-Elasticites, Panel (b): (Cross)-Inverse Semi-Elasticites. Whiskers represent the 10th
percentile and the 90th percentile of the data. Outliers excluded.
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Figure 9: Own- and Cross-Price Inverse Semi-Elasticites of Smoothed Residual Demand
Hyper-Surfaces

(a) (b)

Panel (a): Inverse Semi-Elasticites, Panel (b): (Cross)-Inverse Semi-Elasticites. Whiskers represent the 10th
percentile and the 90th percentile of the data. Outliers excluded.
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Figure 10: Bidding Zone Configuration relevant for Day-Ahead Market Clearing in 2007
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Figure 11: Zonal Day-Ahead Market Price Distributions
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