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Abstract

Intermittent wind and solar energy can reduce greenhouse gas emissions from electricity
generation, but it also increases the challenge of balancing supply and demand throughout
the day. We investigate the potential for household demand adjustments to address this
challenge through a field experiment that sent text messages to Danish consumers a few
hours in advance asking them to shift consumption into or away from certain hours of
the day. Household-level demographic information for all customers randomly invited to
participate in the experiment is used to obtain selection-corrected estimates of the impact
of these interventions. We estimate a two to three times larger consumption shift for an into
compared to an away request while consumption before and after into requests is reduced.
The selection-corrected estimates imply that appropriately designed Into requests during
periods of excess supply of renewable electricity can simultaneously reduce Denmark’s
greenhouse gas emissions, reduce customer bills, and increase retailer profits.
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1. Introduction

Successfully shifting electricity production from fossil fuels to renewable sources
that do not emit greenhouse gases is critical for reducing global greenhouse gas (GHG)
emissions. In the United States, electricity production contributes 25.2 percent of GHG
emissions (Table 2-10, EPA, 2021). A substantially increased supply of renewable
electricity is required if GHG emissions from the transportation and residential heating
sectors, which are responsible for 34 percent of US emissions, are to be reduced by
converting to electric vehicles and electric residential heating.

An increasing number of jurisdictions have implemented policies to increase
significantly the share of intermittent renewable energy, primarily from wind and solar
resources, serving their electricity demand. This implies that an increasing share of
electricity is produced when the wind blows or when the sun shines, not necessarily
when it is in demand by consumers. Depending on availability of the underlying wind
or solar resource, the amount of electricity produced by these generation units can change
dramatically throughout the day. In contrast, the aggregate demand for electricity typically
follows a smooth pattern throughout the day, starting at its lowest point in the early morning
and steadily increasing during the daylight hours and eventually peaking during the late
afternoon or early evening, depending on the season of the year. This difference between
the pattern of aggregate demand and the pattern of renewable energy production throughout
the day can create substantial positive and negative imbalances between the instantaneous
supply of renewable energy and the demand for electricity, particularly as the share of
intermittent renewable energy in a region increases.

If not properly addressed, these imbalances can result in substantial economy-wide
costs from the abrupt curtailment of electricity supply and the resulting blackout or
brownouts. These outcomes are typically avoided by keeping dispatchable generation units
operating at or near their minimum safe operating levels and by investments in storage
capacity, both which of have significant economic and environmental costs. Consumers
can provide to a lower cost solution to this problem by adjusting their electricity demand
in response to financial or environmental signals.

Historically, the role of consumer demand response actions was to ensure that system
demand was always below the amount of available generation capacity. However, in
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regions with significant intermittent renewable generation capacity, there can be many
hours when the amount of energy produced by these resources can exceed system demand.
For example, if there is enough wind capacity that produces primarily during hours of the
day when demand is low, some of the energy produced may need to be curtailed or exported
outside the region in order to maintain system balance. Even a region like California that
relies on solar energy that produces during the high demand hours of the day could face the
same challenge if there is enough solar generation capacity in the state relative to system
demand. These reliability challenges imply a new role for active demand-side participation
in shifting demand from hours with less renewable energy production to hours with more
renewable energy production.

We provided residential consumers from SE, a large Danish retailer, with dynamic price
and environmental signals aimed at causing them to shift their consumption into certain
hours of the day or away from certain hours of the day. Consumers were notified of
these price and environmental signals through text messages to their cell phones with prior
notification varying from 2 hours to 19 hours. For price signals, customers were offered
rebates on their electricity bill that depended on the total amount of electricity they moved
either into or away from the targeted hours. Specifically, customers could receive a 5
percent, 20 percent, or 50 percent rebate off of the price they paid for electricity for each
kWh of energy they managed to either shift away from the target hours or shift into the
target hours. For the purely environmental motivation signals, customers were promised
that SE would invest in additional wind generation capacity equal to the amount of power
that they shifted during the experiment period, but were not promised any explicit financial
compensation.

Although a random sample of SE’s residential consumers were invited to participate
in each of the experiment treatments, only those that accepted the invitation actually
participated in the experiment. Different from previous dynamic pricing experiments,
we take advantage of rich demographic data from Statistics Denmark to account for the
decision of invited households to participate. We employ a version of the Ahn and Powell
(1993) semiparametric estimator of the single index selection model to account for the joint
determination of a customer’s decision to participate in the experiment and their willingness
to shift their demand in response to text messages during the experiment period. This
provides estimates of the expected effects of a randomly selected SE customer responding
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to a given Into or Away intervention.

Accounting for the decision of each invited SE household to accept the invitation
to participate in the experiment yields slightly smaller absolute magnitudes for each of
the Into and Away effects that are generally statistically different from the ordinary least
squares estimates of the same magnitudes. This outcome is consistent with the logic that
the households that accepted the invitation to participate in the experiment are those among
the population of invited households that expected to be more responsive to our Into and
Away interventions.

Both the empirical analysis that conditions on participation in the experiment and the
one that accounts for self-selection into the experiment finds that the same marginal price
signal has a two to three times larger in absolute value estimated load shift into target hours
relative to the absolute value of the estimated load shift away from target hours. We also
find strong statistical evidence that load shifts into a set of target hours significantly reduces
consumption in the hours before and after these target hours. For the away target hours, we
find limited evidence of slight increases in consumption in hours of the day that surround
the target hours. The purely environmental signals produced qualitatively similar results.
The absolute value of the Into effect is significantly larger in absolute value than the Away

effect and there is stronger evidence that shifting consumption into a time interval reduced
consumption in surrounding time periods than is the evidence that shifting consumption
away from a time interval increased consumption in hours surrounding the target hours.

We perform a counterfactual analysis using our selection-corrected estimates to answer
the question posed in the title of the paper. Using data on hourly market outcomes in Nordic
electricity market from January 1, 2016 to June 30, 2020, we demonstrate the potential
for Into events to: (1) reduce the wholesale energy costs of SE, (2) increase its profits
from electricity retailing after accounting for the rebates paid, (3) lower the electricity bills
of customers, and (4) reduce GHG emissions in Denmark. To demonstrate this result,
we focus on the small number of days with surplus renewable electricity production in
Denmark during the 2016 through 2020 time period.

During a surplus renewable production period in Denmark, the demand increase caused
by an Into event can be satisfied by reducing exports of renewable energy. Before and
after a surplus production period, the marginal supply is satisfied by fossil fuel units at
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substantially higher costs. By declaring an Into event for the surplus renewable production
period Denmark’s fossil fuel electricity production is reduced because of the reduction in
consumption we estimate before and after an Into event. Depending on wholesale prices
during the Into period and before and after the Into period, SE’s daily wholesale energy
costs could also be reduced by shifting demand from before and after the surplus renewable
production period into that period. If the daily wholesale cost reduction is large enough to
offset the rebates paid for customers and reduction in daily retail revenues, the profits of
retailer can increase. If the rebates paid to customers are sufficiently large relative to the
increase in retailer revenues, the electricity bills of customers can fall.

We also investigate the effects of appropriately timed Into and Away events associated
with the daily morning and evening consumption and wholesale price peaks in order to shift
consumption into other parts of the day. Such consumption shifts are unlikely to reduce
Denmark’s GHG emissions because its renewable capacity is primarily wind-powered,
which typically produces in the morning and evening. Nevertheless, we investigate this
price-based consumption shifting because there is such a potential in other jurisdictions
where renewable production is primarily solar powered like in California where declaring
Into events during low-prices hours in the middle of the day can yield environmental
benefits, consumers benefits and profit increases for electricity retailers. We find many
instances where an appropriately timed Into event based on the daily pattern of prices can
simultaneously yield significant daily wholesale cost savings and profit increases for SE
and lower bills for customers.

Taken together these consumption shift results for excess renewable energy supply
periods and for daily morning and evening price peaks emphasize the cost-effectiveness
of incentives to increase electricity consumption used during certain times of the day
to maintain real-time system balance in regions with significant intermittent renewable
generation units.

Finally, we present a simple model of household electricity demand under uncertainty
that can explain the significantly larger in absolute value demand response to Into versus
Away events. This model exploits the “option to quit” identified in Wolak (2010)
associated with rebate-based dynamic pricing plans relative to pure dynamic pricing plans.
Specifically, under a rebate-based dynamic pricing plan if the customer is unable to reduce
her consumption below the level necessary to receive a rebate during an Away period then
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she can still pay for all of the electricity she consumes at the standard fixed retail price. In
contrast, a customer on a traditional dynamic pricing plan pays the higher dynamic price
for all consumption during an Away period and does not have the option to avoid paying
this higher marginal price. This “option to quit” is far less relevant for Into events, and as
the model demonstrates, this difference can explain the larger in absolute value treatment
effect for Into events versus Away events for both the price and environmental motivation
treatments.

The remainder of the paper proceeds as follows. The next section presents two
examples of the economic benefits of both into and away load-shifting in regions with
significant intermittent renewable generation resources. Section 3 places the paper in
the context of the existing literature on dynamic pricing. Section 4 describes the
experimental design and the data collection process for the experiment. Section 5
presents our econometric modeling framework and estimation results for our ordinary least
squares model and our selection-corrected model. Section 6 presents the results of the
counterfactual analysis using our selection-corrected estimates demonstrating that paying
customers to increase their electricity consumption during certain periods can benefit
consumers, the retailer that serves them, and reduce GHG emissions in the region. Section
7 presents our simple model of customer demand under uncertainty that rationalizes the
difference in our empirical results for Into versus Away events. Section 8 discusses possible
extensions and implications of these results for the active involvement of final demand in
regions with significant intermittent renewable generation capacity.

2. The Economics of Load-Shifting with Significant Renewable Generation Capacity

This section motivates our experiment by describing two examples, one from Denmark
and one from California, of how significant amounts of intermittent renewable generation
capacity in a region increases the need for the load-shifting actions of electricity consumers
both into and away from certain hours of the day. As we demonstrate in Section 6, different
from the case of regions with only dispatchable thermal generation, increasing electricity
consumption during certain hours of the day can reduce daily wholesale energy costs if this
increase in consumption also reduces consumption during other hours of the day, as we
show below is the case with our Into events.

Figures 1(a) and 1(b) illustrate the challenges facing Denmark in managing a grid with
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Figure 1(a). Danish Electricity Consumption and Wind Energy Production in MWh per
hour
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Figure 1(b). Day-Ahead Short-Term Prices (Zonal Average) in Euros per MWh
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almost 50 percent of the electricity coming from intermittent wind generation units.2 Figure
1(a) displays the pattern of wind generation and aggregate electricity consumption and
Figure 1(b) the Danish wholesale price in Euros per megawatt-hour (MWh) for the entire
month of May 2020.3 Figure 1(a) shows the smooth pattern of aggregate consumption
throughout the day and across days of the month. In contrast, the total output of wind
generation units is extremely irregular both within the day and across days of the month.
There are hours when almost no wind energy is produced and hours when wind energy
production exceeds Denmark’s electricity consumption.

2In 2019, 47 percent of electricity consumption in Denmark came from wind generation. See https:
//www.statista.com/statistics/991055/share-of-wind-energy-coverage-in-denmark/

3Denmark is composed to two pricing zones in Nord Pool market, DK1 and DK2. Demand in Denmark
is the sum of consumption in these two zones. The price in Figure 1(b) is the consumption-weighted average
price for these two zones.
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As shown in Figure 1(b), hourly day-ahead wholesale prices in Denmark are negatively
correlated with the amount of wind energy produced. This relationship occurs because the
difference between total consumption and renewable energy production must be met with
dispatchable generation that is costly to operate, typically because it requires burning an
input fossil fuel to produce electricity. This logic implies that increasingly expensive fossil
fuel-fired generation units must operate the larger the difference is between system demand
and renewable energy production. Therefore, shifting demand into hours with high levels
of wind generation and away from hours with low wind generation has the potential to
reduce wholesale energy purchase costs because customers would be buying more energy
in low-priced hours and less energy in high-priced hours.

An extreme version of this opportunity occurs on May 17 when the price is negative for
a few hours of day that wind production exceeded system demand. These negative prices
could have allowed a retailer to pay customers to consume more energy during this hour
of the day. Our counterfactual analysis reported in Section 6 finds that both Into and Away

actions can yield wholesale energy purchase cost savings for the retailer as well as variable
profit increases after accounting for the rebates paid to customers.

Volatility in the difference between total electricity consumption and total renewable
energy production is not unique to Denmark. California has a renewables portfolio standard
(RPS) that requires 33 percent of the state’s electricity consumption to come from qualified
renewable sources—solar, wind, biomass, geothermal, and small hydro—by 2020. This
share is required to increase to 60% by 2030. Solar generation capacity is currently thought
to be the primary technology that will be used to meet these renewable energy goals. There
is currently more than 12,000 MW of grid-scale solar photovoltaic (PV) and solar thermal
capacity in California, almost 8,000 MW of distributed solar PV capacity, and almost
7,000 MW of grid-scale wind capacity.4 This amount of solar capacity has given rise to
Figure 2(a), which shows the actual load and the net-of-renewables load curve (total system
demand less total renewable energy output) in the California wholesale electricity market
for each hour of the day for February 23, 2020. This net-of-renewables load curve is called
the “Duck Curve” because of its shape within the day relative to the shape of demand
within the day. Both the morning ramp up and evening ramp down of solar production
have become increasingly steep as the amount of solar generation capacity in the state has

4https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/

electric-generation-capacity-and-energy

7

https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/electric-generation-capacity-and-energy
https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/electric-generation-capacity-and-energy


increased.

Figure 2(a): System Load and Net Load in MWh in California on February 23, 2020

Figure 2(b): Day-Ahead Prices for California’s Three Large Retailers in $ /MWh

on February 23, 2020

Figure 2(b) shows hourly pattern of day-ahead wholesale prices for the three large
investor-owned utilities–Pacific Gas and Electric, San Diego Gas and Electric and Southern
California Edison–for February 23, 2020.5 Prices from 10 am to 3 pm are extremely

5The California market is operated by the California Independent System Operator (ISO) which runs
a day-ahead forward energy market and real-time energy market where differences between day-ahead
purchases and sales and real-time production and consumption are traded.
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low, even slightly negative in a few hours during this time period. This figure implies a
growing economic benefit from shifting consumption into the 10 am to 3 pm time period
as California continues to increase its solar generation capacity. According to the results
of our experiment, shifting consumption into these hours will reduce consumption during
the early morning and late evening hours when prices are 20 to 40 times higher, and this
can save consumers and their retailer on their daily wholesale energy purchase costs, by
the same logic as described above for Denmark.

In 2020 and beyond, during the hours when California’s solar generation capacity is
producing a substantial amount of energy, there is a significant risk that total renewable
energy production in California will exceed its electricity consumption. When this happens,
real-time prices are likely to be negative. Consequently, further wholesale energy cost
savings are possible if consumers are able to shift their consumption into the hours of
the day when this over-generation condition occurs. Sustained periods of solar energy
production in excess of system demand are very likely to occur in California given its
ambitious renewable energy goals. A simple rule of thumb is that if the renewable energy
share exceeds the capacity factor of the renewable generation technology used to meet
it, then there is a potential for an over-generation condition that could be addressed by
customers shifting their demand into hours when renewable energy production is likely to
be the highest.6 The fleet-wide capacity factor for solar photovoltaic (PV) generation units
in California is approximately 25 percent. This implies that if solar energy is the major
renewable generation source used to meet the 60 percent RPS, then without significant
investments in storage capacity there will be many hours of the year when total solar PV
production exceeds total electricity demand in California.8

To conclude, three major factors motivate our real-time pricing and information
provision experiment to shift consumption with short notice via text messages. First,
an increasing number of countries and regions have the ambitious renewable energy

6To illustrate this point suppose that demand in a region is 100 MWh every hour of the year. Obtaining a
33 percent annual renewable energy share in a region using solar PV technology that has 25 percent annual
capacity factor will require at least 33 MW/0.25 = 132 MW of solar PV capacity, assuming no curtailment
of renewable energy production during the year.7 This means during all hours of the year with an hourly
capacity factor for all solar PV units greater than 0.757 (100 MWh = 132 MWh x 0.757), will have more
solar energy produced than system demand.

8California has substantial interconnection capacity with the rest of the western United States, so it can
export energy if in-state demand is less than in-state energy production up to the amount of this transmission
capacity.
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goals. Real-time pricing and information provision mechanisms that cause consumers to
shift-their consumption both into certain hours of the day and away from other hours of the
day are likely to be part of a cost-effective strategy for achieving these renewable energy
goals. Second, because the amount of energy produced by wind and solar generation units
can change with little advance notice, to manage most effectively the supply and demand
imbalances caused by intermittent renewable energy production, customers on dynamic
pricing or other load-shifting plans must respond with short notice. Text messages are
an ideal mechanism for providing price and environmental motivation information with
short notice. Third, the popularity of rebate-based dynamic pricing plans with customers
and regulators emphasizes the need to understand the relative effectiveness of different
rebate-based dynamic pricing programs.

3. Relation to Existing Research on Dynamic Pricing and Load-Shifting

A number of studies have used randomized controlled experiments to investigate the
effects of various dynamic pricing schemes (e.g. Ito et al. (2018), Jessoe and Rapson
(2014), Allcott (2011), Wolak (2010), Herter (2007), Lijesen (2007), Wolak (2006) and the
studies reviewed in Kessels et al. (2016) and Faruqui and Sergici (2010)). The main focus
of this literature is on lowering peak demand and the consensus is that critical peak pricing
(CPP) schemes are effective at achieving this goal. There are six ways that we believe our
experiment adds to this research.

First, all previous research that we are aware of has conditioned the experimental results
obtained on the customers that self-selected to participate. Building on a preliminary
investigation of our data in Møller et al. (2019) the present study uses detailed
household-level demographic data from Statistics Denmark for all SE customers invited to
participate in our experiment to recover estimates of our Away and Into interventions that
accounts for the propensity of households to participate in our experiment as a function of
these demographic characteristics.

Second, most previous research studied day-ahead notifications of the need to reduce
demand, with Jessoe and Rapson (2014) being an exception where 30-minute prior notice
is used. Our experiment uses text messages provided via a cell phone with short notice and
so adds to the literature on short notice effects. As noted above, short notice effects are
especially relevant for evaluating the potential of demand response to mitigate imbalances
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caused by variations in intermittent renewable energy production.

Third, we focus on explicit incentives to consume more electricity during certain time
periods. Virtually all previous research on dynamic pricing focuses on reducing demand
during certain critical time periods. We are not aware of any other studies of incentives to
increase electricity consumption during certain time periods. As discussed in Section 2, and
demonstrated empirically in Section 6, this approach to dynamic pricing and load-shifting
is directly relevant to addressing periods of excess supply of renewable energy likely to
occur because of large amounts of intermittent renewable generation capacity in a region.

Fourth, we study the question of how incentives to move electricity consumption into

and away from target hours affects consumption in neighboring hours both between the
time a customer is notified of an intervention and the target time period, as well as during
the same length of time after the target period. This pre- and post-event load-shifting
turns out to be important for calculating the overall benefits and costs of Into and Away

approaches to managing renewable energy supply and system demand imbalances during
the day.

Fifth, peak period rebate schemes are popular with consumers and utilities as an
alternative to traditional dynamic pricing schemes, most likely because of the fear among
regulators that dynamic pricing schemes can imply substantial wealth transfers among
electricity consumers (Borenstein, 2007). Yet, only a few studies have investigated rebate
schemes (e.g. Wolak (2006) and Wolak (2010)). Our experiment implements load-shifting
(both increases and decreases) incentives using rebates. Ito (2015) studies the asymmetries
in rebate schemes for the case of energy efficiency investments.

Finally, we consider both financial incentive and environmental motivation
interventions to move electricity consumption into and away from the target time intervals.
We add to the literature where Ito et al. (2018) compares the effects of financial incentives
on electricity demand with the effects of an environmental motivation.

4. Description of Experiment and Data Collected for Empirical Analysis

The experiment was conducted in collaboration with the energy company SE9 one of
the largest electricity retailers in Denmark. Participants were recruited through e-mails sent

9SE, https://www.se.dk/
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to customers that had given SE permission to contact them by e-mail10. In April 2015, these
customers were notified of the existence of a new SE program called MOVEPOWER. A
randomly selected set of customers were told that they could earn a rebate if they moved
their energy consumption into or away from particular time slots and that information
about the relevant time slots would be sent to them though a text to their cell phone
(see an English translation of the e-mail text in Appendix B-2). The remaining randomly
selected customers were told that SE would invest in additional GHG emissions-free energy
production equal to the amount of energy customers moved in accordance with the text
messages they received (see an English translation of e-mail text in Appendix B-3).

The SE-customers contacted were randomized across seven different treatments. The
customers receiving the financial incentive e-mail were randomly offered a 5%, 20%, or
50% rebate on all energy moved in accordance with the text messages (calculated based
on SE’s retail electricity price regardless of the price paid by the customer). Customers
receiving the GHG emissions-free production e-mails, were randomly assigned to four
types of messages promising that all energy moved in accordance with the text messages led
to a commitment by SE to increase investments in GHG emissions-free energy production
that matched the amount of energy moved. The four environmental motivation treatments
only reflect slight differences in the wording of how this information was conveyed to
the consumers. Consequently, which of the three rebate groups or the four environmental
motivation treatments a customer is assigned to is the result of the initial invitation to
participate in the experiment they were sent and their decision to accept or reject this
invitation.

To participate in the experiment, customers were asked to click on a link in the e-mail
to a dedicated SE-website where they were asked to inform SE of the cellphone number to
which text messages should be sent and given additional information (see Appendix B-4
to B-6 for more details). Here they were also told that the program would be evaluated by
researchers after the first year and that rebate payment and GHG-free energy investments
for the first year would be made at that time. In total, 735 customers signed up for the
rebate-based program and 1,061 customers signed up for the GHG emissions-free energy
program.

10For this part of the experiment, e-mail invitations were sent to the 23,935 customers randomly selected
from SE’s database identified as residential households. This e-mail contact database contains 36,083
residential households out of SE’s more than 247,000 residential customers in southern Denmark.
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The first text messages were sent on the June 4, 2015 and the experiment was terminated
on February 7, 2016.11 Customers were prompted via text messages to their cell phones
a few hours in advance on the same day they were supposed to move energy. Customers
were notified an average of 1.2 times per week of the three-hour time slots in which a
rebate could be earned. The text message notified them of the target time slot and whether
they should move energy into or away from the target time slot that day in order to earn
the rebate or ensure GHG emissions-free electricity production. The text message also
reminded them of the rebate percent on the standard rate that they would earn or the GHG
emissions-free energy production they would ensure by moving energy in accordance with
the text message (see the Appendix C for English translations of sample text messages).

The target time slots for into and away from events for each participating customer
varied randomly across the days of the week, between different three-hour time slots (10
am to 1 pm; 3 pm to 6 pm; 6 pm to 9 pm; 9 pm to 12 am, and 12 am to 3 am). The amount of
prior notification typically varied from 2 hours to 19 hours in advance of the target 3-hour
time slot. All interventions were randomly assigned to require moving consumption into

or moving consumption away from the target 3-hour time slot. All consumers had interval
meters that recorded their hourly consumption each day, making it possible to calculate
their consumption during the relevant Into and Away time slots.

Each month customers received an e-mail with feedback comparing their performance
at moving their consumption with that of other participants (see Appendix D). However,
it was not possible for customers to deduce how much energy they had actually moved
during a given month from this relative feedback. Customers were not informed of their
actual rebate earnings or of the actual quantity of energy moved prior to February 7, 2016.
They were also not informed about precisely how SE would calculate how much energy
they had moved or how much rebate they had earned.12

After the experiment was terminated, rebates were calculated and the amount of kWhs
of GHG emissions-free energy production due for each customer. Rebates were then paid to
customers and earned GHG emissions-free kWhs reported. We estimated energy movement

11The part of the experiment we report results for here was terminated at this date and the dataset used in
our empirical analysis ends on this date.

12Customers could contact SE’s help desk which had dedicated service personal who had been instructed
about the experiment who registered all questions and answers. No one contacted the help desk about the
size of their earned rebates or GHG-free energy production or how these magnitudes were calculated.
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that each customer would be compensated for using a variant of the model estimates
described below. However, because these estimates for individual households were based
on a statistical model, we rounded up rebate refunds and credited GHG emissions-free
kWhs so that most customers were actually paid or credited GHG emissions-free energy in
excess of what they rationally would have expected. However, this positive surprise was
not announced to them before or during the experiment and so it could not have affected
the participant’s behavior during the experiment. All communication with customers from
the initial recruitment e-mail to text messages and feedback was done by SE through their
mail server and text message service using their letterhead and logo.13

Because of our focus on recovering selection-corrected estimates of the impact of
Into and Away interventions, we perform all of our empirical analyses with electricity
consumption data from customers that we were able to match with Statistics Denmark
demographic data. This enables us to attribute the difference between our ordinary
least squares and the selection-corrected estimates of the impact of our Into and Away

interventions to the self-selection of SE customers to participate in our experiment. For
both the rebate and environmental inventions we lose very few experiment participants by
excluding customers we were unable to match with the Statistics Denmark demographic
data. The number of participants in the rebate treatments–624–is lower than the 735 who
signed up because we randomly selected some of these customers for other interventions
involving rebates combined with other treatments. However, out of these 624 customers,
611 could be matched with demographic data from Statistics Denmark. The number of
participants in the environmental motivation treatments–792–is lower then the 1,061 who
signed up because we randomly assigned some of these customers to other interventions
involving environmental motivations combined with other treatments. However, out
of these 792 customers, 784 could be matched with demographic data from Statistics
Denmark.

Table 1 presents summary statistics on the number of households with matching
demographic data from Statistics Denmark participating in the three rebate treatments
and the environmental motivation treatment and the average number of treatment and

13All communications with SE’s customers were approved by the marketing division of SE. Customers
with questions could contact SE’s help desk, which had dedicated customer service personal familiar with
the experiment. As noted above, customers were informed that the scheme would be evaluated by researchers
and possibly discontinued after the first year.
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non-treatment days for each group.14

Table 1: Summary Statistics for Participants

5%
rebate

20%
rebate

50%
rebate Envr.

Number of customers 318 179 114 784
Average number of time slots per
customer
With Into treatmenti 45.71 45 44.97 45.6
With Away treatmentii 21.45 20.28 20.17 21.1
With no treatmentiii 911.21 913.75 922.20 912.4

i 27% of the Into treatments are in the time slot 10-13, 23% are 15-18, 23% are 18-21, 19% are 21-24,
and 8% are 24-3.
ii 20% of the Away treatments are in the time slot 10-13, 30% are 15-18, 30% are 18-21, 14% are
21-24, and 6% are 24-3.
iii All potential treatment periods in the timeslot 10-13, 15-18, 18-21, 21-24 and 24-3 on days with no
treatments. Twenty percent of the potential treatments are in the time slots 10-13, 15-18, 18-21, 21-24,
and 24-3.

5. Estimation Procedure and Empirical Results

In this section we estimate a number of average treatment effects for each of the
three rebate groups and the environmental motivation group. We first estimate the
average treatment effect for the population of customers that decided to participate in
our experiment. We then examine the extent to which our results change when we
account for the self-selection of SE customers to participate in the experiment using the
semimparametric Ahn and Powell (1993) estimator. We estimate both models separately
for the sample of rebate customers and the sample of environmental motivation customers
that we were able to match to demographic data from Statistics Denmark.

The average treatment effect for the population of customers that decided to participate
in our experiment can be recovered from a difference-in-difference estimator because
customers in each of the treatment groups are randomly assigned to receive treatments

14There are four environmental motivation treatment groups. As shown in Appendices B-5 and B-6,
the four environmental motivation groups differ only slightly in wording of the supplementary information
provided just after the initial invitation, whereas all of the initial e-mail invitations were identical for the four
groups. In Supplementary material appendix SA we estimate the treatment effect model presented later in
the paper for each group and find no statistical difference between parameter estimates for each group. In the
rest of the paper we present pooled regressions for the environmental motivation treatments.
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(via text messages) across and within days. This implies that customers in our sample not
experiencing a treatment event in that time interval or day are serving as the “control”
group used to estimate the treatment effect for that day. This logic implies that these
difference-in-difference estimation procedures are recovering the average treatment effect
for customers receiving rebates and the environmental motivation intervention for the
population of customers that participated in the experiment.

To estimate the selection-corrected estimates of the treatment effects for the population
of SE residential customers for an Into or Away event for the rebate and environmental
treatment groups we estimate a flexible model for the conditional mean of the binary
decision of an invited household to participate in the experiment as a function of the
characteristics of the invitation given to that household and a variety of household-level
demographic characteristics compiled by Statistics Denmark. Following the procedure
outlined by Ahn and Powell (1993), we use the fitted value of this conditional mean
function and the assumption of continuity of the underlying selection function that depends
on the conditional mean of the decision to participate in the experiment to estimate six
Into and Away coefficients nonparametrically controlling for the selection mechanism. As
discussed in the following section, these six coefficients are the Away and Into effects and
the Before and After effects for both Away and Into events.

5.1. Treatment Effects for the Experiment Population

Because we are interested in quantifying whether Into events led to reduced
consumption in periods that surround a treatment period and whether Away events cause
increased consumption in periods that surround a treatment period, for each treatment
group we define six indicators, three for the Into treatment and three for the Away treatment.
The first variable, Awayritd, is equal to 1 for incentive r (r = 5 percent, 20 percent, 50
percent and environmental motivation), if customer i in time period t, of day d received
an Away notification for that time period and day, and the variable is equal to zero for all
other time periods in the sample. The second variable, Be f oreAwayritd, is equal to 1 for
all time periods after an Away notification was sent to consumer i with incentive level r

and before the actual Away time period occurred for this customer and is equal to zero for
all other time periods in the sample. The third variable, A f terAwayritd, is equal to 1 for
as many hours after the Away event as the associated Be f oreAwayritd variable is equal to
1 and it is equal to zero for all other time periods in the sample. The idea of including
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the Be f oreAwayritd and A f terAwayritd variables in the regression is to determine if shifting
energy consumption away from a given time period during an Away event within the day
leads to higher or lower consumption immediately after being notified of the event up to
the event time period and after the Away event for a length of time equal to the advance
notice the customer received for this Away event.

Three analogous variables are defined for the Into events. The variable, Intoritd is equal
to 1 for rebate level r if customer i in time period t of day d received an Into notification
for that time period and day and equal to zero for all other time periods in the sample.
Be f oreIntoritd is equal to 1 for all time periods after an Into notification was sent to
consumer i with rebate level r and before the actual Into time period occurred for this
customer and is equal to zero for all other time periods in the sample. A f terIntoritd is equal
to 1 for as many hours after the Into event as the Be f oreIntoritd variable was equal to 1 for
the same Into event and is equal to zero for all other time periods in the sample. Again,
these variables are included to determine if shifting energy into a given time period leads to
lower or higher consumption immediately after being notified of the event up to the event
time and after the Into event for the length of time equal to amount of advance notice the
customer received for this Into event.

For the purposes of the experiment, the day is divided into 9 time periods, t = 1, 2, ..., 9.
They are: 3 am to 6 am, 6 am to 7 am, 7 am to 10 am, 10 am to 1 pm, 1 pm to 3 pm, 3
pm to 6 pm, 6 pm to 9 pm, 9 pm to 12 am, and 12 am 3 am. Treatment events for both the
rebate and environmental motivation samples were only declared during the 10 am to 1 pm
period and the last four 3-hour time periods.

Let yitd equal the natural logarithm of electricity consumption in kilowatt-hours (kWh)
per hour by customer i during period t of day d.15 In terms of this notation, we estimate
the following regression for each of the four samples of customers, r = 5%, 20%, 50%, and
environmental motivation:

15We normalize the energy consumption in each of the nine time periods by the number of hours in that
time period to account for differences in the number hours in these time periods of the day. This normalization
makes it possible to apply our treatment effects estimates to counterfactual Into and AWay events of shorter and
longer time periods than the length of the Before, During, and After Into and Away events in our experiment
period.
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yitd = µt + νi + ηd + β1Be f oreIntoritd + β2Intoritd + β3A f terIntoritd

+ α1Be f oreAwayritd + α2Awayritd + α3A f terAwayritd + εitd

where the µt (t=1,2,...,9) are period-of-day fixed effects, the νi (i=1,2,. . . ,I) are customer
fixed effects, the ηd (d=1,2,..,D) are day-of-sample fixed effects, and the εitd are mean zero
regression disturbances that are independently distributed of the regressors, Be f oreIntoritd,
Intoritd, A f terIntoritd, Be f oreAwayritd, Awayritd, and A f terAwayritd, because both Away

and Into events are draw randomly both across customers and over time.

Table 2: Estimation Results for 5%, 20%, 50% Rebate and Environmental Motivation

Dependent variable: log(kWh per hour)

5% Rebate 20% Rebate 50% Rebate Envr.

Regressor

BeforeInto -0.0082 -0.0082 -0.0066 -0.0055
(0.0016) (0.0025) (0.0029) (0.0012)

Into 0.0320 0.0319 0.0496 0.0236
(0.0029) (0.0039) (0.0062) (0.0017)

AfterInto -0.0033 -0.0041 0.0019 -0.0010
(0.0013) (0.0020) (0.0021) (0.0010)

BeforeAway
0.0038 -0.0001 0.0026 -0.0003

(0.0023) (0.0032) (0.0036) (0.0015)

Away -0.0147 -0.0122 -0.0137 -0.0095
(0.0029) (0.0038) (0.0044) (0.0017)

AfterAway 0.0026 -0.0014 -0.0007 0.0013
(0.0020) (0.0030) (0.0034) (0.0013)

N 707,346 389,880 253,179 1,743,167
Note: Robust standard errors (in parentheses) computed as in Arellano (1987).

The first column of numbers in Table 2 presents the estimates of (β1, β2, β3, α1, α2,
α3)′ for the 5 percent rebate level intervention. The second column presents the 20 percent
rebate level estimates, the third column presents the estimates for the 50 percent rebate
sample and the fourth column presents the estimates for the envihronmental motivation
sample. To account for arbitrary forms of autocorrelation in the εitd across time periods and
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days in the sample for each customer and the possibility that this pattern of autocorrelation
could differ across customers, we report the Arellano (1987) standard errors that are robust
to this form of heteroscedasticity and autocorrelation in the values of εitd. The bottom
row of each column lists the total number of combined time period, day, and customer
observations used to estimate each regression.

Looking at the three rebate treatments the first result of note is the uniformly two to
three times larger in absolute value coefficient on Intoritd versus Awayritd. The Into average
treatment effect for rebates ranges from a 3.20 = 100*(exp(0.0319)-1) percent to 5.08 =

100*(exp(0.0496)-1) percent increase in consumption during the treatment period, and is
significantly larger for the 50 percent rebate level relative to the 5 percent and 20 percent
rebate level. The Away average treatment effect is between -1.21 = 100*(exp(-0.0122)-1)
and -1.46 = 100*(exp(-0.0147) -1) percent for all rebate levels, with the highest percentage
reduction occurring for the 5 percent rebate level. In Supplementary material appendix SC
we present a simple theoretical model of household-level demand under uncertainty that
rationalizes the divergence between the Into and Away coefficient estimates for the rebate
and the environmental treatments.

A second result is the fact that both before and after an Into event, consumption
is significantly lower relative to the control group. These results are very encouraging
for using Into treatments to achieve targeted demand increases surrounded by demand
reductions. Only for the 5 percent Away treatment is there some evidence that consumption
is higher relative to the control before and after an Away event.

Turning to the environmental motivation treatment sample in the last column of Table
2, the same qualitative results hold as for the rebate treatments. The absolute value of
the Into treatment effect is 2.39 = 100*(exp(0.0236)-1) percent, whereas the absolute
value of the Away treatment effect is almost one-third that magnitude in absolute value
at -0.95 = 100*(exp(-0.0095)-1) percent. In addition, there is stronger evidence that
shifting consumption into a time period leads to lower consumption in the time periods
that surround that period than there is evidence that shifting consumption away from a time
period leads to higher consumption in the surrounding periods.

To investigate whether the estimation results for the Be f oreAwayritd and A f terAwayritd

for the different rebate levels is due to the sample size differences shown in Table 2, we also
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estimate a pooled version of the model which imposes the restriction that all three rebate
groups have the same time-period-in-the-day fixed effects and the same day-of-sample fixed
effects. Specifically, we estimate the following pooled regression across the three rebate
groups:

yitd = µt + νi + ηd +
∑

r=5,20,50

[
β1rBe f oreIntoritd + β2rIntoritd + β3rA f terIntoritd

+ α1rBe f oreAwayritd + α2rAwayritd + α3rA f terAwayritd

]
+ εitd

Table 3 reports the results of estimating this regression along with Arellano (1987) standard
error estimates. The major change in the results from rebate-level-specific regressions is
the larger in absolute value coefficient on Intoritd for the 50 percent rebate levels and the
smaller in absolute value coefficient on Awayritd for the 50 percent rebate level. Otherwise,
the same qualitative conclusions from the results in Table 2 hold for Table 3. For the same
rebate percentage, the absolute value of the treatment effects for the Into interventions
are two to three times larger than the corresponding value for the Away interventions. A
significant fraction of the energy that shifts into a treatment period comes from reductions
in consumption during periods after the customer is notified and the Into treatment periods
occurs, as well as immediately after the Into period. To lesser extent, the energy that is
shifted away from the Away period results in increased consumption during periods after
the customer has been notified and the Away treatment period occurs. There is evidence of
increased consumption after the Away event only for the 5 percent rebate group.

We now report the results of several placebo regressions to investigate whether our Into

and Away interventions actually caused the consumption changes presented in Tables 2 and
3. We create the following two indicator variables, both covering periods which were not

treated, and therefore should have no effect: IntoPitd equals 1 in time period t of day d

if this time period is immediately before notification of an Into event given to customer i

with any rebate level and zero in all other time periods and (2) AwayPitd equals 1 in time
period t of day if this time period is immediately before an Away notification is presented
to customer i with any rebate level and zero in all other time periods.

For each rebate level sample and the pooled rebate sample, we add the variables IntoPitd

and AwayPitd to the regression. For each regression we would not expect the coefficient
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Table 3: Pooled Estimation Results for 5%, 20%, and 50% Rebate Levels

Dependent variable: log(kWh per hour)

5% Rebate 20% Rebate 50% Rebate

Regressor

BeforeInto -0.0097 -0.0056 -0.0060
(0.0019) (0.0030) (0.0034)

Into 0.0307 0.0319 0.0534
(0.0031) (0.0042) (0.0064)

AfterInto -0.0036 -0.0030 0.0013
(0.0015) (0.0024) (0.0027)

BeforeAway 0.0029 0.0013 0.0033
(0.0024) (0.0034) (0.0038)

Away -0.0152 -0.0145 -0.0086
(0.0031) (0.0044) (0.0051)

AfterAway 0.0032 -0.0021 -0.0010
(0.0020) (0.0030) (0.0036)

N 1,350,405
Note: Robust standard errors (in parentheses) computed as in Arellano (1987).

on either variable to be nonzero because customers have no economic or environmental
incentive to shift their consumption into or away from time periods when either IntroPitd or
AwayPitd is equal to 1. Table 4 reports these two coefficient estimates along with Arellano
(1987) standard error estimates. With the exception of the IntoPitd for the 5% rebate and
the AwayPitd variable for the 50% rebate, a size 0.05 test of the the null hypothesis that the
coefficient on each of these two variables is zero cannot be rejected. The second to last
column of Table 4 presents estimates of these coefficients that pool the data for all of the
rebate levels. In this case as well, a size 0.05 test of the null hypothesis that the coefficient
on each of these two variables is zero cannot be rejected.

The last column of Table 4 reports the results of estimating this same regression
for the environmental motivation intervention sample with Arellano (1987) standard
estimates. The variable IntoPitd now equals 1 in time period t of day d if this time
period is immediately before notification of an Into event is given to customer i for any
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Table 4: Placebo Estimates of Impact of Treatments

Dependent variable: log(kWh per hour)

5% Rebate 20% Rebate 50% Rebate

Pooled
Rebate
Sample Envr.

Regressor

IntoP -0.0047 -0.0046 0.0052 -0.0028 -0.0019
(0.0020) (0.0030) (0.0040) (0.0016) (0.0014)

AwayP 0.0020 -0.0025 -0.0089 -0.0013 0.0009
(0.0026) (0.0036) (0.0032) (0.0018) (0.0016)

N 707,346 389,880 253,179 1,350,405 1,743,167
Note: Robust standard errors (in parentheses) computed as in Arellano (1987).

environmental motivation treatment and zero in all other time periods and AwayPitd equals
1 in time period t of day if this time period is immediately before an Away intervention is
given to customer i for any environmental motivation treatment and zero in all other time
periods. In this case as well, a size 0.05 test of the null hypothesis that each of these two
coefficients are zero cannot be rejected.

The results in Table 4 are broadly consistent with the Into and Away consumption
shifting estimates presented in the previous section being caused by our rebate and
environmental motivation treatments.

5.2. Selection Corrected Estimates of Experimental Results

This section presents estimates of the models in Tables 2 to 4 that account for
the decision of invited SE households to participate in the experiment. The first step
in computing selection-corrected estimates is to estimate the conditional probability of
participating in the experiment as a function of characteristics of the invitation sent to
the customer and demographics and home characteristics for the customer obtained from
Statistics Denmark. The next step takes the value of this conditional probability of
participating in the experiment for each customer and uses it to construct a nonparametric
(in the sense described below) selection-corrected estimate of the parameters of the models
presented in Tables 2 to 4.
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The first-step in estimating the semiparametric selection model is an estimate of the
conditional mean of the decision of a customer to participate in the experiment. To do
this, we first match each SE customer that was invited to participate in our experiment
to its demographic and home characteristics from Statistics Denmark. Out of the 23,935
customers invited, 22,658 could be matched with data from Statistics Denmark, which
implies our estimation sample size is 22,658.16

Empirical evidence that selection may be an issue can be obtained from comparing the
mean characteristics of the invitation for those that participated in the experiment and those
that did not. Table 5 gives these sample means, the difference between these sample means,
and the estimated standard error of the difference.17 Supplementary material Appendix SB
gives the variable definitions for each variable in Table 5. For the majority of the variables,
the means are statistically different between customers that did and did not participate in the
experiment. For instance, customers offered higher rebates were more likely to participate
in the experiment. We also performed a multivariate difference of means test for the joint
null hypothesis that all nine means are equal and obtained a test statistic equal to 151.6,
which is substantially larger than the critical value for virtually any nonzero size test of this
null hypothesis.18

Appendix B-1 reports the same four magnitudes for each of the customer demographic
and home characteristics variables for customers that participated in the experiment and
those that did not. Supplementary material Appendix SB gives the variable definitions for
each variable listed in Appendix B-1. For virtually all of the variables, the mean for those
who participated is statistically different from mean of those who did not participate. A
joint test that all 31 means are equal yields a test statistic equal to 554.6, which is much
larger than the critical value for virtually any nonzero size test of the null hypothesis.

16Recall that this process resulted in 611 of 624 customers that participated in the rebate portion of
the experiment and 784 of 792 customers that participated in the environmental motivation portion of the
experiment in our estimation sample.

17The estimated standard error of the difference in means is equal to SE(Diff) =

√
(sParticipate)2

NParticipate
+

(sNot Participate)2

NNot Participate
,

where (sk)2 is the sample variance of the variable and Nk is the number of observations used to compute this
sample variance for group k = Participate or Not Participate.

18The test statistic is equal to (X̄Participate − X̄Not Participate)′[ Σ̂Participate

NParticipate
+

Σ̂Not Participate

NNot Participate
]−1(X̄Participate −

X̄Not Participate), where X̄k is the sample mean and Σ̂k is the sample covariance matrix of the vector X for
group k = Participate or Not Participate. This statistic is asymptotically distributed as a χ2

j , where j is the
dimension of X, under the null hypothesis.
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Table 5: Summary Statistics for Invitation Variables

Mean (Participate=0) Mean (Participate=1) Diff. Std. Error

Second Wave 0.5044 0.4516 0.0529 0.0123

5% Rebate 0.1694 0.2385 -0.0691 0.0105

20% Rebate 0.0756 0.1025 -0.0269 0.0075

50% Rebate 0.0400 0.0652 -0.0252 0.0060

Environmental Signal 0.7150 0.5938 0.1213 0.0121

Foot in the Door with Price Motive 0.1407 0.2147 -0.0740 0.0101

Foot in the Door with Envi. Motive 0.3567 0.3025 0.0542 0.0114

Offered Device 0.3305 0.3320 -0.0015 0.0117

Note: There are 1,765 individuals who participated, and 20,893 who did not.

A joint test that the means of all 40 invitation and customer demographic and home
characteristics are jointly equal yields a test statistic 713.0, which is larger than the critical
value for virtually any size test of the null hypothesis. The results in Tables 5 and 6 provide
strong evidence that selection into the experiment was not independent of the values of
invitation variables and demographic and home characteristics variables.

Let gi equal E(Di = 1|wi) where Di = 1 if customer i chose to participate in the
experiment and wi is a K-dimensional vector of invitation and demographic and dwelling
characteristics for customer i listed in Tables 5 and 6. Although we focus on rebates for
energy moved and green energy investment commitments for energy moved during Into

and Away events, our conditional mean of participation estimation procedure accounts for
all possible inducements. We employ a multivariate kernel regression to estimate gi:

E(Di = 1|wi) = gi =

∑N
j=1 D jkH(wi − w j)∑N

j=1 kH(wi − w j)

where kH(s) is the multivariate normal kernel kH(s) = (2π)−K/2|H|−1/2exp(−1
2 s′H−1t) for

s ∈ RK and H is a (K ×K) diagonal matrix of smoothing parameters that we estimate using
cross-validation. Let ĝi equal the estimated value of this conditional mean from our kernel
regression estimation for the cross-validated value of H. Figure 3 plots the histogram of
values ĝi for D j = 1 and D j = 0. There is overlap in the supports of the histograms of the
ĝ j for D j = 1 and D j = 0. As a robustness check of our kernel regression procedure, we
also estimated a flexible probit including wi and squares and interactions of the elements
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of wi and obtained histograms of ĝ j for D j = 1 and D j = 0 with more support in common,
although the selection-corrected estimation results reported in this section did not change
significantly if we used this estimate of ĝ j instead of the one obtained from our kernel
regression.

Figure 3: Histogram of Propensity Scores by Participation
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The Ahn and Powell (1993) estimator relies on continuity of the selection function λ(·)
in the conditional mean function, gi, to difference out the unknown selection function in the
regression equation. Selection-corrected estimates of the coefficients of the original model
are obtained from a regression involving all pairwise differences of observations.

To operationalize this intuition consider the following observation for time period t of
day d of the selection-corrected equation for our rebate sample:

yitd = µt + νi + ηd + X′itdΓ + λtd(gi) + uitd (1)

where Xitd contains the six Into and Away regressors. The vector Γ is the associated vector
regression coefficients. The function is λtd(·) is unknown, but is assumed to be continuous
in its argument, gi. Note that this function is allowed to vary across both time periods, t,
and days in the sample, d, to account for the fact that the dependence between a customer’s
decision to participate in the experiment and their consumption during the experiment can
differ across time periods and days.
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To account for the presence of customer specific fixed-effects we compute the mean of
each variable over all time periods and days in the sample to obtain:

ȳi = µ̄ + νi + η̄ + X̄i
′
Γ + λ(gi) + ūi (2)

where Z̄ ≡ 1
9D

∑D
d=1

∑9
t=1 Ztd for any variable Ztd to account for the fact that there are D days

in our sample and 9 consumption periods in each day. Subtracting equation (2) from (1)
yields:

(yitd − ȳi) = (µt − µ̄) + (ηd − η̄) + (Xitd − X̄i)′Γ + (λtd(gi) − λ(gi)) + (uitd − ūi) (3)

Define y∗itd ≡ (yitd − ȳi). Equation (3) can be re-written in this notation as:

y∗itd = µ∗t + η∗d + X∗
′

itdΓ + λtd(gi)∗ + u∗itd (4)

Taking the difference between the observations of equation (4) for the same day and
period of the day for customer i and customer j, for individuals with gi ≈ g j yields:

y∗itd − y∗jtd = (X∗
′

itd − X∗
′

jtd)Γ + [λtd(gi)∗ − λtd(g j)∗] + [u∗itd − u∗jtd]

≈ (X∗itd − X∗jtd)′Γ + [u∗itd − u∗jtd]

The second ≈ follows from the fact that the λtd(g) are assumed to be continuous in g, that if
gi = g j then λtd(gi)∗ = λtd(g j)∗ for all t and d. As discussed by Ahn and Powell (1993), this
result is also the reason that the estimator provides a nonparametric selection correction,
because the functional form for λtd does not need to be specified, in order to obtain a
consistent estimate of Γ. The estimator of the elements of Γ assigns weights to each pair of
observations in the sample that participated in the experiment, with a smaller weight given
to pairs of observations with larger values of |ĝi − ĝ j|. Let the weight assigned to the (i, j)
pair of observations equal

ω̂i j ≡
1
hS

K(
ĝi − ĝ j

hS
)DiD j

where K(s) = 3
4 (1 − s2) for |s| ≤ 1 is the Epanechnikov kernel, and hS > 0 is a smoothing

parameter. The smoothing parameter, hS , is chosen to be consistent with the rate restrictions
in Assumption 3.6 in Ahn and Powell (1987). We experimented with values hS that were
one-half to twice the value used and found that our estimates of the elements of Γ only
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changed in the second and third significant digits.

Our estimate of Γ is equal to:

Γ̂ = [Ŝ xx]−1Ŝ xy,

where the (K × K) matrix

Ŝ xx =
1

9D

D∑
d=1

9∑
t=1

Ŝ xx(t, d)

and the (K × 1) vector

Ŝ xy =
1

9D

D∑
d=1

9∑
t=1

Ŝ xy(t, d),

where K is the dimension of the Γ vector for the regression. These components of Γ̂ depend
on:

Ŝ xx(t, d) =

(
ntd

2

)−1 ntd−1∑
i=1

ntd∑
j=i+1

ω̂i j(X∗itd − X∗jtd)(X∗itd − X∗jtd)′

Ŝ xy(t, d) =

(
ntd

2

)−1 ntd−1∑
i=1

ntd∑
j=i+1

ω̂i j(X∗itd − X∗jtd)(y∗itd − y∗jtd),

where ntd is the total number of customers in our sample during time period t of day d.
Following the logic of Ahn and Powell (1993), we can prove that

√
n(Γ̂ − Γ) converges

in distribution to a N(0,Σ−1
xx Ωxx[Σ−1

xx ]′) random variable where n =
∑D

d=1
∑9

t=1 ntd, the total
number of observations in our sample. Appendix A derives expressions for consistent
estimates of Σxx and Ωxx that are used to construct our standard error estimates. We estimate
the models in Tables 2 to 4 using this selection-corrected estimator and the values of ĝi from
our kernel regression estimate of E(Di = 1|wi) = g(wi).

A general result across all of the selection-corrected estimates in Tables 6 to 8 is slightly
smaller in absolute value coefficient estimates for the three Into coefficients and the three
Away coefficients relative to the corresponding coefficients in Tables 2 to 4. This result is
consistent with the logic that those customers invited to participate in the experiment that
accepted are those likely to be more responsive to our Into and Away interventions.
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Table 6: Replication of Table 2 (Separate Estimation Results for 5%, 20%, 50%
Rebate Levels and Environmental Motivation) using censored selection method

Dependent variable: log(kWh per hour)

5% Rebate 20% Rebate 50% Rebate Envr.

Regressor

BeforeInto -0.0080 -0.0100 -0.0077 -0.0048
(0.0018) (0.0027) (0.0031) (0.0013)

Into 0.0310 0.0308 0.0502 0.0230
(0.0031) (0.0042) (0.0074) (0.0021)

AfterInto -0.0019 -0.0025 0.0028 0.0018
(0.0013) (0.0022) (0.0026) (0.0010)

Bef.Away 0.0046 0.0009 0.0035 0.0009
(0.0025) (0.0034) (0.0038) (0.0017)

Away -0.0105 -0.0092 -0.0068 -0.0038
(0.0030) (0.0040) (0.0047) (0.0020)

AfterAway 0.0028 -0.0019 -0.0010 0.0025
(0.0021) (0.0032) (0.0043) (0.0015)

N 707,346 389,880 253,179 1,743,167

Notes: Standard errors (in parentheses) computed as described in Appendix A. For each
rebate-level, the Wu-Hausman test statistic of the null hypothesis that Γ̂OLS = Γ̂Ahn-Powell is
asymptotically χ2(6). The realized test statistic is 147.637 for the 5%-rebate group, 12.784 for
the 20%-rebate group, and 17.980 for the 50%-rebate group, corresponding to p-values of 0.000,
0.047, and 0.006 respectively.

There is also a remarkable degree of agreement between our original results and the
selection-corrected results for both the three rebate levels and the environmental motivation
treatment both in terms of the relative magnitude and precision of the three Into parameter
estimates relative to the Away parameter estimates.
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Table 7: Replication of Table 3 (Pooled Estimation Results for 5%, 20%, and 50%
Rebate Levels) using censored selection method

Dependent variable: log(kWh per hour)

5% Rebate 20% Rebate 50% Rebate

Regressor

BeforeInto -0.0097 -0.0080 -0.0062
(0.0021) (0.0035) (0.0036)

Into 0.0292 0.0312 0.0554
(0.0035) (0.0046) (0.0075)

AfterInto -0.0015 -0.0021 0.0007
(0.0015) (0.0026) (0.0029)

BeforeAway 0.0031 0.0018 0.0066
(0.0027) (0.0037) (0.0042)

Away -0.0128 -0.0101 0.0013
(0.0032) (0.0048) (0.0055)

AfterAway 0.0033 -0.0020 -0.0022
(0.0021) (0.0032) (0.0043)

N 1,350,405

Notes: Standard errors (in parentheses) computed as described in Appendix A. The Wu-Hausman
test statistic of the null hypothesis that Γ̂OLS = Γ̂Ahn-Powell is asymptotically χ2(18). The realized test
statistic is 1,812.609, corresponding to a p-value of 0.000.

The Into coefficient estimates for both the price and environmental treatments are at
least two to three times the absolute value of the Away coefficient estimates for the same
rebate level or environmental incentive. For both treatments, the BeforeInto and AfterInto

coefficient estimates are significantly larger in absolute value and more precisely estimated
than the BeforeAway and AfterAway coefficient estimates.

The notes below each table report the results of the Durbin-Wu-Hausman test of the null
hypothesis plim(Γ̂OLS − Γ̂Ahn−Powell) = 0. For the rebate-level models, pooled rebate model,
and the environmental motivation model this null hypothesis is rejected for a size 0.05 test.
Different from the results in Table 4, for all of our selection-corrected placebo estimates of
the coefficients on the variables IntoP and AwayP, a size 0.05 test of null hypothesis of a
zero coefficient associated with each variable in the table cannot be rejected.
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Table 8: Replication of Table 4 (Placebo Estimates of Impact of Treatments) using censored
selection method

Dependent variable: log(kWh per hour)

5% Rebate 20% Rebate 50% Rebate

Pooled
Rebate
Sample Envr.

Regressor

IntoP -0.0021 -0.0011 0.0060 -0.0003 0.0017
(0.0023) (0.0032) (0.0040) (0.0017) (0.0015)

AwayP 0.0015 -0.0010 -0.0051 -0.0007 0.0017
(0.0028) (0.0039) (0.0034) (0.0020) (0.0021)

N 707,346 389,880 253,179 1,350,405 1,743,167

Notes: Standard errors (in parentheses) computed as described in Appendix A.

These results demonstrate that self-selection of customers into the experiment results in
statistically different estimates of the impacts of our Into and Away interventions. However,
our major empirical result that Into interventions imply two to three times larger in absolute
value movements of electricity consumption relative to Away events is preserved. Different
from the case of our OLS results, the placebo estimates in Table 8 provide no empirical
evidence against the hypothesis that the estimated impacts in Tables 6 and 7 are caused by
our experimental interventions.

6. Customer, Firm and Environmental Benefits of Into versus Away Events

To demonstrate how both Into and Away events can provide economic benefits
electricity retailers and consumers and reduce GHG emissions in Denmark, we first present
the empirical distribution of net impacts of Into and Away events for our selection-corrected
estimates in Table 6 during our sample period. We compute the net impact of each
intervention during our sample period as well the decomposition of this net impact into the
Before, During, and After periods. These results reveal that for a majority customers and
rebate levels, Into events imply net increases in daily electricity consumption. For Away

events there is typically a modest reduction in daily consumption. However, the largest
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daily consumption reductions are from Into events, because the total consumption reduction
before and after the Into events is significantly larger than the increase in consumption
during the Into event.

For all Into events, our parameter estimates imply that both Before and After periods
experience reductions in consumption, particularly for the 5% and 20% rebate levels.
This suggests that with careful timing and the appropriate amount of advance notice,
the declaration of Into events can shift consumption into time periods with over-supply
of renewable electricity production that otherwise would be exported from Denmark or
curtailed. If the reduction in consumption comes from time periods when a marginal
increase in electricity consumption is served by fossil fuel units, an Into event could also
yield a reduction in daily GHG emissions. This Into event also could save SE wholesale
energy costs if, as shown in Figure 2, wholesale electricity prices during time periods with
an over-supply of renewable energy to Denmark are significantly lower than prices during
surrounding periods. Finally, SE customers responding to the Into event could benefit from
a lower bill if the difference between the increase in their payments for retail electricity
from moving their consumption throughout the day minus the rebates they receive for these
actions is negative.

We investigate whether the simultaneous combination of customer benefits, retailer
benefits, and environmental benefits could occur using our selection-corrected parameter
estimates to compute the effects on electricity production, wholesale energy costs and net
revenues to SE from implementing Away and Into events for all of its customers. Using
hourly supply and demand data from Nordpool, the wholesale electricity market operating
in the Nordic countries, we identify isolated renewable oversupply events in Denmark
between January 1, 2016 and June 30 2020. We simulate the effect on SE’s electricity
demand before and after renewable energy oversupply periods from an appropriately timed
Into or Away event for all of its customers. We then calculate the effect of these events
on SE’s daily demand, its daily wholesale energy costs and profits, and the bills of its
customers.

We also investigate the use of appropriately timed Into and Away events to shift
consumption away from the morning and evening wholesale price peaks and into other
parts of the day. These actions do not systematically affect fossil fuel electricity production
in Denmark because renewable electricity is primarily from wind energy, which is typically
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produced in the early morning and early evening. However, as shown Figure 2, declaring
Into events to shift consumption away from the morning and evening pricing peaks
could deliver economic benefits to consumers and retailers and reduce GHG emissions
in California where renewable electricity production is primarily solar powered. We show
that for the case of Denmark there are Into and Away events that can both reduce customer
bills and increase the retailer profits.

6.1. Net Impacts of Into versus Away Events

To estimate the net impacts of the Into and Away treatments during our sample period,
we need to compute what the customer’s consumption would have been had the intervention
not occurred and subtract it from the customer’s actual consumption which was subject to
the intervention. For the net impact of Into treatments, we compute

φ1id =
∑

t∈Be f oreInto

(1 − exp(−γBe f oreInto))Citd

φ2id =
∑

t∈Into

(1 − exp(−γInto))Citd

φ3id =
∑

t∈A f terInto

(1 − exp(−γA f terInto))Citd

for each consumer i where Citd is customer’s i’s actual consumption during time period t

of day d. γz is the coefficient on the regressor z, estimated from the selection-corrected
models described above. Note that although summations over time periods in Before and
After an event can be over multiple periods, depending on the length of these time periods,
Into is for a single time period in the day. For each customer, i, the net impact of an Into

event at day d is then φ2id + (φ1id + φ3id).

For the net impact of the Away treatments, we compute

ψ1id =
∑

h∈Be f oreAway

(1 − exp(−γBe f oreAway))Citd

ψ2id =
∑

h∈Away

(1 − exp(−γAway))Citd

ψ3id =
∑

h∈A f terAway

(1 − exp(−γA f terAway))Citd
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for each consumer i. The net impact for each i is then ψ2id + (ψ1id + ψ3id).

Figure 4 plots the average hourly consumption in kWhs for each of the nine daily
time periods for SE customers in our experiment. Appendix E Figures E1 to E3 plot the
histogram of the kilowatt-hour net impacts for Into and Away treatments for samples with
a 5%, 20%, and 50% rebate, respectively. Figure E4 plots the histogram of kilowatt-hour
impacts for Before these two types of events for a 5% rebate. Figure E5 plots the histogram
of kilowatt-hour During impacts for these two types of events for a 5% rebate. Figures E6
plots the histogram of kilowatt-hour After impacts for these two types of events for a 5%
rebate.

Figure 4: Average Period-Level Energy Consumption in kWh per Hour for SE Customers

The support of the Before impacts of the Into kilowatt-hour changes in Figure H3 is
significantly larger than the support for Away kilowatt-hour changes. This same result–a
larger support for the impacts of Into consumption changes–holds to a lesser extent for the
After events in Figure E6. Finally, the During impacts in Figure E5 demonstrate the often
more than three times larger in absolute value Into response relative to the Away response,
consistent with the absolute values of the Away and Into coefficients estimates in Table 6.

The 20% and 50% rebate levels produce qualitatively similar results in the sense that
the absolute value of the During events tend to be three times larger for Into versus Away

events and the absolute values of the Before and After coefficients are also larger in absolute
value for Into versus Away events.
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6.2. Into versus Away Events and Periods of Over-Supply of Renewable Powered Electricity

The results of the previous subsection suggest that it may be possible to both reduce
GHG emissions in Denmark, increase retailer profits and reduce customer electricity bills
from Into and Away events. However, there are variety of parameters that the retailers
must set correctly to achieve this outcome. First, shifting consumption from a period
when a marginal increase in demand from SE comes from fossil fuel generation to one
with excess renewable energy production in Denmark holds the potential to reduce daily
GHG emissions in the country. Second, how far in advance an Into or Away event is
declared influences the total amount of electricity moved during the Before and After

periods associated with these events. Third, the length of time an Into or Away event is
declared influences the total amount of energy moved during the event. Fourth, the prices of
wholesale electricity during the Before, During, and After periods influences the magnitude
of wholesale cost savings to SE from an Into or Away event. Finally, the rebate paid to
consumers determines amount of energy moved during these events and also influences
whether the retailer profits from declaring an Into or Away event and whether customers
benefit from lower bills.

A retailer that wants to reduce GHG emissions, increase its profits, and benefit
customers with lower bills must set the features of the rebate scheme to balance a number
of trade-offs. First, higher rebates are more likely to lead to lower bills for consumers, but
this increases the likelihood of lower profits for the retailer. Second, less advance notice
for an Into event may not reduce daily demand enough before and after the Into event to
reduce the customer’s bill, but this outcome increases the retailer’s profits. The retailer
must provide incentives for customers to shift their demand throughout the day to reduce
the retailer’s daily cost of wholesale energy. If this is done without a significant increase
in daily demand by customers, then the retailer can benefit consumers with lower bills by
sharing a portion of this reduction in daily wholesale energy costs through a rebate. The
remainder of the daily wholesale energy costs can go to increase the retailer’s profits. If the
Into action takes place during a period with excess renewable energy, then it is also likely
to reduce GHG emissions in the region.

For this reason, our first counterfactual analysis focuses on isolated two to three hours
periods of excess renewable energy production in Denmark during the January 1, 2016 to
June 30, 2020 time period. We also assume all of our counterfactual Into and Away events
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have the mean length of advance notice during our experiment. For Into events, it is 5
hours 39 minutes and for Away events it is 5 hours on 55 minutes. We also only use rebate
amounts equal to the three used in our experiment. For these reasons, our counterfactual
analysis can be thought of as providing a conservative estimate of the potential for Into and
Away events to simultaneously deliver benefits to retailers, customers and the environment.

During our counterfactual time period, we found fifteen durations of two-hour or
three-hour isolated renewable oversupply periods between 10 am and 8 pm, the time
interval during the day that we felt it was plausible for SE to declare an Into event given
the times of the day that these events were declared during our experiment.19 For each
two-hour oversupply period we simulate the effect of a two-hour Into event targeting this
period and we simulate effects of a two-hour Away event targeting the two hours prior to
this period and a two-hour Away event right after this period. For any three-hour oversupply
period we simulate the effects of a three-hour Into event targeting this period, a three-hour
Away event targeting the three hours prior to the excess renewable energy period and a
three-hour Away event for the three hours after the excess renewable energy period.

Using the estimates of the impact of Into and Away events from the parameter estimates
in Table 6, we can estimate what would happen to aggregate hourly demand if the SE
population of customers all received an Into or Away signal. The change in demand during
the two or three hour oversupply period is equal to:

H(E)∑
h=1

CS E(new, h) −CS E(actual, h)

where CS E(actual, h) is the consumption of SE customers in hour h and CS E(new, h) is
the consumption of SE customers with the impact of the Into or Away event accounted
for and H(E) is the length in hours of the renewable over-supply period. The change in
demand before and after the oversupply period is calculated in the same way where H(E)
is the number of hours impacted by the Into or Away event before and after the oversupply
period.20

19All of these two-hour or three-hour periods were surrounded by a number of hours with renewable energy
production less than the demand for electricity in Denmark, consistent with fossil fuel generation being the
marginal source of electricity during these time periods.

20For example, if notification occurs five hours before an Into or Away event that occurs within a two-hour
period, the total number of hours of the day impacted is 13 hours and 18 minutes: 5 hours and 39 minutes
before the event, 2 hours during the event, and 5 hours and 39 minutes after the event. Note that because the
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Because any increase in demand by SE’s customers during a renewables over-supply
period would most likely be met from reduced exports of renewable energy from Denmark
and any demand reduction in the surrounding periods by SE’s customer is likely to be met
by a reduction in fossil fuel generation in Denmark, this allows us to estimate the effect of
Into and Away events on Denmark’s GHG emissions.

The change in SE’s gross profits from announcing Into and Away events is equal to
increase in retail income from selling electricity to its customers less the total rebates paid
to customers plus the reduction in the cost of purchasing wholesale electricity to serve these
customers:

∆Gross Pro f it = ∆Retail Income − Rebates Paid − ∆Wholesale Cost.

To calculate the effect on wholesale costs, we plug these estimated demand changes into a
model for setting wholesale prices in the Nord Pool each impacted hour and we re-compute
the hourly price for each hour that is impacted by the event. Because SE’s demand is
a very small fraction of the total demand in the Nord Pool, there is little change in the
market-clearing price from the change in SE’s demand due to the Away or Into event. The
total change in wholesale energy costs associated with this price and demand change is
equal to:

H(E)∑
h=1

PW(new, h) ×CS E(new, h) − PW(actual, h) ×CS E(actual, h)

where PW(actual, h) is the Nordpool wholesale price during hour h and PW(new, h) is the
Nordpool price during hour h accounting for the impact of the Into or Away event during
that hour, and H(E) is the number of hours impacted by the Into over Away event. The
effect on SE’s income from sales to its retail customers before the cost of the rebates paid
to customers is calculated in the same way except the Nordpool wholesale price is replaced
with the fixed retail price paid by customers:

H(E)∑
h=1

PR × (CS E(new, h) −CS E(actual, h))

dependent variable of all our models is the logarithm of energy consumption in kWhs per hour during that
time interval, it is straightforward to handle fractions of the hour in computing counterfactual consumption
values before and after the intervention.
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where PR is the retail price paid to SE by its customers. We assume the same retail price of
electricity that prevailed during our experiment period of 27.35 Euro cents per kWh. The
rebate is paid per kWh of energy moved for an Into or Away event is based on this same
average residential price. For example, a 5% rebate would pay 1.37 Euro cents per kWh
moved, 20% rebate would pay 5.47 Euro cents per kWh moved and finally a 50% rebate
would pay 13.68 Euro cents per kWh. Note that the payment is made only for the amount
moved into the designated period for an Into event and the amount moved away from the
designated period for Away event.

We should note that computing the precise profit implications of Into and Away events to
electricity retailers is considerably more complex than the approach we take because of the
significant amount and number of taxes assessed on electricity consumption in Denmark.
These taxes comprise roughly half of a customer’s bill. In addition, it is unclear how
rebates paid under a dynamic pricing tariff involving Into and Away would be taxed, if such
a tariff was ultimately implemented. Nevertheless, the same mechanism would operate for
realizing our three goals of environmental benefits, increased retailer profits, and reduced
customer bills. Specifically, the wholesale cost savings from shifting consumption within
the day to periods with surplus wind energy and from periods with fossil fuel resources
producing energy would have to be large enough to finance the rebates paid to customers
and still leave net wholesale cost reductions to increase the profits of the retailer. If there
is little change in the total consumption by customers during the day, then retailer revenues
for the day would be largely unchanged. The total rebates paid would need to be less than
the total savings in wholesale electricity costs to the retailer in order for customer bills to
be reduced and retailer profits to increase.

For the 5% rebate parameter estimates in Table 6, Appendix F Table F1 presents
information on each excess renewables supply period including the date, time, and length of
the period, SE’s demand change during the Into event and SE’s total demand change before
and after the Into event, SE’s wholesale cost savings using hourly day-ahead wholesale
prices from these changes in consumption before, during, and after the event, the change in
gross retail profits computed as described above, and the change in the total bills (including
rebates) of its customers. Appendix F Table F4 presents the same information using the
5% rebate estimates in Table 6 for an Away event of the same length before each excess
renewables supply period. Appendix F Table F7 repeats this same information for an Away
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event of the same length after each excess renewables supply period. The advance notice
for the Into events is the sample mean of Into events for our experiment and advance notice
for the Away events is sample mean for Away events for our experiment.

Because of how these excess renewable production periods were selected as isolated
consecutive hours of excess renewable production, an Into event should reduce GHG
emissions in Denmark, because of the consumption reduction Before and After the Into

event. The results in Tables F1, F4 and F7 demonstrate the challenges facing retailers in
designing rebate schemes for Into and Away events that achieve all three desired outcomes.
There are a number of events that increase retailer profits and there are number events that
reduce customer bills, but only one event achieves that outcome for the same event. A
two-hour Into event at 2 pm on September 17, 2019 would have reduced customers’ bills
by 345.01 Euros, increased SE’s profits by 43.61 Euros, and reduced Denmark’s GHG
emissions by 13.5 tonnes by applying a 0.5 tonne per MWh marginal GHG emissions rate
to the 27.17 MWh reduction in generation before and after the Into event. Because there
is virtually no change the total consumption for the day, a 27.81 MWh increase and a
27.17 MWh decrease as result of the Into event, retailer revenues for the day would be
largely unchanged. If the taxes paid by the retailer depended only on revenues from retailer
energy sales, the total rebates paid would need to be less than the total savings in wholesale
electricity costs to the retailer in order for customer bills to be reduced and retailer profits
to increase. For the Into event on September 17, 2019, total rebates paid are in fact less
than total wholesale energy cost savings.

There are a number of events where the increase in the retailer’s profits is more than
the increase in customer bills which implies that a lump-sum transfer from the retailer to
consumers would yield an outcome that benefits both parties. For example, the event on
April 8, 2017 implies a 688.65 Euros increase in retailer profits, but only a 636.53 Euros
increase in customer bills, so that a transfer of more than 636.53 Euros from the retailer
to consumers would make both parties better off. Similarly, there are events where the
reduction in customer bills is larger in absolute value than the reduction in retailer profits.
For example, an event on March 18, 2017 finds that customer bills fall by 439.81 Euros,
but retailer profits fall by 143.98 Euros, so a transfer of more than 143.98 Euros from
consumers to the retailer would make both parties better off.

For the Away events in Table F4, none of the excess renewables periods achieves the
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desired outcome. Consumption is typically reduced during the Away period, which implies
reduced wholesale energy costs for the retailer. The increase in consumption Before and
After the Away period increases customer bills more than the amount of rebates paid for
the modest amount of energy moved during the Away event. This higher bill increases the
retailer’s profits. However, there are still a few instances where transfers from the retailer
to consumers could yield an outcome that benefits both parties. For example, on December
26, 2016 the retailer’s profits increase by 799.44 Euros whereas the customer bills increase
by only 742.17 Euros.

The Away results in Table F7 are similar to the results in Table F4 for wholesale energy
costs, retailer profits, and customer bills. Again, there are a few instances where transfers
from the retailer to consumers could yield an outcome that benefits both parties. For
example, on February 22, 2017 the retailer’s profits increase by 286.44 Euros whereas
the customer bills increase by only 275.68 Euros.

For the 20% and 50% rebate levels, none of the excess renewables periods achieve the
desired outcome for Into events. These results are shown in Tables F2 and F3 in Appendix
F. Both rebate levels imply reductions in Denmark’s GHG emissions for all of the excess
renewables periods because of the pattern of the Before, During, and After coefficient
estimates for Into events in Table 6. For the 20% rebate, the Into results imply significant
wholesale energy purchase cost savings for a number of the excess renewables events
because the Into and BeforeInto and AfterInto coefficient estimates are larger in absolute
value than the corresponding values for the 5% rebate. However, the larger wholesale
energy savings is not large enough to overcome a per kWh rebate that is four times the
value of the 5% rebate, which makes the net savings to the retailer from declaring an Into

event negative. Consumers benefit from lower electricity bills as a result of these events,
primarily because of the substantial rebates they receive. Again, there are instances when
transfers from customers to the retailer could benefit both parties, because the reduction in
customer bills is larger in absolute value than the reduction in retailer profits.

For the case of the 50% rebate level, the wholesale cost savings are smaller and often
negative because the BeforeInto and AfterInto coefficients are small in absolute value
relative to the size of the Into coefficient in Table 6. The customer bills are substantially
lower because of the large rebates paid for the energy moved under the Into event.
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For Away events for the 20% and 50% rebate levels the magnitudes of the Away

coefficient is small relative to the magnitude of the rebates paid. Once again, there are
instances when transfers from customers to the retailer could yield benefits to both parties,
because the reduction in customer bills is larger in absolute value than the reduction in
retailer profits. These results are shown in Tables F2,F3,F5,F6,F8 and F9 of Appendix F.

Summing up, we have shown that the 5% rebate applied with the sample mean of
advance notice during renewable oversupply periods for an Into event can reduce GHG
emissions in Denmark while lowering consumer bills and increasing retailer profits. In
addition, these results show that with appropriate design of the rebate amount and advance
notice, it would be possible to achieve the benefits of reduced GHG emissions, higher
retailer profits and lower customer bills from Into and Away events during excess renewable
generation periods.

6.3. Into versus Away Events in Connection with Morning and Evening Demand Peaks

We now investigate the potential benefits to retailers and consumers from declaring Into

and Away events that shift consumption away from the morning and evening price peaks
and into other parts of the day where wholesale prices are systematically lower. We focus
on the potential wholesale cost saving because declaring these events is unlikely to reduce
Denmark’s fossil fuel electricity production.

For the Into simulations, a notification is assumed to be sent at 5:00 asking all customers
to shift usage shift Into the hours of 14:00 to 16:00 for a 5%, 20%, or 50% rebate. The nine
hours preceding that window constitute the Before period, and the nine hours following it
constitute the After period. We chose this time period for our Into event and this amount
of advance notice based on the pattern of annual average hourly wholesale prices within
the day in Figure 5 for 2016 through 2019. The time period 14:00 to 16:00 persistently
has the lowest average wholesale prices during the daylight hours across these four years
and the large amount of advance notice ensures that the negative BeforeInto and AfterInto

effects reduce demand during the high priced periods early and late in the day. This means
that consuming more during the 14:00 to 16:00 time interval is unlikely to significantly
increase wholesale energy costs, but consuming less during the 9 hours before and after
this Into period should significantly reduce daily wholesale energy costs, resulting in a net
reduction in wholesale energy purchase costs for SE.
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Figure 5: Daily Average Hourly Wholesale Energy Prices in SE’s Zone in Nordpool (2016-2019)
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Our hypothetical Away events are also based on the pattern of daily average hourly
wholesale prices in Figure 5. We chose the time period 8:00 to 10:00 for Away events
because it has the highest average wholesale prices relative to other two-hour periods in
the day. In this case, we assumed the event was called 2 hours before at 6:00. We also
examined the period 18:00 to 20:00 for an Away event because of high average demand
and high average prices during this period. The event was assumed to be called 2 hours in
advance at 16:00.21

There were 89 instances of Into events with the 5% rebate that produced lower customer
bills and higher retailer profits. Appendix G Table G1 lists the 15 instances with the largest
increase in retailer profits. Appendix G Table G2 list the 15 instances with the largest
decrease in customer bills. For the 20% and 50% rebate levels there were no instances when
these two events occurred together, although there were many instances where transfers
between customers and the retailer could have produced an outcome that benefits both
parties.

For the case of Away events, there were 13 instances for the 50% rebate when the event
at 18:00 produces higher retailer profits and lower customer bills shown in Appendix G
Table G3. For the Away event at 8:00, there were no instances where this outcome occurred
for any rebate level. Again, there were many instances when transfers between the retailer
and customers could have produced an outcome that benefitted both parties.

21Because either the BeforeAway or AfterAway or both point estimates were positive for each rebate level,
longer advance notice typically decreased wholesale cost savings.
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The results of this analysis are very encouraging for the potential for Into events to
deliver benefits for both retailers and customers in markets with predictable hourly prices
differences throughout the day. The graphs in Figure 2 provides strong evidence for
substantial economic benefits from Into events to retailers and customers in California.
The approximately 20,000 MW of grid-scale and distributed solar generation capacity in
California suggests that the pattern of net demand (system demand less the production of
intermittent wind and solar generation) during the day can yield wholesale prices that are
significantly lower during the middle of the day when the solar facilities in California are
producing significant amounts of energy and higher in the early morning hours and late
evening when there is no solar energy being produced. This result implies that declaring
Into events for customers in California during the middle of the day with sufficient advance
notice is likely to yield larger percent purchase cost savings than those found for Denmark,
which implies the potential for larger benefits to retailers and customers from Into and
Away events. Moreover, the high correlation between low prices and solar production in
the middle of the day implies, a high likelihood that Into events in the middle of the day
will also reduce GHG emissions in California.

7. Conclusions

The results of this experiment suggest an alternative more cost-effective mechanism for
active participation of the final consumers in managing the real-time supply and demand
balance in regions with significant intermittent renewable generation. For the same rebate
percentage, load-shifting into a time period induced a two to three times larger percent
increase in demand than the same rebate percentage induced for load-shifting away from
that time period. A significant amount of the energy that shifted into the time period also
resulted in reductions in consumption during time periods before and after the event period.
The evidence for load-shifting away from the period finds mixed evidence that this led to
increased consumption in neighboring time periods.

The purely environmental motivation interventions produced analogous results:
Significantly larger in absolute value average load-shifting into time periods relative to
shifting away from time periods and evidence that load-shifting into a time period led to
lower consumption during neighboring time periods, but load-shifting away from a time
period did not consistently lead to increases in consumption in neighboring periods.
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When we account for the decision of invited SE customers to participate in the
experiment, both sets of qualitative results continue to hold for the Into and Away treatment
effect estimates, although the quantitative magnitude of all of these coefficient estimates are
typically slightly smaller in absolute value than the corresponding estimates that condition
on the sample of experiment participants. This result is consistent with the logic that the
SE customers that selected to participate in the experiment are those that expected to be the
most responsive to Into and Away interventions.

A counterfactual experiment with these selection-corrected estimates shows that there
is a potential for simultaneously reducing fossil fuel electricity production in Denmark,
increasing retailer profits and reducing customers bills from declaring Into events in
connection with periods of over-supply of renewable electricity in Denmark. Given
popularity of rebate-based dynamic pricing programs with consumers and regulators, a
more cost-effective approach to implementing these programs may be to use Into rather
than Away rebate schemes, particularly in regions with significant intermittent renewable
generation capacity shares such as California where incentive to increase consumption
during low-priced hours in the middle of the day will also lead to reduced consumption
during high-priced periods early in the day and early in the evening. Thus, giving incentives
to increase electricity use in certain time periods is a pricing strategy that could reduce the
cost of integrating are larger share wind and solar electricity production.
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Appendix A: Standard Errors

We have the following asymptotically normal distribution for our selection-corrected
estimates of Γ:

√
n(Γ̂ − Γ)

d
−→ N(0,Σ−1

xx Ωxx[Σ−1
xx ]′)

1
2 Ŝ xx consistently estimates Σxx, where Ŝ xx = 1

9D

∑D
d=1

∑9
t=1 Ŝ xx(t, d) and

Ŝ xx(t, d) =

(
ntd

2

)−1 ntd−1∑
i=1

ntd∑
j=i+1

ω̂i j(Xi(t, d)∗ − X j(t, d)∗)(Xi(t, d)∗ − X j(t, d)∗)′

where n is the number of observations in the data, ntd is the number of observations in time
period t of day d, Xi(t, d)∗ is a vector of mean-differenced regressors for customer i during
time period t of day d. We define ω̂i j as

ω̂i j =
1
h

k
( ĝi − ĝ j

h

)
where k() is the Epanechnikov kernel defined earlier, h is the bandwidth chosen as described
earlier, and ĝi the propensity score of individual i (which does not vary with t).

An estimator of Ωxx is Ŵxx = 1
9D

∑D
d=1

∑9
t=1 Ŵxx(t, d):

Ŵxx(t, d) =
1

ntd

ntd∑
i=1

[ψ̂i(t, d) + ξ̂i(t, d)êi][ψ̂i(t, d) + ξ̂i(t, d)êi]′

where

ψ̂i(t, d) =
1

ntd − 1

ntd∑
j=1

ω̂i j(v̂i(t, d) − v̂ j(t, d))(Xi(t, d)∗ − X j(t, d)∗)

v̂i(t, d) = yi(t, d)∗ − Xi(t, d)∗′Γ̂

êi = 1 − ĝi
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ξ̂i(t, d) =
1

ntd

1
ntd − 1

ntd∑
j=1

ntd∑
l=1

[(1
h

)2
k′
( ĝi − ĝ j

h

)
(v̂ j(t, d) − v̂l(t, d))(X j(t, d)∗ − Xl(t, d)∗)

]

and k′(s) is the derivative of k(s).

The matrix Ŵxx takes the following form if we are willing to allow arbitrary
autocorrelation in the vi(t, d) over time periods and days and differences in this
autocorrelation across customers.

Ŵxx =
1

9D
1

nC

nC∑
i=1

[ D∑
d=1

9∑
t=1

ψ̂i(t) + ξ̂i(t)êi

][ d∑
d=1

9∑
t=1

ψ̂i(t) + ξ̂i(t)êi

]′
Where nC is the number of distinct individuals. These results imply that the approximately
normal distribution of β̂ is N(β, Σ−1

zx Ωzz[Σ−1
zx ]′

n ).
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Appendix B-1: Differences in Demographic and Home Variables for non-participants
and participants

Table: Summary Statistics for Demographic and Home Variables

Mean (Participate = 0) Mean (Participate = 1) Diff. Std. Error
# of men 21+ in HH 0.8991 0.8754 0.0238 0.0103
# of women 21+ in HH 0.8720 0.9003 -0.0283 0.0091
# of kids 0-6 in HH 0.2095 0.1173 0.0923 0.0109
# of kids 7-14 in HH 0.2714 0.1875 0.0839 0.0132
# of kids 15-20 in HH 0.2025 0.1722 0.0302 0.0116
HH disposable income 7.7620 7.5644 0.1977 0.0906
HH Income < 0 0.0013 0.0006 0.0007 0.0006
HH Income ∈ [0, 50K) 0.0036 0.0023 0.0014 0.0012
HH Income ∈ [50K, 150K) 0.0572 0.0431 0.0142 0.0051
HH Income ∈ [150K, 250K) 0.2017 0.2017 0.0000 0.0099
HH Income ∈ [250K, 350K) 0.2058 0.2334 -0.0277 0.0105
HH Income ∈ [350K, 450K) 0.1953 0.2198 -0.0245 0.0102
HH Income ∈ [450K, 550K) 0.1622 0.1558 0.0064 0.0090
farmhouse 0.0408 0.0385 0.0023 0.0048

terraced_or_double_house 0.1180 0.1292 -0.0111 0.0083
storey_bld 0.1389 0.0737 0.0652 0.0067
single_fam_house 0.7005 0.7569 -0.0564 0.0107
# of rooms 4.5242 4.6079 -0.0837 0.0368
Total area of home 135.2672 138.2499 -2.9826 1.1616
Construction Year 1954.1901 1956.2159 -2.0258 1.1050
district_heat 0.5572 0.5246 0.0326 0.0124
Central heating 0.3380 0.3314 0.0066 0.0117
Electric oven 0.0626 0.0895 -0.0269 0.0070
Heating pump 0.0278 0.0425 -0.0147 0.0049
Individual Owns Home 0.7103 0.7819 -0.0716 0.0103
# of employed 1.0978 0.9292 0.1686 0.0221
hh_unemployed 0.3125 0.4113 -0.0988 0.0121
# of retired in HH 0.4331 0.6272 -0.1941 0.0192
# of high-skill employees in HH 0.1641 0.1411 0.0230 0.0099
# of mid-skill employees in HH 0.2162 0.1830 0.0332 0.0106
# of low-skill employees in HH 0.4532 0.3756 0.0775 0.0151
HH state scholarship funds 4596.3533 2380.8374 2215.5160 313.1692
HH pension income 96134.1740 145885.1870 -49751.0130 4243.7483
Married couple in HH 0.5641 0.6187 -0.0546 0.0121
# of immigrants in HH 0.1487 0.1042 0.0444 0.0116

Note: There are 1,765 individuals who participated, and 20,893 who did not.
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Appendix B-2. E-mail invitation offering rebates of either 5%, 20% or 50% to
customers
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Appendix B-3. E-mail invitation offering GHG-free production to costumers in group

31, 34, 35 and 36
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Appendix B-4. Supplementary information provided after accepting rebate
invitations:

Terms of conditions to customers offered rebate (identical for all rebate levels.)
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Appendix B-5. Supplementary information provided after accepting GHG-free
invitations:

Terms of conditions for costumers offered GHG-free production (group 35 and 36).
*)

*) In the terms of conditions for the group 35 and 36, it was not implied that the costumers
were part of a team effort, which is in contrast to group 31 and 34 where this was implied.
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Appendix B-6. Supplementary information provided after accepting GHG-free
invitations: Terms of conditions for costumers offered GHG free production (group

31 and 34*)

*) It the terms of conditions for the group 31 and 34 it was implied that the costumers were
part of a team effort, which is in contrast to group 35 and 36 where this was not implied.
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.

Appendix C: Text Message Variations.

[X]: Treatment rebate groups 5%, 20% and 50%.

- Treatment hours varied across time slots (10 am to 1 pm; 3pm to 6 pm; 6 pm to 9 pm; 9 pm to 24
pm, and 12 am to 3 pm).

- Treatment day variations (Monday, Tuesday, Wednesday Thursday Friday, Saturday and Sunday)

- The text messages to the GHG groups (31, 34, 35 and 36) are identical.
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Appendix D: An example of the monthly e-mail feedback

Page 1:

Page 2:
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Appendix E. Net Impacts of Into versus Away Events
Figure E1: Net Impact using Coefficients from Table 6 (with censored selection) and a 5% rebate
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Figure E2: Net Impact using Coefficients from Table 6 (with censored selection) and a 20% rebate
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Figure E3: Net Impact using Coefficients from Table 6 (with censored selection) and a 50% rebate
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Figure E4: φ1 and ψ1 using Coefficients from Table 6 (with censored selection) and a 5% rebate
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Figure E5: φ2 and ψ2 using Coefficients from Table 6 (with censored selection) and a 5% rebate
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Figure E6: φ3 and ψ3 using Coefficients from Table 6 (with censored selection) and a 5% rebate
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Appendix F: Into and Away events During with Periods of Excess Renewable
Electricity in Denmark

Table F1: Effects of 5% Into rebate during oversupply periods

Date Hour
Period
length

Demand
change

during Into
period

Demand
change

Before and
After Into

period
Wholesale

cost savings
Change in
retail profit

Change in
customer’s

bill

2016-06-08 16:00 2h 26.11 -22.98 -36.07 462.91 498.99
2016-11-26 13:00 3h 33.94 -20.36 -439.20 2,705.90 3,145.10
2016-12-26 10:00 3h 33.35 -16.73 -331.84 3,632.54 3,964.38
2017-02-22 14:00 3h 41.51 -25.49 -475.76 3,210.50 3,686.26
2017-03-18 14:00 2h 20.22 -20.43 295.83 -143.98 -439.81
2017-04-08 16:00 2h 21.19 -17.80 52.11 688.65 636.53
2017-04-24 15:00 2h 25.32 -24.98 -135.82 -497.15 -361.33
2017-12-24 14:00 2h 25.82 -20.30 106.41 1,161.44 1,055.03
2018-04-24 14:00 3h 37.67 -23.53 -272.00 2,971.27 3,243.27
2018-09-27 15:00 2h 26.33 -24.21 17.00 123.16 106.16
2018-12-04 15:00 2h 30.70 -26.99 -24.42 439.76 464.19
2019-09-17 14:00 2h 27.81 -27.17 388.63 43.61 -345.01
2020-01-02 15:00 2h 27.09 -22.54 -28.52 720.92 749.44
2020-02-22 15:00 2h 23.65 -19.92 -43.17 530.58 573.74
2020-05-07 18:00 2h 17.19 -16.47 -567.86 -605.70 -37.84

Sum 417.90 -329.90 -1,494.68 15,444.41 16,939.10
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Table F2: Effects of 20% Into rebate during oversupply periods

Date Hour
Period
length

Demand
change

during Into
period

Demand
change

Before and
After

oversupply
period

Wholesale
cost savings

Change in
retail profit

Change in
customer’s

bill

2016-06-08 16:00 2h 25.94 -28.95 91.61 -2,151.22 -2,242.82
2016-11-26 13:00 3h 33.72 -25.68 -249.58 -34.05 215.54
2016-12-26 10:00 3h 33.13 -21.12 -394.69 913.75 1,308.44
2017-02-22 14:00 3h 41.23 -32.12 -268.83 -197.43 71.40
2017-03-18 14:00 2h 20.08 -25.75 438.56 -2,345.38 -2,783.94
2017-04-08 16:00 2h 21.05 -22.44 153.64 -1,377.70 -1,531.34
2017-04-24 15:00 2h 25.15 -31.44 8.75 -3,229.11 -3,237.86
2017-12-24 14:00 2h 25.65 -25.60 137.85 -1,384.65 -1,522.50
2018-04-24 14:00 3h 37.42 -29.64 -62.24 -120.99 -58.75
2018-09-27 15:00 2h 26.16 -30.51 276.16 -2,494.47 -2,770.63
2018-12-04 15:00 2h 30.50 -34.02 178.45 -2,623.65 -2,802.10
2019-09-17 14:00 2h 27.63 -34.23 632.35 -2,869.01 -3,501.36
2020-01-02 15:00 2h 26.91 -28.41 50.33 -1,992.48 -2,042.81
2020-02-22 15:00 2h 23.49 -25.15 -62.17 -1,960.44 -1,898.27
2020-05-07 18:00 2h 17.08 -20.69 -716.33 -2,637.55 -1,921.22

Sum 415.14 -415.75 213.86 -24,504.38 -24,718.22

Table F3: Effects of 50% Into rebate during oversupply periods

Date Hour
Period
length

Demand
change

during Into
period

Demand
change

Before and
After Into

period
Wholesale

cost savings
Change in
retail profit

Change in
customer’s

bill

2016-06-08 16:00 2h 42.69 -12.72 -582.19 1,775.35 2,357.55
2016-11-26 13:00 3h 55.50 -10.23 -1,530.77 3,417.92 4,948.69
2016-12-26 10:00 3h 54.53 -7.79 -353.42 5,159.50 5,512.92
2017-02-22 14:00 3h 67.86 -14.02 -1,600.18 4,033.37 5,633.54
2017-03-18 14:00 2h 33.05 -11.25 -131.30 1,465.98 1,597.27
2017-04-08 16:00 2h 34.64 -9.48 -370.88 1,774.99 2,145.87
2017-04-24 15:00 2h 41.40 -14.93 -879.62 859.21 1,738.83
2017-12-24 14:00 2h 42.22 -10.43 54.65 3,124.71 3,070.06
2018-04-24 14:00 3h 61.59 -13.57 -1,346.27 3,522.67 4,868.93
2018-09-27 15:00 2h 43.05 -13.13 -1,056.52 1,404.87 2,461.39
2018-12-04 15:00 2h 50.20 -14.54 -1,003.77 2,077.45 3,081.22
2019-09-17 14:00 2h 45.47 -15.06 -392.37 1,913.46 2,305.83
2020-01-02 15:00 2h 44.29 -12.38 -328.36 2,523.15 2,851.51
2020-02-22 15:00 2h 38.66 -9.23 -48.40 2,895.72 2,944.12
2020-05-07 18:00 2h 28.10 -11.40 -533.10 191.06 724.15

Sum 683.25 -180.16 -10,102.50 36,139.41 46,241.88
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Table F4: Effects of same length 5% Away rebate just before oversupply periods

Date Hour
Period
length

Demand
change

during Away
period

Demand
change

Before and
After Away

period
Wholesale

cost savings
Change in
retail profit

Change in
customer’s

bill

2016-06-08 14:00 2h -8.44 17.98 -240.57 2,522.29 2,762.87
2016-11-26 10:00 3h -11.65 14.18 -104.99 722.21 827.20
2016-12-26 7:00 3h -10.02 12.27 57.27 799.44 742.17
2017-02-22 11:00 3h -14.23 19.38 -136.06 1,385.05 1,521.11
2017-03-18 12:00 2h -7.77 14.93 -228.73 1,875.52 2,104.24
2017-04-08 14:00 2h -6.57 14.03 -301.44 1,867.01 2,168.45
2017-04-24 13:00 2h -9.45 18.77 -288.06 2,399.57 2,687.63
2017-12-24 12:00 2h -7.90 15.06 -32.72 2,050.76 2,083.48
2018-04-24 11:00 3h -13.37 17.14 -264.10 849.86 1,113.97
2018-09-27 13:00 2h -9.11 18.52 -444.96 2,286.52 2,731.48
2018-12-04 13:00 2h -9.82 21.26 -547.88 2,764.28 3,312.16
2019-09-17 12:00 2h -10.09 20.14 -448.18 2,480.25 2,928.44
2020-01-02 13:00 2h -8.64 17.06 -118.13 2,353.58 2,471.70
2020-02-22 13:00 2h -7.03 15.90 -51.02 2,559.78 2,610.80
2020-05-07 16:00 2h -6.19 13.20 65.50 1,898.90 1,833.41

Sum -140.28 249.82 -3,084.07 28,815.02 31,899.11

Table F5: Effects of same length 20% Away rebate just before oversupply periods

Date Hour
Period
length

Demand
change

during Away
period

Demand
change

Before and
After Away

period
Wholesale

cost savings
Change in
retail profit

Change in
customer’s

bill

2016-06-08 14:00 2h -7.40 -1.59 188.46 -2,857.78 -3,046.25
2016-11-26 10:00 3h -10.21 -1.88 434.18 -3,630.82 -4,065.01
2016-12-26 7:00 3h -8.78 -1.86 -75.63 -3,646.33 -3,570.70
2017-02-22 11:00 3h -12.47 -1.81 461.28 -4,333.63 -4,794.91
2017-03-18 12:00 2h -6.81 -1.32 175.18 -2,588.77 -2,763.95
2017-04-08 14:00 2h -5.76 -1.41 95.84 -2,326.15 -2,422.00
2017-04-24 13:00 2h -8.29 -1.26 245.58 -3,000.60 -3,246.18
2017-12-24 12:00 2h -6.93 -2.17 26.96 -2,999.53 -3,026.48
2018-04-24 11:00 3h -11.73 -1.58 390.00 -4,071.86 -4,461.86
2018-09-27 13:00 2h -7.99 -1.77 389.77 -2,909.06 -3,298.83
2018-12-04 13:00 2h -8.61 -2.02 259.78 -3,336.22 -3,596.00
2019-09-17 12:00 2h -8.85 -1.76 282.71 -3,317.21 -3,599.91
2020-01-02 13:00 2h -7.58 -1.74 132.23 -3,024.89 -3,157.12
2020-02-22 13:00 2h -6.16 -2.00 -39.25 -2,797.18 -2,757.92
2020-05-07 16:00 2h -5.42 -0.58 -162.01 -2,100.41 -1,938.41

Sum -122.99 -24.75 2,805.08 -46,940.44 -49,745.53
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Table F6: Effects of same length 50% Away rebate just before oversupply periods

Date Hour
Period
length

Demand
change

during Away
period

Demand
change

Before and
After Away

period
Wholesale

cost savings
Change in
retail profit

Change in
customer’s

bill

2016-06-08 14:00 2h -5.48 7.14 -41.72 -431.68 -389.96
2016-11-26 10:00 3h -7.56 4.83 117.02 -1,766.90 -1,883.92
2016-12-26 7:00 3h -6.50 3.88 39.01 -1,661.26 -1,700.27
2017-02-22 11:00 3h -9.23 7.58 100.81 -1,721.94 -1,822.75
2017-03-18 12:00 2h -5.04 5.94 -56.13 -588.70 -532.57
2017-04-08 14:00 2h -4.26 5.36 -95.60 -455.00 -359.40
2017-04-24 13:00 2h -6.13 7.97 -29.75 -462.43 -432.67
2017-12-24 12:00 2h -5.13 4.91 -2.04 -847.26 -845.22
2018-04-24 11:00 3h -8.68 6.72 2.13 -1,814.37 -1,816.50
2018-09-27 13:00 2h -5.91 7.19 -68.14 -629.82 -561.68
2018-12-04 13:00 2h -6.37 8.26 -131.77 -601.29 -469.52
2019-09-17 12:00 2h -6.55 8.03 -134.82 -738.99 -604.18
2020-01-02 13:00 2h -5.61 6.48 -8.34 -639.24 -630.90
2020-02-22 13:00 2h -4.56 5.55 -14.59 -465.31 -450.72
2020-05-07 16:00 2h -4.01 5.99 78.78 71.67 -7.11

Sum -91.02 95.83 -245.15 -12,752.52 -12,507.37
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Table F7: Effects of same length 5% Away rebate just after oversupply periods

Date Hour
Period
length

Demand
change

during Away
period

Demand
change

Before and
After Away

period
Wholesale

cost savings
Change in
retail profit

Change in
customer’s

bill

2016-06-08 18:00 2h -8.91 15.60 -125.25 1,581.71 1,706.96
2016-11-26 16:00 3h -12.96 14.84 -51.15 286.87 338.02
2016-12-26 13:00 3h -10.72 14.50 -101.14 1,009.05 1,110.20
2017-02-22 17:00 3h -14.93 16.69 10.77 286.44 275.68
2017-03-18 16:00 2h -7.39 14.75 -214.11 1,697.01 1,911.12
2017-04-08 18:00 2h -7.19 12.40 -42.53 1,283.12 1,325.65
2017-04-24 17:00 2h -8.56 17.31 -144.35 2,132.46 2,276.81
2017-12-24 16:00 2h -9.28 15.32 40.02 1,563.51 1,523.48
2018-04-24 17:00 3h -12.65 15.24 29.62 564.18 534.56
2018-09-27 17:00 2h -9.60 17.36 -280.52 1,710.57 1,991.10
2018-12-04 17:00 2h -11.03 19.42 -132.51 2,013.06 2,145.57
2019-09-17 16:00 2h -9.81 19.50 -311.03 2,203.66 2,514.69
2020-01-02 17:00 2h -8.70 16.91 -11.82 2,114.30 2,126.12
2020-02-22 17:00 2h -9.44 15.28 90.09 1,559.16 1,469.06
2020-05-07 20:00 2h -5.34 9.40 254.02 1,292.29 1,038.27

Sum -146.51 234.52 -989.89 21,297.39 22,287.29
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Table F8: Effects of same length 20% Away rebate just after oversupply periods

Date Hour
Period
length

Demand
change

during Away
period

Demand
change

Before and
After Away

period
Wholesale

cost savings
Change in
retail profit

Change in
customer’s

bill

2016-06-08 18:00 2h -7.81 -0.71 187.27 -2,570.78 -2,758.05
2016-11-26 16:00 3h -11.36 -1.35 425.45 -3,671.64 -4,097.09
2016-12-26 13:00 3h -9.40 -1.79 -49.47 -3,777.39 -3,727.92
2017-02-22 17:00 3h -13.09 -0.67 377.96 -4,101.38 -4,479.34
2017-03-18 16:00 2h -6.48 -1.40 187.29 -2,323.57 -2,510.87
2017-04-08 18:00 2h -6.30 -0.63 203.31 -2,038.99 -2,242.30
2017-04-24 17:00 2h -7.50 -1.09 275.16 -2,485.64 -2,760.79
2017-12-24 16:00 2h -8.14 -1.15 59.55 -2,926.51 -2,986.06
2018-04-24 17:00 3h -11.09 -0.49 467.65 -3,308.25 -3,775.90
2018-09-27 17:00 2h -8.41 -1.46 382.33 -2,777.54 -3,159.87
2018-12-04 17:00 2h -9.67 -1.66 438.73 -3,187.78 -3,626.51
2019-09-17 16:00 2h -8.61 -1.81 320.73 -2,997.55 -3,318.28
2020-01-02 17:00 2h -7.63 -1.43 102.26 -2,791.68 -2,893.93
2020-02-22 17:00 2h -8.27 -1.86 54.68 -3,170.65 -3,225.34
2020-05-07 20:00 2h -4.68 0.74 56.00 -1,278.92 -1,334.92

Sum -128.44 -16.76 3,488.90 -43,408.27 -46,897.17

Table F9: Effects of same length 50% Away rebate just after oversupply periods

Date Hour
Period
length

Demand
change

during Away
period

Demand
change

Before and
After Away

period
Wholesale

cost savings
Change in
retail profit

Change in
customer’s

bill

2016-06-08 18:00 2h -5.78 7.05 -13.54 -456.51 -442.97
2016-11-26 16:00 3h -8.41 5.85 86.45 -1,762.62 -1,849.07
2016-12-26 13:00 3h -6.96 5.10 -21.14 -1,559.25 -1,538.11
2017-02-22 17:00 3h -9.69 7.67 43.63 -1,834.99 -1,878.62
2017-03-18 16:00 2h -4.80 5.73 -8.73 -408.90 -400.17
2017-04-08 18:00 2h -4.66 5.52 45.59 -359.81 -405.41
2017-04-24 17:00 2h -5.55 7.44 37.50 -205.77 -243.26
2017-12-24 16:00 2h -6.02 6.34 14.94 -720.99 -735.94
2018-04-24 17:00 3h -8.21 7.15 132.77 -1,280.67 -1,413.44
2018-09-27 17:00 2h -6.23 6.99 -22.12 -663.97 -641.85
2018-12-04 17:00 2h -7.15 7.79 103.99 -700.48 -804.46
2019-09-17 16:00 2h -6.37 7.64 -4.91 -528.00 -523.08
2020-01-02 17:00 2h -5.65 6.80 -19.63 -474.93 -455.30
2020-02-22 17:00 2h -6.12 5.41 70.30 -961.51 -1,031.81
2020-05-07 20:00 2h -3.47 5.75 194.15 343.81 149.66

Sum -95.07 98.23 639.25 -11,574.59 -12,213.83
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Appendix G: Effects of Into versus Away events in Connection with Morning and
Evening Demand Peaks

Table G1: Effects of 5% Into rebate at 14:00

Date

Demand
change during

target hour

Demand
change before
and after target

hour
Wholesale

cost savings
Change in
retail profit

Change in
customer’s bill

2018-07-07 19.67 -18.57 495.49 415.75 -79.74
2017-05-04 24.36 -22.80 369.79 347.78 -22.02
2018-10-10 25.05 -23.61 381.85 312.37 -69.48
2019-12-06 27.52 -25.83 332.11 306.46 -25.66
2017-04-08 19.81 -18.49 279.44 267.09 -12.35
2018-03-16 32.26 -30.11 250.42 246.39 -4.03
2016-10-26 27.17 -25.42 248.11 236.17 -11.94
2018-10-26 26.41 -24.81 273.38 232.83 -40.55
2018-03-31 22.97 -21.40 231.54 230.44 -1.09
2017-06-16 22.45 -21.58 374.94 205.12 -169.82
2018-10-19 24.17 -23.03 324.11 198.29 -125.82
2017-10-13 25.49 -23.88 216.22 193.79 -22.42
2017-04-23 19.52 -18.87 362.64 167.76 -194.88
2016-06-22 23.77 -22.26 190.42 167.21 -23.21
2020-04-24 19.83 -18.65 205.76 164.30 -41.46

Sum 360.45 -339.31 4,536.22 3,691.75 -844.47
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Table G2: Effects of 5% Into rebate at 14:00

Date

Demand
change during

target hour

Demand
change before
and after target

hour
Wholesale

cost savings
Change in
retail profit

Change in
customer’s bill

2019-09-17 27.81 -27.17 388.63 43.61 -345.01
2019-06-28 26.04 -25.08 277.05 50.60 -226.45
2019-10-18 26.90 -25.88 332.83 124.57 -208.26
2017-04-23 19.52 -18.87 362.64 167.76 -194.88
2017-06-16 22.45 -21.58 374.94 205.12 -169.82
2020-03-20 19.52 -18.85 281.57 114.19 -167.38
2017-02-10 30.84 -29.35 161.82 14.96 -146.87
2017-09-22 23.75 -22.71 166.17 22.44 -143.72
2018-06-05 22.56 -21.44 186.55 59.43 -127.12
2018-10-19 24.17 -23.03 324.11 198.29 -125.82
2019-05-29 26.57 -25.21 127.81 9.28 -118.53
2019-04-14 22.63 -21.46 159.06 43.24 -115.82
2019-05-31 23.01 -21.84 153.74 45.00 -108.74
2019-03-22 28.63 -27.13 138.20 32.47 -105.73
2018-09-04 23.95 -22.71 130.71 29.27 -101.44

Sum 368.35 -352.31 3,565.83 1,160.23 -2,405.59

Table G3: Effects of 50% Away rebate at 18:00

Date

Demand
change during

target hour

Demand
change before
and after target

hour
Wholesale

cost savings
Change in
retail profit

Change in
customer’s bill

2020-06-04 -3.79 5.67 121.22 119.21 -2.01
2020-04-27 -4.12 6.17 56.81 53.51 -3.30
2020-03-18 -4.70 6.89 89.31 47.03 -42.27
2020-05-08 -2.82 4.20 46.68 40.00 -6.68
2019-10-08 -6.68 8.91 340.50 39.18 -301.32
2020-04-13 -3.57 4.71 214.41 37.73 -176.67
2020-04-16 -4.24 6.07 113.68 34.05 -79.64
2020-04-30 -3.98 5.83 59.62 20.97 -38.65
2020-05-27 -3.85 5.70 29.48 10.04 -19.44
2019-12-05 -6.76 8.93 338.45 8.40 -330.05
2020-06-08 -3.70 5.46 28.23 1.47 -26.76
2020-03-25 -4.46 6.53 44.95 1.46 -43.49
2020-03-26 -4.49 6.60 38.50 1.13 -37.37

Sum -57.16 81.67 1,521.84 414.18 -1,107.65
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