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Abstract

We conduct a field experiment with residential electricity customers to evaluate
the effectiveness of centralized (utility-initiated) vs decentralized (customer-
initiated) demand response. Participants receive dynamic incentives to reduce
electricity use during randomized peak events. Households differ in the ease
with which they can respond to events in terms of the a) provision of technology
to remotely control devices in their home and b) whether the default response
is to reduce consumption during an event (centralized) or requires customer-
initiated action to do so (decentralized). We find centrally-initiated households
reduce consumption by 26% on average during 3-hour demand response events,
whereas customer-initiated households reduce by only 5%. Having to take an
action, one as small as pushing a button on an app versus not having to do so,
results in a 5-fold difference in response. We find an additional “manual” de-
centralized program, one with the same incentives but without remote control
technology installed, indistinguishable in their consumption reduction (5%) to
the decentralized program with technology. These findings speak to the im-
portance of reducing the effort and cognitive burden on consumers in markets
where inattention is prevalent.
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1 Introduction

A fundamental challenge for electricity markets is the need to balance supply and

demand at every instant, despite limited storability and inelastic demand. Histor-

ically, this has been achieved by forecasting demand and adjusting (dispatching)

supply. Going forward, however, the growth of variable renewable energy genera-

tion and new sources of flexible demand (such as electric vehicles) will flip that prior

adage upside down, with grid operators increasingly forecasting supply and dispatch-

ing demand. Yet, despite the growing importance and value of responsive demand,

questions remain as to how best to elicit flexibility from typically inattentive and

inelastic residential electricity consumers.

While economists have long advocated for dynamic pricing signals to incentivize

demand response, this assumes a high level of awareness and understanding on the

part of consumers. Consumers must be informed of both their price and usage in

real-time, and, even if made aware of both, they must be capable of understanding

how adjusting the various devices in their home translates to electricity reductions.

For many consumers, this may be unrealistic (Schneider and Sunstein, 2017).

We consider an even more fundamental obstacle to demand response: the re-

ward for adjusting consumption may simply not be worth the opportunity cost of

a consumer’s time (Becker, 1965). Demand response programs are often infrequent

and though beneficial in aggregate to the system, and cumulatively to the consumer,

are typically associated with relatively small financial rewards for individual events.

Given the opportunity cost of exerting effort and paying attention to price signals,

consumers may be reluctant to actively participate in demand response programs

that amount to “picking up pennies” in a series of irregular and relatively low-stakes

opportunities.

In this paper, we use a field experiment to examine the potential for centrally-

initiated demand response to overcome this aforementioned obstacle to unlock flexible

electricity demand. Partnering with a large electric utility in Canada, we provide ex-

perimental evidence on the relative effectiveness of utility-initiated (“centralized”)

versus household-initiated (“decentralized”) responses to electricity prices. Central-

ized responses involve an electric utility company or third party altering the con-

sumption of in-home appliances on behalf of customers. Recent evidence has pointed

to the potential for automation to facilitate electricity demand response (Harding

and Lamarche, 2016; Bollinger and Hartmann, 2020; Blonz et al., 2021). However,

such automation still relies on user-generated technology/device settings. Central-
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ized demand response has the potential to further reduce the attention and effort

that consumers devote to responding to prices by creating and initiating the settings

for them.

We recruited approximately 1,650 participants to a demand response field exper-

iment that ran for 18 months. Participating households were treated with random

“peak event” offers, roughly one every 1 to 2 weeks, whereby they could earn money

by reducing their electricity consumption during the 3-hour window of each event.1

Households were assigned to different demand response programs that varied in the

technology provided to assist in responding to price signals and whether consumption

reductions were initiated by the household (decentralized) or by the utility (central-

ized). We examine how households respond to the events, and importantly, how that

differs across the various programs.

The degree of effort and attention required to respond to events decreases by

program. Households in the most basic demand response program, the Manual

program, received financial rewards for consumption reductions during peak events

but were not supplied with any enabling technology to minimize the effort required to

do so. They needed to, as the name suggests, manually reduce consumption among

their home appliances.

Households in the Tech program received the same incentives as the Manual

program but were also equipped with app-enabled load controllers on devices our

Utility partner installed in their home. The controllable devices include (i) baseboard

thermostats, (ii) electric hot water heaters, and (iii) level 2 electric vehicle (EV)

chargers. Notably, prior research that considers the role of automation in facilitating

demand response has focused primarily on smart thermostats. The Tech program,

like the Manual one, is part of our decentralized demand response—households in

these programs need to actively respond to a peak event notification by taking an

action. In the case of the Tech program, however, the effort required is less than the

Manual program.

Finally, the Central program mirrors the Tech program in receiving incentives

and having the same load control technology installed in participating households’

homes but with one crucial difference: their load controllers’ default response to a

1Rewards range from $1 to $6 Canadian dollars per event, depending on the level of consumption
reduction achieved and whether the event is specified as a regular or high rewards event type. The
rewards are designed to mimic the cost savings of demand reduction during peak market conditions
when matching supply and demand is challenging. This corresponds to approximately CAD$1.11 to
CAD$2.22 per kWh as compensation for consumption reductions for the average household in our
sample. CAD$1 equals approximately USD$0.75 or EURe0.68 as of December 2023.
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peak event notification is to have the Utility automatically reduce their devices’ con-

sumption, i.e. centralized demand response.2 Households in the Central program

could override the automated consumption reductions during an event but, in con-

trast to the Tech program, they needed to actively make an effort to not reduce

consumption by pushing a button on their app. Even if they exert no effort, or pay

no attention to the event, households in this program will have their consumption

reduced and can earn rewards.3

A novel feature of our experimental design is that each household receives their

own unique randomized schedule of treatment events. Households not experiencing

an event on a given hour act as a control for those experiencing events, and vice

versa during other hours. This allows us to estimate average treatment effects of

peak events on the sample of participating households within each demand response

program through a straightforward difference-in-differences approach. The key iden-

tifying assumption with this approach is that experiencing an event one day does

not impact or “carryover over” to behavior in like hours on future days (Bojinov et

al., 2021). We test the robustness of this assumption by comparing the non-event

day consumption of households in our programs to those in a never-treated set of

households that met the eligibility requirements and whose household consumption

data was tracked but were not placed in a demand response program. We find no

evidence that the no-carryover assumption is violated.

Our main results are stark. We find participants in the Central program reduce

consumption by an average of 26.3% during events as compared to only 4.8% for

those in the Tech program. This difference speaks to the importance of minimizing

the effort cost of taking action in settings where both inattention is rife and the

incentives per event are relatively small. Having to take an active action to reduce

consumption, even one as small as pushing a button on an app to respond to a

demand response event, results in one-fifth of the effect as compared to the centralized

program. Perhaps more surprisingly, we see no meaningful difference between the

Tech program’s performance (-4.8%) and that of the Manual program (-5.3%). We

find that technology alone is not sufficient to overcome barriers to price responsiveness;

making consumption reductions the passive response is imperative.

2There are a number of recently developed programs that include utility-managed load-control
for various appliances including hot water heaters (Wattersaver, 2023), thermostats (PG&E, 2023),
electric vehicles (DTE Energy, 2022), and solar-plus-storage systems (Spector, 2020).

3In presenting this research, we described this as the “Weekend at Bernie’s effect”, alluding to
the fact that even Bernie, the main character of the popular 1980s movie Weekend at Bernie’s, who
is dead, would see a demand reduction in this scenario, to emphasize the lack of effort required.
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One possible trade-off for the superior performance of centralized consumption

reductions is that households may be less inclined to accept the centrally-managed

program than household-initiated (decentralized) alternatives. Despite our expecta-

tions, we find a relatively modest difference in the take-up rates of offers to participate

in the Central and Tech programs (42% and 48%, respectively). This surprising re-

sult indicates that consumers were not disproportionately deterred by the idea of the

electric utility managing the consumption of their devices.

Our results include an analysis of the effect of varying prices on responsiveness.

We randomly assign event types to include regular and “high” rewards events, where

for the latter the incentives for demand reductions are elevated. We find no significant

evidence that higher prices motivate greater consumption reductions. This further

suggests a story of responsiveness that relates to overcoming a burden of effort and

attention, rather than a smooth response to price signals.

We leverage the richness of our data and our household-specific randomized event

schedule to estimate household-specific treatment effects. This allows us to dig deeper

into what is driving the varied performance amongst households in different programs.

We find the distributions of household treatment effects reveal that average treatment

effects of the Tech and Manual programs are driven by a few high-performing house-

holds. In contrast, household treatment effects for those in the Central program

have a normal distribution with a mean less than zero (specifically, -24%). There-

fore, households in the Tech and Manual programs had to be unusual in some sense

to significantly reduce electricity consumption during peak events, while the average

household in the Central program made significant, large reductions.

We provide suggestive evidence that differences in performance are driven by dif-

ferences in attention and effort by analyzing data on participant interactions with

the utility’s App. Across all programs, App interaction is correlated with larger

household-level treatment effects. We provide evidence that the “high achievers” in

the Tech and Manual programs had to interact with their App very frequently (61%

and 51% of days on average during the experiment), which suggests that their per-

formance may have relied on attention devoted to their electricity consumption and

effort in reducing it during events. In contrast, the high achievers in the Central pro-

gram interacted with the app on average significantly less than those in the Tech and

Manual programs (31% of days on average). Overall, we find the average household-

level treatment effect when households do not interact with the App to be about 3%

for the Tech and Manual programs and 24% for the Central program. When house-
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holds do interact with their App, these numbers increase to about 8.5% for the Tech

and Manual programs, and 27% for the Central program. This highlights the Cen-

tral program’s “headstart”, whereby they achieve consumption reduction even in the

absence of App interaction; the decentralized participants had to exert more effort to

achieve similar results.

Our paper builds on several strands of the literature. First, we add to the rich

set of empirical research estimating household responsiveness to time-varying pricing

in electricity.4 Our experimental design is most similar to the critical peak pricing

(CPP) strand of this literature. The results from our Manual program with no load

control technology nor automation is broadly inline with those observed in prior CPP

studies.

Second, our paper contributes to a growing literature that explores automation

options for consumers to overcome barriers to demand response. There is evidence

that automation of smart thermostats can assist in facilitating short-run demand

responsiveness when combined with pricing (Harding and Lamarche, 2016; Bollinger

and Hartmann, 2020; Blonz et al., 2021). However, consumers may override important

settings with such technology, reducing the anticipated benefits (Brandon et al., 2022).

Consistent with the latter, we find our Tech program performs no better than the

Manual program in altering electricity consumption in response to events on average.

That is, given the ability to remotely control large appliances as well as automate

some aspects of their electricity usage (such as thermostat settings and turning back

on EV chargers and water heaters after events), they fare no better than consumers

who require a more manual action to change electricity consumption. In our setting,

smart assistive technology is not resolving demand-side failures in price coordination.

Third, our paper relates to Fowlie et al. (2021) who look at opt-in vs opt-out de-

fault effects at the extensive margin of selecting time-varying electricity pricing plans.

Our paper complements this work by focusing on default effects at the intensive mar-

gin of the consumption response decision during peak events. Our key contribution

beyond the existing literature is the finding of significantly greater responsiveness

when consumption reductions are made the default, or passive, action in response

to demand response events. Requiring customers to take an action—even with the

provision of technology that makes the associated cost as minimal as remote control

with a mobile phone app—is no match for the power of demand response that is

managed on the consumer’s behalf. This speaks to the importance of recognizing the

4See Faruqui and Sergici (2010) and Yan et al. (2018) for surveys of this literature.
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cost of effort in settings where inattention is high and individual event rewards are

relatively small.

Our analysis proceeds as follows. We begin with a discussion of the barriers

to demand responsiveness in Section ??, including a review of the literature and

a simple conceptual framework of how the cost of effort and attention can inhibit

responsiveness. Next, we describe our experimental design and data in Section 2. We

start the analysis of our results with simple descriptive analysis in Section 3. This

is followed by our formal estimation framework in Section 4 and estimation results

in Section 5. In Section 6, we return to our focus on effort and attention using app

interaction data as a proxy to show how treatment effects differ depending on whether

households are attentive to the event or not. Section 7 concludes.

2 Experimental Design and Data

2.1 Overview

We partnered with a large regulated Canadian electric utility (hereafter referred to

as the “Utility”) to create three “demand response programs” that vary in terms of

the enabling technology provided to customers as well as household versus utility-

initiated electricity demand changes on specific devices. We are primarily interested

in how customers in each program reduce or shift their electricity consumption in

response to “peak events”, times during which the Utility asks consumers to reduce

consumption and rewards them financially for doing so. This is a key parameter of

interest for utility companies working to reduce electricity demand during specific

hours to meet the needs of a rapidly changing electricity grid.

A novel feature of our study is the fact that we randomized the timing of peak

events at the household level. This allows us to estimate the average treatment effect

of a household being sent an event notification (with an offer to compensate house-

holds for reducing consumption during event hours), by demand response program.

We additionally leverage the randomization of these events (as well as the richness of

our data) to estimate household-specific treatment effects. These allow us to look at

the distribution of effects within each program to better understand what is driving

average program-specific results.
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2.2 Treatment Events

Customers in each of the demand response programs received notifications of peak

events through an electricity consumption management phone App offered by the

Utility. Because events were randomized in time for each household, they are not

correlated with other drivers of household electricity consumption. Peak events had

the possibility of occurring at one of two time periods: morning (7am to 10am) or

evening (5pm to 8pm). The schedule and timing (morning or evening) of events

were unknown ex-ante to the customer, each receiving a unique, randomized schedule

of events over the course of the experiment. Consequently, households could not

predict the day or event time when they would receive a peak event. Households

received event notifications 21 and 2 hours before the event that included an offer for

households to receive financial rewards for reducing electricity consumption during

the peak event period, relative to their household-specific baseline.5

“Event types” were also randomized and were one of two pricing levels: “normal”

and “high”, with rewards increasing in the latter for large reductions. High peak

events were only possible during evening periods. During normal events, households

could receive $1 for a 10% reduction, $2 for a 30% reduction, or $3 for a 50% reduction.

During high peak events, households could receive $1 for 10%, $3 for 30%, or $6 for

50% reductions. By randomizing the pricing levels, we are able to estimate the

effect of greater price incentives on household consumption behavior. The incentive

amounts translate to payments ranging from approximately $1.11 to $2.22 per kWh

of electricity reduced, for the average household.6 These incentives are in the range

of wholesale price caps that are used to limit electricity scarcity pricing in a number

of jurisdictions in North America.7

Events randomly occurred on weekdays, excluding holidays. Households typically

5Baselines were calculated based on a household’s average consumption during the relevant event
time window over the last five weekdays prior to the event. Customers did not know how the baseline
was calculated to avoid the potential for customers to “game” their baseline by over-consuming
during event time periods on non-event days. 21 hours was selected as the longest notification
period to avoid consumers having knowledge of a pending event while their baseline was still being
set.

6The average household consumes 1.8 kWh in each hour in our sample. A 10%, 30%, and 50%
reduction translates to a 0.54, 1.62, and 2.7 kWh reduction over the three-hour event, respectively.
Consequently, for a 50% reduction during a normal peak event, we compensated households $3

2.7 =

$1.11 per kWh. For a 50% reduction during a high peak event, compensation was $6
2.7 = $2.22 per

kWh. The other percent reductions lie between these two cases.
7Examples include the wholesale price cap of CAD$1.00/kWh in Alberta (Brown and Olmstead,

2017), USD$3.50/kWh in the Mid Continent Independent System Operator that operates in the
Midwest United States (IRC, 2017), and USD$5/kWh in Texas (Smith, 2022).
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experienced two “normal” and one “high” event per month. This schedule was altered

in the summer months of July and August when the likelihood of peak events is lower

in Canada. During these months, households experienced no “high peak” events.

Events started on February 22, 2022 and continued until June 30, 2023.

Event notifications provided information on the time of the event and the financial

incentives for the different demand reduction levels. Once consumers received the 21-

hour notifications, they could also see event details in the App itself. See Appendix

B.1 for examples of the notification and in-App event messages. Households’ rewards

for consumption reduction during events were displayed in the App at a two- to three-

day lag. The App also gave households a summary of their total rewards to date. See

Appendix B.2 for details on each group’s in-App experience.

2.3 Demand Response Programs

Our experimental sample consists of all households that accepted participation in

one of three demand response programs, as well as never-treated households whose

consumption we followed but were not offered participation in a program.8 See Ap-

pendix A.1 for a description of the recruitment and assignment process that led to

households being in each program.

Table 1. Summary of Household Programs/Groups

Programs/Groups DR Control Control Tech Price Incentive Usage Info
Central Utility ✓ ✓ ✓
Tech Household ✓ ✓ ✓
Manual Household ✓ ✓
Info Household ✓
Control Household

Notes. DR Control represents whether demand response to events is controlled entirely by the
household (decentralized) or by the Utility for the load-controlled devices (centralized). Control
Tech denotes whether the household has load controller equipment installed. Price Incentive
reflects if households receive peak events and rewards for reduced demand during events. Us-
age Info denotes whether households receive real-time household-level consumption information.
✓indicates categories that are applicable to each program/group.

8We therefore estimate event-level treatment effects for compliers with each program offer.
Though selected, the group of households in each program are representative of the groups that
utility companies are interested in until such time that utility-managed electricity consumption is
something that customers can be defaulted into. See Section 4.2 for discussion of alternative esti-
mators. See Appendix A.3 for a discussion of the comparability of household-level characteristics
across program participants.
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Table 1 summarizes our demand response programs. Households in the Man-

ual program earned financial rewards for demand reductions during events but did

not have any load controller equipment installed by the Utility to manage their con-

sumption via the App. They had to respond to events manually.9 Households could

monitor their real-time electricity usage information in the Utility’s App.

The Tech program differs from the Manual program in that the Utility installed

load controller equipment on one or more of the household’s electric hot water heaters,

baseboard thermostats, and level 2 EV chargers, to enable remote electricity consump-

tion (“load”) reductions. This equipment allows households to see device-specific

electricity consumption and turn on and off devices remotely via the App. Critically,

while the Tech program is equipped with load control technology to ease their effort in

responding to events, they still must take active action to do so via their phone’s App.

Both the Manual and Tech programs allow us to test the efficacy of a decentralized

approach to demand response—one without and one with enabling smart technology,

respectively.

The Central program received the same equipment installed in their homes as

the Tech program. However, during an event the default setting for Central program

participants was for the Utility to manage their load-controlled devices by reducing

electricity consumption. That is, without any active response, the Central program

participants would reduce consumption via demand management initiated by the

Utility; they needed to actively choose not to respond to an event (i.e., opt out of

utility management) by pushing a button on their App. The Central program allows

us to examine the efficacy of centralized demand management and, as compared to

the Tech program, the difference between having to opt-in to an event versus being

defaulted in and able to opt-out.10

Finally, we have two groups of households that serve as never-treated baselines

throughout the study. One is a Control group that receives no intervention or

messaging regarding the experiment. Another is an Info group that is identical to the

Control group, but these households have access to real-time consumption information

9We can observe if a household independently installs its own equipment and links it to the
Utility’s App. Only three (out of 242) Manual households installed equipment independently. These
three all installed smart thermostats that allow the monitoring and remote control of the household’s
electric baseboard heaters.

10Customers in the Central program received advanced notifications of events just as other program
participants, and the language of the notifications reminded them that the Utility would manage
their devices. See Appendix B.1 for event notifications for each program. They had the option to
opt-out of utility management for all devices ahead of an event or for individual devices during an
event. These options are described in Appendix B.2.
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for their home via the App after they accepted and installed a device provided by

the Utility partner. In contrast, the Control group can, if they choose, only see

their household-level consumption with a one-day lag. Both of these never-treated

groups do not receive peak events or financial incentives. We passively monitor their

consumption.

2.4 Data Description

For all households in our experiment, we track hourly household-level consumption

(in kWh) from October 1, 2020 until June 30, 2023. We also have information on

a number of household characteristics, such as household appliances, that were pro-

vided through survey responses as a necessary condition to enter the first phase of

our recruitment process. In addition, the Utility provided supplementary household

information, including the type of household (e.g., single-family/duplex, row home)

and an approximate geographical location. We are also provided time-stamped infor-

mation on household interactions with the Utility’s App at the daily level.

We complement the detailed household-level data with demographic information

from the 2016 Canadian Census (Statistics Canada, 2021). We are provided a house-

hold’s Census Dissemination Area (CDA) identifier; the CDA is the most granular

geographical unit for which all Census information is provided publicly. We collect

hourly weather information to control for environmental factors that impact elec-

tricity consumption, including temperature and humidity at three stations that are

geographically representative of the households located in our study.11 These data

were accessed at Environment and Climate Change Canada.

In the last month of the experiment (mid-June 2023), we conducted an addi-

tional survey that contained questions on participants’ experience with their respec-

tive demand response program. We provide a subset of questions from the survey in

Appendix D.1. We use this subset in our analysis in Section 6.

2.5 Acceptance

Table 2 summarizes the number of households invited and the acceptance rates for

each program offer. Acceptance rates among all programs were high. In particular,

the acceptance rate for the Central offer was 42%, and only marginally statistically

different than the acceptance rate for the Tech offer (48%).12 Compared to Tech

11We match the households in our sample with their closest weather station.
12A difference in means test between these two values yielded a p-value of 0.072.
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and Central, the Manual program had a statistically significantly higher acceptance

rate of 59%, followed by the Info-only group at 68%.13 Finally, Control had 100%

acceptance because their participation was not subject to an offer. The acceptance

rates of the Central and Tech programs were lower than the others due in part to

the need for load controllers to be successfully installed in households that accepted

these offers.14

Table 2. Program Acceptance by Program/Group

Central Tech Manual Info Control
Invited 423 382 409 259 188
Accepted 177 184 242 177 188

Pct. Accepted (42%) (48%) (59%) (68%) (100%)

Notes. “Invited” reflects the number of households invited to partici-
pate in the experiment, by program/group. “Accepted” is the number
of households that accepted our offer and made it through equipment in-
stallation process (as applicable, by program/group). “Pct. Accepted”
displays acceptance rates relative to the number of households invited.

We take the similarity among final acceptance rates between the Central and Tech

programs as the first set of evidence that we can compare our estimated treatment

effects between these programs. While the Manual program had a higher final accep-

tance rate, concerns that the Manual program participants systematically differ from

those of the other two programs are mitigated based on a comparison of observable

characteristics across programs in our final sample, as are concerns about differences

in the composition of households in each program. See Appendix A.3 for a detailed

discussion.

3 Descriptive Results

We begin our analysis with descriptive evidence that participating households reduce

their electricity consumption during peak events and show how this response differs

across demand response programs.

13Like the Manual program, the info group required actively accepting the offer to join the ex-
periment and installing a device (called the “Hub”) that facilitates the monitoring and reporting of
real-time consumption.

14We observed unsuccessful installation at households that initially accepted these offers due to,
for example, households never responding to subsequent inquiries to receive and install equipment
or households not being in compliance with local electrical codes.
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Figure 1 provides average hourly household-level consumption for the Central,

Tech, and Manual programs for the entire sample period during non-event (solid

lines) and event (dashed lines) days. The shaded regions reflect the relevant event

hours for each event type.

Figure 1a demonstrates that the Central program had a large reduction in average

consumption during events regardless of the event type. After each event, we observe

a large spike in consumption. This “snap-back” is consistent with the devices turning

on immediately after the event (e.g., to reheat the water tank and/or home, or restart

EV charging).15 Comparing High Evening to Evening event consumption, we see no

discernible difference in response to this higher reward.

Figures 1b and 1c demonstrate that the Tech and Manual programs show negligible

changes in consumption patterns during events. This limited observable response for

the Tech program arises despite the fact that this program has access to the same

equipment as the Central households. However, unlike the Central program where

changes are automated, the Tech households must actively engage with the App or

device to turn off the same appliances during an event.

Taken together, these descriptive results suggest that the Central program has a

considerably larger response to each event type. Further, we see no visual evidence

of greater performance for greater financial rewards. Rather, the largest difference

appears to be whether the household is in a centralized versus decentralized program.

In the sections that follow, we undertake a formal empirical analysis to quantify these

effects and control for potentially confounding factors.

4 Empirical Framework

Our estimation strategy relies on the panel nature of our experimental design. The 3-

hour treatment events occur randomly within and across all participating households;

each household has its own random schedule of events, conditional on them occurring

during the set morning (7-10am) or evening (5-8pm) event windows. This, along with

the fact that all households in the Central, Tech, and Manual programs were sent

events, allow us to estimate the average effect of an event on electricity consumption,

15Because we are interested in event-induced demand flexibility among programs, not energy
efficiency, we are unconcerned with demand being shifted to another time. However, based on con-
versations with the Utility, the new problematic peaks in demand created by the observed snap-back
could be mitigated by the Utility staggering the beginning and/or end of the load-controlled event
across households or only partially adjusting the demand levels on controllable devices. Managing
the “snap-back” or “shadow peak” from demand response is an important area for further research.
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Figure 1. Average Household Consumption
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Notes: Figure plots mean household consumption for the Central program by hour on weekdays, on
event days and non-event days over the period February 1, 2022 - June 30, 2023. Event days are
separated by type: Morning, Evening, and High-Evening. The shaded area represents the relevant
3-hour event period.
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by program.

4.1 Program-Level Regressions

We estimate the average treatment effect of demand response events on electricity

consumption by using data from all demand response programs and never-treated

households with the following model at the household i and hour t level:

ln(cit) =
∑

j∈{C,T,M}

βj Programji · Eit + αi + τt + δXit + εit (1)

in which ln(cit) is the log of household electricity consumption (cit), Eit is the household-

specific event indicator that equals one if the household is (randomly) assigned an

event in hour t, and Programj is a categorical variable for which demand response

program the household is enrolled in (e.g., Central (C), Tech (T), or Manual (M)).

A key advantage of this model is that it allows us to readily test for differences in

responsiveness to events across the three demand response programs. We use the

log of household electricity consumption on the left-hand side to account for the

right-skewed nature of consumption.16

We include αi, household fixed effects, which control for time-invariant household

characteristics. We also include τt, an hour-of-sample fixed effect, which controls for

time-varying factors that impact consumption. Household electricity consumption

and consumer responses to events may vary with local weather conditions (especially

due to thermostat settings). To control for this, we include Xt, a vector of hourly

weather controls that include the relative humidity and cooling degrees and heating

degrees above and below 65◦ F (18.33◦ C). Since these may vary in weather conditions

in a nonlinear way, we include a flexible functional form with a polynomial up to the

third degree for each weather-related covariate. εit is the error term. We cluster

standard errors at the household level.

We also consider a version of this regression specification where the event indicator

variable, Eit, is adjusted to be a categorical variable for the three potential event-

types: Morning, Evening, and High-Evening. This analysis allows us to evaluate

if households’ responses to events differ by time-of-day and the financial reward for

responding, in the case of Evening compared to High Evening events.

For each specification, we report the average marginal effect of an event on house-

16Our results are robust to functional form; we observe similar results with a linear-linear specifi-
cation.
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holds’ electricity consumption by program, which is a program-specific function of β̂j,

β̂j. Because of our log-linear specification, β̂j is a semi-elasticity. We transform this

function to report the percentage change in hourly consumption during an event via

100× (exp(β̂j)− 1).

4.2 Identification

Our parameters of interest are βj for j ∈ {C, T,M}, which measure the change in

household-level electricity consumption during peak events for each of the Central,

Tech, and Manual demand response programs. To identify each βj, the model com-

pares the event-time consumption of households in program j to the non-event time

consumption of households in that program, households in the never-treated group,

and households in the other demand response programs, conditional on the control

variables.

Our empirical framework relies on three identifying assumptions to recover the

causal effect of events on household-level consumption. First, events are not corre-

lated with other drivers of household electricity consumption. This is met via our

randomization of events. We include weather controls to ensure that our estimated

treatment effects can be interpreted as weather-agnostic.

Second, our analysis falls within an emerging literature on experiments called

“panel experiments” (Bojinov et al., 2021). Panel experiments involve the treatment

of interest (i.e., peak events) that vary in time. Based on this literature, a key iden-

tification assumption needed for estimating event-level treatment effects is that our

random treatment events do not “carryover” to a persistent change in behavior in

similar hours on non-event days. This could occur if, for example, experiencing an

event led to a household persistently scheduling consumption reductions during the

event hours on all days going forward. Or, conversely, a savvy participant might sus-

pect a financial benefit of “gaming” the baseline by purposely increasing consumption

during event hours on non-event days.17

We test the validity of the “no carryover” assumption in our context by estimating

a DID regression. Separately for each demand response program, we run the following

regression that excludes event days in the post-treatment period and includes the

17We mitigated this latter effect by providing no information on how the baseline consumption
that was used to determine the household’s rewards was calculated.
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never-treated households:

ln(cit) = β Di · EventWindowit + αi + τt + δXit + εit (2)

where EventWindowit equals 1 in the post-treatment period for hours where morn-

ing or evening events occur and 0 otherwise. Di equals 1 if the household is in a

demand-response group (i.e., C, T , or M) and 0 otherwise. All other features of the

regression analysis are identical to those in Equation (1). This analysis evaluates

whether households in each demand response program adjusted their consumption

during the event windows on non-event days in the post-treatment period, relative

to the never-treated households. If households treated with events did not systemat-

ically alter their behavior on non-event days in response to being exposed to events,

β should be statistically indistinguishable from zero. In addition, we consider a spec-

ification that estimates separate effects for the morning and evening event windows

on non-event days.

Third, as noted above, for each program, Equation (1) compares event time con-

sumption to non-event time consumption of households in the same demand response

program, other demand response programs, and never-treated households. This re-

lies on the assumption that the households in the never-treated and other demand

response programs provide a valid counterfactual on non-event days. While observed

characteristics are similar across the demand response programs (see Appendix A.3),

one may be concerned that the programs are differentially selected, and this impacts

our ability to compare event time to non-event time behavior across programs, even

after including our various control variables.

We undertake two additional regression specifications that vary the comparison

groups used to identify the response to peak events. We adjust the specification

in Equation (1) to only consider each demand response program separately with

the never-treated households. This specification identifies our parameters of interest

by comparing event time behavior to non-event time behavior in the same demand

response program and never-treated households. We also consider a specification that

only includes data from each demand response program. This specification identifies

the response to events by comparing behaviour to non-event time consumption from

households within the same demand response program. This is advantageous if there

are concerns about differences across demand response programs that preclude the

comparison group from providing a valid counterfactual. To the extent that our results

are robust to these alternative specifications, this will alleviate concerns that potential
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differential selection into demand response programs impacts our key conclusions.

Our empirical framework provides estimated average treatment effects by program

for households that accepted the demand response program offers. From a policy

perspective, our estimates may be the parameters of most interest to utility companies

that want to understand what time-specific flexibility will be possible/expected among

participants who accept an opt-in demand response program.

Nevertheless, if one is interested in the impact of each program on time-specific

electricity consumption, one needs to address selection at the program-level. We

provide program-specific local average treatment effect (LATE) estimates, leverag-

ing the fact that we also randomized program offers to households and utilizing a

“synthetic event” approach for households that did not take up the offer.18 We also

use synthetic events to retrieve another standard experimental parameter that may

be of interest: intention-to-treat (ITT) estimates, which are the impact of offering

each program on event-level demand reductions. Detailed methods and results are

available in Appendix C.

4.3 Household-Level Regressions

A unique feature of our setting is our ability to estimate household-level treatment

effects. We can leverage the fact that event timing is randomized at the household

level, ensuring that events are not correlated with factors that drive consumption

decisions. This allows us to do two things: (1) examine heterogeneity in event re-

sponsiveness across households and (2) look at factors associated with household-level

responsiveness that speak to the role of attention and effort in responding to events

or otherwise drive differences in treatment effects across programs.

For each hour t and household i in the demand response programs, we estimate

the following model:

ln(cit) = γi + βi Eit + Tt + δiXit + ηit (3)

where, analogous to above, cit is household consumption, Eit equals 1 when household

i has an event and zero otherwise, and Xt includes the same set of temperature

controls as the specification in Equation (1). In this specification, Tt is a set of time

fixed effects that includes day-of-week, hour-of-day, and year-month to capture time-

18More specifically, we created “synthetic event” schedules for households that did not accept our
program offer. These schedules were randomized in the same manner as those for households that
ultimately participated in our experiment.
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varying factors that impact consumption.19 ηit is the heteroskedastic-robust error

term.

The regression in (3) gives us an estimate, β̂i, for each household in our demand

response programs. The identification strategy of this household-level regression com-

pares consumption behavior during event hours to non-event hours within the same

household, conditional on time-based fixed effects and weather variables. Analogous

to the discussion in Section 4.2, the identification of the treatment effect assumes there

is no carry-over effect to consumption during event hours on non-event days.20 We

summarize the distribution of estimated treatment effects for each demand response

program using a non-parametric kernel density function.

The ability to estimate household-level treatment effects provides us with the op-

portunity to understand the potential mechanisms driving our results. In particular,

we have data on when a household has interacted with the App on a given day. App

interactions are indicative of the attention and effort that households expended to

respond to events.21 We leverage this to estimate separate event treatment effects,

by household, for when households do and do not interact with the App.

We run a specification of (3) that interacts Eit with an indicator variable App Interactit

that equals one if the household has interacted with the Utility’s App on the relevant

day and zero otherwise. A key benefit of this approach is that it allows us to quantify

how a specific household’s estimated treatment effect varies by whether or not they

interacted with the App on a given day. This helps overcome the sample selection

challenge that would arise by running an analogous regression using all households

within a given demand response program. With such a regression, it would not be

possible to disentangle whether the different treatment effects arise because the house-

hold interacted with the App on an event day or whether the households that interact

with the App are unique in the way they respond to events.

19We cannot include an hour-of-sample fixed effect in the household-level regression because it
would absorb the variation we are using for identification in this specification. We include several
calendar fixed effects to absorb seasonal, day-of-week, and hour-of-day factors that impact consump-
tion. We estimated our program-level specification detailed in Equation (1) using this set of fixed
effects. The results closely reflect the estimates reported below.

20See Section 4.2 for details on how we evaluate if the no carry-over assumption is satisfied.
21Recall that households can use the App to monitor their hourly household consumption and

observe the timing and rewards for upcoming events 21 hours in advance. Households with installed
devices can also monitor their device-level consumption in the App. Tech households can adjust their
connected devices by pushing a button in the App (e.g., to turn off their use during events). Finally,
Central households can adjust their connected devices and opt out of centralized load management
during an event.
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5 Empirical Results

This section presents the results of our demand response group-level econometric

analyses. In particular, we provide the average treatment effect of events for each

program, across all events and then separated by event type.

5.1 Program-Level Treatment Effects

Figure 2 provides the estimated average response to events by program as a percent-

age change in household-level consumption using the specification in equation (1). We

observe an average 26% reduction in consumption during events for the Central pro-

gram. In contrast, the Tech and Manual programs reduced demand by approximately

5% on average during events. Both of these effects are statistically significantly differ-

ent from zero. Even though the Tech program had the same equipment as the Central

program, it demonstrated a significantly lower response to events. Additionally, the

average response for the Tech and Manual program are not statistically significantly

different from each other.

Figure 2. Average Estimated Treatment Effects of Participants by Program
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Notes: The reported results are program-specific marginal effects calculated from estimating β̂j in

(1) for j ∈ {C,M, T}. We adjust marginal effects β̂j to be a percentage change in consumption using

the transformation 100 × (exp(β̂j) − 1). Vertical lines indicate 95% confidence intervals. Standard
errors are clustered at the household level.

Recall that the Central program has the ability to opt-out of events using the

App. We observe an opt-out rate of only 4% at the event-connected device level
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from the participants in the Central program. When taken together with the results

for the Tech and Manual programs, this low opt-out rate suggests that the large

reductions for the Central program are primarily attributable to consumers allowing

utility management of their devices during events.22

These results are consistent with the descriptive data presented in Section 3 that

suggests that households in the Tech program were not using the load controller

equipment to the same extent as the Central program. They also suggest that smart

technology that enables device remote control provides minimal resolution of con-

sumer barriers to responding to short-run electricity prices and peak event notifi-

cations, while centrally managed, automated demand response resolves barriers and

yields large demand reductions.

Recall from Section 4.2 that we undertake additional analyses to evaluate the

validity of our identification strategy. Appendix Table C1 provides the results of our

regression analysis when we vary the comparison group during non-event hours to

estimate the event treatment effects. These results demonstrate that our estimated

treatment effects are highly robust to varying the comparison groups included in the

regressions. This suggests that non-event time consumption does not significantly

differ between the demand response programs and the never-treated group, and that

using the demand response programs’ non-event time consumption provides a valid

control for event-time consumption to estimate treatment effects. Appendix Table

C3 provides the results for our test of the validity of our no carryover assumption. In

this analysis, we find no evidence of changes in behaviour during the event window

on non-event days for any of our demand response programs.

5.2 Program-Level Treatment Effects by Event Type

In addition to randomized event timing, we also randomize event types, varying both

the time of the event and the financial reward for reductions. This allows us to

estimate how consumers respond to different price incentives and event times.

Figure 3 presents the estimated response to events allowing for differential re-

sponses by event type. For the Central program, we see a large demand reduction

for all event types, with an approximate 27% reduction during morning events, 25%

during evening events, and a 27% average reduction during high evening events. This

22Notably, when consumers did opt-out of central management, they generally did so for their
thermostats: 90% of event-device opt-outs occurred by households adjusting their thermostats during
events.
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Figure 3. Average Treatment Effect of Participants by Program and Event Type
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Notes: The reported results are program- and event type-specific marginal effects calculated from
estimating β̂j in (1) for j ∈ {C,M, T}, adjusted to allow for event-type interactions with the program

indicator variablesDi. We adjust marginal effects β̂j to be a percentage change in consumption using

the transformation 100 × (exp(β̂j) − 1). Vertical lines indicate 95% confidence intervals. Standard
errors are clustered at the household level.

indicates that the Central households allowed central management of demand during

both morning and evening times. It also indicates that they were not distinctly more

responsive to the greater incentives offered during the High Evening events.

During the Evening and High Evening events, the Tech program reduced its de-

mand by approximately 6%, while the Manual program had a 4% estimated reduction

in demand during these event types. These effects are statistically different from zero.

The Evening and High Evening Tech and Manual program effects are not significantly

different from each other, when compared within each event type.

The Tech program had a response to Morning events that are not statistically

different from zero. This differs (statistically significantly) from the Manual program,

which had an average estimated reduction of 8% during the Morning events. This is a

counter-intuitive result, as the Tech program had all the same information, incentives,

and abilities as the Manual program in making electricity consumption reductions

during events, with the added ability to remotely control thermostats, EV chargers,

and hot water heaters on which they have load controllers installed.

For all three programs, the change in consumption during High Evening events

does not statistically significantly differ from their responses to regular Evening

events. This suggests that the increased financial incentives for reduced electricity

consumption during these times does not motivate participants to undertake addi-

tional effort to make greater reductions in usage. This result suggests the barrier to
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demand responsiveness may have less to do with the scale of financial rewards and

more to do with the hurdle of effort and attention.23

Similar to the discussion in the previous section, Appendix Table C2 provides the

results of our regression analysis when we vary the comparison group used to estimate

event treatment effects. These results continue to demonstrate that our estimated

treatment effects are largely robust to varying the comparison groups included in

the regressions. The estimated response to morning events for the Tech and Manual

programs varies with the relevant comparison group, with a smaller response for the

Manual and a larger response for the Tech than our main specification. However, our

key conclusions persist. The Central program is considerably more responsive to all

event types. Further, no program shows a distinct response to the elevated incentives

during the high evening events.

Finally, Appendix Table C4 provides the results for our test of the validity of

our no carryover assumption, allowing for differential estimates for the morning and

evening event windows. In this analysis, we find no evidence of changes in behaviour

during either the morning or evening event windows on non-event days for any of our

demand response programs.

6 Attention and Effort

Our results have so far focused on average estimated treatment effects by demand

response programs. A natural and important economic question is: What drives these

differences across programs? In particular, what behavior underlies the differences

between the average treatment effects of event offers applied to the Central vs. the

Tech programs? In this section, we estimate household-level treatment effects and

investigate the extent to which there is heterogeneity in event responsiveness across

households. In particular, we use App interaction data during events to analyze

the extent to which attention and effort relate to the household-specific estimated

treatment effects.

23That said, participants were only eligible to receive $1 more for achieving a 30% reduction in
electricity use during a High Evening vs. Evening event. The reward for achieving a 50% reduction
was doubled ($6 vs. $3). It is possible that a larger scaling of incentives could induce a greater
response. However, given our rewards fall in the range of wholesale price caps observed in practice,
it is unlikely that incentives provided in a real-world setting would be considerably larger than the
amounts we provided.
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6.1 Household-Level Treatment Effects

Figure 4 provides the distributions of household-level treatment effects by program.

This analysis provides several insights. We observe that the Tech and Manual pro-

grams’ treatment effects are tightly distributed near zero. On average, households in

the Tech and Manual programs reduce their consumption during events by 4.6% and

4%, respectively, which corresponds closely to the estimated program-level treatment

effects in the previous section. Only 20% and 18% of the household-level estimated

treatment effects are negative and statistically significant at the 5% level for the Tech

and Manual programs, respectively.24

Figure 4. Household-Level Estimated Treatment Effect Distributions by Program
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Notes. The reported results summarize the distribution of estimated household-level treatment ef-
fects obtained from estimating specification (3). The results are summarized using a non-parametric
kernel density function using the Epanechnikov kernel function. The width of the density window
is chosen to minimize the mean integrated squared error in the data.

Figure 4 reveals that, despite the fact that the Tech program has enabling devices,

24There is a small subset of households with positive estimated treatment effects. These estimated
effects are systematically statistically insignificant, with only 3% being positive and statistically
significant.
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the distribution of their estimated treatment effects closely resembles that of the

Manual households. This is striking, as even though the Tech and Manual programs

have similar mean responses as seen in Section 5.1, we expected the Tech program

would contain a subset of households with higher household-specific average treatment

effects given their ability to remotely control their hot water heaters, EV chargers,

and/or thermostats during events. However, this is not the case. In both the Tech

and Manual programs, we observe a long left tail, suggesting there is a small subset of

households with large estimated treatment effects that perform similarly, regardless

of whether or not they have installed load controllers. These households are capable

of delivering reductions that compare to the typical reductions seen from those in

the Central program. In the next section, we leverage detailed App interaction data

to provide suggestive evidence of what these higher-performing consumers are doing

differently when achieving these larger reductions.

Figure 4 also re-confirms the larger response from households in the Central pro-

gram. The average household-level treatment effect is a reduction of 24% during

events for households in the Central program, closely reflecting the estimated effects

in the program-level regressions above. In terms of distribution of household-level

effects, Figure 4 shows that a larger number of Central households have consider-

ably large estimated responses to events, with a leftward shifted distribution. 80% of

the Central household-level estimated treatment effects are negative and statistically

significant.

These results suggest, like those above, that the Central program outperforms

both the Tech and Manual programs during events by a considerable margin. While

there is variation in the estimated treatment effects among the Central households,

the demand reductions during events are systematically larger than the other demand

response programs.

6.2 App Interactions

Despite the lower average response to events for the Tech and Manual households,

Figure 4 demonstrates there is a small subset of high performers in the Tech and

Manual programs that have large negative estimated treatment effects. In this section,

we leverage App interaction data to evaluate if these high-performers differ in their

use of the App during events. Interaction with the App could be considered a strong

indication that the household is aware of the demand response event and serves as a

proxy for attention in this setting.
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Recall the App data tell us when users are interacting with the App on a given

day, as well as more details on which features of the App (i.e., pages/tabs) they are

accessing. For both the Central and Tech households, interacting with the App allows

them to control connected devices. For the Central program, the App can be used to

opt out of automatic load control before or during events. In all programs, the App

allows the household to observe the details of upcoming events 21 hours in advance,

detailed information about household consumption in real-time, and performance in

previous events.

Figure 5. Household-Level Average Treatment Effects by App Interaction
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Notes. The reported results are average household-level treatment effects by whether or not the
household interacted with the App on an event day. This represents the specification in equation
(3), adjusted to interact the event indicator (Eit) with an App Indicatorit variable that equals 1
when the household interacts with the App on the event day and zero otherwise. All specifications
include fixed effects at the year-month, day-of-week, and hourly levels.

Figure 5 reports the average estimated household-level treatment effects, allowing

for heterogenous treatment effects by whether or not the household interacted with

the App on a given day. For the Central program, the average estimated household-

level treatment effect is approximately -24% when the household does not interact

with the App, increasing in magnitude to -27% when they do interact with the App

during an event day. Whereas, for both the Manual and Tech programs, households

only reduce demand on event days by 3% on average when they do not interact with

the App, increasing in magnitude to roughly -8.5% when they interact with the App.

Overall, Figure 5 provides two key findings. First, there is a positive relationship
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between App interactions and demand reductions. Households that were more atten-

tive to the App on event days achieved higher reductions. This differential effect is

larger for the Tech and Manual groups, where the change in demand reductions was

larger between interacting and not interacting with the App (approx. 8.5% vs 3%).

Second, the “no interaction” estimates in the Central program participants and those

in the other programs (-24.3% vs roughly -3%) indicates that the Central program

received a roughly 21% “headstart” over the other programs, despite perhaps no at-

tention paid to the event. This “headstart” is key to the overall finding of greater

demand response by the Central program participants.

Table 3. Average Daily App Interaction Frequency by Program and Performance Quartiles

Program Performance Household General Energy Usage Devices Advisor
Quartile Count Interactions Dial Tab Tab

Central 1 103 (58%) 0.31 0.30 0.18 0.25
2 49 (28%) 0.23 0.21 0.14 0.18
3 17 (10%) 0.21 0.20 0.13 0.17
4 8 (5%) 0.17 0.15 0.11 0.11

Tech 1 17 (9%) 0.61 0.54 0.37 0.47
2 41 (22%) 0.28 0.25 0.15 0.20
3 65 (36%) 0.21 0.20 0.11 0.17
4 60 (33%) 0.16 0.14 0.08 0.11

Manual 1 22 (9%) 0.51 0.49 0.06 0.42
2 63 (26%) 0.20 0.19 0.03 0.16
3 73 (30%) 0.14 0.14 0.02 0.11
4 84 (35%) 0.16 0.15 0.03 0.13

Notes. The reported results provide the daily frequency of App Interactions by program and per-
formance quartile. Performance quartiles are determined using the median percentage reduction in
demand relative to the household’s baseline. Household Count represents the number of households
that fall within each performance quartile. The percentages report the percentage of households
within a program that falls within each quartile. General Interactions reflect any interactions with
the App. Energy Usage Dial displays the energy dial in the App that provides data on real-time
usage. The Devices Tab displays a household’s connected devices and allows households to adjust the
use of the installed devices. The Advisor Tab reports information on upcoming events and historical
performance on past events.

As noted above, we also have detailed data on the types of pages/tabs the house-

holds interact with in the App. This provides insight into the types of actions house-

holds may have taken to respond to events. Table 3 summarizes the average daily

App interaction frequency for each demand response program separated by the perfor-

mance quartile. The performance quartiles are determined by computing the median
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percentage reduction in the household’s consumption relative to its baseline, looking

across the three demand response groups and all events over our sample period. This

separates households into categories of whether or not they are high or low-performing

households during our experiment. We summarize the count of the households and the

percentage of households enrolled in each demand response program that fall within a

specific performance quartile. We report App interactions by four categories. “Gen-

eral Interactions” indicate whether the household interacted with the App at all on

a given day. “Energy Usage Dial” reports whether the household looked at its real-

time energy usage. The “Devices Tab” is the interface where households can control

their installed devices. Finally, the “Advisor Tab” is the App location that provides

information about upcoming events and a household’s performance on past events.

Table 3 demonstrates that the vast majority of Central households (86%) fall

within the top 50th percentile of performance. In contrast, only 31% and 35% of

Tech and Manual households are in the top two quartiles. This is consistent with our

results above that the Central program has a significantly greater demand response

than the Tech and Manual programs, which show similar results.

Within each program, we see a reduction in the frequency of daily general in-

teractions as we move down the performance quartiles. This suggests that higher-

performing households are more attentive and/or undertaking effort to monitor and

react to events. In fact, across all columns except for the Devices Tab column for the

Central and Manual programs, the frequency of App interactions in the top quartile

is significantly greater (at the 5% level) than the frequency in the second-highest

quartile.

We see a considerably high frequency of App interactions among the Tech and

Manual households that achieve the top quartile of performance, interacting with the

App on 61% and 51% of days on average, respectively. In contrast, Central households

in the top quartile only interact with the App on 31% of the days, suggesting that

achieving this high threshold of performance required less effort and attention. The

top quartile of the Central program interacts significantly less with the App than the

top quartile of the Tech and Manual programs (at the 5% level). This is true for each

App interaction column in the table, except for the Devices Tab.

Looking across the App categories, households interacted with the Energy Dial the

most, followed by the Advisor tab. This suggests that when households used the App,

they often monitored their real-time consumption and the details of upcoming events

and/or their past performance. The top quartile performers in the Tech and Manual
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group stand out in both these categories, with the frequency of their interactions

with both the Energy Dial and Advisor tabs being roughly 2 to 3 times those of the

bottom 3 quartiles.

Tech households in the highest-performing quartile interacted with the Devices

Tab in the App at a significantly higher frequency than all other households. This

suggests that a (small) subset of households in this program were using the installed

devices to achieve larger demand reductions. However, looking at the lower perfor-

mance quartiles in the Tech program, the majority of households interacted with the

Devices Tab about as much as those in the Central program.25

These results suggest that households in the Tech and Manual programs had to

undertake a more active role in managing their consumption to achieve rewards in

the top performance quartile. For the Central households, achieving these higher

payoffs and demand reductions came with considerably fewer App interactions and,

as a result, lower effort and attention utilization.

6.3 Opportunity Cost and Time Preferences

As described in Section ??, we hypothesize that residential electricity consumers’

willingness to respond to periodic peak pricing events is a function of whether doing

so has a sufficiently high net benefit, given their opportunity cost of time, their

preferences over their use of time, and the reward for participation. In this section,

we explore whether our main results are consistent with this theory. We utilize data

from a survey of participants conducted at the end of the experiment (in June 2023).

Specifically, several survey questions were asked to capture respondents’ income (a

proxy for respondents’ opportunity cost of time) and their stated value of participation

in events. We use these data to estimate a model to evaluate the relationship between

respondents’ answers to these questions and their observed responsiveness to events,

conditional on important controls such as the demand response program they were

enrolled in and their household appliances.

Section 2.4 briefly describes the end of the experiment survey, with more detail

provided in Appendix D.1. 71% of participants in the Central, Tech, and Manual

groups filled out the survey, though respondents were not required to fill out every

25In addition to the installed devices from our experiment, a subset of households had other devices
linked to the App. These were primarily smart plugs linked to lighting in the home. This helps
explain why we observe interactions with the Devices Tab for the Manual program. Only 3 Manual
households had installed and linked devices to control and monitor electric baseboard heaters during
our sample.
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question to complete the survey.26

To obtain information about income, we asked participants “What is your ap-

proximate household income?” and allowed them to choose between the following

options: (1) Less than $50k per year, (2) $50-99k per year, (3) $100-149k per year,

(4) $150-200k per year, (5) Over $200k per year, and (6) Don’t know/Rather not say.

To assess the extent to which participants felt that participating in events was

worth their time, we asked the following (“Worth Time”) question: “For the events

you noticed, how often was it worth your time to participate by attempting to reduce

your electricity consumption?” and gave them the following choices: (1) Never, (2)

Sometimes, (3) About half the time, (4) Most of the time, (5) Always and (6) Don’t

know/Not Applicable. This allows us to assess how much of household, event-level

reductions in electricity consumption are correlated with the perceived value that

respondents placed on participating in events. Note that this value is impacted not

only by participants’ opportunity cost of time but also by their preferences; that is, it

attempts to extract a net value of participation, as Section ?? suggests should explain

the participation/effort put forth to respond to events.

Using data generated from survey responses, we estimate the following equation

for each household i in our three demand response groups:

Yi = β0 + β1Ii + β2Zi + β3Gi + βXi + ϵi (4)

in which Yi is the estimated treatment effect estimated for household i (see Section

6.1), Ii is a household’s reported income from the survey, Zi is the household’s re-

sponse to the Worth Time question described above. Gi is an indicator variable for the

program in which the household is enrolled, and Xi is a vector of additional control

variables that include: an indicator variable for whether a household has an electric

hot water heater, a categorical variable for whether a household has an electric vehicle

and their corresponding charger type (No, Level 1, Level 2), a categorical variable for

air conditioning in the home (No, Window Unit, Central Air), a categorical variable

for electric baseboard heating (No, 1 – 3 Units, 4 or more units), and a house/duplex

dummy variable (1 for house/duplex, 0 for row home). These variables control for a

household’s ability to respond to events with electricity reductions, given the devices

that they have at home.

The first coefficient of interest, β1, indicates the relationship between responsive-

26This translates into 75%, 71%, and 69% of Central, Tech, and Manual group, respectively.
Respondents were paid $20 upon completion of the survey.
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ness to events and income, conditional on the program in which a participant is

enrolled as well as household appliances. The other coefficient of interest is β2, which

gives the relationship between responsiveness to events and participants’ responses

to the Worth Time survey question described above, conditional on a household’s

income. It yields the relationship between participants’ perceived net benefit of par-

ticipating in events and electricity reductions during events, conditional on the op-

portunity cost of time as measured by their income and the other controls. We report

results with heteroskedastic robust standard errors.

In Appendix D.2, we evaluate if there are systematic differences across observ-

able characteristics by survey response. In short, we find evidence to suggest that

survey respondents had smaller levels of consumption on average compared to non-

respondents. To the extent that consumption is correlated with income, this suggests

that non-respondents had potentially higher income and a higher opportunity cost

of time. The results in this section are applicable to households that filled out the

survey and on average may have a lower opportunity cost of time.

Table 4 shows the results of estimating the Equation (4). For income, the baseline

excluded category is income less than $50,000. We see that, for survey respondents,

higher income is associated with larger (positive) treatment effects, or smaller elec-

tricity consumption reductions during events. The magnitude of the coefficients are

increasing in income. Coefficients for income brackets of $150,000 per year or more

are statistically different than the excluded lowest income bracket (less than $50,000
per year). This is consistent with smaller household-level treatment effects from par-

ticipants with a higher opportunity cost of time.

All coefficients on the Worth Time variable categories are negative and statisti-

cally different than the excluded “Never” category (with the “Sometimes” coefficient

being marginally statistically different). Additionally, the coefficients are monoton-

ically more negative in answers (higher frequencies of whether event participation

was worth participants’ time). This suggests that participants’ perceived net benefits

of event participation are correlated with greater electricity consumption reductions

during events, conditional on income (opportunity cost of time). More intuitively,

participants who reported viewing their response to events as worthwhile more often,

perhaps due to their preferences for recurring electricity savings, reduced more elec-

tricity during events on average than others. This is consistent with the theory we

present in Section ??. More broadly, this points to an explanation for the difference

in event-level treatment effects we see between the Central and Manual groups (Sec-
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Table 4. Household Treatment Effect on Worth Time and Income
(with controls)

Coefficient Std. Error P-Value

Worth Time
Sometimes -3.49 2.13 0.10
Half of the Time -6.30 2.39 0.01
Most of the Time -9.03 2.35 0.00
Always -15.05 2.86 0.00

Income
50 - 99k 5.53 4.56 0.23
100 - 149k 7.32 4.55 0.11
150 - 200k 9.89 4.55 0.03
>200 k 9.74 4.50 0.03

Group Indicators

Central -17.34 1.74 0.00
Tech -1.37 1.57 0.38

Controls

Electric Hot Water Heater -6.33 1.51 0.00

Electric Vehicle
Yes, Level 1 -1.07 2.48 0.67
Yes, Level 2 -3.65 2.12 0.09

Air Conditioning
Yes, Window Unit 1.69 1.74 0.33
Yes, Central Air 0.93 1.85 0.61

Baseboard Heating
Yes, 1 - 3 Units 3.01 2.23 0.18
Yes, 4 or more 1.75 1.76 0.32

Home/Duplex 3.70 2.25 0.10

Notes. The reported results present the estimates for Equation (4).

tion 5.1): Automated responses to events can overcome the multitude of reasons why

event participation is not worth consumers’ time and effort.
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7 Conclusion

As the electricity supply includes a growing share of variable renewable sources, the

ability to alter electricity demand in time will become more valuable. Moreover,

residential consumption from devices such as EVs, which allow consumption to be

detached from device usage, provides an opportunity for such flexible demand (Bailey

et al., 2023). However, consumer inattentiveness to dynamic electricity prices has long

posed a problem for flexible demand to be meaningful.

Suspecting that inattention to dynamic pricing is rational—that consumers’ re-

wards for paying attention to dynamic electricity prices and learning about how to

respond to them are not worth the associated costs—we run a novel, large-scale framed

field experiment that tests the efficacy of utility-managed (“centralized”) electricity

demand on consumer responses to dynamic prices. Centralized demand management

has the potential to take the burden of actively responding to price signals off of

consumers’ shoulders while allowing them (as well as other consumers and grid oper-

ators, in critical conditions) to reap the rewards of timing consumption with changing

electricity system conditions.

We find that customers participating in a centralized demand management pro-

gram, the “Central” program, reduced consumption by 26% on average during critical

“peak events”. In contrast, participants in the “Tech” program, who had the same

smart technology as those in the Central program to remotely control baseboard ther-

mostats, hot water heaters, and EV chargers, but had to initiate reductions them-

selves, only reduced consumption by 5% during events. This difference indicates that

centralized electricity demand management has large potential to help consumers

overcome barriers to respond to electricity prices. We find that the take-up rates be-

tween the Central and Tech programs are not appreciably different, suggesting that

centralized electricity management is not as unpalatable as one might expect.

Somewhat surprisingly, we find that participants in the Tech program reduce con-

sumption during events no more than those in our “Manual” program, who do not

have smart, remote device adjustment capability. This indicates that smart home

energy technology was not sufficient on its own to induce demand flexibility; over-

coming the key barrier of attention requires switching the default response, as per

the Central program. The fact that both the Tech and Manual program partici-

pants reduce consumption by on average 5% during events is broadly consistent with

the electricity demand response literature that has found similar magnitudes when

consumers are faced with critical peak prices (Faruqui and Sergici, 2010; Yan et al.,
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2018). In summary, financial incentives motivate consumers to take some action, but

consumers still face barriers that a centralized demand response program can resolve.

Interestingly, consumers in our context were not motivated to reduce consumption

more when rewards were increased during periodic “high peak events”. It is possible

that consumers would need more than what we offered them to overcome the barriers

that the Central program does. However, since our rewards were in line with peak

electricity system prices, larger offers would not likely be economically efficient.

Given our experimental design using randomized household event schedules, we

are able to estimate household-specific treatment effects to events. The distributions

of household treatment effects across programs reveal that households in the Central

program have a symmetrically distributed set of treatment effects, with the central

mass of effects less than zero. In contrast, the Tech and Manual program participants

display a distribution of household-level treatment effects that are centered around

zero with a long left tail. This suggests that “high achievers” in these programs drove

average treatment effects to events. Additionally, it suggests there is something about

the Central program that facilitates the average household to respond to events by

reducing consumption.

To understand the mechanisms behind our results, we use suggestive evidence

from data on participant interaction with the experiment electricity management

phone App. Across all programs, App interaction is correlated with larger household-

level treatment effects. Average household-level treatment effects when households

do not interact with the App are about 3% for the Tech and Manual programs and

24% for the Central program. When households do interact with their App, these

numbers increase to about 8.5% for the Tech and Manual programs, and 27% for

the Central program. This highlights the Central program’s “headstart”, whereby its

participants achieve consumption reduction even in the absence of App interaction.

We find that “high achievers” in the Tech and Manual programs, who drive the

average consumption reductions during events for these programs, interact with their

App on 61% and 51% of days on average during the experiment, whereas the high

achievers in the Central program interacted with the App on average significantly

less (31% of days on average). This suggests that high achievers in the Tech and

Manual program devoted a lot of attention to their electricity consumption and effort

in reducing it during events. Taken together, this evidence points to attention and

effort (in the form of app interaction) being an important component of responsiveness

to events, and that the Central program relieved participants of needing to devote such
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attention and effort to electricity management to make large consumption reductions

during events.

Given our results, we surmise that programs and policies that relieve consumers

of cognitive, time, and other burdens that contribute to rational inattention will have

large potential to lead to welfare improvements. In the case of residential electric-

ity, we see centralized demand as one such program, having the potential to both

save money for consumers and facilitate flexible demand to meet emerging needs of

electricity markets.
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A Supplementary Empirical Framework Material

A.1 Recruitment and Assignment

The study sample was drawn from the population of residential customers in the Util-

ity’s service territory in and near a large metropolitan city in Canada. We employed

a two-step recruitment strategy. In Phase 1, starting in August 2021, the Utility

invited households to join an App operated by a third-party company in partnership

with the Utility. The App provides households with household-level hourly consump-

tion posted at a one-day lag. The App can be coupled with other devices to provide

more detailed information on real-time usage and device control. Households were

recruited to the App using several marketing strategies, including advertisements on

the Utility’s website, social media posts, the Utility’s newsletter, website notifica-

tions when users logged into their Utility accounts, and emails sent to approximately

306,000 residential households.

The recruitment onto the Utility’s App provided us with a pool of 9,020 households

to draw from. When households signed up to join the App, they were required to

answer a six-question survey. The survey asked households about their motivation for

joining the App and whether the household rents or owns their home. It asked about

devices eligible for load control in our experiment, including whether the household

has an electric hot water tank, an electric vehicle (EV), and electric baseboard heaters

as the primary heat source. Households with EVs were asked what type of charger

(level 1 or 2) they use. It also asked whether households have air conditioning, a

major source of demand flexibility.

We applied several selection criteria to this pool of households. Customers had

to be in and near a large metropolitan city in the province for which it was feasible

for Utility-partnered electricians to install load control equipment, as needed. Only

homeowners were permitted to participate. Condos and apartments were removed,

leaving primarily single-family homes, duplexes, and row homes as eligible. House-

holds must have at least one month of historical consumption data as of September

2021, and the customers must have at least one controllable electric device. Recall,

the set of controllable electric devices includes a level 2 electric vehicle charger, elec-

tric baseboard heaters used as the primary heat source, and an electric hot water

heater tank. This left us with a sample of 1,661 potential households that we used

for our randomized assignment to experimental programs.

In Phase 2 of recruitment, we randomized the eligible households into our treat-
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ment programs and never-treated groups.27 Starting in October 2021, we sent program-

and group-specific emails to households inviting them to join a new “Trial” program.

These emails provided details about the specific experiences households would face

in the program or group to which they were being invited, including a summary of

the expected rewards they could earn over the course of the Trial, equipment they

would receive and its estimated value, and future peak events. Households were also

randomly offered a small sign-on incentive of the amounts $10 or $20, or no incen-

tive. All households faced a yes/no decision regarding accepting our program- or

group-specific offer. The never-treated Control group that received no equipment,

price incentives, or real-time usage information (recall Table 1) received no further

communication beyond joining the App in the first phase of recruitment.

Households had to accept the invitation to join the relevant experimental program

or group actively. After selecting to join, households were mailed a device called the

“Hub” that facilitates monitoring real-time energy usage via the App. Installers

contacted households in the Central and Tech programs to install the load controller

equipment.

This two-phase recruitment process occurred over the months of August 2021 -

February 2022. The second phase of recruitment occurred in five waves starting in

October 2021. As additional households joined the App, we collected the survey

responses, identified eligible households, randomized households into programs and

groups, and sent the second-phase recruitment emails. This process was used to

facilitate the time required to schedule and install the load controllers, as well as to

achieve the targeted sample size.

Finally, during the invitations to join each program or group, we randomized

the upfront incentive. While we find a higher rate of initial acceptance with higher

upfront incentive payments, the differences are small and not significantly different.28

27Specifically, we used a randomization procedure designed to balance important observable char-
acteristics over programs and groups. We first used the machine learning algorithm “kmeans” to
group households based on observable characteristics. These included cumulative household electric-
ity consumption (in kWh) and load factor by season (Fall, Spring, Winter, and Summer), variables
that indicate if a household has an electric vehicle, electric baseboard heating, or air conditioning,
and census data on median household income. Load factor is the average electricity consumption
divided by maximum consumption over a specific time period; it is a way to capture the relative
utilization rate of consumption at the household level. We then randomized program and group
assignments so households within a cluster were balanced across programs and groups.

28Households that received a $0, $10, and $20 upfront incentive accepted the initial invitation
with a 63%, 67%, and 68% probability, respectively.
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A.2 Comparison of Household Characteristics Upon Randomization

We evaluate if there are differences in pre-treatment characteristics across our various

programs and groups to assess the quality of our randomization. Table A1 provides

summary statistics by program or group for a number of variables, including those

used in the clustering procedure during randomization (recall the discussion in Foot-

note 27). The sample presented in this Table represents all 1,661 households invited

to participate in the experiment. For all variables, we report the p-values from a

one-way ANOVA test to evaluate if there are statistical differences in means across

the programs/groups.29

Table A1 shows that we do not find statistically significant differences in key

characteristics pre-treatment across our programs and groups. These results indicate

that our randomization approach effectively achieved balance on observables pre-

treatment. In addition, Table A1 demonstrates that the majority of households in

our sample have electric hot water heating and use baseboard heating as the primary

heat source. In contrast, electric vehicles are less common, representing approximately

30% of households. The majority of households are single-family homes or duplexes,

with the remainder being primarily row homes. The households consume considerably

more electricity during the winter, with the lowest consumption arising in summer.

This demonstrates the potential for larger opportunities for load shifting during these

months.

A.3 Comparison of Household Characteristics After Acceptance

We compare the pre-treatment means in observable characteristics by program and

group, including only the households that accepted our invitation to join each pro-

gram. Large differences in observable characteristics would raise questions about the

comparability of our estimated treatment effects from the main specifications.

Table A2 shows observables across groups for the final set of households in each

program/group. We observe limited differences in these characteristics across pro-

grams/groups. The exceptions are that we find a statistically significant difference

in the proportion of households that live in single-family homes/duplexes. There is

a larger proportion of households in this building type in the Manual program than

29The seasonal cumulative consumption and load factor data only contain households with a full
year’s worth of historical consumption. We computed analogous statistics for the entire sample of
households using only data from September 2021, the month in which all households have complete
pre-treatment consumption data. We find no evidence of statistically significant differences in means
across the programs/groups using this data.
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Table A1. Comparison of Means by Programs/Group - Initial Randomization

Central Tech Manual Info Control ANOVA (p-value)
Cumul. kWh

Winter 5,279 5,268 5,442 4,859 5,265 0.27
(2,694) (3,032) (3,076) (2,748) (2,950)

Spring 3,760 3,773 3,818 3,503 3,712 0.48
(1,924) (2,112) (1,911) (2,116) (1,974)

Summer 2,845 2,836 2,708 2,614 2,729 0.54
(1,742) (1,872) (1,539) (1,861) (1,710)

Fall 3,633 3,670 3,700 3,458 3,623 0.66
(1,663) (1,945) (1,974) (1,796) (1,860)

Load Factor
Winter 24.66 24.98 25.41 24.73 24.67 0.81

(8.20) (8.15) (8.80) (8.29) (8.63)
Spring 19.52 20.12 20.01 19.28 19.91 0.65

(7.25) (6.97) (6.70) (7.73) (7.41)
Summer 16.82 16.55 16.73 16.12 16.32 0.82

(7.89) (6.30) (5.93) (8.11) (8.29)
Fall 18.56 18.90 19.34 18.42 19.06 0.42

(5.89) (6.23) (6.00) (6.48) (6.50)
Electric Vehicle 0.27 0.27 0.27 0.33 0.27 0.41

(0.44) (0.45) (0.45) (0.47) (0.45)
Baseboard Heating 0.61 0.64 0.61 0.63 0.63 0.95

(0.49) (0.48) (0.49) (0.48) (0.48)
Air Conditioning 0.52 0.51 0.50 0.51 0.54 0.95

(0.50) (0.50) (0.50) (0.50) (0.50)
Electric Hot Water 0.70 0.66 0.70 0.66 0.72 0.38

(0.46) (0.47) (0.46) (0.47) (0.45)
House/Duplex 0.77 0.76 0.81 0.78 0.84 0.17

(0.42) (0.43) (0.39) (0.42) (0.37)
Median Income 86,376 88,291 85,931 87,470 85,948 0.48

(19,503) (22,227) (19,255) (21,574) (21,541)
Households 423 382 409 259 188

Notes. This table compares pre-treatment average values across the five different pro-
grams/groups. Parentheses contain the standard deviations. Cumul. kWh and Load Factor
represent the cumulative household-level consumption and load factor by season. The seasonal
cumulative consumption and load factor data only contain households with a full year’s worth
of historical consumption. Electric Vehicle, Baseboard Heating, Air Conditioning, and Elec-
tric Hot Water are indicator variables denoting the presence of each device. House/Duplex
is an indicator variable that equals one if the home type is a single-family home or duplex
and zero otherwise. Median Income reports the median household-level income of the Census
Dissemination Area where the household is located. ANOVA reports the p-value from one-
way ANOVA tests for differences in means across programs/groups. Statistical significance:
* p < 0.10, ** p < 0.05, and *** p < 0.01.

in other programs/groups, in particular. We also observe a difference across pro-

grams/groups in the proportion of households that have EVs, but this difference is

only marginally statistically significant. Overall, these results suggest that the bal-
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ance on observables that arose due to the initial randomization largely remains in the

final sample.

Table A2. Comparison of Means by Program/Group - Final Accepted Households

Central Tech Manual Info Control ANOVA (p-value)
Cumul. kWh

Winter 5,507 5,302 5,422 5,037 5,265 0.71
(2,706) (2,737) (3,240) (2,768) (2,950)

Spring 3,900 3,739 3,797 3,642 3,712 0.85
(1,934) (1,791) (1,939) (2,159) (1,974)

Summer 2,851 2,672 2,766 2,702 2,729 0.93
(1,869) (1,759) (1,547) (1,849) (1,710)

Fall 3,754 3,550 3,677 3,547 3,623 0.86
(1,733) (1,659) (1,992) (1,788) (1,860)

Load Factor
Winter 24.62 25.56 24.93 24.93 24.67 0.90

(8.68) (8.21) (9.04) (7.76) (8.63)
Spring 19.33 20.48 19.80 19.59 19.91 0.72

(7.43) (6.30) (6.45) (7.05) (7.41)
Summer 16.33 16.87 16.95 16.61 16.32 0.91

(8.54) (6.02) (5.95) (7.80) (8.29)
Fall 18.17 18.97 19.11 18.53 19.06 0.65

(6.27) (5.78) (6.29) (6.11) (6.50)
Electric Vehicle 0.25 0.21 0.30 0.34 0.27 0.07∗

(0.43) (0.41) (0.46) (0.47) (0.45)
Baseboard Heating 0.68 0.70 0.60 0.59 0.63 0.12

(0.47) (0.46) (0.49) (0.49) (0.48)
Air Conditioning 0.46 0.46 0.51 0.51 0.54 0.41

(0.50) (0.50) (0.50) (0.50) (0.50)
Electric Hot Water 0.75 0.74 0.68 0.65 0.72 0.16

(0.43) (0.44) (0.47) (0.48) (0.45)
House/Duplex 0.82 0.77 0.89 0.84 0.84 0.02∗∗

(0.39) (0.42) (0.32) (0.37) (0.37)
Median Income 84,978 88,274 86,718 89,504 85,948 0.23

(19,647) (20,432) (19,494) (21,079) (21,541)
Households 177 184 242 177 188

Notes. This table compares pre-treatment average values across the five different pro-
grams/groups for households that were in our final programs/groups. Parentheses contain
the standard deviations. Cumul. kWh and Load Factor represents the cumulative household-
level consumption and load factor by season. Electric Vehicle, Baseboard Heating, Air Condi-
tioning, and Electric Hot Water are indicator variables denoting the presence of each device.
House/Duplex is a indicator variable if the home type is a single-family home or duplex. Me-
dian Income reports the median household-level income of the Census Dissemination Area
where the household is located. ANOVA reports the p-value from one-way ANOVA tests for
differences in means across programs/groups. Statistical Significance * p < 0.10, ** p < 0.05,
and *** p < 0.01.
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B Treatment Details

B.1 Program-Specific Event Notifications

Each treatment program experienced event notifications tailored to their treatment.

Each program received a notification 21 and 2 hours before an event. All participants

were shown a short notification according to their device and in-app notification set-

tings. If participants touched and pressed the notification, they were shown the long

notification specific to their program, featured below, with event incentive details.

Figure B1. Long Notification for Central program

Figure B2. Long Notification for Tech program
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Figure B3. Long Notification for Manual program
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Note that all program participants in the three programs were able to locate event

details in the “Advisor” tab of the App, a centralized location for information from

the App company, once they received an event notification. The “Learn More” button

at the bottom right of this information card took participants to the “FAQs” section

of the program-specific experiment website.

Figure B4. Event info in App

B.2 Treatment Program-Specific App Functionality

Each program in our experiment had an App experience and functionality that dif-

fered according to their program assignment. We detail that here and walk through

how participants in each program could have responded to peak events, given the

options in the App.
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B.2.1 Central Program

The Central program participants receive 21-hr and 2-hr notifications regarding up-

coming events, as described in Appendix B.1. These notifications allow them to see

the timing of the event and the magnitude of rewards for electricity consumption

reductions. They also remind participants that their devices with load controllers

would be altered by the Utility to reduce consumption, unless they opted-out of the

event.

There are several ways that Central program participants can opt-out of events.

Before an event starts, they can push an “Opt-out” button in the “My Devices” tab

of the App (Figure B5). (This tab is a central App location that allows App users to

remotely control devices that have load controllers and see the individual electricity

consumption of those devices.) This button removes the participant from the event

globally by removing all of their load-controlled devices from the event.

If they do not opt-out in this way, they see a series of screens in the “My Devices”

tab. These indicate the progression of the event to the participant and signal when

their devices’ electricity consumption is being controlled by the utility, via the icons

above the text “You are opted in”, “Event”, and “Complete” (Figure B6).

During an event, participants can cancel Utility device control in a device-specific

way. For EV chargers and hot water heaters, they can remotely opt-out their device

from being controlled, or they can physically turn off the load controller at the device

itself. For thermostats, participants can opt-out of load control by adjusting them

physically or remotely through the App, during an event.

Note that the Central program has remote and manual control of all devices

with load controllers, just like the Tech program. Central program households can

also change anything else in the house to alter their electricity consumption during

events.
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Figure B5. Central Program Opt-Out Functionality
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Figure B6. Central Program Event Experience
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B.2.2 Tech Program

The Tech program participants receive 21-hr and 2-hr notifications regarding up-

coming events, as described in Appendix B.1. These notifications allow them to see

the timing of the event and the magnitude of rewards for electricity consumption

reductions. They also remind participants that they need to “take action” to make

consumption changes to receive the rewards offered.

The Tech program can remotely control any device that has an installed load

controller through the App. For EV chargers and hot water heaters, they can turn

them off via two clicks from the My Devices section of the App. (See Figure B7 below

for the instructions sent to participants that explain these actions.) Tech program

participants cannot make a schedule to turn off these devices before events start and

must turn them off before or during events to reduce consumption this way. (They

must also remember to turn them on unless they set up a turn-on schedule.)

Figure B7. Controller Guide for Tech Program

For thermostats, the Tech program can set up schedule for their thermostat set-
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point before events, using the App. They can also adjust their thermostats remotely

during events with the App.

B.2.3 Manual Program

The Manual program participants receive 21-hr and 2-hr notifications regarding up-

coming events, as described in Appendix B.1. These notifications allow them to see

the timing of the event and the magnitude of rewards for electricity consumption

reductions. They also remind participants that they need to “take action” to make

consumption changes to receive the rewards offered.

Manual program participants do not load controllers given to them as part of

this experiment or Utility control of any devices. They therefore only observe these

notifications as well their aggregate, real-time household consumption through the

App. If Manual program participants install their own smart home devices, they

may be able to link them to the smart electricity consumption technology ecosystem

used in this experiment. If so, they may have the capabilities of the Tech program to

observe the real-time consumption of those devices/devices individually and adjust

them remotely through the App. (Only three households in the Manual program

installed their own smart thermostats over our sample period.)

B.2.4 Central, Tech, and Manual Programs

After each event, all three of the Central, Tech, and Manual programs receive a result

on their performance, as depicted below. This appears in the “Advisor” tab of the

App, a central location for information from the App company. This result card

reminds participants of the event type (reward magnitudes being “high” or not) and

the day and time of the event. It shows the incremental reward the participant earned

from the event as well as their cumulative rewards throughout the entire experiment,

including the reward from the prior event. The text below the reward for the last

event is variable and depends on whether a participant met one of the reward tiers.

The rewards screen with one of these text options is shown below in Figure B8.

From this rewards screen, participants can select “Event History” and see their

recent history of event rewards, as shown in Figure B9.30

30Figure B9 was created for illustrative purposes using a series of simulated events. As a result,
the event times differ from the event times considered in our study (i.e., 7:00 AM - 10:00 AM and
5:00 PM - 8:00 PM).
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Figure B8. Rewards Screen
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Figure B9. Event History
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C Extensions and Robustness

C.1 Comparison Group in Program-Level Regression

In our main specification in Equation (1), our analysis includes all three demand

response groups and never-treated households. As discussed in Section 4.2, this ap-

proach compares event time consumption to non-event time consumption of house-

holds in the same demand response program, other demand response programs, and

never-treated households. Tables C1 and C2 present our estimated treatment effects

of participants by program to events and separated by event type, respectively, al-

lowing for regressions only including households in the same demand response group

(Column (1)), same demand response group and the never-treated (Column (2)), and

the results from our main specification in Column (3) for comparison purposes. Our

results are consistent across all three specifications.

Table C1. Treatment Effects of Participants by Program

Program (1) (2) (3)
Central -0.3151∗∗∗ -0.3007∗∗∗ -0.3047∗∗∗

(0.0206) (0.0204) (0.0204)
Tech -0.0661∗∗∗ -0.0475∗∗∗ -0.0495∗∗∗

(0.0132) (0.0155) (0.0159)
Manual -0.0507∗∗∗ -0.0459∗∗∗ -0.0540∗∗∗

(0.0092) (0.0117) (0.0122)
Comparisons
Own Program Y Y Y
Other Treated Y
Never Treated Y Y

Notes. The reported results are program-specific treatment effect coefficients.
Standard errors are reported in the parentheses and clustered at the household
level. Column (1) reports the regression results including only within demand
response program comparisons, column (2) includes both within demand re-
sponse program and the never-treated (Info and Control) groups, and column
(3) reports results when all programs/groups are included. All specifications
include fixed effects at the household and hour-of-sample levels. Statistical
Significance * p < 0.10, ** p < 0.05, and *** p < 0.01.
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Table C2. Treatment Effects of Participants by Program and Event-
Type

Program (1) (2) (3)
Central
Morning -0.3198∗∗∗ -0.3160∗∗∗ -0.3133∗∗∗

(0.0221) (0.0224) (0.0223)
Evening -0.3040∗∗∗ -0.2850∗∗∗ -0.2916∗∗∗

(0.0218) (0.0226) (0.0227)
High Evening -0.3291∗∗∗ -0.3105∗∗∗ -0.3177∗∗∗

(0.0237) (0.0241) (0.0243)
Tech
Morning -0.0495∗∗∗ -0.0273 -0.0158

(0.0128) (0.0188) (0.0199)
Evening -0.0713∗∗∗ -0.0545∗∗∗ -0.0623∗∗∗

(0.0155) (0.0181) (0.0185)
High Evening -0.0786∗∗∗ -0.0604∗∗∗ -0.0675∗∗∗

(0.0166) (0.0199) (0.0205)
Manual
Morning -0.0488∗∗∗ -0.0689∗∗∗ -0.0812∗∗∗

(0.0097) (0.0150) (0.0159)
Evening -0.0488∗∗∗ -0.0332∗∗ -0.0396∗∗∗

(0.0108) (0.0143) (0.0149)
High Evening -0.0567∗∗∗ -0.0403∗∗ -0.0467∗∗∗

(0.0126) (0.0159) (0.0166)
Comparisons
Own Program Y Y Y
Other Treated Y
Never Treated Y Y

Notes. The reported results are program-specific treatment effect coefficients
by event type. Standard errors are reported in the parentheses and clustered
at the household level. Column (1) reports the regression results including
only within demand response program comparisons, column (2) includes both
within demand response program and the never-treated (Info and Control)
groups, and column (3) reports results when all programs/groups are included.
Each regression is adjusted to include an event-type-specific categorical vari-
able. All specifications include fixed effects at the household and hour-of-
sample levels. Statistical Significance * p < 0.10, ** p < 0.05, and *** p < 0.01.
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C.2 No Carryover Assumption

As discussed in Section 4.2, an assumption in our identification strategy is that our

randomized events do not impact (or “carryover” to have a treatment effect on)

persistent changes in behavior in the event hours on non-event days. Table C3 presents

the results of our no carryover assumption DID test, described in Section 4.2. Table

C4 presents the results when we allow for differential effects across the morning and

evening event windows on non-event days. In both specifications, we find no evidence

of changes to non-event day consumption during the event windows.

Table C3. Carry Over DID Estimates by Program

Central Tech Manual
Event Window 0.0241 0.0302 -0.0014

(0.0169) (0.0181) (0.0155)

Notes. The reported results are the program-specific Event Window co-
efficients from equation (2). For each demand response program, the
sample includes households from their own treatment program and the
never-treated groups. Standard errors are reported in the parentheses
and clustered at the household level. All specifications include fixed ef-
fects at the household and hour-of-sample levels. Statistical Significance
* p < 0.10, ** p < 0.05, and *** p < 0.01.

Table C4. Carry Over DID Estimates by Program and Event Type

Central Tech Manual
Morning Event Window 0.0188 0.0353 -0.0226

(0.0206) (0.0235) (0.0201)
Evening Event Window 0.0295 0.0251 0.0196

(0.0212) (0.0210) (0.0185)

Notes. The reported results are the program-specific Event Window coef-
ficients from equation (2), allowing for differential effects during the morn-
ing and evening event windows. For each demand response program, the
sample includes households from their own treatment program and the
never-treated groups. Standard errors are reported in the parentheses
and clustered at the household level. All specifications include fixed ef-
fects at the household and hour-of-sample levels. Statistical Significance
* p < 0.10, ** p < 0.05, and *** p < 0.01.
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C.3 Intention-to-Treat and Local Average Treatment Effect Methodology

Because we randomized program offers to households as described in Appendix A.1,

we can estimate program-level treatment effects. We estimate the effect of each pro-

gram offer on event-level consumption (an intention-to-treat (ITT) estimate) as well

as the effect of each program on event-level consumption (a local average treatment

effect (LATE) estimate). Because our events where randomized at the household-

level, we modify the standard approaches to estimating these by using “synthetic

events” for households that were offered but not enrolled in a program.

C.3.1 Intention-to-Treat

We estimate a regression specification that allows us to estimate an effect similar

to an intention-to-treat (ITT) estimate. Unlike many experimental settings, our

treatment (events) are randomized within demand response programs for households

that participated in our experiment. Therefore, unlike standard ITT specifications,

we cannot have a binary treatment indicator that turns on for all households assigned

to a specific experimental program, regardless of whether they accept that program.

Because we have random, periodic events that are randomly assigned to only those

households that chose to participate, we create an analogous environment in our

setting for all households invited to each program. To do this, we assign households

that were randomized to receive the Central, Tech, and Manual program offers but did

not accept the offer a distribution of randomized “synthetic” events that is the same

as the households that participated. This creates a new variable Êit that includes the

observed events for households in our experiment and synthetic events for households

that were invited to the Central, Tech, or Manual programs but did not accept our

offer.

We estimate the following equation, separately for each demand response program

and including the never-treated households that were not subject to events:31

ln(cit) = γ + βITT Assignedi · Êit + αi + τt + δXt + εit (5)

where Assignedi is an indicator variable that equals one if the household was assigned

to receive a program offer (i.e., the Central, Tech, or Manual offer) and zero otherwise.

31We run two additional specifications of this analysis where we only include households within
each demand response program, and all demand response programs and the never-treated simulta-
neously as in equation (1). Our ITT results are robust to these alternative specifications.
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Êit is the household-specific event indicator that equals one if household i experiences

an event in hour t (or is assigned a synthetic event, for households that did not accept

the program offer) and zero otherwise. For each program, this regression is estimated

on the full sample of household hourly consumption cit, including the households that

did not participate in our experiment. Similar to our main specification in (1), we

include fixed effects at the household and hour-of-sample levels; Xt the same vector

of hourly weather controls. We cluster standard errors at the household level.

We also consider a modified version of equation (5) that permits event type-specific

treatment effects. More specifically, Êit is now a household-specific set of indicator

variables that denote whether the household is experiencing a morning, evening, or

high evening event. For households that did not enter into our final demand response

programs, the (synthetic) allocation of the three event types is randomized with the

same frequency distribution as for households that did accept the program offers and

receive the event treatments. All other details of the regression specification remain

the same.

C.3.2 Local Average Treatment Effect

In addition to estimating the ITT, we also estimate a Local Average Treatment Effect

(LATE) for each of our demand response programs. The same empirical challenges

discussed in the ITT estimation apply here. That is, households that did not choose

to participate in the experiment did not receive the (randomized) events. These

households are included in this regression, and we use the same synthetic events

approach detailed above.

Since our program assignment was randomized, we could estimate the following

equation to identify a program-level estimate of the effect of each demand response

program on a event-time consumption if we had 100% compliance with program

assignment. However, since we had less than a 100% take-up rate, the following

equation serves as our second-stage in an instrumental variables (IV) framework in

which we instrument treatment assignment for take-up. We estimate the following

second-stage equation, separately for each demand response program and including

the never-treated households that were not subject to events:

ln(cit) = γ + βLATE Treati · Êit + αi + τt + δXt + εit (6)

where Treati is an indicator variable that equals 1 if household i was assigned to
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and accepted a demand response program invitation and zero otherwise. Êit is our

synthetic event indicator variable that equals 1 if the individual was subject to a

treatment event and zero otherwise. All other aspects of the regression specification

are analogous to that specified in equation (5) above.

Because program offer acceptance is endogenous with event responsiveness, we

must use an IV approach to establish a causal estimate with βLATE. We use the

randomized, initial invitation to join the demand response program as our IV. More

specifically, we rely on the exclusion restriction that the initial (randomized) assign-

ment and invitation to join a specific demand response program affects consumption

only via its impact on participation in treatment events.

More formally, for each demand response program, we estimate the following first-

stage equation:

Treati · Êit = µ+ θAssignedi · Êit + πi + κt + ωXt + ηit (7)

where Assignedi equals 1 for households assigned to the relevant demand response

program and zero otherwise. πi reflects our household fixed effects, κt is our hour-

of-sample fixed effects, and Xt are our weather covariates. Êit is our synthetic event

variable. The main objective of the first-stage equation is to establish an IV for the

variable Treati that interacts with the exogenous (randomized) variable Êit in our

LATE specification. Consequently, the first-stage equation estimates this endogenous

interaction using the instrument Assignedi.

We also consider a modified version of equations (6) and (7) that permits event

type-specific treatment effects. More specifically, in both equations, Êit is a household-

specific set of indicator variables that denote whether the household is experiencing

a morning, evening, or high evening event. This implies that we have three endoge-

nous regressors and instruments for each event type. Analogous to the ITT analysis

above, for households that did not enter into our final demand response programs,

the (synthetic) allocation of the three event types is randomized in the same manner

as was done for those households that did receive the event treatments. All other

details of the regression specification remain the same.
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C.4 Intention-to-Treat and Local Average Treatment Effect Results

C.4.1 Intention-to-Treat

Table C5 provides the ITT estimates. The coefficients imply that offering households

the opportunity to join the Central, Tech, and Manual demand response programs

results in an average reduction in consumption of -13%, -3%, and -3% during events,

respectively, from each program of invited households.32 These percent changes are

what an electric utility company can expect “at the end of the day” in terms of event-

time consumption reductions after both making offers such as these and conducting

event-time alerts. That is, these estimates include both the extensive margin of

program offer acceptance and intensive margin of household electricity consumption

reductions from those who accepted the offer.

These results, like our main event-level treatment effect results above, indicate

centralized electricity consumption reductions result in an expected average reduc-

tion in demand during events that is several orders of magnitude larger than non-

centralized programs, without or without the same technology. The ITT estimates

here show uniquely that the relative advantage of centralized demand is still realized,

even when one considers the differential take-up rates across programs. In addition,

the Tech and Manual programs have ITT estimates that are similar in magnitude,

consistent with the findings in our main treatment effect estimates.

Table C5. ITT Estimates by Program

Central Tech Manual
Assigned × Event -0.1435∗∗∗ -0.0342∗∗∗ -0.0322∗∗∗

(0.0141) (0.0102) (0.0088)

Notes. The reported results are program-specific ITT coefficients from equation
(5). For each demand response program, the sample includes households from their
own treatment program and the never-treated groups. Standard errors are reported
in the parentheses and clustered at the household level. All specifications include
fixed effects at the household and hour-of-sample levels. Statistical Significance
* p < 0.10, ** p < 0.05, and *** p < 0.01.

The estimates for the ITT are considerably lower than the average treatment

effect of participants in our main analysis. The events are randomized, and the

households that did not accept the offers to enroll in the demand response programs

32These calculations reflect the relevant coefficient estimate β̂ reported in Table C5, transformed
to percentage change in consumption as follows: 100 ∗ ( exp(β̂)− 1 ).
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had no knowledge of the events. These households are expected to have (noisy) null

responses during events. The ITT estimates can be approximately recovered by mul-

tiplying the average treatment effects on participating households by the probability

that a household accepted our offer to join a demand response program. Using the

acceptance rates in Table 2 and the estimated average treatment effects described in

Section ??, this calculation yields approximate ITT estimates, in percentage terms,

of 11%, 2%, and 3% for the Central, Tech, and Manual programs, respectively.33

Finally, Table C6 reports the ITT estimates by event type. The findings parallel

the qualitative conclusions from our main average treatment effects on the households

that participated in our experiment, with smaller estimated effects due to the ITT

including the extensive acceptance margin, as described above. The estimated ITT

coefficients represent an average reductions in consumption during events ranging

from 12% to 15% for the Central program, 3% to 4% for the Tech program, and 2%

to 5% for the Manual program, respectively. We continue to find modest differences

across event types for each demand response program. Further, for each program, we

do not observe any evidence of a statistically significant higher response to increased

financial incentives during High Evening events.

Table C6. ITT Estimates by Program and Event Type

Central Tech Manual
Assigned × Morning Event -0.1659∗∗∗ -0.0276∗∗ -0.0481∗∗∗

(0.0156) (0.0131) (0.0114)
Assigned × Evening Event -0.1279∗∗∗ -0.0366∗∗∗ -0.0237∗∗

(0.0155) (0.0122) (0.0109)
Assigned × High Evening Event -0.1437∗∗∗ -0.0382∗∗∗ -0.0275∗∗

(0.0168) (0.0137) (0.0122)

Notes. The reported results are program-specific ITT coefficients from equation
(5), allowing for event type-specific estimates. For each demand response pro-
gram, the sample includes households from their own treatment program and
the never-treated. Standard errors are reported in the parentheses and clustered
at the household level. All specifications include fixed effects at the household
and hour-of-sample levels. Statistical Significance * p < 0.10, ** p < 0.05, and
*** p < 0.01.

33For the Central, Tech, and Manual programs, these values reflect 26%∗0.42 = 11%, 5%∗0.48 =
2.4%, and 5% ∗ 0.59 = 3%, respectively.

59



C.4.2 Local Average Treatment Effect

Table C.4.2 presents results from estimating Equation 6. The large F-statistics indi-

cate that our first stage (Equation (7)) is strong. Coefficients for each program can

be interpreted as the average impact of each demand response program on event-time

consumption. Based on these coefficients, the Central, Tech, a Manual programs in-

duce their participants to reduce consumption by 25.5%, 5.7%, and 4.8%, respectively.

The striking similarity between these results and our main results (Table C1), which

can be interpreted as the average causal effect of event notifications on event-time

consumption by selected program, suggests that selection into our demand response

programs does not play a major role in the differences of the event-level treatment

effects across programs.

These results continue to demonstrate that automated options (such as the Cen-

tral program) can help consumers respond much more deeply to electricity prices

than standard programs (like the Manual program). Smart technology that enables

customers to view device-specific consumption and control devices remotely, like load

controllers that were given to the Tech program, will not necessarily resolve barriers

to price response. From the perspective of a utility company, these LATE results are

useful in understanding the event-time consumption reductions that they can expect

from similar programs when selection may not be involved in customer participation,

such as when customers are defaulted into such programs.34

Table C8 shows that the impact of each program on event-time consumption does

not vary by the timing of the event or the amount of incentives offered. The relative

advantage of the Central program over the other two remains across event times.

That story does not change when one focuses on the events with larger incentives,

the High Evening events.

34Note that in our setting, however, defaulting customers into the Central and Tech programs
would not have been possible, given the installation required for the load controllers. As appliance
and automation technology evolves, it is quite possible that defaulting customers into such programs
may be possible in the future. Given that our setting required this installation, we very cautiously
interpret these results as indicative of causal program effects in a setting that would not require
customer opt-in.
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Table C7. LATE Estimates by Program

Central Tech Manual
Treated × Event -0.2938∗∗∗ -0.0583∗∗∗ -0.0489∗∗∗

(0.0233) (0.0174) (0.0133)
F-Stat 333.6153 441.0571 698.1311

Notes. The reported results are program-specific LATE coefficients
from equation (6). For each demand response program, the sample
includes households from their own treatment program and the never-
treated groups. Standard errors are reported in the parentheses and
clustered at the household level. All specifications include fixed ef-
fects at the household and hour-of-sample levels. F-Stat represents the
F-statistic from the first-stage IV regression. Statistical Significance
* p < 0.10, ** p < 0.05, and *** p < 0.01.

Table C8. LATE Estimates by Program and Event Type

Central Tech Manual
Treated × Morning Event -0.3394∗∗∗ -0.0468∗∗ -0.0732∗∗∗

(0.0276) (0.0223) (0.0173)
Treated × Evening Event -0.2624∗∗∗ -0.0625∗∗∗ -0.0361∗∗

(0.0269) (0.0207) (0.0165)
Treated × High Evening Event -0.2935∗∗∗ -0.0652∗∗∗ -0.0418∗∗

(0.0291) (0.0232) (0.0184)
F-Stat 1 118.6108 151.1503 232.0957
F-Stat 2 113.2662 145.8802 234.5316
F-Stat 3 115.0813 149.1091 233.7128

Notes. The reported results are program-specific LATE coefficients from equation (6),
allowing for event type-specific estimates. For each demand response program, the sample
includes households from their own treatment program and the never-treated groups.
Standard errors are reported in the parentheses and clustered at the household level.
All specifications include fixed effects at the household and hour-of-sample levels. F-
Stat represents the F-statistic from the first-stage IV regressions. Statistical Significance
* p < 0.10, ** p < 0.05, and *** p < 0.01.
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D End of Experiment Survey

D.1 Survey Details

The following is text from a voluntary, paid survey sent out to participants in the

Central, Tech, and Manual groups via email, in mid-June, 2023.

Survey instructions :

“This short survey is designed to hear about your experience in the Peak Rewards

Trial through [APP NAME]. All homes had a different experience, and we want to

hear about yours.

We appreciate the time and thought you put into this survey.

Properly completed surveys will be rewarded with $20 on bill credit as a token of

our gratitude.”

Survey questions used an analysis above:

“What is your approximate household income?

• Less than $50k per year

• $50-99k per year

• $100-149k per year

• $150-200k per year

• Over $200k per year

• Don’t know/Rather not say”

“For the events you noticed, how often was it worth your time to participate by

attempting to reduce your electricity consumption?”

• Never

• Sometimes

• About half the time

• Most of the time

• Always

• Don’t know/Not Applicable”
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D.2 Survey Response

In this section, we compare the observable characteristics of participants who

filled out the end-of-experiment survey to those who did not. The Table below

recreates Table A2 from our main analysis (using pre-treatment data), but sep-

arates the results by whether or not the household responded to the exit survey.

The p-value corresponds to a difference in means test.

Table C9 demonstrates that the non-respondents had larger cumulative con-

sumption during the pre-treatment period. Non-respondents also were more

likely to have an electric vehicle. All other characteristics are similar across the

two groups.
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Table C9. Balance by Exit Survey Response (Pre-Treatment Data)

Yes No p-value

Cumul. kWh
Winter 5,229 5,892 0.04

(2,810) (3,199)
Spring 3,675 4,167 0.02

(1,788) (2,104)
Summer 2,614 3,155 0.01

(1,492) (2,142)
Fall 3,528 4,012 0.02

(1,721) (2,016)
Load Factor
Winter 24.96 25.21 0.78

(8.61) (8.89)
Spring 19.82 19.98 0.83

(6.64) (6.93)
Summer 16.56 17.21 0.37

(6.87) (6.76)
Fall 18.66 19.12 0.51

(5.91) (6.72)
Electric Vehicle 0.24 0.32 0.05

(0.42) (0.47)
BaseBoard Heating 0.66 0.64 0.71

(0.47) (0.48)
Air Conditioning 0.47 0.51 0.32

(0.50) (0.50)
Electric Hot Water 0.72 0.70 0.56

(0.45) (0.46)
House Duplex 0.83 0.82 0.71

(0.37) (0.38)
Median Income 86,377 87,434 0.55

(19,853) (19,836)

Observations 429 174

Notes. This table compares pre-treatment average values by whether or not
the household participated in the exit survey. Parentheses contain the stan-
dard deviations. Cumul. kWh and Load Factor represents the cumulative
household-level consumption and load factor by season. Electric Vehicle,
Baseboard Heating, Air Conditioning, and Electric Hot Water are indicator
variables denoting the presence of each device. House/Duplex is a indicator
variable if the home type is a single-family home or duplex. Median Income
reports the median household-level income of the Census Dissemination Area
where the household is located. ANOVA reports the p-value from one-way
ANOVA tests for differences in means across programs/groups. Statistical
Significance * p < 0.10, ** p < 0.05, and *** p < 0.01.
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