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Abstract

With risk neutral traders and zero transaction costs, the expected value of the

difference between the current forward price and the spot price of a commodity at

the delivery date of the forward contract should be zero. Accounting for the trans-

action costs associated with trading in these two markets invalidates this result.

We develop a statistical framework to test whether profitable trading strategies ex-

ploiting systematic differences between spot and forward market prices exist in the

presence of trading costs. We implement these tests using the day-ahead forward

and real-time spot locational marginal prices from California’s wholesale electricity

market. We use our statistical tests to construct an estimate of the variable cost
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of trading in this market. During our sample period, we observe the introduction

of financial trading, which was aimed at reducing the costs associated with ex-

ploiting differences between forward and spot prices. Consistent with this aim, our

measures of trading costs are significantly smaller after the introduction of finan-

cial trading. Prior to financial trading, day-ahead/real-time price differences could

be exploited more readily at locations where generation is injected (“generation

nodes”). Consistent with this, our estimated trading costs are lower for generation

nodes relative to non-generation nodes before financial trading and trading costs

fell more for non-generation nodes after financial trading, eliminating any differ-

ence in trading costs across the two types of nodes. We also present evidence that

the introduction of financial trading reduced the total amount of input fossil fuel

energy required to generate the thermal-based electricity produced in California

and the total variable of costs of producing this electrical energy. Taken together,

these results demonstrate that purely financial forward market trading can improve

the operating efficiency of short-term commodity markets.



1 Introduction

Many commodities are traded in both forward and spot markets. With risk neutral ar-

bitrageurs and zero transactions costs, market efficiency implies that the forward price

at time t for delivery k periods in the future (Ft+k) is equal to the expected value of

the spot price k periods in the future conditional on the information available to market

participants at time t (Et[Pt+k]). Namely, Ft+k = Et[Pt+k]. After accounting for transac-

tions costs, the existence of a profitable trading strategy implies the |Ft+k−Et[Pt+k]| > c,

where c is the per-unit dollar cost associated with trading in both the forward and spot

markets. Specifically, the expected profits from exploiting the difference between the

forward and spot price is greater than the trading costs. This paper develops a sta-

tistical framework that tests whether or not profitable trading opportunities exist in a

commodity market with transaction costs. We apply this testing framework to data from

California’s wholesale electricity market, and derive an estimate of the per unit trading

cost, c.

Wholesale electricity markets with a day-ahead forward market and real-time market

are ideally suited to test for the existence of profitable trading strategies because exactly

the same product—electrical energy delivered during an hour of the day—is sold in the

day-ahead and real-time markets. Moreover, the time lag between the purchase/sale in

the forward market and subsequent sale/purchase in the real-time market is less than

one day. However, our statistical tests are complicated by the fact that trading occurs

daily, with the opportunity to trade day-ahead/real-time price differences corresponding

to any of the 24 hours of the day. Therefore, we base our tests on a trader with access

to 24 assets corresponding to the day-ahead/real-time price spreads for different hours

of the day. Using this framework, we can test both the null hypothesis that profitable

trading strategies do exist and the null hypothesis that profitable trading strategies do

not exist.

This analysis also has implications for the design of wholesale electricity markets

because of the controversial role that purely financial traders play in these markets.

Regulators have been reluctant to allow explicit financial transactions in day-ahead and

real-time energy markets despite the benefits typically associated with financial markets.

For example, without financial trading, it is impossible to determine whether a market

participant sells (buys) a different amount of energy in the day-ahead market than their
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real-time production (consumption) because of new information about real-time demand

or supply conditions after the close of the day-ahead market or because the market

participant is attempting to profit from anticipated differences between prices in the

day-ahead and real-time markets.

Exploiting anticipated differences between day-ahead and real-time prices without fi-

nancial trading involves costly actions by generation unit owners and load-serving entities

that can have adverse system reliability consequences. For example, if a generation unit

owner expects the real-time market price to be higher than the day-ahead price, the unit

owner is likely to delay selling its output until the real-time market. If enough generation

unit owners share these expectations, the system operator will find that the day-ahead

market clears at a level of demand below expected real-time demand. The independent

system operator (ISO) must therefore purchase a substantial amount of energy in the

real-time market to meet actual demand, which can be extremely challenging for the ISO

to manage and can increase the total cost of serving final demand. These concerns were

ultimately realized in a number of United States (U.S.) wholesale markets, which led to

the introduction of explicit virtual bidding (also termed convergence bidding)—a purely

financial product that is designed to allow market participants to profit from expected

price differences between the day-ahead and real-time markets without these potential

reliability consequences and production cost increases.

Explicit virtual bidding was implemented on February 1, 2011 in the California whole-

sale electricity market. It allows market participants to take purely financial positions

in the day-ahead market that must be closed out in the real-time market. A trader

that sells energy in the day-ahead market using an incremental or INC virtual bid has

an obligation to buy back the same amount of energy as a price-taker in the real-time

market. The payoff from this transaction, before accounting for trading costs, is the

difference between the day-ahead and real-time prices for that hour times the number of

megawatt-hours (MWhs) sold in the day-ahead market. Buying energy in the day-ahead

market using a decremental or DEC virtual bid implies an obligation to sell that same

amount of energy in the real-time market as a price-taker. This transaction has revenue

equal to the difference between the real-time price and the day-ahead price for that hour

times the number of MWhs purchased.

Explicit virtual bidding was introduced for two major reasons: (1) to reduce the
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cost to market participants of exploiting price differences between the day-ahead and

real-time markets, and (2) to reduce the total cost of serving demand at all locations in

the transmission network in real-time. We present evidence that explicit virtual bidding

achieved both of these goals. Specifically, our measures of the implied per-unit cost of

trading day-ahead versus real-time price differences fell for the three major pricing zones

and at virtually all of the more than 4,000 price locations in the California ISO control

area after the introduction of explicit virtual bidding. We also find that the variance of

the difference between day-ahead and real-time prices declined and the variance of the

real-time price declined after the introduction of explicit virtual bidding. Finally, we

find that the total hourly input fossil fuel energy consumed fell by 6.2 percent and the

total hourly variable cost of producing fossil fuel-fired electricity in California fell by 6.8

percent after the introduction of explicit virtual bidding.

The remainder of the paper proceeds as follows. The next section describes the

mechanism used to set locational marginal prices and determine dispatch levels in the

day-ahead and real-time markets in California and all other bid-based markets in the

United States. This section also describes how the actions of generation unit owners and

load serving entities influence locational marginal prices in the absence of explicit virtual

bidding as well as how virtual bids influence locational marginal prices in the day-ahead

and real-time markets. Section 3 describes the data used to perform our hypothesis test

and presents descriptive statistics on the behavior of the average hourly differences in the

day-ahead and real-time prices before versus after the implementation of explicit virtual

bidding. Section 4 derives our statistical testing framework regarding the existence of a

profitable trading strategy with transactions costs. We also demonstrate in this section

that the empirical distribution of trading costs implied by our hypothesis test is shifted

downwards after the introduction of explicit virtual bidding. We also show empirically

that explicit virtual bidding actually reduces the variance of day-ahead/real-time prices

spreads. Section 5 presents our analysis of the market efficiency consequences associated

with implementing explicit virtual bidding. We conclude in Section 6 by discussing the

implications of our results for the design of wholesale electricity markets.
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2 Locational Marginal Pricing and Explicit Virtual

Bidding in the California Market

This section first describes the important features of multi-settlement locational marginal

pricing (LMP) wholesale electricity markets that currently exist throughout the United

States. We explain how a market participant’s actions are used to determine the elec-

tricity prices received by generation unit owners and paid by load serving entities in the

day-ahead and real-time markets. We next elaborate on how suppliers and load-serving

entities (read: demanders) exploited expected price differences between the day-ahead

and real-time markets before the introduction of explicit virtual bidding. We then provide

details on the mechanics of explicit virtual bidding, including how these purely financial

transactions influence day-ahead and real-time locational marginal prices. Finally, we list

the transactions costs associated with exploiting expected differences between day-ahead

and real-time prices with and without explicit virtual bidding.

2.1 Locational Marginal Pricing in Multi-Settlement Markets

Short-term wholesale electricity markets differ from markets for other products because

the electricity produced by a generation unit at one location and sold to a customer

at another location is not actually delivered to that location in the same sense that an

automobile produced in Detroit is delivered to the customer that purchased it in San

Francisco. Energy injected into the transmission network flows according to Kirchhoff’s

laws, rather than from the seller to the buyer of the energy. The capacity of the transmis-

sion network often limits the amount that generation units at certain locations can inject

and the amount that consumers at certain locations can withdraw. This circumstance is

referred to as transmission congestion and it can cause a wholesale electricity market to

become segmented, meaning that some generation units cannot compete to sell energy

at certain locations in the transmission network. Among other reasons, segmentation

can result from the configuration of the transmission network, the locations and outputs

of other generation units, and the locations and levels of final demand. Due to this, a

market mechanism that assumes that all generation units in the geographic region cov-

ered by the wholesale market can compete to sell energy anywhere in that geographic

region will likely produce an infeasible dispatch of the available generation units, because
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capacity constraints in the transmission network and other operating constraints prevent

the suppliers that offer the lowest prices for their output from selling all of their available

energy.

For this reason, spatial pricing mechanisms that explicitly account for the configu-

ration of the transmission network and operating constraints have become the de facto

standard in the United States. All wholesale markets currently operating in the United

States—in New England, New York, the PJM Interconnection (in Pennsylvania, New Jer-

sey, Maryland and a number other eastern states), the Midwest, Texas, and California—

use variants of the locational marginal pricing (LMP) algorithm described by Bohn, Cara-

manis and Schweppe (1984). This pricing mechanism sets potentially different prices at

all locations (termed “nodes”) in the transmission network. To compute these prices

in the day-ahead market, suppliers submit generation unit-level offer curves indicating

their willingness to supply energy from each generation unit they own as a function of the

market-clearing electricity price. These willingness-to-supply schedules have two parts:

a start-up cost offer and an energy supply curve. The start-up cost offer is a fixed dollar

payment that must be paid to the generation unit owner if it is off-line at the start of the

following day and the unit is accepted to produce a positive output during that day. The

energy offer curve is a non-decreasing step function giving the willingness of the genera-

tion unit owner to supply additional energy as a function of the price it is paid for energy.

All U.S. markets allow generation units owners to submit multiple price-quantity pairs for

each generation unit for each hour of the day. For example, a supplier might be permitted

to submit ten price-quantity pairs for each generation unit; an offer price-quantity step

determines the minimum price a generator must be paid in order to produce the quantity

associated with that step. The sum of the quantity increments is restricted to be less

than the capacity of the generation unit. Offer prices are typically required to be greater

than a price floor (which could be negative) and less than a price ceiling; the price floor

and ceiling are approved by the Federal Energy Regulatory Commission (FERC), which

is the national-level wholesale market regulator. In the day-ahead market, load-serving

entities (LSEs) submit location-specific willingness-to-purchase functions that are non-

increasing in the price at that location. The functions are composed of price-quantity

pairs ordered from highest to lowest price; each offer quantity increment gives the amount

the LSE is willing to increase its demand provided the market-clearing price at or below

the corresponding offer price increment.
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To compute the locational marginal prices (LMPs) at each node in the transmission

network for every hour of the following day, the independent system operator (ISO)

minimizes the as-offered total cost (based on the generation-unit level hourly offer curves

and location-specific hourly demand curves submitted for each hour of the following day)

of serving the demand for energy at all locations in the transmission network during

all 24 hours of the following day subject to all relevant transmission network and other

relevant operating constraints. The network constraints used to solve for the day-ahead

hourly market outcomes are the ISO’s best estimate of the real-time configuration of

the transmission network during each hour of the following day. The solution to this

as-bid cost minimization problem results in firm financial commitments for generation

unit owners and load-serving entities for all 24 hours of the following day. The day-ahead

generation unit and locational load schedules that solve this optimization problem are

forward market sales and purchases for each hour of the following day.

For example, if a generation unit owner sells 50 MWh in the day-ahead market at a

price of $40/MWh during one hour of the following day, then this supplier is guaranteed

to be paid $2,000 (= 50 MWh x $40/MWh) regardless of the actual production of energy

from its generation unit during that hour of the following day. Similarly, if a load-serving

entity purchases 100 MWh in the day-ahead market during an hour of the following day

at a price of $75/MWh, then this entity must pay $7,500 (= 100 MWh x $75/MWh)

regardless of how much energy it withdraws from the network during that hour. The

LMP at each node in the transmission network is equal to the increase in the minimized

value of the objective function from this optimization problem as a result of increasing

the amount of energy withdrawn at that location by 1 MWh. This property of the

LMPs gives them their name. These LMPs for all 24 hours of the following day are

computed during the afternoon of the day before the energy is scheduled to be delivered.

All market participants are notified of these LMPs, their day-ahead generation unit-level

energy schedules and location-specific load schedules in the afternoon of the day before

their delivery date.

Starting with midnight on the delivery date, a real-time market determines the actual

output of all generation units necessary to serve demand at all nodes in the transmission

network. The real-time generation output and load-serving entity withdrawal levels are

determined by minimizing the as-offered cost of serving the actual demand for energy
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at all locations in the transmission network subject to all relevant constraints in the

transmission network and on generation units in the real-time market. Suppliers are

allowed to change their hourly generation unit-level offer curves between the day-ahead

and real-time markets.

In all U.S. ISOs, the real-time market is run every 5 minutes to determine the overall

level of output from all generation units in the control area necessary to serve demand

at all nodes in the transmission network. The solution to this optimization problem

produces real-time locational marginal prices for each 5-minute interval within the hour.

Hourly real-time prices are determined as the time-weighted average of the twelve 5-

minute real-time prices during that hour. Generation unit owners that do not receive

dispatch instructions within the hour receive this hourly real-time price for energy pro-

duced beyond their day-ahead forward market sales during that hour. Alternatively, if

generation unit owners produce less energy in real-time than they sold for that hour in

the day-ahead market, they must purchase the difference between their day-ahead for-

ward market sales and real-time production at the hourly real-time price. Load-serving

entities also only purchase or sell real-time deviations from their day-ahead schedules

at the real-time price at their node in the transmission network. This combination of a

day-ahead forward market and real-time spot market is called a multi-settlement market

because of the property that only hourly real-time deviations from participants’ hourly

day-ahead schedules are settled at the hourly real-time price.

Let’s return to the previous example of a generator that sold 50 MWhs of energy in

the day-ahead market at a price $40/MWhs. If that generation unit only produced 40

MWhs of energy, the owner would have to purchase the remaining 10 MWhs at the real-

time price in order to meet its forward market commitment. If the unit owner produced

55 MWhs, then the additional 5 MWhs beyond the unit’s 50 MWhs day-ahead schedule

is sold at the real-time price.

2.2 Implicit Virtual Bidding in Multi-Settlement Markets

A supplier or load serving entity that expects the real-time LMP at their node to be

different from the day-ahead LMP at their node could exploit this price difference by

selling or buying more or less energy than it expected to produce or consume in real-
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time. For example, suppose that a generation unit owner expected to ultimately produce

100 MWhs of energy from its unit. Moreover, suppose that this owner forecasts that: (1)

real-time prices will be $60/MWh, and (2) real-time prices will be higher than day-ahead

prices. The unit owner would simply submit price offers into the day-ahead market at

or above $60/MWh, which he expects to result in selling no energy in the day-ahead

market. The unit owner could then offer 100 MWhs of energy into the real-time market

as a price taker to ensure that it produces its expected output of 100 MWh. This is

accomplished by offering to supply this energy into the real-time market at an offer price

equal to the offer price floor.

These actions by the generation unit owner are likely cause the day-ahead price to

rise because less supply at or below the price of $60/MWh has been offered into the

day-ahead market and the real-time price is likely to fall because more supply has been

offered into the real-time market. The net impact of the supplier’s actions is to increase

the likelihood that the day-ahead and real-time prices are closer together than would be

the case if the supplier did not submit a high offer price into the day-ahead market. For

this reason, these actions by generation unit owners have been called “implicit virtual

bidding or implicit convergence bidding” because the supplier is using forward market

sales from its generation unit as a mechanism for exploiting expected price differences

between the day-ahead and real-time markets.

Load-serving entities can also engage in implicit virtual bidding. Suppose that a load

serving entity (LSE) expects real-time demand of 100 MWh. Further suppose that the

LSE expects: (1) the day-ahead price to be higher than the real-time price, and (2) the

real-time price to be $100/MWh. This LSE would then submit a demand bid into the

day-ahead market with zero quantity demanded at prices above $100/MWh. Based on

this bid, the LSE would very likely not make any purchase in the day-ahead market.

Instead, its demand would be entered as a price-taker in the real-time market. As with

the previous example with the generation unit owner, these actions by the LSE would

reduce the difference between the day-ahead and real-time prices because demand is lower

in the day-ahead market and higher in the real-time market as a result of these actions.

Implicit virtual bidding can have severe system reliability consequences. The combi-

nation of the example of a supplier that submits high offer prices in the day-ahead market

because of a desire to sell at a higher price in the real-time market and the example of
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a load-serving entity wishing to purchase at a lower price in the real-time market can

result in aggregate day-ahead forward market generation and load schedules that are

below actual real-time demand levels. In this case, the system operator may be forced

to find large amounts of additional energy after the close of the day-ahead market to

ensure that actual demand is met. Wolak (2003) notes that this day-ahead/real-time

imbalance is precisely what happened during the summer of 2000 in California’s electric-

ity market, exacerbated by the fact that the offer price cap for the day-ahead market

was substantially higher than the offer price cap for the real-time market. Load-serving

entities submitted demand bids into the day-ahead with zero quantity demanded at offer

prices above the offer cap on the real-time market. Suppliers submitted offer prices into

the day-ahead market at or above the offer cap on the real-time market for much of their

anticipated real-time output, which resulted in the day-ahead market clearing at a quan-

tity far below the anticipated real-time demand. This left the California ISO scrambling

to find additional energy, often over 1/4 of the anticipated real-time demand, to ensure

that real-time system demand would be met.

Implicit virtual bidding can also increase the cost of serving system demand. All

wholesale electricity markets have generation units that take a number of hours to

start, but can produce at a low variable cost once started. Implicit virtual bidding

by both generation unit owners and load-serving entities can result in these long-start,

low-operating-cost units not producing output. Although it may be unilaterally expected

profit-maximizing for the owner of a portfolio of long-start, low-cost units and short-start,

high-cost units to submit bids that cause some of these low-cost units not to operate,

these actions increase the total cost of serving system demand. Additionally, one of the

key potential benefits associated with the introduction of financial trading (termed ex-

plicit virtual bidding) is more and better information aggregated across a larger number

of participants. If this results in the day-ahead price that more accurately reflects real-

time conditions, purely financial market for wholesale electricity can decrease the cost of

serving system demand even in the absence of implicit virtual bidding.

2.3 Explicit Virtual Bidding versus Implicit Virtual Bidding

The two major motivations for introducing explicit virtual bidding are: (1) to eliminate

the adverse reliability consequences of market participants attempting to exploit expected
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price differences between the day-ahead and real-time markets and (2) to reduce the

total cost of serving final demand. Explicit virtual bidding introduces a purely financial

instrument that allows generation unit owners, load-serving entities and energy traders to

exploit LMP differences between the day-ahead and real-time markets so that generation

unit owners and load-serving entities do not distort their bidding and offer behavior in

the day-ahead market in ways that increase their costs and potentially harm system

reliability. Additionally, California’s ISO allowed purely financial participants to trade

these financial instruments; previously, only generation unit owners and load-serving

entities were allowed to participate in California’s wholesale electricity market.

Virtual (or convergence) bids are classified as either incremental (INC) or decremen-

tal (DEC) bids and are explicitly identified as such to the system operator. Market

participants can submit either type of bid at any node in the transmission network. An

INC bid at a node is treated just like a generation bid at the node. It is a step-function

offer curve to supply additional energy in the day-ahead market. The only difference

between an accepted virtual bid and an accepted bid from a generation unit owner is

that the ISO knows that the energy sold in the day-ahead market from a virtual bid

will be purchased in the real-time market as a price-taker. A DEC virtual bid is treated

just like a physical demand bid in the day-ahead market. It is a step function bid curve

to purchase additional energy in the day-ahead market. An accepted DEC virtual bid

implies an obligation to sell this energy in the real-time market as a price-taker.

As should be clear from the above description, an INC virtual bid has a revenue

stream equal to the difference between the day-ahead and real-time LMPs at that node

times the amount of MWhs sold in the day-ahead market and a DEC virtual bid has

a revenue stream equal to the difference between the real-time and day-ahead LMPs at

that node times the amount of MWhs purchased in the day-ahead market. An INC

virtual bid earns positive revenues if the day-ahead price is higher than the real-time

price. However, the actions of INC virtual bidders make earning these profits less likely

because supply is higher in the day-ahead market and demand is higher in the real-time

market as a result of the INC bids. A DEC virtual bid earns positive revenues if the

real-time price is higher than the day-ahead price. Again, the actions of DEC virtual

bidders make this outcome less likely because demand in the day-ahead market is higher

and supply in the real-time market is higher as a result of the DEC bids.
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There are a number of reasons to believe that the introduction of explicit virtual

bidding will lead to smaller realized nodal price differences between the day-ahead and

real-time markets. First, relative to implicit virtual bidding, submitting an explicit vir-

tual bid is a lower cost way for a market participant to take a financial position designed

to profit from expected price differences between day-ahead and real-time markets. By

submitting an INC virtual bid with an offer price below the price it expects in the

real-time market, a market participant can earn the difference between day-ahead and

real-time market prices. The availability of this financial instrument makes it unnecessary

for a supplier or load-serving entity to employ more costly distortions in their day-ahead

energy purchases or sales in order to exploit expected day-ahead versus real-time price

differences. Instead, the supplier can offer their generation unit into the day-ahead mar-

ket at its variable cost and submit decremental virtual bids with offer prices equal to the

generation unit owner’s expected real-time market price. In this way, the generation unit

owner does not distort the physical bids associated with its generation units in order to

exploit expected price differences between the day-ahead and real-time markets.

A second reason that nodal-level day-ahead versus real-time price differences are

likely to be smaller after the introduction of explicit virtual bidding is because it gives

market participants greater flexibility to exploit locational price differences. A generation

unit owner can only implicitly virtual bid total MWhs less than or equal to the capacity

of their generation unit at a given node. An implicit virtual bidding supplier has no

recourse if withholding output equal to the capacity of this unit from the day-ahead

market is insufficient to increase the day-ahead price enough to cause it to equal the

expected real-time price at that location. However, with (explicit) virtual bidding, the

supplier can submit an almost unlimited quantity of DEC bids at that location to raise

the price at that node in the day-ahead market. The same logic goes for a load-serving

entity (LSE) engaging in implicit virtual bidding. The actual demand than an LSE must

satisfy limits the amount of demand it can bid into the day-ahead market. For example,

without explicit virtual bidding, if bidding zero demand into the day-ahead market still

does not reduce the LMP at that node to the level the load-serving entity expects in the

real-time market, that supplier has no other way to reduce the day-ahead price at that

node. However, with a sufficient volume of INC bids, the load-serving entity can reduce

the price at that node to any level it expects to prevail in the real-time market.
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Before nodal-level (explicit) virtual bidding was introduced in California, only physi-

cal players (i.e: generation unit owners and load-serving entities) were allowed to partici-

pate in the wholesale electricity market. Due to this, the opportunities to implicit virtual

bid at the nodal level were limited to locations with generation units. Load-serving enti-

ties cannot place physical bids at a nodal-level; the California market requires the three

large load-serving entities—Southern California Edison (SCE), Pacific Gas and Electric

(PG&E), and San Diego Gas and Electric (SDG&E)—to bid their service area-level de-

mand into the day-ahead market. The California ISO then allocates this demand to all

nodes in the load-serving entity’s service territory using load-distribution factors (LDFs)

that the ISO produces. For example, if a load-serving entity has 100 MWhs of load and

the ISO computes equal LDFs for the ten nodes in its service area, then the load-serving

entity’s LDFs are equal to 1/10 for each node. This implies that it is very costly for

a load-serving entity (LSE) to implicitly virtual bid 1 MWh at one node, because this

would effectively require 1 MWh of implicit virtual bids at all nodes within the LSE’s

service area. With the introduction of explicit nodal-level virtual bidding, load-serving

entities and generation unit owners can exploit day-ahead and real-time price differences

at any node, even those with no generation units, by submitting a virtual bid at that

node. Moreover, purely financial traders can now also enter the market and submitting a

virtual bid at a given node in order to exploit day-ahead/real-time price spreads at that

node.

A final market efficiency benefit of introducing explicit virtual bidding is that it

makes it much easier for market monitors and regulatory authorities to identify implicit

virtual bidding. Before the introduction of explicit virtual bidding, a generation unit

owner or load-serving entity could always claim that the reason their day-ahead sales

or purchases were substantially less than their real-time production or consumption is

because of the expectation of more favorable prices in the real-time versus day-ahead

market. With the introduction of explicit virtual bidding, regulators can argue that

suppliers and load-serving entities should sell and purchase their best estimate of their

expected real-time production and consumption in the day-ahead market, because they

can use explicit virtual bidding to exploit any expected differences between day-ahead

and real-time prices. The existence of this additional product to exploit expected price

differences allows the regulator to be tougher on actions that might be unilaterally profit-

maximizing for suppliers and load-serving entities but also reduce system reliability and
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overall market efficiency.

3 Descriptive Statistics for California Market

This section summarizes our evidence on hourly price convergence between the day-ahead

and real-time markets for the three large load-serving entities in California before and

after the implementation of explicit virtual bidding (EVB). We first present the results

of a test of the null hypothesis that the 24x1 vector of day-ahead/real-time price spread

means, averaged over days-of-sample for each hour-of-the-day, is equal to zero for these

three load-serving entities. We find that we overwhelmingly reject this null hypothesis

for all three load-serving entities. However, these naive tests do not account for the

transactions costs associated with actually taking action (such as submitting a virtual

bid) in order to exploit these mean price differences. This motivates the development of

our statistical testing procedure, which does account for transactions costs.

Our hypothesis tests are implemented using hourly data from April 1, 20091 to De-

cember 31, 2012 on day-ahead and real-time wholesale electricity prices at all nodes (read:

locations) in California’s ISO area. There are over 5,000 nodes, all with potentially dif-

ferent prices. However, each of the three large load-serving entities faces a single load

aggregation point (LAP) day-ahead price and a single LAP-level real-time price each hour

of the day. These LAP-level prices are computed as the nodal quantity-weighted average

price (either day-ahead or real-time) for that load-serving entity, summed over all nodes

in the load-serving entity’s service area with a positive amount of energy withdrawn from

the transmission network during that hour. Each of the three large load-serving entities

has its own day-ahead and real-time LAP price determined by the California ISO.

Figure 1 presents a comparison by hour-of-the-day of the average difference between

the day-ahead and real-time prices for the Pacific Gas and Electric (PG&E), Southern

California Edison (SCE), and San Diego Gas and Electric (SDG&E) LAPs both before

and after the introduction of explicit virtual bidding. This figure provides descriptive

evidence that the day-ahead/real-time price spread is more pronounced prior to the

introduction of explicit virtual bidding relative to after its introduction for each of the

three load-serving entities. For example, the average day-ahead price for PG&E is much

1California introduced nodal pricing on this date.
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lower than the average real-time price during the hours of 8PM-12AM. These results

immediately raise the question: do these mean price differences reflect the existence of

profitable trading strategies or are they simply due to the existence of non-zero trading

costs that allow non-zero mean price differences?

To further motivate our subsequent analysis, we present a version of an arbitrage test

that holds only if there are zero transactions costs. Namely, we plot in Figure 2 the av-

erage day-ahead/real-time spread along with point-wise 95% confidence intervals around

these means for the PG&E, SCE, and SDG&E LAPs after the introduction of (explicit)

virtual bidding. For all three load-serving entities for some hours of the day, we can reject

at a 5% significance level that the price spread is zero. Along these same lines, we can

also simply perform a joint test that average day-ahead and real-time price differences

are zero for all hours of the day. We use the Newey and West (1987) autocorrelation

consistent asymptotic covariance matrix estimate, Σ̂ = Λ̂0 +
∑m

j=1w(j,m)(Λ̂j + Λ̂j
′
),

where Λ̂j = 1
T

∑T
t=j+1(Xt − X)(Xt−j − X)′, X = 1

T

∑T
t=1Xt, w(j,m) = 1 − j

m+1
for

m = 14 to construct the chi-squared test statistics. These test statistics are presented

for each LAP before and after the introduction of virtual bidding in Table 1. Note that

these test statistics are quite large. We would reject the null hypothesis that all of the

hour-of-day price difference means are zero in all cases.2 However, the statistical tests

described in this paragraph fail to account for the potentially sizable transaction costs

present in nearly every commodities market. In the next section, we present a hypothesis

test for the existence of arbitrage that accounts for the fact that day-ahead/real-time

price spreads can differ from zero simply due to positive transaction costs.

4 Tests for the Existence of a Profitable Trading

Strategy

4.1 Introduction

In this section, we develop a statistical framework in order to test whether or not a prof-

itable trading strategy exists when accounting for the presence of transactions costs. For

simplicity, we restrict attention to trading strategies that only condition on the value of

2The upper α = 0.05 critical value for the χ2(24) distribution is 36.415.
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Figure 1: Hourly Graphs of Day-Ahead/Real-Time Price Differences: Before and After
EVB
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Notes: This figure presents average day-ahead/real-time price spreads for each hour-of-the-day

and each load aggregation point (LAP), separately for the sample periods before versus after the

introduction of explicit virtual bidding. The three LAPs correspond to Pacific Gas and Electric

(PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E).
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Figure 2: Hourly Graphs of Price Differences with 95% C.I: Before and After EVB
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Notes: This figure presents average day-ahead/real-time price spreads for each hour-of-the-day

and each load aggregation point (LAP), separately for the sample periods before versus after the

introduction of explicit virtual bidding (EVB). The three LAPs correspond to Pacific Gas and

Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E).

This figure also includes point-wise 95% confidence intervals around the day-ahead/real-time price

spread averages for each hour-of-the-day/LAP/before versus after EVB.

16



Table 1: Test Statistics for Joint Test of Zero Mean Price Differences

Before EVB After EVB
PG&E 141.738 88.158
SCE 140.140 105.127
SDG&E 157.742 86.084

Notes: This table presents the chi-squared test statistics for each load aggregation point before and

after the introduction of explicit virtual bidding (EVB) of the null hypothesis that all 24 hour-of-

the-day average day-ahead/real-time price spreads are equal to zero. The three LAPs correspond to

Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric

(SDG&E). We use the Newey and West (1987) autocorrelation consistent asymptotic covariance

matrix estimate, Σ̂ = Λ̂0 +
∑m

j=1 w(j,m)(Λ̂j + Λ̂j
′
), where Λ̂j = 1

T

∑T
t=j+1(Xt − X)(Xt−j − X)′,

X = 1
T

∑T
t=1Xt, w(j,m) = 1 − j

m+1 for m = 14 days of lag in order to construct the chi-squared

test statistics. We reject the null hypothesis that all of the hour-of-day price difference means are

zero at an α = 0.05 critical value if the test statistic is larger than χ2
0.95(24) = 36.415.

the (24x1) vector of hour-of-day day-ahead minus real-time mean price differences. We

denote this 24x1 vector of means as µ. Using our framework, we can assess whether the

data provide evidence against: 1) the null hypothesis that a profitable trading strategy

exists based on 24 assets with (unconditional) means µ and covariance matrix Σ, and

2) the null hypothesis that no profitable trading strategy exists based on 24 assets with

(unconditional) means µ and covariance matrix Σ. The timing of the day-ahead and

real-time markets precludes trading strategies that condition of the first lag of the price

difference vector because market participants submit their offers into the day-ahead mar-

ket for date t before knowing the real-time prices for any of hour-of-the-day for date t−1.3

Thus, we formulate a statistical test of the null hypothesis that all autocorrelations in

the daily day-ahead/real-time price differences vector beyond the first lag are jointly zero.

We find no empirical evidence against this null hypothesis, justifying our consideration

of trading strategies based only on the unconditional means µ and covariance matrix Σ

of hour-of-the-day day-ahead/real-time price spreads.

We motivate our statistical test by considering the problem facing a market par-

ticipant maximizing expected profits from trading day-ahead versus real-time price dif-

ferences. In particular, the trader chooses a portfolio based on 24 assets consisting of

day-ahead/real-time price differences for each hour of the day. California’s independent

3Offers to the day-ahead market must be submitted by noon the day before actual system operation,
so it is not possible to base a daily trading strategy on knowledge of the first-order autocorrelation of
the price differences vector.
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system operator (CAISO) sets explicit trading costs associated with the financial trading

of day-ahead/real-time price differences; however, these explicit trading costs are only

one component of the overall costs of exploiting these price differences. Due to this, we

use our statistical test to recover an estimate of the lowest trading costs for which we

can reject the null hypothesis that arbitrage trading opportunities exist. Similarly, we

also recover an estimate of the highest trading costs for which we can reject the null

hypothesis that arbitrage trading opportunities do not exist. Fang and Santos (2014)

develops theoretically how to construct confidence intervals around directionally differ-

entiable functions of a regular parameter estimate; we implement this confidence interval

using a bootstrap procedure described by Hong and Li (2015). In short, we are also able

to compute an estimate of the distribution of the implied trading cost estimate.

We estimate these implied trading costs separately for each location, both at the ag-

gregated LAP-level as well as the nodal level. Importantly, we also estimate these costs

separately for the sample periods before versus after the introduction of explicit virtual

bidding. Comparing these estimated trading cost distributions before versus after the

introduction of explicit virtual bidding allows us to assess whether the point estimates

of our implied trading costs are statistically significantly different before versus after the

introduction of explicit virtual bidding. As an alternative approach, we also perform a

test of the null hypothesis that the expected profits traders can earn by buying/selling

portfolios based on the 24 hourly day-ahead/real-time price spreads fell after the imple-

mentation of explicit virtual bidding. For this hypothesis test, we use the multivariate

inequality constraints testing procedure described in Wolak (1989).

4.2 The Trader’s Problem

Consider a trader with access to 24 assets, where asset Xh for h ∈ {1, ..., 24} is equal

to the difference between day-ahead and real-time electricity prices for hour h of the

day. In math, Xh ≡ PDA
h − PRT

h , where PDA
h is the day-ahead price for hour h and PRT

h

is the real-time price for hour h. Purchasing this security requires the trader to sell 1

MWh more energy in the day-ahead market than it produces in real-time. Selling this

security requires that the trader buy 1 MWh more energy in the day-ahead market than it

consumes in real-time. Let µh = E(Xh) = E(PDA
h )−E(PRT

h ) for h = 1, 2., ..., 24. Define

µ as the 24 x 1 vector composed of (µ1, µ2, ..., µ24)
′ and Xd as the 24 x 1 vector composed
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of (Xd,1, Xd,2, ..., Xd,24)
′ for day-of-sample d. Let Λ0 be the 24 x 24 contemporaneous

covariance matrix of Xd. Finally, let the per-unit trading cost of buying or selling this

security be c. Then, the expected profit-maximization problem of the trader is:

max

a ∈ R24
a′µ− c

24∑
i=1

|ai| subject to

24∑
i=1

|ai| = 1. (1)

where the trader optimizes over asset weights a = (a1, a2, ..., a24)
′. Note that each ai can

be positive or negative. We denote a∗(µ) ∈ R24 as the weights that maximize the trader’s

expected profits (i.e: solve the optimization problem described in Equation 1).

We consider both the null hypothesis that a∗(µ)′µ − c > 0 (“profitable trading

strategies exist”) and the null hypothesis that a∗(µ)′µ − c ≤ 0 (“no profitable trading

strategies exist”). The trader pays a per-unit trading cost c regardless of whether they

buy or sell a unit of the asset; this is why the overall trading costs are calculated based

on the sum of the absolute value of the portfolio weights: (c
∑24

i=1 |ai|). Moreover, it is

due to these per-unit trading costs that we impose the normalization that
∑24

i=1 |ai| = 1

rather than the “traditional” normalization that
∑24

i=1 ai = 1.4 The optimized value of

the objective function reduces to

a∗(µ)′µ =
max

i ∈ {1, ..., 24}
|µi| (2)

This setting falls into the framework developed by Fang and Santos (2014) for testing

hypotheses involving directionally differentiable functions of a regular parameter esti-

mate. First, the function φ(µ) ≡ a∗(µ)′µ is a directionally differentiable function of

the parameter vector µ. Also, our estimate of the true parameter vector µ0 is simply the

sample average X = 1
N

∑N
d=1Xd where N is the number of days in the sample. Because

√
N(X − µ) possesses an asymptotic normal distribution, the sample mean of the Xd

is regular estimate of µ0.

4For example, the “net position” normalization (
∑24

i=1 ai = 1) is imposed in the canonical portfolio
choice model formulated by Markowitz (1952).
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4.3 Tests Regarding Existence of a Profitable Trading Strategy

To implement the hypothesis test, we compute φ(X), which is defined to be the element

of X that is largest in absolute value. The difference between φ(X) and the trading cost

c is our test statistic. Fang and Santos (2014) present a modified bootstrap estimator of

the asymptotic distribution of a directionally differentiable function of X; applied to our

context, we compute an estimate of the asymptotic distribution of
√
N(φ(X)− φ(µ)). For

this estimation, we utilize a numerical derivative-based procedure developed by Hong and

Li (2015) for simulating the distribution of φ(X). For this procedure, we first compute

a moving blocks bootstrap re-sample of X with block size equal to the largest integer

less than or equal to N1/3. We denote the bth bootstrap re-sample of X as X
b
. We next

construct:

Zb =
φ(X +

√
N(X

b − X)ε) − φ(X)

ε
, (3)

for b = 1, 2, ..., B. Hong and Li (2015) demonstrates that the asymptotic distribution

of
√
N(φ(X)− φ(µ)) can be approximated by the bootstrap distribution of Zb provided

that ε tends to zero as N goes to infinity but
√
Nε tends to infinity as N goes to infinity.

To satisfy these conditions, we set ε = N−1/3, which is the value recommended by Hong

and Li (2015).

Although we know the explicit trading charges associated with purchasing or selling

elements of Xd set by the California ISO market, this is just one component of overall

per-unit trading costs. Setting our parameter for trading costs, c, equal to this magnitude

and performing our hypothesis test implies that there is no opportunity cost associated

with the time of the individual undertaking the trades, no up-front costs of participating

in the ISO markets, and no other cost associated with preparing or updating a strategy

for trading day-ahead and real-time price differences. For this reason, we instead use

our hypothesis testing procedure to compute implied trading costs. We compare these

implied trading costs to the actual cost of purchasing and selling the 24 elements of X

in the ISO market, including both explicit trading charges and conservative estimates of

other transactions costs.

The bootstrap distribution of Zb is an estimate of the distribution of φ(X). We
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compute each bootstrap re-sample of φ(X) as:

φ(X)b = φ(X) +
Zb

√
N
. (4)

We then use this bootstrap distribution to compute two values associated with trading

costs c:

1. clower: the smallest value of c that results in rejection of the α = 0.05 size test of

the null hypothesis that a∗(µ)′µ− c > 0

2. cupper: the largest value of c that causes rejection of the α = 0.05 size test of the

null hypothesis that a∗(µ)′µ− c ≤ 0.

The first value, clower, is the smallest value of the dollar per MWh trading cost that

would cause rejection of the null hypothesis that a profitable trading strategy exists. It is

computed as the lower 5th percentile of the distribution of φ(X). The second magnitude,

cupper, is the largest value of the trading charge that causes rejection of the null hypothesis

that no profitable trading strategy exists. It is computed as the 95th percentile of the

distribution of φ(X).

4.4 Test for Difference in the Absolute Value of Means Before

versus After Explicit Virtual Bidding

We also test whether expected trading profits fall after the introduction of explicit virtual

bidding using a multivariate inequality constraints test. If we let the trading costs prior

to explicit virtual bidding be cpre and the trading costs after explicit virtual bidding be

cpost, then a test of the null hypothesis that trading profits fell after the introduction

of explicit virtual bidding can be formulated as |µpre| − 1cpre > |µpost| − 1cpost. |µJ | for

J ∈ {pre, post} is a 24 x 1 vector composed of the absolute value of the average day-

ahead/real-time price differences for hours-of-the-day h ∈ {1, 2, ..., 24}, where averages

are taken separately for samples before versus after explicit virtual bidding; 1 is 24 x 1

vector of 1’s. The difference |µpre| − 1cpre is the expected profits associated with buying

(selling) one unit of the day-ahead/real-time price difference for each hour-of-the-day

h ∈ {1, 2, ..., 24} if it is positive (negative). Re-arranging this inequality, we see that the
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null hypothesis becomes: |µpre| − |µpost| > 1(cpre − cpost). If we assume that cpre > cpost,

which is consistent with the results presented in Section 5, then testing the null hypothesis

that |µpre| − |µpost| > 0 is a conservative test with respect to our original null hypothesis

that |µpre| − |µpost| > 1(cpre − cpost). As we don’t observe trading charges cpre and cpost,

we focus empirically on the statistical test of the null hypothesis that |µpre| − |µpost| > 0.

Conversely, if we want to test whether expected trading profits rose after the introduction

of explicit virtual bidding, our null hypothesis would be that |µpost|−|µpre| > 1cpost−1cpre.

Thus, if we fail to reject the null hypothesis that |µpost| − |µpre| > 0, we can conclude

that we would also fail to reject the null hypothesis that trading profits were higher after

the introduction of explicit virtual bidding can be rejected. If we fail to reject the null

hypothesis that |µpre| > |µpost| but reject the null hypothesis that |µpost| > |µpre|, then we

have evidence that trading profits fell after the introduction of explicit virtual bidding.

We implement these two multivariate nonlinear inequality constraints tests using the

methodology derived in Wolak (1989). We present the procedure for |µpre| > |µpost|
below:

Proposition 1 Direct Test of Null Hypothesis that |µpre| > |µpost|
Let:

V̂ = 1
Npre diag[SIGN(X

pre
)]′Σ̂prediag[SIGN(X

pre
)] +

1
Npost diag[SIGN(X

post
)]′Σ̂postdiag[SIGN(X

post
)] Calculate the test statistic:

TS =
min

θ ≥ 0
(|Xpre| − |Xpost| − θ)′V̂ −1(|Xpre| − |Xpost| − θ)

We reject the Null hypothesis that |µpre| > |µpost| if and only if:

24∑
h=1

w(24, 24− h, V̂ )Pr[χ2
(h) > TS] < α

where χ2
(h) is a chi-squared random variable with h degrees of freedom, w(24, 24 − h, V̂ )

are the weights defined in Wolak (1989), and α is the size of the hypothesis test.

Cataloging notation, the diag[Z] operator takes a vector Z, and returns a diagonal

matrix with elements of Z on the diagonal. All objects with a “pre” superscript are

based on the 4/1/2009-2/1/2011 period prior to the introduction of explicit virtual bid-

ding (EVB); the “post” superscript refers to the 2/1/2011-12/31/2012 period after the
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introduction of explicit virtual bidding. Npre = 657 is the number of days in the sample

prior to the start of explicit virtual bidding; Npost = 410 is the number of days in the

sample after explicit virtual bidding was introduced. X
pre

is a 24 × 1 vector of the av-

erage day-ahead/real-time price differences, averaged for the pre-EVB sample separately

for each hour-of-the-day. Σ̂pre is a 24× 24 estimate of the asymptotic covariance matrix

corresponding to X
pre

; we compute Σ̂pre using the autocorrelation consistent estimator

proposed by Newey and West (1987) with m = 14 days of lagged data. X
post

and Σ̂post

are calculated similarly using data from after explicit virtual bidding was introduced.

Finally, we calculate w(24, 24 − h, V̂ ) using the simulation method described in Wolak

(1989).

4.5 Test for the Difference Between Variance Matrices Before

versus After Explicit Virtual Bidding

We also expect that the introduction of explicit virtual bidding will reduce the day-ahead

uncertainty about real time prices. We would therefore expect both the variance of day-

ahead/real-time price differences and the variance of real-time prices to fall after the

introduction of explicit virtual bidding.

With nodal-level explicit virtual bidding, market participants can profit from their

ability to forecast real-time system conditions at any location in the transmission network.

A market participant who believes that the real-time price will be higher than the day-

ahead price at a given location will submit a DEC bid to purchase energy at that location

in the day-ahead market that is subsequently sold at the real-time price. If this market

participant is correct, she will be rewarded with positive trading profits. However, these

actions will also cause the day-ahead price to rise (because of the higher day-ahead

demand associated with the DEC bid) and the real-time price to fall (because of the

lower real-time demand due to the sale of the accepted DEC bid in the real-time market);

this reduces the market participant’s trading profits. However, profits will not go to zero

unless the total (across all market participants) amount of day-ahead DEC bids at that

location is large enough to close the day-ahead/real-time price gap. Conversely, market

participants that believe that the real-time price will be lower than the day-ahead price at

a given location, perhaps because they believe the real-time demand at that location will

be lower than expected, will submit INC bids in the day-ahead market and subsequently
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purchase the energy sold in the day-ahead market from the real-time market. If they end

up being incorrect, they will lose money from these actions.

Given that physical players can use the financial commodity rather than their phys-

ical bids in order to arbitrage expected day-ahead/real-time price spreads and financial

players can participate in the market after the introduction of explicit virtual bidding,

we should expect final day-ahead generation schedules to be closer to the real-time out-

put of these generation units. For this reason, we should see a decrease in the volatility

of day-ahead/real-time price spreads after the introduction of explicit virtual bidding.

Additionally, as final day-ahead generation schedules are a better predictor of the real-

time output of these generation units after the introduction of explicit virtual bidding,

California’s ISO will have to make substantial purchases or sales in the real-time market

less often after explicit virtual bidding. Thus, we should expect the volatility of real-time

prices to be lower after the introduction of explicit virtual bidding (EVB) as well.

Formally, we consider the Null hypothesis H1 that Λpre − Λpost is a positive semi-

definite matrix, where Λpre (Λpost) is the 24 x 24 contemporaneous covariance matrix

for the time period before (after) explicit virtual bidding. In order to implement this

test, we find the eigenvalues ω̂j (j = 1, 2, ..., 24) of Λ̂diff ≡ Λ̂pre − Λ̂post and test the

joint null hypothesis that all of these eigenvalues are greater than or equal to zero. We

use the same multivariate inequality constraints test employed in the previous section.

We obtain the covariance matrix for our estimated eigenvalues ω̂j (j = 1, 2, ..., 24) using

a moving-block bootstrap procedure. Briefly, this moving block procedure accounts for

fact that day-ahead/real-time price spreads (Xd) may be autocorrelated across days.

More formally, let ω̂ equal the 24×1 vector of eigenvalues of Λ̂diff . We first re-sample

contiguous blocks of length Bpre = (Npre)1/3 (where Npre is the pre-EVB sample size)

from the time series of daily price difference vectors. We repeat this process L times,

estimating Λ̂pre
b for each re-sample b ∈ {1, 2, ..., L}. We similarly re-sample Bpost =

(Npost)1/3 times, obtaining Λ̂post
b for each re-sample b ∈ {1, 2, ..., L} (where “post” refers

to the post-EVB sample period). For each re-sample b ∈ {1, 2, ..., L}, we next compute

Λ̂diff
b ≡ Λ̂pre

b − Λ̂post
b as well as the eigenvalues associated with Λ̂diff

b . We denote the

eigenvalues associated with re-sample b ω̂b and find the empirical co-variance of these

eigenvalues across our L re-samples in order to get an estimate of the covariance matrix

for ω̂. We call this moving-block bootstrap estimated covariance matrix V ar(Λ̂b). Our
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test statistic is TS = minz ≥ 0N(Λ̂c − z)′[V ar(Λ̂c)]
−1(Λ̂c − z); TS is asymptotically

distributed as the weighted sum of chi-squared random variables given in the previous

section under the null hypothesis.

We can also perform this test for the null hypothesis H2 that Λpost−Λpre is a positive

semi-definite matrix. Failing to reject H1 and rejecting H2 (for both the vector of price

differences and the vector of real time prices) would give us strong evidence consistent

with our prediction that the introduction of explicit virtual bidding reduced the variance

in day-ahead/ real-time price spreads as well as the variance of real-time prices.

4.6 Why not condition on past values of Xd?

The values of the 24×1 vector of real-time prices for day d−1 are not known before offers

are submitted to the day-ahead market for day d; thus, any first-order autocorrelation

between realizations of Xd cannot feasibly be exploited in a trading strategy. Specifically,

any trading strategies involving portfolios of the 24 × 1 price differences that condition

on Xd−k, for k > 0, would have to condition on values from at least k = 2 days ago,

because only realizations of Xd−k for k > 1 are known when a market participant submits

bids or offers into the day-ahead market for day d. Our analysis is restricted to trading

strategies that do not condition on past values of Xd−k; noting that the realization of

Xd−1 cannot be feasibly traded upon, Xd must follow a vector MA(1) process in order

for our restriction to be justified. To investigate this hypothesis, we would ideally like

to estimate a vector MA(1) process for Xd and test the null hypothesis that the errors

from this model are multivariate white noise. However, estimating the 24 x 1 vector

MA(1) model necessary to test this hypothesis has proven extremely difficult to compute

in finite time.

Due to this, we formulate a different approach that does not rely on estimating a

vector MA(1) model for the daily price difference vector. Denote the τ th (24× 24) auto-

correlation matrix: Γ(τ) = E(Xt − µ)(Xt−τ − µ)′. Consistent with our above

discussion,we expect Γ(1) to be non-zero, but Γ(τ) = 0 for all τ > 1. Thus, we consider

the Null hypothesis:

H : Γ(2) = 0,Γ(3) = 0, ...,Γ(R) = 0
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for a fixed value of R. For our application, we test using R = 10. This hypothesis

test is implemented by first defining ξ ≡ [vec(Γ(2))′, vec(Γ(3))′, ..., vec(Γ(L))′]′, where

the vec(.) operator takes a (24 x 24) matrix and stacks it column-wise to create a (576

x 1) vector. Therefore, ξ has 5760 = 576 * 10 elements, which all must equal zero

under the Null hypothesis. We create a simple Wald Statistic, using the moving block

bootstrap (described more fully in the previous subsection) in order to estimate the

5760 x 5760 covariance matrix associated with ξ̂. Our Wald statistic TS = Nξ̂′Σ̂−1ξ,bootξ̂ is

asymptotically distributed as a chi-squared with 242∗(R−1) degrees of freedom under the

null hypothesis. We perform this test separately for before versus after the introduction

of explicit virtual bidding.

5 Empirical Results

This section presents our estimation of the smallest trading charge for which we can reject

the null hypothesis of arbitrage (clower) and largest trading charge for which we can reject

the null hypothesis of no arbitrage(cupper). We also provide the results of our tests that

expected trading profits fell after the introduction of explicit virtual bidding. Finally, we

demonstrate that the volatility of both day-ahead/real-time price spreads and real-time

prices themselves fell after the introduction of explicit virtual bidding. Before we discuss

these results, we show that more complex trading strategies based on lagged values of

price differences are unlikely to yield significant profit improvements relative to a strategy

based only on the unconditional average price differences for each hour-of-the-day (µ).

5.1 Is there autocorrelation in daily price differences beyond

the first lag?

Recall from the previous section that we want to test the null hypothesis that the second

through tenth autocorrelation matrices for Xd are zero: Γ(2) = Γ(3) = ... = Γ(10) = 0.

We test separately for each LAP (i.e: PG&E, SCE, SDG&E), both before and after the

introduction of explicit virtual bidding. The test statistics are recorded in Table 2. The

upper α = 0.05 critical value for these test statistics is χ2(5184) = 5352.6.

We fail to reject the null hypothesis that the second through tenth autocorrelation
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Table 2: Test Statistics for Autocorrelation (1 < L ≤ 10) in Daily Price Differences

Before EVB After EVB
PG&E 2862.2 2767.0
SCE 2789.2 2842.6
SDG&E 3082.1 2700.7

Notes: This table presents the chi-squared test statistics for each load aggregation point (LAP)

before and after the introduction of explicit virtual bidding (EVB) of the null hypothesis that the

second through tenth autocorrelation matrices for daily day-ahead/real-time price difference vector

Xd (which is 24 x 1) are zero: Γ(2) = Γ(3) = ... = Γ(10) = 0. The three LAPs correspond to Pacific

Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric

(SDG&E). We estimate (Γ(2),Γ(3), ...,Γ(10)) (which are each 24 x 24) pre-EVB and post-EVB for

each LAP and stack the elements column-wise; this results in a 5760 = 242 ∗ 10 element vector.

We use the moving block bootstrap in order to estimate the covariance matrix associated with this

vector. The upper α = 0.05 critical value for these test statistics is χ2(5184) = 5352.6.

matrices are zero for any LAP at the 5% level, either before or after the introduction of

explicit virtual bidding. This lends strong evidence in favor of our assertion that daily

price differences follow an MA(1) process. As traders cannot condition on the previous

day’s price realizations when submitting into the day-ahead market, this test helps to

justify our focus on trading strategies that do not condition on past lags of the daily

price difference vector (Xd−k for k > 0).

We repeat these same autocorrelation tests at the nodal level and found that before

the implementation of explicit virtual bidding, particularly at non-generation nodes, the

null hypothesis that Γ(2) = Γ(3) = ... = Γ(10) = 0 could be rejected at approximately 70

percent of the nodes. However, after the implementation of explicit virtual bidding this

null hypothesis was rejected at approximately five percent of the generation and non-

generation nodes which is consistent with this null hypothesis being true for all nodes

after the implementation of explicit virtual bidding, because the size of each individual

nodal-level test was α = 0.05.

5.2 Results from Trading Costs Hypothesis Tests

We first implement our trading cost hypothesis tests at the load aggregation point (LAP)

level. These results are presented in Table 5. For each LAP, we report the values of clower

and cupper both before and after the introduction of explicit virtual bidding. Recall that
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Table 3: Percentage of Autocorrelation Tests that Fail to Reject (α = 0.05)

Before EVB After EVB
Non-Generation Node 0.299 0.912
Generation Node 0.265 0.932

Notes: This table presents the percentage of nodes (read: locations) for which we fail to reject a

size α = 0.05 size test of the null hypothesis that the second through tenth autocorrelation matrices

for daily day-ahead/real-time price difference vector Xd (which is 24 x 1) are zero: Γ(2) = Γ(3) =

... = Γ(10) = 0. We perform this hypothesis test separately for each node before and after the

introduction of explicit virtual bidding. Generators inject electricity at some nodes; these nodes are

called “generation nodes”. The remaining nodes are termed “non-generation” nodes. We estimate

covariance matrices (Γ(2),Γ(3), ...,Γ(10)) (which are each 24 x 24) pre-EVB and post-EVB for each

node and stack the elements column-wise; this results in a 5760 = 242 ∗ 9 element vector. We use

the moving block bootstrap in order to estimate the covariance matrix associated with this vector.

The upper α = 0.05 critical value for these test statistics is χ2(5184) = 5352.6.

Table 4: Sample Counts of Nodes By Cell

Before EVB After EVB
Non-Generation Node 4,031 4,386
Generation Node 669 673

Notes: This table presents the number of nodes (read: locations) in each category (generation

versus non-generation) before and after the introduction of explicit virtual bidding. Generators

inject electricity at some nodes; these nodes are called “generation nodes”. The remaining nodes

are termed “non-generation” nodes.
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Table 5: LAP level Implied Trading Costs–clower and cupper

Before EVB After EVB
PG&E 8.591 7.531

Lower 5% C.I SCE 12.112 7.845
SDG&E 16.453 8.393
PG&E 14.385 11.684

Upper 95% C.I SCE 20.185 13.209
SDG&E 32.391 13.825

Notes: This table We first implement our trading cost hypothesis tests at the load aggregation

point (LAP) level. These results are presented in Table 5. For each LAP, we report the values of

clower and cupper both before and after the introduction of explicit virtual bidding. Recall that clower

is the smallest value of per-unit trading costs c such that the null hypothesis of the existence of an

expected profit-maximizing trading strategy can be rejected and that cupper is the largest value of c

such that the null hypothesis that no profitable trading strategy exists can be rejected.

clower is the smallest value of per-unit trading costs c such that the null hypothesis of

the existence of an expected profit-maximizing trading strategy can be rejected and that

cupper is the largest value of c such that the null hypothesis that no profitable trading

strategy exists can be rejected. Table 5 demonstrates that the values of both clower and

cupper fall after the introduction of explicit virtual bidding for all LAPs. This is consistent

with the logic outlined in Section 2 that the costs of trading day-ahead/real-time price

differences decrease after the introduction of explicit virtual bidding (EVB). Figure 3

plots the bootstrap distributions of implied trading costs φ(X) for the pre-EVB and

post-EVB sample periods for each of the three LAPs. The solid vertical lines on each

graph are the values of clower and cupper for the pre-EVB sample period and the dotted

vertical lines on each graph are the values of clower and cupper for the post-EVB sample.

To obtain a more formal comparison of the implied trading costs before versus after

the introduction of explicit virtual bidding, we compute the bootstrap distribution of the

difference in implied trading costs for each LAP before versus after the implementation

of explicit virtual bidding. Figure 5 plots the bootstrap distribution of the difference in

trading costs for each of the three LAPs. The left vertical line on the graph is the 5th

percentile of the distribution of cpre−cpost and the right vertical line is the 95th percentile

of this distribution. If 5th percentile of the distribution of cpre − cpost is greater than

zero, then we can reject the α = 0.05 test of the the null hypothesis that ctruepre ≤ ctruepost .

If 95th percentile of the distribution of cpre− cpost is less than zero, then we can reject the
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Figure 3: Bootstrap Distribution of φ(X) with 95% C.I: Before and After EVB
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Notes: This figure plots the bootstrap distributions of implied trading costs φ(X) for the sample

periods before and after the introduction of explicit virtual bidding (EVB) for each of the three

load aggregation points (LAPs). The three LAPs correspond to Pacific Gas and Electric (PG&E),

Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The solid vertical

lines on each graph are the values of clower and cupper for the pre-EVB sample period and the dotted

vertical lines on each graph are the values of clower and cupper for the post-EVB sample.
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α = 0.05 test of the the null hypothesis that cpre ≥ cpost. For both SCE and SDG&E,

the null hypothesis that the difference in trading costs pre- versus post-EVB is less than

or equal to zero can be rejected and the null hypothesis that the trading charges pre-

versus post-EVB is greater than zero cannot be rejected. For PG&E, the null hypotheses

cannot be rejected for both tests.

We can also compute the values of clower and cupper for each node (read: location)

in the California ISO control area. Figure 4 plots the values of clower and cupper for each

node before and after the introduction of EVB.5 We plot the across-node distributions

of clower and cupper separately for nodes associated with generation units and nodes not

associated with generation units. The inter-quartile range of the distribution these two

measures of implied trading costs across nodes markedly decreases when we calculate it

using data after the introduction of explicit virtual bidding. Recall that we reject the

null hypothesis that a profitable trading strategy exists if actual trading costs are larger

than than the values plotted for clower. Therefore, for any value of actual trading costs,

we reject the null hypothesis that “a profitable trading strategy exist at a given node”

for more nodes after the introduction of explicit virtual bidding.

We repeat the bootstrap estimation of the distribution of cpre − cpost for each of

the more than 4,000 nodes in the California ISO control area. The first line of Table

6 reports the fraction of nodes for which the null hypothesis that ctruepre ≤ ctruepost can be

rejected, separately for generation nodes (Gen Node) and for non-generation nodes (Non-

Gen Node). The second line of Table 6 reports fraction of nodes that the null hypothesis

that ctruepre ≥ ctruepost can be rejected for generation nodes (Gen Node) and for non-generation

nodes (Non-Gen Node). The null hypothesis that the implicit trading charge increased

after the introduction of EVB can be rejected for more than 70 percent of the nodes.

The percentage of rejections at non-generation nodes is slightly higher than at generation

nodes. For less than 5 percent of the nodes, the null hypothesis that the trading charge

fell after the introduction of EVB can be rejected. This rejection frequency is consistent

with this null hypothesis being true for all nodes, because the size of each hypothesis test

is 0.05.

5Note that the box portion of box and whiskers plot corresponds to the 25% through 75% of the
distribution of trading costs over nodes. The upper (lower) whisker corresponds to data points within
1.5(IQR) of the 75% (25%) quantile point, where IQR is the inter-quartile range defined by the dis-
tance between the 25% and 75% quartiles. Finally, the remaining points are outliers outside of the
aforementioned range.
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Figure 4: Nodal-Level Distribution of Confidence Intervals: Before and After EVB
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Notes: This table We can also compute the values of clower and cupper for each node (read: location)

in the California ISO control area. Figure 4 plots the values of clower and cupper for each node before

and after the introduction of EVB.6 We plot the across-node distributions of clower and cupper

separately for nodes associated with generation units and nodes not associated with generation

units. The inter-quartile range of the distribution these two measures of implied trading costs across

nodes markedly decreases when we calculate it using data after the introduction of explicit virtual

bidding. Recall that we reject the null hypothesis that a profitable trading strategy exists if actual

trading costs are larger than than the values plotted for clower. Therefore, for any value of actual

trading costs, we reject the null hypothesis that “a profitable trading strategy exist at a given node”

for more nodes after the introduction of explicit virtual bidding.
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Table 6: Proportion of Nodes that Reject the Two Null Hypotheses

Total 1(Gen Node) 1(Non-Gen Node)
1(5% Lower Bound>0) 0.707 0.659 0.711
1(95% Upper Bound<0) 0.042 0.076 0.039
Number of Observations 4316 355 3961

Notes: This table The first line of Table 6 reports the fraction of nodes for which the null hypothesis

that ctruepre ≤ ctruepost can be rejected, separately for generation nodes (Gen Node) and for non-

generation nodes (Non-Gen Node). The second line of Table 6 reports fraction of nodes that the null

hypothesis that ctruepre ≥ ctruepost can be rejected for generation nodes (Gen Node) and for non-generation

nodes (Non-Gen Node).

From the logic discussed in sections 2.2 and 2.3, we expect the following two rela-

tionships to hold between the true values of the implied trading costs across generation

versus non-generation nodes before versus after the introduction of explicit virtual bid-

ding. First, suppliers could only implicitly virtual bid at the nodal level before the

implementation of the explicit virtual bidding through how they operated their genera-

tion units; therefore, load-serving entities (read: demanders) could only bid at the LAP

level before explicit virtual bidding. Therefore, we expect the implied trading costs to be

higher at non-generation nodes relative to generation nodes before the implementation

of explicit virtual bidding, as neither suppliers nor demanders could implicitly virtual

bid at non-generation nodes. The introduction of explicit virtual bidding allowed any

market participant to place virtual bids non-generation nodes; based on this, we expect

the mean reduction in implied trading costs after EVB to be larger for non-generation

nodes relative to generation nodes. To test these two hypotheses, we regressed the value

of clower at each node both before and after explicit virtual bidding on a constant, an

indicator variable for whether the node was a generation node, an indicator variable

for whether the implied trading cost was from the post-EVB period, and an indicator

variable for whether the observation was from a generation node during the post-EVB

period (the interaction term between “generation node” and “post-EVB”). We also run

the same node/pre-vs-post EVB level regression with cupper as the dependent variable.

Table 7 reports the results of estimating these difference-in-differences style regres-

sions for clower and cupper. For both percentiles of the distribution of nodal-level implicit

trading costs, we find strong evidence consistent with both of our hypotheses. The best

linear prediction of both clower and cupper before the introduction of explicit virtual bid-
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ding is significantly lower for generation nodes and this difference is essentially eliminated

after the introduction of explicit virtual bidding. Specifically, for both clower and cupper,

we fail to reject the null hypothesis that the sum of the coefficient on ”Generation Node

Indicator” and the coefficient on ”Interaction Between Generation Node and Post EVB

Indicator” is zero. Therefore, as we expected, the difference in implied trading cost before

versus after explicit virtual bidding (i.e: cpre − cpost fell more for non-generation nodes

than for generation nodes.

Figure 6 contains monthly average hourly virtual supply offered and cleared and

virtual demand offered and cleared for October 2011 to December 2012.; this figure is

taken directly from the California ISO Department of Market Monitoring’s Q4 Report

on Market Issues and Performance (issued February 13, 2013). This graph shows that

slightly less than 1,000 MWh of virtual supply clears each hour and approximately the

same level of virtual demand clears each hour. Roughly half of the virtual supply and

virtual demand offers that are submitted each hour clear. Because there are over 4,000

nodes in the ISO system and the minimum virtual bid offer is 1 MWh, there are many

nodes each hour that do not receive nodal-level virtual bids. Figure 7 shows the average

offered and cleared virtual demand and supply bids by hour of the day for October to

December of 2012. For demand bids, there are significantly higher levels of offered and

cleared bids during the peak demand hours of the day; in contrast, the patterns of both

virtual supply offered and cleared bids is fairly constant throughout the day.

5.3 Results from Test for a Fall in Trading Profits

In this section, we implement the direct tests that |µpre| > |µpost| and |µpost| > |µpre|.
If we assume that cpre > cpost as appears to be the case from the implied trading

cost results presented in the previous section, then |µpre| > |µpost| is a test of the null

hypothesis that expected trading profits declined as a result of the introduction of explicit

virtual bidding. The p-values corresponding to these tests for each LAP are presented

below in Table 8:

We cannot reject the null hypothesis that |µpre| > |µpost| for any of the three LAPs,

while we can reject the null hypothesis that |µpost| > |µpre| at the 5% level for two of the

three LAPs. If cpre > cpost, as is implied by the results in Figure3 and Table5, these
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Figure 5: Bootstrap Distribution of the Difference in Trading Costs
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Figure 6: Average Hourly MW Virtual Supply and Demand Offered and Cleared:
Monthly

Notes: This table

Figure 7: Average Hourly MW Virtual Supply and Demand Offered and Cleared:
Hourly

Notes: This table
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Table 7: Regression Results Associated with Implied Trading Costs–clower and cupper

(1) (2)
VARIABLES 5% Lower Bound 95% Upper Bound

1(Post EVB)*1(Gen Node) 0.532 1.421
(0.174) (0.431)

1(Post EVB) -3.527 -5.404
(0.0752) (0.193)

1(Gen Node) -0.654 -1.765
(0.119) (0.250)

Constant 10.72 19.16
(0.0538) (0.118)

Observations 9,791 9,791
R-squared 0.202 0.080

Robust standard errors in parentheses

Notes: This table

Table 8: P-values associated with the Absolute Difference Tests

|µpre| > |µpost| |µpost| > |µpre|
PG&E 0.705 0.144
SCE 0.908 0.006
SDG&E 0.687 0.040

Notes: This table
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Table 9: P-values associated with Volatility Tests

LAP Price Difference Real-Time Price
PGE 0.284 0.516

Pre - Post SCE 0.509 0.697
SDGE 0.476 0.647
PGE 0.001 0.016

Post - Pre SCE 0.001 0.034
SDGE 0.028 0.165

Notes: This table

hypothesis testing results provide evidence in favor of the view that trading profits fell

after the introduction of explicit virtual bidding.

5.4 Results from Test for a Fall in Volatility

As outlined in Section 4.6, we expect that the introduction of explicit virtual bidding

results in a fall in the volatility of the day-ahead/real-time price difference, as well as

the volatility of the real-time price itself. Formally, we compare the covariance matrices

associated with the price differences (and real-time prices) prior to versus after explicit

virtual bidding, testing whether the difference between the covariance matrices is a pos-

itive semi-definite matrix. Formally, this is a (24x1) multivariate nonlinear inequality

constraints test on the eigenvalues of the difference between the two covariance matrices.

These results are documented in Table 9, where we report the probability of obtaining

a value from the distribution of the test statistic under the null hypothesis greater than

the actual statistic (i.e: the p-value). We reject a size α = 0.05 test if this probability

is less than 0.05. We fail to reject the null hypothesis if it is greater than 0.05.

We fail to reject the null hypothesis that the daily price differences and real time

prices prior to explicit virtual bidding are more volatile relative to the differences and

real-time prices after explicit virtual bidding. Moreover, we reject the opposite null

hypothesis that the volatility of price differences and real-time prices are lower pre-EVB

versus post-EVB for all cases but the real-time price results for SDG&E. These results

are consistent with the claim that explicit virtual bidding resulted in the day-ahead

market producing generation and load schedules closer to actual physical conditions in

the real-time market, leading to less “residual” deviations between day-ahead schedules
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Table 10: Proportion of Nodes for which we fail to reject the α = 0.05 sized Volatility
Test

Node Type Price Difference Day-Ahead Price Real-Time Price
1(Gen Node) 0.736 0.049 0.751

Pre-Post 1(Non-Gen Node) 0.744 0.061 0.758
Total 0.737 0.051 0.752
1(Gen Node) 0.168 0.902 0.132

Post-Pre 1(Non-Gen Node) 0.156 0.907 0.104
Total 0.166 0.902 0.128

Notes: This table

and real-time market outcomes. This result is consistent with generation unit owners and

load-serving entities taking costly actions to attempt to profit from differences between

day-ahead and real-time prices prior to explicit virtual bidding leading to a more frequent

need for the ISO to make significant adjustments to day-ahead generation schedules to

meet real-time demand at all locations in the transmission network. Therefore, prior to

explicit virtual bidding, large differences between day-ahead and real-time prices reflected

both genuine shocks to the electricity production process as well as financially motivated

distortions in bid and offer behavior motivated by divergent expectations over day-ahead

versus real-time prices. The logic underlying the cause of these variance reduction results

is consistent with the market efficiency results presented in the next section.

6 Measuring Market Efficiency Implications of Ex-

plicit Virtual Bidding

This section describes the data used and analysis performed to assess the market efficiency

consequences of the introduction of explicit virtual bidding. The three market outcome

measures we compare before versus after the introduction of explicit virtual bidding are:

(1) the total millions of British Thermal Units (MMBTUs) used each hour to produce the

fossil fuel electricity generated during that hour, (2) the total variable cost of producing

the fossil fuel electricity generated during that hour, and (3) the total number of thermal

generation units started during that hour.7 Explicit virtual bidding was introduced in

7The vast majority of thermal-based generation in California comes from natural gas; there is a small
amount of generation from oil-fired sources.
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2/1/2011; for this section, we consider a 2/1/2010-2/1/2012 sample period that spans

exactly one year both before and after the introduction of this policy.

We employ the Robinson (1988) partially linear model to estimate the effects of

explicit virtual bidding on the conditional mean function for each of our three market

performance measures. We non-parametrically control for differences in California’s total

electricity generation from all sources, California’s total net imports of electricity, total

output from all intermittent renewable resources8 as a percentage of overall electricity

generation and daily wholesale prices of natural gas delivered to northern California

and to southern California. Finally, all specifications additionally control for differences

across hours of the day and months of the year.

6.1 Data Description

For this section, we utilize hourly data on generator-level output from California’s in-

dependent system operator (CAISO), daily natural gas prices for each of Northern and

Southern California from SNL Financial9, and daily oil prices from the Energy Informa-

tion Administration. We also use generator-level data on capacity, fuel type (i.e: natural

gas, oil, wind, etc.), and heat rate curve; these variables are provided by CAISO.

We construct the total hourly MMBTUs of energy consumed by all thermal-based

generation units, our first market outcome measure, as follows. First, we combine the

hourly metered output of each thermal generation unit, obtained from CAISO’s set-

tlement system, with the generation unit-level heat rate curve that all generation unit

owners are required to submit as part of CAISO’s local market power mitigation mecha-

nism. This curve is a piecewise linear function that can have up to ten pairs of heat rate

level (in MMBTU per MWh) and output quantity (in MWh) steps, where the sum of the

output quantity steps equals the generator unit’s capacity. Put another way, a heat rate

curve tells us: “if a generation unit is currently utilizing X% of their generation capacity,

we need Y mmBTU of thermal input in order to produce one more unit of generation (in

MWh)”. The heat rate value on this piecewise linear curve times the generation unit’s

metered output for that hour is the first component of the total MMBTUs of energy

8This category includes wind, solar, biomass, and biogas based sources, as well as hydroelectric-based
sources with capacity less than 30MW.

9We use natural gas prices at the Pacific Gas and Electric Citygate delivery point and the Southern
California Gas Citygate delivery point respectively.
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consumed by that generation unit during the hour.

However, thermal energy is also required to start up a generation unit; from our data,

a unit is defined as starting in hour t if its output in hour t-1 is zero and its output in

hour t is greater than zero. Generation unit owners are also required to file information

on the total amount of MMBTUs required to start each generation unit with CAISO

as part of its local market power mitigation mechanism. Thus, we sum the thermal

energy required to start up the thermal units that started up in hour-of-sample t and

the thermal energy required for all thermal generation in hour-of-sample t to calculate

our first market outcome measure TOTAL ENERGYt. We also consider as a market

outcome measure the total number of thermal-based generation units started in an hour

t, STARTSt.

The final market performance measure, TOTAL VCt, is the total variable cost of all

thermal-based generation units in hour t. The marginal cost for each generation unit is

computed by multiplying the heat rate associated the unit’s metered output for that hour

(computed from the piecewise linear heat-rate curve) times the daily fuel price (either

natural gas or oil) for that unit plus the variable operating and maintenance cost that

the unit’s owner submits to CAISO’s local market power mitigation mechanism. The

start-up cost associated with a unit that starts up in hour-of-sample t is calculated by

multiplying the MMBTUs of energy consumed to start the unit by the daily fuel price.

The total variable cost for a given unit in a given hour is simply the unit’s marginal cost

multiplied by its metered output, which is then added to the unit’s start-up costs in that

hour (if any). Summing these unit-level variable costs over all generation units operating

in hour t yields the value of TOTAL VCt.

We specify semi-parametric functions for each of the three market performance mea-

sures in order to estimate the difference in the mean of each of the three hourly market

performance measures before versus after the implementation of explicit virtual bidding.

The conditional mean functions can be written as:

yt = W ′
tα +X ′tβ + θ(Zt) + εt (5)

where yt is one of our three market performance measures. The function θ(Zt) is an un-

known function of the vector Zt, Wt is a (24x1) vector of hour-of-day dummy variables,

and α and β are unknown parameter vectors. Xt is a single dummy variable that takes on
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the value 1 for all hours after midnight January 31, 2011 and zero otherwise; Xt is an indi-

cator for whether hour-of-sample t is before versus after explicit virtual bidding. Finally,

Zt is five dimensional vector composed of the (log of) total output in MWhs of all gener-

ation units in California during hour t, the (log of) total imports minus total exports in

MWhs for California during hour t, the total output in MWhs of all renewable generation

units in California during hour t divided by the total output in MWhs of all generation

units in California during hour t, the (logged) price of natural gas in northern California

during hour t, and the (logged) price of natural gas in Southern California during hour

t. We consider three dependent variables: the natural logarithm of total variable costs

(including start-up costs) of thermal generation in hour t, log(TOTAL VC)t, the natural

logarithm of total input energy used (in MMBTU) in hour t, log(TOTAL ENERGY)t,

and the total number of thermal units starting up in hour t, STARTSt. We also estimate

specifications allowing the mean effects of explicit virtual bidding to vary by the hour of

the day. In this case, Xt is a (24x1) vector with kth element Xt,k; Xt,k equals one during

hour-of-the-day k for all days from February 1, 2011 until the end of the sample period.

For all specifications, we assume that E[εt|(Wt, Xt, Zt)] = 0.

Our goal in this section is to answer: “for the same level of output, how are total

variable costs, input levels, and total starts (our market outcome measures) affected by

explicit virtual bidding?”. Due to this, we first control for California’s hourly total in-

state generation; Figures 8 and 9 show that there are slight differences in the averages

and standard deviations over days-of-sample by hour-of-the-day in total in-state genera-

tion before versus after explicit virtual bidding. However, to isolate the effects of explicit

virtual bidding on our market outcome measures, we control for other factors as well.

First, we flexibly account for differences in the hourly percentage of total generation

coming from renewable sources; this control is necessary because the share of electric-

ity generated from renewable resources grew significantly over our sample period. This

growth is the result of California’s Renewables Portfolio Standard (RPS), which requires

all California load-serving entities to procure 33 percent of their electricity generation

from qualified renewable sources by 2020. Figure 10 plots the average over days-of-

sample for each hour-of-the-day of the percentage of in-state generation from renewable

resources during the year before virtual bidding and year after virtual bidding; we see

a roughly 2% increase in the average percentage of generation from renewable sources

in the 2/1/2011-2/1/2012 sample period relative to the 2/1/2010-2/1/2011 sample pe-
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riod. Moreover, Figure ?? demonstrates that the standard deviation of this percentage

also increases substantially after explicit virtual bidding, speaking to the importance of

the flexibility provided by non-parametrically controlling for differences in percentage of

generation from renewables. In practice, this increased volatility of renewable resources

(termed “intermittancy”) implies that more thermal resources must be held as operating

reserves and stand ready to supply additional energy if the renewable resources disappear

suddenly. We also control flexibly for California’s overall hourly net imports of electric-

ity, as both the average and standard deviation of net imports increases substantially in

the sample period after explicit virtual bidding was introduced; see Figures 12 and 13

for these summary statistics taken over days-of-sample by hour-of-the-day, separately for

the sample periods before versus after explicit virtual bidding. Finally, we also flexibly

control for differences in the natural gas prices in Northern California and Southern Cal-

ifornia, as these two price series obviously affect the thermal resources firms decide to

utilize in a given hour-of-sample.

6.2 Empirical Methodology

Examining Equation 5, if we assume that E[εt|Xt, Zt,Wt] = 0, we can estimate param-

eters (α, β) using the procedure described in Robinson (1988). This procedure has the

following two steps:

1. We non-parametrically estimate ˆE[yt|Zt], ˆE[Wt|Zt] and ˆE[Xt|Zt].10

2. From Equation 5, we can see that:

E[yt|Zt] = E[Wt|Zt]′α + E[Xt|Zt]′β + θ(Zt)

Solving for θ(Zt) and plugging back into Equation 5:

yt = W ′
tα +X ′tβ + E[yt|Zt]− E[Wt|Zt]′α− E[Xt|Zt]′β + εt

10We use the Nadaraya-Watson kernel regression estimator with a Gaussian kernel. We find optimal
smoothing parameters separately for each covariate using leave-one-out cross validation. Finally, we
report results based on jointly standardizing the independent variables using the unconditional averages
and empirical covariance matrix estimated with our whole 2/1/2010-2/1/2012 sample period (i.e: we

apply the Mahalanobis transformation X̃i ≡ (Xi − X)Σ̂
−1
2 ). As expected, the decision to standardize

jointly, standardize each covariate individually, or not standardize the data at all does not significantly
affect our results.
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Figure 8: Average Total Generation from All Sources: By Hour of Day
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Figure 9: Std. Dev. of Total Generation from All Sources: By Hour of Day
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Figure 10: Average Renewable Proportion of Total Generation: By Hour of Day

13
:5

9 
T

hu
rs

da
y,

 A
ug

us
t 2

0,
 2

01
5

1
13

:5
9 

T
hu

rs
da

y,
 A

ug
us

t 2
0,

 2
01

5
1

A
ve

ra
ge

 R
en

ew
ab

le
 P

ro
po

rt
io

n 
of

 T
ot

al
 G

en
er

at
io

n

       0.074
       0.076
       0.078
        0.08
       0.082
       0.084
       0.086
       0.088
        0.09
       0.092
       0.094
       0.096
       0.098
         0.1

       0.102
       0.104
       0.106
       0.108
        0.11
       0.112
       0.114

Hour of Day

0 4 8 12 16 20 24

CAISO-wide Proportion of Total Generation from Renewable Sources
Average: By Hour of Day

Before Virtual Bidding After Virtual Bidding

Notes: This table

46



Figure 11: Std. Dev. of Renewable Proportion of Total Generation: By Hour of Day
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Figure 12: Average Total Net Imports: By Hour of Day
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Figure 13: Std. Dev. of Total Net Imports: By Hour of Day
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Finally, we can plug in our first stage estimates and consistently estimate (α, β) by

running an ordinary least squares regression of yt on ( ˆE[yt|Zt],Wt− ˆE[Wt|Zt], Xt−
ˆE[Xt|Zt]).

A key innovation from Robinson (1988) is that the standard errors for (α̂, β̂) reported

from the second stage ordinary least squares regression are asymptotically valid; we report

robust standard errors for all specifications.

6.3 Empirical Results

Table 11 reports the coefficient estimate for Xt for each measure of market performance,

where Xt is a single dummy variable that takes on the value 1 for all hours after midnight

on January 31, 2011 and zero otherwise. These estimates imply that the conditional mean

of total variable costs (controlling for the total hourly output from all generation units in

California, California’s total hourly net imports, the total hourly output from renewable

resources divided by total hourly generation, the prices of natural gas in northern and

southern California and the hour of the day) is 6.8 percent lower after February 1, 2011.

The conditional mean of total hourly energy is 6.2 percent lower after February 1, 2011.

Finally, the conditional mean of total hourly starts (controlling for the same variables)

is 0.34 starts higher after February 1, 2011. Interpreting these findings, we see that the

“right” (read: lower cost) thermal units started up more often after the introduction

of explicit virtual bidding; this is suggestive evidence that day-ahead prices provided a

better signal of real-time conditions after financial trading was introduced.

Table 11: Semiparametric Coefficient Results

Dependent variable log(TOTAL COSTS)t log(TOTAL INPUT ENERGY)t STARTSt
β -0.0678 -0.0615 0.3434
Standard error 0.0100 0.0101 0.0672

Notes: This table

Figures 14 plots the estimates of hour-of-the-day change in the conditional mean

of the three hourly market performance measures after the implementation of explicit

virtual bidding along with the point-wise upper and lower 95% confidence intervals for

each hour-of-the-day estimate. For the case of total hourly energy, the largest in absolute
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value reduction occurs in the early morning hours beginning at 12 am and ending at 3

am. The hourly mean reductions are the smallest in absolute value during the hours

beginning 5 am and ending at 8 am, with the remaining hours of the day slightly higher

in absolute value. For total starts, the largest increase is during the hour starting at 3

pm and ending at 5 pm. Starts also increase after the implementation of explicit virtual

bidding in hours beginning with 4 am and ending at 7 am. For total variable costs, the

pattern of the absolute values of the hour-of-the-day reductions is similar to that for total

hourly energy. The largest in absolute value reductions occur in morning hours from 12

am to 3 am.

Although the percent hourly total energy and cost reductions are small, on an annual

basis the implied cost savings and carbon dioxide emissions reductions can be substantial.

The annual total cost of fossil fuel energy is $2.8 billion the year before explicit virtual

bidding and $2.2 billion the year after explicit virtual bidding. Applying the 2.6 percent

reduction to these figures implies an annual cost savings for the variable cost of fossil fuel

energy of roughly 70 million dollars per year. Applying the total MMBTU figures, implies

that the introduction of explicit virtual bidding reduced the greenhouse gas emissions

from fossil fuel generation in California by 2.8 percent. The average heat rate of fossil

fuel units in California is approximately 9 MMBTU/MWh and the typical natural gas-

fired generation unit produces approximately a half of a ton of carbon dioxide per MWh

of energy produced. In the year before explicit virtual bidding, 585 million MMBTUs

were consumed to produce electricity and the year after 484 million MMBTUs were

consumed. Applying our 2.8 percent reduction figure to these two numbers implies that

the introduction of explicit virtual bidding reduced carbon dioxide emissions by between

650,000 and 537,000 tons annually. Both of these results point to sizable economic and

environmental benefits from the introduction of explicit virtual bidding in California.

7 Implications of Results for Design of Electricity

Markets

The results in the previous sections provide evidence that the introduction of explicit

virtual bidding significantly reduced the transactions costs associated with attempting

to profit from differences between the day-ahead and real-time market prices at the same
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Figure 14: Hour-of-the-Day Percent Change Estimates from Semi-Parametric
Regressions
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location in the transmission network. In addition, these results demonstrate economically

significant economic and global environmental benefits associated with the introduction

of explicit virtual bidding. Although it was possible to implicit virtual bid before the

introduction of explicit virtual bidding, the evidence from our analysis is that the intro-

duction of this product significantly improved the degree of price convergence between the

day-ahead and real-time markets and reduced the cost of serving load in the California

ISO control area.

These results emphasize an important role for forward financial markets in improving

the performance of short-term commodity markets. The financial commitments that

producers and consumers make in forward markets can provide important information

and feedback to market participants that improves the subsequent performance of short-

term physical markets. Although explicit virtual bids are purely financial transactions,

they reduce the incentive of both generation unit owners and load-serving entities to

take forward market positions designed to raise prices in the short-term market. These

results argue in favor of recognizing the fundamentally financial nature of day-ahead

wholesale electricity markets. If explicitly financial products are not available, markets

participants will still attempt to engage in profitable financial transactions, even though

these transactions may require costly deviations from what the generation unit owner

would do if explicit virtual bidding was possible. This appears to be the case before virtual

bidding was implemented in the California market. Therefore, rather than resisting the

desire of many market participants to allow purely financial transactions, these actions

should be allowed and encouraged through explicit virtual bidding as a way to improve

the performance of the wholesale electricity market.
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