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1 Introduction

Since Stigler (1961) and McCall (1970), consumer search models have played an important

role in explaining imperfectly competitive behavior in many markets. Consumers in these

models tradeoff the cost of searching to acquire additional price information against the

expected benefit of search, derived from consumers’ beliefs about the price distribution.

Standard search models rely on the convenient, yet strong, assumption that consumers know

the true price distribution, thereby simplifying the calculation of consumers’ gains from

search. In many cases, however, when the prices in a market are unfamiliar to consumers

or the price distribution changes regularly with market conditions, consumers are unlikely

to know the price distribution with any degree of certainty.1 Rothschild (1974), Dana

(1994), and Benabou and Gertner (1993), among others, have relaxed this assumption,

developing theoretical models of search with learning where consumers engage in costly

search not only to reveal the prices of particular sellers but also to learn about the actual

price distribution. Nevertheless, empirical studies of search behavior have largely continued

to leverage the assumption that consumers search from a known price distribution.

In this article, we relax the assumption of a known price distribution and estimate a

model of optimal search by consumers who may be unaware of the true price distribution

but update their prior beliefs as they search. We are able to estimate the parameters

governing the consumer learning process by taking advantage of the fact that price draws

occur in a known sequence. In many contexts, prices are revealed based on the order in

which consumers encounter different sellers as they navigate through the marketplace. For

example, consumers observe prices in a specific order as they pass sellers within a market

or scroll down a list of products on an online shopping website. In our setting, we leverage

a crucial observation in the retail gasoline market: consumers are likely to search and learn

the distribution of prices during their driving trips. This feature allows us to recover the

parameters of our model from observed prices, station market shares, and the volume of

traffic that passes each gas station.

Estimates of this model offer several new insights. First, in contrast to the known price

1For example, Matsumoto and Spence (2016) and Jindal and Aribarg (2021) use survey and experi-
ments to elicit price beliefs and find that consumers have prior price beliefs different from the actual price
distribution and update their beliefs in response to search outcomes.
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distribution assumption, we find that consumers’ initial priors often differ significantly from

the true price distribution, resulting in what we refer to as a biased prior.2 Second, we

find that consumers are relatively uncertain about their prior beliefs and, therefore, learn

quickly from observed prices. Third, the model reveals how biased beliefs and learning

influence search behavior and demand. These insights clarify a mechanism through which

price fluctuations can asymmetrically influence search. Such asymmetric search patterns

are commonly cited as an explanation for why cost increases and decreases are passed

through asymmetrically in a wide variety of product markets (Peltzman, 2000).3

The retail gasoline market is an ideal environment to study consumer search and learning

behavior. Frequent price changes resulting from a volatile wholesale cost, as presented in

Figure 1, make it difficult for consumers to maintain accurate information on each station’s

price as well as the distribution of these prices in the market. Our analysis of search

introduces two important components that are likely to characterize consumers in this

environment. First, consumers are assumed to be uncertain about the price distribution.

Second, consumers’ prior beliefs are likely to differ from the empirical price distribution.

To capture these features, we propose a sequential search model with learning that

builds on Rothschild (1974), emphasizing spatial and ex-ante vertical differentiation of

sellers. Forward-looking consumers start from diffuse prior beliefs likely influenced by prices

observed during past driving trips. As consumers encounter a new price observation along

their predetermined travel route, they update their beliefs about the price distribution

in a Bayesian fashion before deciding whether to purchase gasoline or continue searching.

Consumers stop at a station when the realized utility is higher than the continuation

value of search conditional on their posterior beliefs. The continuation value of search

summarizes the expected value of purchasing at the remaining stations along a route and

the alternative of waiting to purchase during a future trip where they might encounter

better offers. However, postponing a purchase becomes difficult if one is low on gas. Thus,

the search friction in this market takes the form of postponement costs.

2For brevity, we use prior bias to refer to the notion that consumers’ prior mean of the price level does
not necessarily match the true average price. It is rational for consumers to have beliefs different from the
true price distribution when they only observe past prices and noisy signals of current prices.

3Asymmetric pass-through is particularly common and well documented in gasoline markets (Borenstein
et al., 1997; Lewis, 2011) and is similarly prevalent in our sample (see Figure 1).
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To estimate the model, we utilize a panel dataset of station-specific prices and quantities

for gasoline stations in a small city from December 20, 2014, to May 31, 2016, and combine

it with data on traffic flows in the city. Based on the assumption that price search is

ordered and determined by driving patterns, we can construct an empirical distribution of

search sequences of gasoline stations using the traffic data. Total daily gasoline sales at

each station are then modeled as an aggregation of the purchase decisions of individuals

searching and learning along different travel routes.

Our novel utilization of traffic data also allows us to more realistically model the search

behaviors in the retail gasoline market without losing tractability. By replacing the common

random sampling assumption with ordered search determined by observed traffic flows, our

model allows substitution patterns to depend on the amount of traffic stations share. In

addition, we are able to introduce publicly observable vertical differentiation of sellers,

allowing consumers to be familiar with the time-invariant characteristics of the stations

they regularly encounter along their driving routes.

Our search with learning model nests the standard search model with a known price

distribution, providing us the opportunity to test empirically the assumption of a known

price distribution in the context of the retail gasoline market. Our estimation results

suggest that consumers’ initial prior beliefs are significantly biased. Specifically, the average

absolute difference between the estimated prior mean and the actual price level is 2.7 cents

per gallon (cpg), approximately 3.3 times the size of the average day-to-day price change.

However, consumers put relatively little weight on these priors, updating beliefs rather

quickly and considerably reducing the bias after a few current price observations. The

findings overwhelmingly reject the null hypothesis of a known price distribution which

assumes both a correct price belief and no learning. They also highlight the importance

of accounting for learning when analyzing search behavior. Learning occurs rapidly in our

context, and models with learning produce much more accurate predictions of consumer

behavior. Estimates from a restricted version of the model with no learning fail to identify

prior bias and overestimate the median postponement costs by approximately 33 percent.

Estimating a structural model of search with learning also provides a powerful frame-

work for examining the nature of spatial competition in the market. Demand is estimated
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to be highly elastic at the station level. A typical station has an estimated own-price

elasticity of -8, similar to the findings in Wang (2009). In addition, the traffic data allow

the model to generate realistic substitution patterns across stations. If an additional 15

percent of a station’s passing traffic has previously driven past a neighbor station, the cross-

price elasticity between the two stations is predicted to be 0.64 higher, sufficient to move

the station pair from the 5th percentile to the 95th percentile of the cross-price elasticity

distribution.

Incorporating learning into the search environment helps explain important patterns

that alternative models can not capture. For example, a non-trivial share of competing

stations is found to have negative cross-price elasticities of demand, which can arise because

the information conveyed by one station’s price can impact consumers’ beliefs about prices

at subsequent stations. Learning also creates an environment where station-level demand

elasticities can change over time with price fluctuations. We estimate demand to be more

elastic when prices are rising than when prices are falling, creating an environment in

which cost changes can be passed through asymmetrically. In a counterfactual exercise, we

investigate how the learning process influences demand asymmetry. We find that when past

price levels more heavily influence prior beliefs about the distribution of prices, demand

elasticities respond more asymmetrically to price changes. However, conditional on the

degree of prior bias, higher prior uncertainty leads to less asymmetric demand.

The remainder of the article is organized as follows. The next section places our work in

the context of related literature. Section 3 introduces the data used to estimate our model.

Section 4 presents descriptive statistics and key features of the market that motivate our

model. The model of search with learning is introduced in Section 5, and the estimation

strategy and model identification process are discussed in Section 6. Section 7 presents

the estimation results. Section 8 discusses our counterfactual analysis. The last section

concludes.

2 Related Literature

Much of the empirical literature on consumer search quantifies search frictions and empha-

sizes their importance in various markets based on the assumption that consumers know

5



the distribution of offers or match values (e.g., Hortaçsu and Syverson, 2004; Hong and

Shum, 2006; De los Santos et al., 2012; Koulayev, 2014; Honka, 2014; Nishida and Remer,

2018; Lin and Wildenbeest, 2020; Moraga-González et al., forthcoming).4 We build on this

literature by incorporating consumers that learn about the true price distribution as they

search, and show this to be an important aspect of behavior in the retail gasoline market.

Our work adds to a developing body of empirical research on consumer search with learn-

ing. Both Koulayev (2013) and De los Santos et al. (2017) empirically analyze models of

search with learning and show that ignoring learning can bias search cost and elasticity

estimates. However, they do not estimate the learning process and take prior beliefs as

given. In contrast, we develop an empirical strategy to identify both prior uncertainty and

prior bias using only aggregate data. Several more recent studies have modeled learning

behavior in settings different from ours. Ursu et al. (2020) estimate a sequential search

model where consumers search to learn their individual match values for restaurants on

a review website. Their estimates suggest a high prior uncertainty that rationalizes the

considerable time consumers spent searching each restaurant. Hu et al. (2019) develop a

dynamic model of search and Dirichlet learning to study consumers’ purchase behavior on

Groupon. They find that new consumers have an overly optimistic prior about the distri-

bution of deal quality. Through their interaction with the website over time, consumers

have more certain and accurate beliefs about the quality distribution. Consumer learning

explains the observed declines in click-throughs and increases in conditional purchase prob-

ability. However, unlike our study, estimation in each of these articles requires individual

search and purchase history data.

The underlying consumer search process and identification method employed in our

model also differ from the existing literature. A number of studies have developed method-

ologies to estimate search costs using only aggregate data (e.g., Hortaçsu and Syverson

2004; Hong and Shum 2006; Moraga-González and Wildenbeest 2008; Wildenbeest 2011).

These studies overcome the curse of dimensionality when integrating over the unobserved

search sequences by applying the assumption of random sampling and ex-ante product

homogeneity. We propose a new estimation strategy for settings where the order of price

4See Ellison (2016) and Honka et al. (2019) for a review of the studies on consumer search.
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observations is determined by how consumers navigate through the marketplace. In par-

ticular, we replace the random sampling assumption with variation in search sequences

identified using data on driving patterns. With this approach, we can introduce learning

and ex-ante seller differentiation into a sequential search setting without losing tractability.

Additionally, we can allow for more realistic substitution patterns between stations. Our

search technology also differs from the literature on sequential search for ex-ante differen-

tiated products (e.g., Weitzman 1979; Kim et al. 2010, 2017) in that we model consumer

search order as exogenously given by the traffic data rather than endogenously determined

by the decreasing order of reservation utilities.5

Moreover, our article provides valuable insights into extensive literature on retail gaso-

line price dynamics. A large body of empirical research provides evidence of asymmetric

cost pass-through in the retail gasoline market (e.g., Borenstein et al. 1997; Lewis and

Noel 2011; Byrne 2019). Tappata (2009), Yang and Ye (2008), and Lewis (2011) develop

theoretical models showing such pricing behavior can arise when consumers have imperfect

knowledge of the price distribution. Lewis and Marvel (2011) and Byrne and de Roos

(2017) offer evidence of the influence of price movements on search activity and illustrate

that observed patterns of asymmetric cost pass-through and fluctuations in price dispersion

are consistent with the search dynamics. However, little is known about consumers’ price

beliefs. Our structural model contributes to this literature by estimating how consumers

form their price beliefs in this market. We demonstrate how learning primitives, prior bias

and prior uncertainty, cause the intensity of consumer search and the elasticity of demand

faced by stations to change over time in response to gas price fluctuations. Therefore, this

article brings together two streams of literature, structural analysis of consumer search and

research on cost pass-through in the retail gasoline market.

Our analysis also relates to the broad set of studies examining and modeling spatial com-

petition and its consequences, particularly those using spatial information on consumers

to identify the intensity of competition (e.g., Smith 2004; Thomadsen 2005; Davis 2006;

Manuszak and Moul 2009; Houde 2012; Miller and Osborne 2014). These studies incorpo-

rate the distance between sellers and consumers into a discrete-choice demand framework

5Our ordered search can be interpreted as a special case of Weitzman’s sequential search where the
costs of deviating from the current travel route are much larger than the potential gains.
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while assuming full information. In particular, our model is most similar to that of Houde

(2012), who also uses road network structure and traffic flow volume to determine the

degree of spatial competition between stations. However, we incorporate imperfect price

information and learning, allowing consumers’ expectations to be influenced by past price

levels. Therefore, a unique feature of our model is that a station’s demand and the elas-

ticity it faces can change over time with fluctuations in consumers’ beliefs about the price

distribution. Moreover, search and learning allow for a different structure of cross-price

elasticities than the full-information spatial model of Houde (2012). For example, in some

circumstances, negative cross-price elasticities can arise between competing sellers as a

result of the information conveyed through prices.

3 Data

We use aggregate data to make inferences about consumers’ search and learning behavior

that leads to gasoline purchases. Our sample consists of 46 gasoline stations in a small city

with an urbanized area population of approximately 75,000.6 The sample period runs from

December 20, 2014, to May 31, 2016, for a total of 529 days, during which time we observe

the daily price of gasoline at all 46 stations and the daily gasoline transaction volume for

33 of these stations.7

We complement the gasoline price and quantity data with data on vehicle traffic flows

for our sample region. We use this traffic data to construct an search sequences of stations

in the city. The following subsections describe the three primary data sources used for our

empirical analysis.

Gasoline Price Data

The per-gallon price of regular unleaded gasoline is collected from two separate gasoline

price reporting websites. The primary source is MapQuest.com, an online web mapping ser-

6The city name is not disclosed to protect the identities of the gas stations.
7Because our primary focus is to study search behavior for gasoline, we exclude 14 mom-and-pop

establishments that operate primarily as convenience stores and have a gasoline sales volume lower than
the smallest station in the sample.
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vice whose gasoline price data are provided by the Oil Price Information Service (OPIS).8

We record prices from MapQuest.com once per day for every station in the city. Unfor-

tunately, MapQuest (OPIS) does not update every station’s price daily. On average, a

station’s price is updated on 54 percent of the sampled days.9 To address the issue, we

complement MapQuest.com’s data with price data collected daily from GasBuddy.com.10

Unlike MapQuest.com, prices on GasBuddy.com are reported by volunteer spotters in the

area. To minimize any issues caused by the potential inaccuracy of prices reported on Gas-

Buddy.com, we only use prices from GasBuddy.com when MapQuest.com does not report

the corresponding price for that station on that day.11 Stations are matched across the

two data sources based on the geographic coordinates of the stations, cross-validated with

Google Map’s geographic coordinates to ensure accuracy.12 After merging the price data

from these two sources, station prices are missing for only 9.2 percent of the sample days.

The remaining missing prices are replaced with the most recent price observed at that

station. The average duration over which prices are imputed is 1.6 days.13 Besides price

data, we also obtain information on station characteristics from these sources, including

name, brand, address, and geographic coordinates. Moreover, we visit Google Street View

and manually collect additional information such as the number of islands and pumps and

street conditions for each station.

8OPIS obtains price information from credit card transactions and direct feeds from gas stations.
9The price coverage rate is slightly lower than other studies that use OPIS data. A possible reason is

that the sample city is mid-sized and has more low-volume stations than the major cities studied by other
researchers. Fewer credit card transactions result in fewer price feeds to OPIS.

10Gasoline price data collected from MapQuest.com and GasBuddy.com are widely used in the literature
on retail gasoline prices, for example, Lewis and Marvel (2011) and Remer (2015).

11Atkinson (2008) shows that prices on GasBuddy.com can accurately identify the features of retail gaso-
line price competition despite occasional errors. GasBuddy.com price data match that from MapQuest.com
for 76 percent of the days when both are available. A closer data investigation reveals that most unmatched
prices are likely due to intra-day price changes.

12A station’s name or address cannot be used as a unique identifier for the matching because a station’s
name is not unique to a station, and different websites may use different aliases for a street or highway.

13Our estimation cannot accommodate missing prices because a station’s price affects many stations’
sales through the traffic network. One missing price will result in a large number of lost observations.
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Gasoline Transaction Data

Daily station-level expenditure data have been obtained from a major financial services

provider for 33 of the 46 stations in our price sample.14 These data reflect the total dollar

amount of purchases made using debit and credit cards associated with the provider’s pur-

chase processing network at each station on each day. Pay-at-pump and in-store purchase

totals are reported separately. To eliminate the measurement error caused by non-gasoline

transactions, we use pay-at-pump transactions only. A daily measure of the quantity of

gasoline purchased at each station is constructed by dividing the total pay-at-pump expen-

ditures by the price of regular unleaded gasoline at the station on that day.15 Although this

quantity measure excludes gasoline purchased with cash or in the store, around 72 percent

of consumers purchase gasoline at the pump (NACS 2016 Retail Fuels Report). There-

fore, we believe that our measure of the quantity of gasoline transacted at each station

reasonably describes the behavior of consumers searching for and purchasing gasoline.

Empirical Distribution of Search Routes

As individuals drive along their travel routes, the decision to purchase gasoline at a partic-

ular station is affected by the prices observed up to this station as well as the characteristics

of the remaining stations along the route. Consequently, we model consumers’ search and

purchase decisions at the search-route level. A search route is defined as a unique ordered

sequence of stations visited, exogenously determined by consumers’ travel needs.

The empirical distribution of search routes describes the predicted share of drivers trav-

eling along each possible ordered sequence of stations on an average day. Its construction

involves two elements: (i) the number of drivers traveling from an origin to a destination

and (ii) the route drivers take along the street network connecting the two points.

For the first element, we use the origin-destination travel demand estimates for local

residents produced by the state Department of Transportation,16 which report an estimate

14The name of the provider as well as the station names and locations in the data are withheld to protect
confidentiality.

15This construction introduces potential measurement error, as it overestimates the quantity transacted
for mid-grade and premium gasoline, which have higher prices. However, it has been estimated that only
15 percent of gasoline transactions are mid-grade or premium.

16The Origin and Destination Table is an output of the travel demand model constructed by the De-
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of the average number of drivers traveling from one Traffic Analysis Zone (TAZ) to another

TAZ. The origin-destination table spans a seven-county area around the focus city and

contains approximately 1800 TAZs. Most TAZs are relatively small, with 75 percent of

the traffic zones occupying an area of less than 1.5 km2. The larger traffic zones have few

residents and are at the fringe of the counties.

To compute the route drivers take traveling from an origin TAZ to a destination TAZ, we

assume that all drivers take the route that minimizes driving time. We select the centroid

of the origin and destination TAZ as the drivers’ start and end locations and determine

the single fastest travel route for every origin and destination TAZ pair based on the street

network in the area.17 The ArcGIS Network Analyst package is used to calculate the fastest

travel route, with road network data obtained from ArcGIS StreetMap North America.18

Next, we identify the stations along each travel route and the order in which they are

passed. Figure 2 provides an example of a travel route connecting a starting location A

and an ending location B, including the three stations available to drivers on this route.

In many cases, it is difficult for drivers to visit stations on the opposite side of the street

because some left-turns cannot be easily made. To consider the potential cost of making

left-turns in the model, we also record the side of the street a station is on along each route.

We discuss the different left-turn types and their difficulties in the next section.

A search route in our model is formally defined by a specific sequence of stations. As

multiple travel routes (origin and destination pairs) may pass the same set of stations in the

same order, travel routes are aggregated to the search-route level.19 A total of 991 search

routes are identified at the beginning of the sample, and the number increases to 1046 after

two additional stations enter the market.20 The number of travelers on a search route is

constructed by summing up all drivers traveling past the same ordered set of stations (and

partment of Transportation to forecast the traffic in the year 2020.
17To reduce the computation burden, we grouped the TAZs in each of the surrounding counties into 8

clusters of TAZs based on their locations using the K-Mean algorithm.
18ArcGIS Network Analyst extension: https://www.esri.com/en-us/arcgis/products/

arcgis-network-analyst/overview. StreetMap North America: https://www.arcgis.com/home/

group.html?id=ddd06a0bde9c45a1b3e786a2b4e695e8#overview.
19Travel routes passing no stations are excluded from the sample. We also exclude search routes with

fewer than 20 daily drivers.
20In the structural estimation, the sample periods are divided into three parts based on the entry date.

The empirical analysis is based on the empirical distribution of search routes in each period, respectively.

11

https://www.esri.com/en-us/arcgis/products/arcgis-network-analyst/overview
https://www.esri.com/en-us/arcgis/products/arcgis-network-analyst/overview
https://www.arcgis.com/home/group.html?id=ddd06a0bde9c45a1b3e786a2b4e695e8#overview
https://www.arcgis.com/home/group.html?id=ddd06a0bde9c45a1b3e786a2b4e695e8#overview


only those stations). Dividing it by the total number of daily travelers in the area produces

a vector of the share of travelers on each search route.

Although our daily station-level gasoline expenditure data provide many advantages,

there are a few limitations. First, expenditure data are only observed for around 70 per-

cent of the stations in the market. Our model predicts demand at every station, but the

identification is based on the stations with observed quantity data. Variation in observed

station characteristics is also limited, so the vertical differentiation of sellers is incorporated

into the model based on station type. To maintain group size and protect each retailer’s

identity, we apply three brand dummies to account for brand heterogeneity: one dummy

for major-branded stations and two for retailer brands. The remaining stations are collec-

tively classified as generic stations. Additionally, we include a small station dummy and a

large-format station dummy to control for the station scale.

Stations located near Interstate Highway exits also present a challenge. The origin-

destination traffic data only describe the travel patterns of local drivers, so potential de-

mand from Interstate drivers is not accurately reflected. Interstate drivers also observe

prices and make purchase decisions very differently than the local drivers modeled in this

article. To more accurately capture demand at these stations, our model includes a sep-

arate dummy variable to account for the average differences between the model predicted

and the observed market shares for each station located at an Interstate Highway exit.

4 Retail Gasoline Market Overview

Before introducing the structural model, we discuss the features in the retail gasoline market

that motivate our modeling choice. More specifically, we first examine the relationship

between the station average transaction volume and station characteristics. We then discuss

why consumers are likely to have imperfect price information and why it is important to

incorporate learning when modeling consumer search in this market.
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Station Transaction Volume and Station Characteristics

Table 1 summarizes the station-level average prices and quantities as well as some impor-

tant station characteristics. The top panel provides statistics for all of the stations in the

city, whereas the lower panels separately consider specific station types. Average gaso-

line prices vary somewhat across stations, exhibiting an interquartile range of 10 cents per

gallon around a city-wide average of $1.61 per gallon (before taxes). Considerably more

heterogeneity is exhibited in station-level average transaction volume. Among the 33 sta-

tions for which we observe quantity data, the 75th percentile station sells 6.5 times more

gasoline than the 25th percentile station. Major-branded stations such as Shell, BP, and

Exxon, among others, account for approximately 37 percent of the stations in the city.

On some streets, it may be difficult for drivers traveling in a certain direction to visit

stations on the opposite side of the street. For this reason, we classify three types of

stations based on left-turn difficulty. Approximately 26 percent of our sample stations can

be easily visited by drivers traveling on both sides of the street. These include stations on

two-lane or multi-lane roads with a left-turn zone in the center. Another 28 percent of the

stations are located where no left-turns are possible because the street has a physical curb

or median in the center. The remaining stations are located at major intersections with

a traffic light. Casual observation suggests that drivers are likely to forgo possible price

savings at these stations to avoid waiting for the left-turn traffic light, especially when the

intersection is busy. To provide a conservative measure of the number of consumers each

station faces, we define a station’s direct traffic as the number of drivers who can easily

visit the given station, which includes drivers driving on the same side of the street as the

station or on the opposite side of the street where a left-turn can be easily made without

involving a traffic light. As shown by the last row of the top panel, 11.5 thousand drivers

directly drive past a station on average.

Panel (a) of Figure 3 depicts a positive relationship between the direct traffic volume

and the transaction volume at a station, both measured in logarithms,21 revealing that

stations passed by more drivers also sell more gasoline.22 There is significant variation

21We exclude the stations at the exit of the interstate highway from this figure because we do not have
data measuring highway traffic volume.

22The correlation between the average gasoline transaction volume and the passing traffic volume is 0.28,
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around this relationship, suggesting that other station attributes such as price reputation

and brand quality may also influence station sales. Nevertheless, the pattern demonstrates

the advantage of using traffic data to simulate consumers’ search patterns for gas stations.

Other empirical studies of consumer search (e.g., Hong and Shum 2006; Wildenbeest 2011;

Nishida and Remer 2018) have typically adopted an equal-probability random sampling

assumption when individual search histories and quantity data are not observed. Our data

suggest that consumer search along travel routes better represents consumer behavior than

the random sampling assumption.

In recent years, stations with a large number of islands and a large convenience store

attached are becoming increasingly popular (e.g., Noel 2016). We group stations into three

categories based on their scale: large-format retailers, small-sized stations, and mid-sized

stations. In particular, we define large-format stations as retail stations with at least six

islands.23 All large-format stations in our sample have a sizable convenient store attached.

In contrast, small stations have no more than three islands, with a small booth in the

center. The remaining stations are categorized as mid-sized stations. The bottom two

panels in Table 1 describe the price and quantity distributions for the small and large-

format stations. Whereas the average price at large-format stations is, on average, six cpg

cheaper than at small-sized stations, the average daily sales volume at large stations is 7.8

times greater than at small stations. Notably, large-format stations all have average prices

in the lowest quartile of the city distribution, whereas their average sales volumes are all in

the highest quartile. The negative correlation between stations’ average price and average

sales volume is consistent with consumers preferring stations with a reputation for lower

prices.

Our traffic data also reveal that drivers pass enough stations to allow them to search

without deviating from their travel routes, as we assume later in the structural model.

All stations in our sample display their prices on large signs, so passing traffic in both

directions can easily observe prices. Panel (b) and (c) of Figure 3 show the distributions of

the number of prices drivers see as well as the number of stations they directly drive past

similar to the correlation of 0.3 reported by Houde (2012).
23An island is an elevated platform where pumps are located. The number of islands provides a better

measure on the station scale than the number of pumps. A small station can have four or more pumps
cramped on an island, whereas a large-format station generally has two pumps sitting on an island.
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along their travel routes. On average, a driver sees 3.5 prices and directly drives past 2.2

stations along their travel route. Thus, the number of options for drivers is comparable to

the number of stores searched by consumers before purchases in other markets documented

by the search literature.24

Two Types of Price Uncertainty

Frequent price changes in the retail gasoline market make it difficult for consumers to

maintain accurate price information. Figure 4 shows the distribution across days of the

proportion of stations changing their price from the previous day. The average probability

of such a price change is 32 percent.25 Frequent price changes generate two types of

uncertainty in the market: (i) ex-ante uncertainty about the price at each station and (ii)

uncertainty about the overall price level in the market. To further analyze the different

sources contributing to these two types of uncertainty, we perform the following regression,

pjt =
J∑
j=2

ψjStationj +
T∑
t=1

γtDayt + νjt, (1)

where the price at station j on day t is decomposed into a station fixed effect ψj, a day-of-

sample fixed effect γt, and an idiosyncratic error term νjt.

Using this decomposition, overall variation in price can be viewed as the sum of persis-

tent price differences across stations, captured by station fixed effects ψj and a time-variant

component p̃jt = γt + νjt. The time-variant price, p̃jt, combines the day-of-sample fixed ef-

fect, γt, which is driven by changes in aggregate market conditions (for example, wholesale

cost) common to all stations, and the station-day-specific price shock, νjt.

Drivers regularly observe prices during everyday driving and are likely to be relatively

knowledgeable about which stations tend to have higher or lower prices. In contrast, drivers

are largely unaware of the wholesale market conditions responsible for fluctuations in the

average retail price of gasoline (except what they might infer from recently observed prices),

24Using data on individual online browsing and purchase histories, De los Santos et al. (2017) find
consumers visit on average 2.82 online retailers before buying an MP3 player, and De los Santos (2018)
finds consumers searched 1.3 online bookstores before purchasing a book.

25This number is only a conservative measure of the proportion of stations with price changes on a day
due to missing prices. Some price changes are likely not recorded.
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and, on any given day, they don’t know which stations are charging unusually high or low

prices until they begin searching. Our empirical model captures these institutional features

by assuming that average price differences across stations, reflected by station fixed effects

ψj, are known by consumers so that their uncertainty over prices results entirely from

temporal price variation. This structure allows for the possibility that customers respond

more strongly when a station begins consistently offering a lower price (which becomes

known to consumers) than when a station offers an abnormally low price on a given day

(which would not be known prior to search).

Fluctuations in station prices relative to one another are represented by the station-

day-specific price shocks, νjt (e.g., Lewis 2008). Chandra and Tappata (2011) provide

direct empirical evidence of such variation, showing that gasoline station pairs exhibit

reversals from their normal price ordering approximately 15 percent of the time. This

variation creates uncertainty by preventing consumers from knowing a station’s location in

the current price distribution prior to search. Empirical studies that structurally estimate

models of consumer search focus primarily on this type of uncertainty. The known price

distribution assumption assumes that market conditions are constant over time and known

to consumers (e.g., Hong and Shum 2006; Wildenbeest 2011; Nishida and Remer 2018).

In reality, however, frequently changing market conditions can make it difficult for con-

sumers to know the level of the overall price distribution, as measured by γt. In our sample,

the price level fluctuations are responsible for 93 percent of the overall retail price varia-

tion. This introduces a second important source of price uncertainty. In this environment,

consumers may form expectations of the price level today based on prices observed during

past trips or gasoline purchases, resulting in biased beliefs (Lewis 2011). Collecting new

price observations allows consumers to learn more about the current distribution, but the

presence of station-specific price variation, νjt, prevents them from fully resolving uncer-

tainty in γt. Therefore, biased prior beliefs will continue to impact consumers’ posterior

beliefs about the current price level, though the weight placed on these priors decreases

as more new information is obtained. Incomplete knowledge of the price distribution can

have important impacts on consumer behavior. For example, biased beliefs provide one

explanation for why wholesale gasoline cost increases are often passed through to retail
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prices more quickly than cost decreases, as depicted in Figure 1.

Based on the decomposition in Equation 1, Table 2 presents the relative magnitudes of

the two components of price variation that give rise to uncertainty. The νjt, has a standard

deviation of 3.2 cpg, confirming the presence of substantial idiosyncratic price variation

within a day. In addition, the price levels, γt, exhibit considerable fluctuation during our

sample period, spanning from a minimum of $1.08 to a maximum of $2.04 before taxes.

The average across days of the absolute difference in the price level, |γt − γt−1|, is 0.8 cpg.

However, the discrepancies between the priors and the actual price levels might be much

larger, as consumers are likely to use the price at their last gasoline purchase as a reference

price (Lewis, 2011). For example, the average absolute difference between the current price

and the price 7 days prior is 4.5 cpg.

We now provide some descriptive evidence on whether consumers know about the cur-

rent price distribution under the premise of consumer search. If consumers have correct

knowledge about the actual price distribution, past prices should not affect consumers’

search decisions. In contrast, when consumers are uncertain about the actual price distri-

bution and formulate their price expectations based on prices acquired from past driving

trips or purchases, these past prices may bias consumers’ perceived benefit of price search

and influence consumer search in certain directions. In particular, lower past prices may

bias consumers’ price expectations downward, causing more consumers to postpone their

purchases to future trips searching for better prices, consequently lowering current gasoline

sales. Similarly, higher past prices may reduce the perceived benefit of search or postpone-

ment, leading to more purchases on current driving trips. To investigate the relationship

between purchases and past prices, we regress the logarithm of a station’s daily transaction

volume on its own price, its closest competitors’ prices, and the average price level in the

city 7 days prior while controlling for station as well as day-of-week and month-of-sample

fixed effects.26 We measure a station’s closest competitors in terms of the amount of traffic

the stations have in common. Note that under imperfect price information, price changes at

subsequent stations along a travel route are unknown to consumers and thus do not affect

26We use the price level 7 days ago, γt−7, as a measure of the prices that consumers observe on their past
trips or purchases. We have estimated the model using the price level on various days prior and obtained
similar results.
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their search or purchase decisions at the current station. In other words, a price change at

an upstream station can influence the demand at a downstream station but not the other

way around. Therefore, we define a station’s common traffic shared with a neighbor station

as the proportion of the given station’s passing traffic (in all directions) that has previously

passed the neighbor. We then rank neighbors in terms of common traffic shares for each

station.27 Table 3 provides the coefficient estimates for the panel regression. An increase

in a station’s daily gasoline sales predicts a decrease in its own price and an increase in

the prices of its closest two neighbors, as expected. Importantly, the coefficient on the

logarithm of the past price level is positive and precisely estimated in all specifications.

These results are consistent with consumers being uncertain about the current price level

but contradict the assumption of a known prior distribution, where past prices should not

affect search and purchase decisions.

It is also possible that past prices influence current demand not through prior beliefs

but due to consumers timing their gas purchases using their gas tank storage. If more

(fewer) consumers fill up their tank as a result of recent low (high) prices, fewer (more)

will be in the market to purchase gas today. To investigate this potential channel formally,

Column (3) introduces the logarithm of past total gasoline transactions from various days

ago to control for the number of consumers who have purchased gas in the recent past. If

the negative lag-price effect is entirely due to purchase timing, then the lag-price coefficient

should become a much less important predictor once lagged total transactions are controlled

for. In contrast, controlling for recent purchase volumes in Column (3) has minimal impact

on the magnitude and estimated precision of the coefficients on past prices, suggesting that

past prices affect purchase decisions through prior belief formation.

Moreover, adjustments to purchase timing should generate a negative relationship be-

tween past and current sales, whereas, Column (3) shows that the coefficient on the past

sales 1-day ago is positive and precisely estimated. The positive coefficient likely reveals

some degree of serial correlation in unexplained shocks to gasoline demand. The coefficient

on past sales from 2-days ago is negative and precisely estimated, consistent with timing

purchases, but the coefficient estimates become imprecise for longer lags. The estimates

27The magnitude of these common traffic shares is discussed later when we consider station pair charac-
teristics in Section 7.
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suggest that adjustments to purchase timing, if they occur at all, tend to happen within

a window of several days, consistent with the findings in Levin et al. (2022). Most impor-

tantly, the coefficient on the lagged price level remains precisely estimated and unaffected by

the inclusion of lagged sales volumes, suggesting that past prices primarily impact demand

through the formulation of consumers’ prior expectations about the price distribution.

5 Model of Sequential Search

Based on the important institutional details of the retail gasoline market, we specify a

model of price search in which consumers are uncertain about the current price distribution

and learn about the distribution as they observe prices. The model considers heterogeneous

and forward-looking individuals, each traveling along a particular (exogenously determined)

route, sequentially encountering a known set of stations, perhaps from home to work or from

home to a store. Consumers hold prior beliefs about the distribution of prices in the market,

likely based on the prices observed from past driving trips or purchases. As a consumer

passes each station, she updates her price beliefs before optimally deciding whether to stop

and purchase or continue on to potentially purchase at a subsequent station.28 Consumers

also have the option of postponing purchase until a future trip but some will incur a

postponement cost (that varies across consumers) to reflect that certain consumers need to

purchase gasoline more urgently than others.29 Therefore, the probability that a consumer

will purchase from a station depends on the realized utility of purchasing at the observed

price and the expected value of continuing to search given her posterior belief of the price

distribution.

Although our search model characterizes an individual consumer’s purchase decision,

our empirical model will be estimated using station-level quantity and price data. A sta-

tion’s potential customers may be traveling along many different routes and encountering

different sets of competing stations. The quantity of gasoline sold at a particular station

28Although gasoline consumption does respond somewhat to changes in price, this study focuses instead
on how consumers decide where and when to make that gasoline purchase. In our empirical estimation,
we use time fixed effects to control for the changes in overall demand level as detailed in Section 6.

29We allow for a mass of consumers with zero postponement cost to account for drivers whom have
recently purchased gas and are not considering another purchase.
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can then be modeled by aggregating individual predicted purchase decisions over the em-

pirical distribution of consumers across search routes. The following subsections detail the

different components of the individual search model. Then, in the next section, we discuss

the construction of the empirical model, including aggregation to the station level and the

additional assumptions required for estimation.

Utility

Gasoline demand is characterized by consumers sequentially searching the prices of stations

along their travel routes. We consider a city containing a set, J , of J stations indexed

j = 1, 2, ..., J . Consumers each demand 10 gallons of gasoline.30 We assume consumers

have an indirect utility for gasoline at station j on day t equal to:

ujt = Xjβ − pjt,

where Xj represents station j’s non-price characteristics, and pjt is the unit cost of gasoline

(per gallon price multiplied by 10 gallons). The coefficient on the price is normalized to

−1, so utilities are expressed in dollar value. Because around 30 percent of the stations

in our sample do not have market share data, it is not possible to introduce station fixed

effects or allow unobserved station attributes in the model. Instead, we use brand and scale

group dummies to parameterize the station-specific unobserved attributes, similar to the

approach used by Goldberg (1995).31

Based on the price decomposition in Equation 1, we can rewrite the indirect utility as

ujt = Xjβ − ψj − γt − νjt

= Vj − p̃jt, (2)

where γt represents the daily average price level in the city, ψj captures the persistent

30A unit of gasoline purchase of 10 gallons is a scalar chosen for the convenience of interpreting the
estimation results.

31Given that gasoline is less differentiated than most products, any remaining unobserved quality should
be negligible. Additionally, we find little correlation between the estimated utility generated by the non-
price characteristics Xj β̂ and the persistent price difference across stations ψ̂j , suggesting that any remain-
ing unobserved quality is unlikely to be correlated with price.
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price difference between stations, and νjt is the idiosyncratic deviation of station j’s price

on day t from its own average and the city average. Therefore, the customer’s indirect

utility of consuming at station j on day t can be partitioned into two components: the

value of station j’s time-invariant characteristics, Vj = Xjβ −ψj, and a time-varying price

component, p̃jt = γt + νjt.

This partition of the customer’s indirect utility function is motivated by the features of

the retail gasoline market. Repeated observations and frequent purchases at a number of

stations allow consumers to become aware of the station characteristics that are constant

over time. These include the station’s location, brand, and reputation for being a high- or

low-priced station (represented in the model by ψj). The Vj component then represents

the part of utility known to consumers before search. In contrast, time-variant prices,

representing the changes in prices over time and across stations, are unknown to consumers,

as discussed in the previous section.

Consumer Learning and Prior Belief

We assume that time-variant prices, p̃jt ∼ N(γt, σ
2), where σ2 denotes the magnitude of

the actual price dispersion.32 We make the independence and normality assumptions to

make the model tractable because the conjugate prior of a normal distribution is itself,

even though the distribution may be inconsistent with the equilibrium price distribution.33

Based on past experiences, consumers are likely familiar with the typical level of idiosyn-

cratic price variability in the market. Therefore, we assume that consumers know σ2.34

Because retail gasoline prices frequently rise and fall in response to volatile wholesale

prices, consumers are uncertain about the average price level, γt. We capture this uncer-

tainty by assuming consumers hold some common prior beliefs about the price level.35 In

32We assume that the price dispersion is constant over time. Although the degree of gasoline price
dispersion has been shown to fluctuate over time when price levels change (Lewis and Marvel, 2011;
Chandra and Tappata, 2011), our article abstracts from this second-order effect.

33Empirically, the normal distribution provides a fairly accurate characterization of the distribution of
νjt, though the empirical distribution does have somewhat heavier tails. Solving the supply-side prices in
the presence of complex route structures and evolving consumer beliefs is beyond the scope of this article.

34This assumption is also necessary for the identification of the prior weight (Mehta et al., 2003; Ursu
et al., 2020). In the analysis, σ is set to 0.32 to match the empirical distribution presented in Table 2.

35The common prior assumption is for analytical tractability. However, as consumers observe different
prices along different search routes, their posterior beliefs become different.
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particular, we assume consumers perceive possible price levels as random variables,

m0t ∼ N

(
µ0t,

σ2

α0

)
, (3)

where µ0t is the mean (expectation) of the perceived price levels, later referred to as the

prior mean. Following the literature, we denote the variance of the prior belief as a ratio

of the known price variance σ2 and α0. Here, α0, commonly known as the prior weight, is

inversely related to the prior uncertainty about the price level. For example, a smaller α0

suggests a more diffuse prior.

Due to relative price variation, each price observation only provides a noisy signal of the

true price level, γt. As consumers observe new prices, they update their beliefs about the

price level. Let xn be the realization of the nth time-variant price observation. According

to Bayes’ rule, the posterior belief about the price level after observing n prices follows a

normal distribution

mnt ∼ N

(
µnt,

σ2

α0 + n

)
, (4)

where

µnt = h(µn−1,t, n, xn) =
(α0 + n− 1)µn−1,t + xn

α0 + n
. (5)

The posterior uncertainty, σ2

α0+n
, falls in the number of price observations. Based on

Equation 5, the posterior mean of the perceived price level can also be expressed as a

weighted average of the prior mean and the new price observations,

µnt =
α0

α0 + n
µ0t +

1

α0 + n

n∑
k=1

xk. (6)

The posterior belief, which captures the learning process, depends on two critical com-

ponents: prior uncertainty and prior mean. The prior weight, α0, determines the speed

of learning. When α0 is smaller, meaning that consumers are more uncertain about their

prior beliefs, the posterior mean is updated more by each price observation. On the other

hand, a larger α0 suggests a slower update, as the posterior mean depends more on the

prior mean. Moreover, when consumers are perfectly certain of their prior beliefs about the

price level (α0 is infinite), the posterior mean always equals the prior mean regardless of
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the new price observations, µnt = µ0t. In other words, no learning occurs, and consumers

believe that any observed price deviation from their prior mean is the result of a station’s

specific price change rather than a market-level price change.

The prior mean, µ0t, also plays a vital role in formulating the posterior beliefs. Impor-

tantly, the prior mean does not need to equal the actual price level, γt. In fact, as discussed

in Section 4, prior beliefs are likely biased as consumers formulate their prior beliefs based

on the prices observed from previous gasoline purchases or driving trips.

Ordered Search

Drivers typically pass multiple gas stations while driving to their desired destinations. As

a result, unlike some other product markets, consumers can sequentially search the prices

of multiple stations with zero search cost. In practice, drivers rarely alter their routes or

make separate trips to visit additional stations. Hence, we adopt a model that assumes

such deviations from the travel route, including recall (driving back to a previously passed

station), are too costly. Consumers’ price search is sequential and ordered, as they know

ex-ante the predetermined order in which they will pass a specific set of differentiated

stations.

We assume that consumers update their beliefs based on the price observations from

both sides of the street. However, we introduce a visit cost (or turn cost), τrn ∈ {0, τ,∞} to

account the higher cost of visiting stations across the street. This cost is zero if the traveler

is on the same side of the street as the station or if a left-turn is easy to make, but will

take on a non-negative value, τ , if a left-turn requires waiting for traffic lights at a major

intersection. For travelers who are unable to visit the station due to left-turn restrictions

this turn cost parameter becomes infinite.36 With some abuse of notation, let r(n) return

the station index j for the nth station along route r. This station’s route-specific ex-ante

known utility is then

Vrn = Vr(n) − τrn. (7)

Consider a consumer i’s search decision as she drives along a route r on day t. For

notational simplicity, the day index t is suppressed until necessary. As the consumer drives

36See Section 4 for additional discussion of how left-turn difficulty is determined for each station.
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to each station, she costlessly observes the price. She updates her belief about the prices

at the other stations before deciding whether to purchase gasoline at this station or go to

the next one. This decision amounts to an optimal stopping problem involving a value

function, Wr, with three state variables: the number of prices already observed, n, the

price at the current station, xrn, and the posterior mean, µrn. Upon observing the price

at a station n prior to the final station on the route, the consumer trades off the realized

utility at the nth station with the value of continuing searching, evaluated based on her

current estimates of the price distribution given the price information obtained. Therefore,

the value function can be recursively defined as,

Wirn(µrn, xrn) = max

{
Vrn−xrn,

∫
Wirn+1(h(µrn, n+ 1, xrn+1), xrn+1) ·dFrn(xrn+1)

}
, (8)

where Frn(xrn+1) is the posterior predictive distribution of possible unobserved prices at

the n + 1th station given the n prices already observed along route r. As we show in

online Appendix A, it follows a normal distribution with xrn+1 ∼ N
(
µrn, σ

2 + σ2

α0+n

)
.

The predictive distribution takes into account both the station-specific price variation, σ2,

conditional on a possible price level as well as the posterior uncertainty over the price levels,

σ2

α0+n
.

In practice, drivers typically travel on a variety of different routes to and from their

various destinations. Some may choose not to purchase on their current trip, instead

continuing to search for a better deal on a future trip along a different route. This option

becomes increasingly costly when a consumer is close to running out of gas. In our model,

if a consumer does not purchase from a station along the current travel route, she pays a

postponement cost ci. This ci will be higher for those who need to purchase now, and lower

for those seeking to buy gasoline but not under pressure to do so immediately.37 Because

our data do not track individuals’ driving behaviors over time, we assume that consumers

face the same set of ordered search routes R. Let λr denote the share of drivers traveling

along route r given by the traffic data.

37The postponement cost can be interpreted as the psychological cost of worrying about running out of
gasoline or expectation of a future stock-out cost.
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Therefore, at the final station n = Nr, the value function becomes

WirNr(µrNr , xrNr) = max

{
VrNr − xrNr ,

− ci +
∑
r′∈R

λr′ ·
∫
Wir′1(h(µrNr , 1, xr′1), xr′1) · dFrNr(xr′1)

}
. (9)

The continuation value of search at the end of a search route is then the sum of the post-

ponement cost and the weighted sum of the expected value function at the start of a new

travel route. We assume consumers are myopic in the sense that each day the consumer

solves a completely new ordered search problem. When considering postponement, con-

sumers perceive the expectation of the future price level to be the same as the expectation

of the price level based on their subjective posterior beliefs at the end of a route.38 How-

ever, consumers’ uncertainty about the future price level is reset to σ2/α0 (n = 0), as they

have not yet observed any prices on the next travel route. Therefore, FrNr(·) is a normal

distribution with mean µrNr and variance σ2 + σ2

α0
.

Conditional on consumer taste and learning parameters θ, we denote the continuation

value of search at any station n < Nr along route r as

Zrn(µrn, ci|θ) =

∫
Wirn+1(h(µrn, n+ 1, xrn+1), xrn+1) · dFn(xrn+1) (10)

=

∫
max{Vrn+1 − xrn+1, Zrn+1(h(µrn, n+ 1, xrn+1), ci|θ)} · dFrn(xrn+1), (11)

where Equation 11 is obtained by combining Equation 8 and Equation 10. At the final

station n = Nr,

Z0(µrNr , ci|θ) = ZrNr(µrNr , ci|θ) =

− ci +
∑
r′∈R

λr′

∫
{Vr′1 − xr′1, Zr′1(h(µrNr , 1, xr′1), ci|θ)} · dFrNr(xr′1). (12)

Proposition 1 The continuation value of search can be written as Zrn(µrn, ci|θ) = zrn(ci|θ)−

µrn for any r ∈ R and n = 1, 2, ..., Nr. Solving the recursive relationship presented in Equa-

tion 11 and 12, the continuation value of search can be simplified as follows:

38This is a realistic assumption, as the average price level series follows a random walk.
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When n < Nr,

zrn(ci|θ) = zrn+1(ci|θ) + σ

√
α0 + n

α0 + n+ 1
· (ζrn+1 · Φ(ζrn+1) + φ(ζrn+1)), (13)

and when n = Nr,

zrNr(ci|θ) = z0(ci|θ) = −ci +
∑
r′∈R

λr′

[
zr′1(ci|θ) + σ

√
α0

α0 + 1
· (ζr′1 · Φ(ζr′1) + φ(ζr′1))

]
,

(14)

where ζrn+1 = Vrn+1−zrn+1(ci|θ)
σ
√

α0+n
α0+n+1

. Φ(·) and φ(·) are the CDF and PDF of the standard normal

distribution respectively.

Proposition 1 shows that the continuation value of search Zrn is the sum of posterior

mean, µrn, and a function of the postponement cost, zrn, conditional on the consumer pa-

rameters (see online Appendix B for proof). In other words, zrn(ci|θ) summarizes the value

of the time-invariant characteristics of the remaining options along a route for the consumer

with postponement cost ci. Based on the recursive relationship, we can numerically solve

for z0, and subsequently zrn as a function of ci at any station along any route. In practice,

the solution is given by linear interpolation.

Having not purchased at any previous stations on the route, purchase occurs at the

nth station if Vrn − xrn ≥ zrn(ci|θ) − µrn, where µrn = α0

α0+n
µ0 + 1

α0+n

∑n
k=1 xk. It is

straightforward to show that zrn is decreasing in ci for any r ∈ R and n = 1, 2, ..., Nr.

Additionally, zrn(ci|θ) > max{zrn+1(ci|θ), Vn+1} for any n < Nr and ci from Equation 13.

The ordered search generates intuitive properties. First, the value of a route, zrn,

increases with the number of stations remaining along the route. Second, zrn is bounded

from below by the maximum of the ex-ante known utility of the remaining stations along

a route for any ci. As such, if there is a low-price/high-quality station down the route,

where the persistent utility difference between the station and the other stations outweigh

the magnitude of any relative price changes, consumers driving along this route will drive

past the other stations and buy from the ex-ante desired station.

Therefore, as long as the realized utility at a station is greater than the lower bound

of the continuation value of search conditional on the posterior mean, zrn(+∞|θ) − µrn,

the critical postponement cost c∗rn that makes the consumer indifferent between purchasing
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and continuing to searching satisfies the following,

zrn(c∗rn|θ) = Vrn − xrn + µrn

= Vrn −
α0 + n− 1

α0 + n
xrn +

1

α0 + n

n−1∑
k=1

xrk +
α0

α0 + n
µ0. (15)

If the realized net utility is less than the lower bound, the consumer will continue searching.

In this case, c∗rn becomes infinite so that no consumers purchase at the current station.

Intuitively, for the consumer to optimally purchase at a station, her postponement cost

must be large enough to make the realized utility greater than the continuation value

of search. Therefore, the lower bound of postponement cost necessary for the consumer

to stop searching is c∗rn. Additionally, suppose the consumer has already driven past at

least one station along the route. For the consumer to optimally purchase at the current

station, her postponement cost should not be so large that she has already purchased

at a previous station. Therefore, we denote the upper bound of postponement cost as

c∗∗rn = min(c∗r1, ..., c
∗
rn−1) when n > 1. At the first station, we define c∗∗r1 = ∞, so that the

consumer will purchase if ci ≥ c∗r1.

Conditional on searching along route r, the proportion of consumers who purchase from

the nth station is

qrn =

G(c∗∗rn)−G(c∗rn) if c∗∗rn ≥ c∗n

0 otherwise,
(16)

where G(·) is the CDF of the postponement costs.

Equation 16 shows that the conditional purchase probabilities along a route are given by

the postponement cost distribution evaluated at the critical values. Equation 15 establishes

the relationship of the critical values with seller utilities and the posterior beliefs resulting

from consumer learning.

6 Estimation

Given our data, two important assumptions are necessary to estimate the structural model.

First, we assume that the gasoline transactions are made by a new group of drivers each
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day. Therefore, the model is estimated at the day level. The prior mean is parameterized

as a weighted average of the price level 7 days ago and the current price level:

µ0t = πγt−7 + (1− π)γt. (17)

The price level 7 days ago proxies the price observations from recent driving trips or gasoline

purchases. The prior bias π, a variable from 0 to 1, reflects the influence of past price

observations when consumers formulate their prior price expectations.

This specification of the learning process closely relates to the existing search literature.

Due to data limitation, most existing empirical studies on search with learning, including

Koulayev (2013) and De los Santos et al. (2017), do not estimate the parameters governing

the learning process and assume a correct prior belief (π = 0) and a prior weight equal to

the number of product and seller combinations. Similar to Hu et al. (2019), we estimate

the learning process. However, our focus is on how much the past prices bias the prior

mean rather than estimating the prior mean itself. Our specifications also allow us to

empirically distinguish alternative search model assumptions based on our data. The prior

bias π allows us to test empirically whether consumers have correct expectations about the

price distribution (π = 0) or use past price observations as a reference price (π = 1, e.g.

Lewis 2011). When π = 0 and α0 =∞, our model nests the standard search models with

a known price distribution.

We further aggregate the purchase decisions made by drivers searching along their

respective search routes to construct each station’s daily market share, matching the ob-

servation level of our gasoline data. We start by defining the total size of the market as the

total number of drivers driving on a day who use the financial company’s credit or debit

cards for their gasoline purchases. The traffic data describe the average daily drivers in the

city. Because other payment methods, such as cash and other companies’ credit or debit

cards, are available, we assume a 30 percent market share for the company in the payment

means.39 Then, a station’s observed market share is the share of the company’s card users

who purchase gasoline at that station on a day. The number of people who purchase at a

39We do not use the actual market share to protect the financial service company’s identity. Different
proportionality assumptions do not affect our estimation results.
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station is calculated by the daily quantity of gasoline transacted at the station divided by

10 gallons, the unit amount of gasoline per purchase.

Only a small share of the drivers purchase gasoline on any given day because most

already have sufficient gasoline remaining in their tanks. In particular, 8.3 percent of the

drivers on an average day purchase at the stations where quantity data are observed. To

capture the behaviors of the drivers who do not consider a purchase in our model, we allow

the distribution of postponement costs to have a probability mass of 1− ηt at zero.40 The

remaining ηt share of drivers have a positive probability of purchasing gasoline on their

search routes. Note that ηt includes a set of day of week and month of sample dummy

variables to account for the changes in overall demand (frequency of purchase) for gasoline

over time.41 For example, larger ηt reflects more frequent gas purchases during summer

seasons. We assume the positive postponement costs follow a log-normal distribution with

E (ln(c)) = µc and Var (ln(c)) = σ2
c . Therefore, following Equation 16, the share of total

consumers who travel on route r and purchase from the nth station in period t can be

rewritten as

qrnt =

ηt
[
Φ
(
ln(c∗∗rnt)−µc

σc

)
− Φ

(
ln(c∗rnt)−µc

σc

)]
if c∗∗rnt > c∗rnt

0 otherwise.
(18)

Let r−1(j) return the location index n of station j on route r. We obtain the expected

market share of station j at time t given all station characteristics at time t by aggregating

the conditional purchase probabilities across all the routes the station is on,

E(sjt|p̃, X, λ) =
∑
r∈R

λrqr(r−1(j))t1(j ∈ r). (19)

where p̃ is the vector of time-variant prices for all stations, X is a vector of all station

characteristics, including the persistent price differences across stations ψ, and λ is the

vector of the share of drivers traveling on each possible search route.

40Because the price distribution follows a normal distribution and is not bounded, the value of continuing
to search is infinite when the postponement cost is zero. Consequently, the drivers with zero postponement
cost will never make a purchase.

41The month-of-sample fixed effects can also account for changes in the market size over time, such as
the possible growing adoption of card payments.
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Equation 19 shows how we map the observed market share at a station into the con-

ditional purchase probabilities resulting from consumers’ search and learning decisions.

This relationship allows us to estimate the model using nonlinear least squares. More

specifically, to estimate the model, we first use the regression results from Equation 1 to

separate prices into persistent price differences across stations ψj and time-variant prices

p̃jt. Whereas consumers know ex-ante a station’s price reputation along with other station

characteristics, they search to realize the time-variant price at each station and update the

posterior mean. Second, we calculate the purchase probability at the station-route level.

Given a set of parameters, we can numerically solve for z0(), an unknown function of ci,

over a set of equations described by Equation 14 and 13 using the fixed point algorithm.

Then we can obtain a numerical solution for zrn() as a function of ci for each station along

each route. All solutions are given by linear interpolation on a grid of ci. For each station

along a route, we can calculate the realized utility net of the posterior mean and determine

the critical c∗rn that makes an individual indifferent between purchase and searching using

interpolation on the grid of zrn(). Equation 16 specifies the probability that consumers on

a route will purchase at a station given these critical postponement cost levels. Finally, we

aggregate the conditional purchase probabilities over the empirical distribution of search

routes to obtain the expected market shares according to Equation 19. We choose the set

of parameter values to minimize the sum of squared deviations between the observed and

expected market shares.

Identification

The parameters to be estimated are consumer preferences, βs, the postponement cost, µc

and σc, the prior belief, π and α0, and a set of time fixed effects in ηt. The joint variation

between market shares and station characteristics identifies the preference parameters. For

example, given our knowledge of the sampling probabilities observed from the traffic data, a

higher-priced station may have a similar market share to a lower-priced station, suggesting

that its characteristics are favorable enough to consumers to offset the persistent price

difference. The panel feature of the dataset identifies the postponement cost parameter.

If prior weight, α0, is known, the day-to-day price fluctuations change the critical value
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c∗jt at a station. The associated variation in the station’s market share can inform the

postponement cost density at the critical values and thus µc and σc.

The identification of the prior weight, α0, relies on the exogenous search orders provided

by the traffic data. The substitution patterns predicted by search models with learning

differ from those where no learning occurs. In particular, negative cross-price elasticities can

arise between spatially dispersed stations as a result of the information conveyed through

ordered price observations.

To illustrate, consider the following route that consists of three stations labeled 1, 2,

and 3, as depicted in Figure 5. For consumers traveling east, the critical postponement

cost solves c∗1 = z−11 (V1 − α0

α0+1
x1 + α0

α0+1
µ0), c

∗
2 = z−12 (V2 − α0+1

α0+2
x2 + 1

α0+2
x1 + α0

α0+2
µ0),

and c∗3 = z−13 (V3 − α0+2
α0+3

x3 + 1
α0+3

(x1 + x2) + α0

α0+3
µ0), respectively. Consider an example

where the critical postponement cost at each station follows +∞ > c∗1 > c∗2 > c∗3, so that a

positive share of consumers will purchase from each station, and the respective shares are

q1 = 1−G(c∗1), q2 = G(c∗1)−G(c∗2), and q3 = G(c∗2)−G(c∗3). If price increases at station 1, c∗1

increases as a result, and the marginal consumers would substitute to station 2. Moreover,

through learning, both c∗2 and c∗3 decrease as consumers adjust their (posterior) beliefs

upward, expecting a general price increase in the market. In other words, additional search

at any subsequent stations becomes less attractive, and consumers will be more likely to

purchase at an earlier station along the route. In addition to the marginal consumers

gained from station 1, station 2 also gains consumers who would have formerly continued

searching and purchased from station 3. Thus, an increase in station 1’s price always

increases the demand of its closest competitor, which is station 2 in this case. However,

the price effect on a subsequent station, like station 3, can be positive or negative. If

station 3 loses more consumers to station 2 than those gained from postponement, it has

a negative cross-price elasticity of demand with respect to the price at station 1. Where

two stations lie within the route structure in our ordered search environment dictates

both how closely they compete and how information is conveyed, therefore influencing how

a change in one station’s price positively or negatively impacts the other’s demand. In

contrast, standard search models with no learning can only generate non-negative cross-

price elasticities. Online Appendix C shows data patterns consistent with the implication of
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consumer learning. The magnitude of these negative cross-price elasticities helps determine

the size of the learning parameter. Furthermore, observing stations on opposite sides of

a street also contributes to the identification of learning. Suppose station 1 were on the

other side of the street where drivers passing stations 2 and 3 could not access. If learning

is occurring, station 1’s price can affect consumers’ purchase decisions at stations 2 and 3

through posterior beliefs.

Once the prior weight has been identified, we can recover the prior bias π by exploiting

the observed correlation between current sales and past price levels. This relies on the

assumption that the price level 7 days ago only influences current sales through consumers’

beliefs. As discussed in Section 4, consumers may respond to price fluctuations by adjusting

their purchase timing using their gas tank as storage, which can also cause current sales to

be correlated with past price levels. However, based on the evidence presented in Section 4

and the findings of Levin et al. (2022), consumers only shift purchases over a shorter period

(of 2 to 3 days), and the relationship between current sales and the price level 7-day ago

is independent of any changes in sales over the last few days. As such, the data broadly

supports our identifying assumption regarding consumers’ beliefs.42

Whether due to purchase timing or persistence in unexplained demand shocks, we do

observe some degree of serial correlation in sales that could generate incorrect standard

errors if not accounted for in estimation. We address this by using a block bootstrap

procedure to calculate standard errors in all our specifications to control for the potential

auto-correlation and heteroskedasticity (MacKinnon, 2006). Each block contains 7 con-

secutive days of observations, allowing dependency in the model’s unobservables across

stations and time within a block and randomness of each bootstrap sample.

Notice that we do not include idiosyncratic taste shocks in our model. Similar to

Hortaçsu and Syverson (2004), our model relies on heterogeneous postponement costs to

provide horizontal differentiation and create non-degenerate market shares. Because gaso-

line is less differentiated than most products and features frequent price changes, we focus

on modeling imperfect price information rather than taste heterogeneity. Moreover, iden-

42In online Appendix D, we also consider a specification where the share of consumers with a positive
probability of gas purchase, ηt, depends on lagged sales. Table D.1 suggests that purchase timing and
correlation of sales do not confound our estimation results.
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tifying postponement costs with taste shocks would require observing data on individual

search sequences and variables that shift postponement costs independently of taste shocks,

like in Yavorsky et al. (2021). By abstracting away from the possibility of taste shocks,

our model demonstrates how exogenous search order can be used to identify the learning

parameters using only aggregate data on prices, market shares, and the distribution of

search orderings.

Lastly, the fluctuations in the drivers’ overall demand for gasoline over time identify

the day of week and month of sample fixed effects in ηt, holding the postponement cost

distribution constant. For example, transaction data show that drivers consume more

gasoline in the summer than in the winter. Larger ηt estimates in the summer months

reflect a larger share of consumers in the market actively searching for gasoline, likely

resulting from more frequent purchases.

We present Monte Carlo simulations in online Appendix E to confirm that our estima-

tion approach can separately identify and consistently estimate our model parameters.

7 Results

To facilitate comparison, we estimate our full search model with learning as well as a

restricted version that does not incorporate consumer learning (i.e., α0 = +∞).43 The

results are presented in Table 4, with estimates from the full model in Column (1) and

estimates from the restricted model in Column (2). Estimates of the bias and learning

parameters in Column (1) reveal that consumers’ initial beliefs regarding the distribution

of prices are significantly different from the actual price distribution. As consumers observe

new prices, they update their beliefs relatively quickly. More specifically, the bias parameter

suggests that, before observing any prices, 59 percent of a consumer’s prior belief depends

on prices observed in the prior period. This statistically significant weight on the past

prices rejects the common assumption that consumers behave as if they have a correct

expectation about the price distribution. The average absolute difference between the

estimated prior mean and the actual price level is 2.7 cpg, approximately 3.3 times the

size of the average day-to-day price change. However, this large initial bias is quickly

43In estimation, we set α0 to a very large number for the no-learning model.
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moderated as the consumer observes new prices along her travel route. The estimated

weight on the initial prior is 0.3, suggesting a fast rate of learning. For example, after one

new price observation, the bias reduces by 77 percent to 0.6 cpg, and after two new price

observations, the bias reduces by 87 percent to 0.4 cpg in expectation. This rapid learning

is consistent with the fact that the distribution of gasoline prices changes regularly in

response to wholesale cost volatility.44 More specifically, the estimated standard deviation

of the prior mean is 5.8 cpg, and the standard deviation of the current price and the

price 7 days prior is 5.9 cpg. The similarity in these standard deviations suggests that,

on average, consumers make their purchase decisions consistent with those who have a

decent understanding of the price level variation through their repeated interaction with

the market.

With regard to station attributes, the estimates suggest that consumers purchasing 10

gallons of gasoline are willing to pay $1.11 more to avoid waiting for the left-turn signal

at a busy intersection. Consumers also appear to value the features offered at large-format

stations, placing a $0.66 premium on purchasing gas at these stations. In contrast, the

willingness to pay for a gas purchase at a small station is $1.17 lower than at a medium-

sized station. We also find that consumers are willing to pay $0.51 more at a major branded

station than at a generic station, all else constant.

Based on the postponement cost estimates, for drivers who have a positive probability

of purchasing gasoline, the median cost of postponing purchase to a future trip is $0.56,

and 25 percent of these drivers are willing to pay $1.15 more to purchase on the current

route rather than to postpone their purchase. Note that the postponement cost reflects

both the risk of running out of gas as well as the trade-off between purchase on the current

trip and purchase on a future trip where a consumer is not only uncertain about the prices

and their distribution but also the set of stations she will drive past.

In the restricted version of the search model that does not allow learning (Column

(2) of Table 4), the prior weight in Equation 3 is set to positive infinity, meaning that a

driver’s posterior beliefs about the price level always equal to her prior belief. However, we

44The estimated speed of learning is much faster than what is previously assumed by the literature. For
example, Koulayev (2013) and De los Santos et al. (2017) choose the prior weight to be the number of
product-retailer combinations, resulting in a much slower rate of learning.
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still allow for the possibility that past prices may bias the initial prior. Without learning,

any bias present will persist and influence purchase decisions regardless of how many new

prices a consumer observes. Compared to the full model in Column (1), the search model

without learning fits the data worse, as suggested by the pseudo-R2.45 In addition, the

bias parameter estimate becomes much smaller and statistically indistinguishable from

zero. A comparison to the results of the full model is particularly informative here. When

learning is incorporated into the search model, estimates reveal that substantial bias in

consumers’ priors can arise but is quickly mitigated through learning. In other words,

bias may influence a consumer’s expectations when visiting the initial stations along the

travel route, but will have little impact when visiting subsequent stations. The restricted

no-learning model assumes that expectations remain fixed throughout, therefore, making

it impossible to identify the presence of biased priors for a subset of stations on the travel

route.

The estimates of the postponement costs are also very different for the no learning

model. The median postponement cost is $0.75 from the no-learning model, approximately

33 percent higher than the estimate in the learning model. The higher postponement costs

in the no-learning model make sense within our theoretical context (Equation 15). With

no learning, consumers behave as if they are certain about the price distribution and how it

compares to the current price observation. So this model will predict greater responsiveness

to price changes. As a result, the estimated postponement cost parameter will be inflated

to allow the no-learning model to fit the relatively low level of price responsiveness observed

in the data.

Own-Price Elasticities

We next investigate consumers’ predicted responses to station-specific price changes based

on the search with learning model as well as the no-learning model. Price elasticities

are obtained by simulating how station-specific gasoline purchases change following a one-

45The pseudo-R2 is calculated using 1 -
∑

(s−ŝ)2∑
(s−s̄)2 , where ŝ is the model predicted market share. Addi-

tionally, the F1,15944 statistic for restricting α0 to a very large number is 1067.2, which implies that the
null hypothesis of no-learning model is overwhelmingly rejected.
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cent increase in a particular station’s price.46 Each station’s price in our model can be

decomposed into a time-varying component p̃jt and a price reputation component ψj which

remains fixed for all periods. Therefore, separate elasticities of demand can be constructed

for changes in each price component.

Table 5 summarizes each station’s own-price elasticities based on the parameter esti-

mates in Table 4 for the learning model (Column (1)) and the no-learning model (Column

(2)). In the learning model, the average of a station’s own-price elasticity with respect to

a change in the time-variant price is -8.4. In contrast, the own-price elasticity with respect

to the station’s price reputation is -24.4. In other words, consumers are approximately 2.9

times more responsive to a change in price reputation than to a change in time-variant price.

Two factors contribute to the considerable difference in price elasticities. First, a change

in the time-variant price is unknown to consumers prior to search, whereas a change in

the price reputation is known ex-ante. Consequently, an increase in the time-variant price

at a station can only affect the purchase decisions for consumers who have driven by the

station and have not purchased from a previous station. On the other hand, an increase

in the station’s price reputation may cause more consumers to purchase at earlier stations

along their travel route, even before passing that station. Second, when consumers are

uncertain about the current price level in the market, a relative price change at a station

is confounded by changes in price levels, reducing consumers’ responsiveness. They will be

less likely to substitute away from a station charging an unexpectedly high price because

of the possibility that it reflects an increase in the entire price distribution rather than a

relative increase in the station’s price. In contrast, consumers will respond more strongly

to an increase in a station’s price reputation, knowing that it represents a relative deviation

from the broader price distribution.

The importance of learning is also highlighted by comparing with the own-price elastic-

ities from the no-learning model in Panel (b). In this model, the average demand elasticity

with respect to price reputation is only 22 percent larger than the elasticity with respect

to time-variant prices. When consumers do not learn, they do not adjust their prior beliefs

46A large proportion of the highway stations’ gasoline transactions likely comes from the outside drivers
driving past the city via the interstate highway. Because we do not model these passing drivers’ purchase
decisions, we exclude the highway stations from the own- and cross- elasticity analysis.
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about the price level as they observe new prices. Therefore, any observed price change at

a station is believed to be specific to that station.

Spatial Competition and Cross-Price Elasticities

Estimating a structural model of search with learning also provides a useful framework for

examining the nature of spatial competition in the market. The stations in our sample

exhibit substantial variation in both their characteristics and their locations within the

route network. These differences generate considerable variation in own-price elasticity

across stations. The estimated station-average own-price elasticities reported in Table 5

Panel (a) range from -24.40 to -2.67, with a standard deviation of 4.68.47 Stations with very

elastic demand tend to face competition from similar stations located nearby. In contrast,

stations with the least elastic demand often share little common traffic with other stations

or have very different characteristics.

Table 6 provides a more complete picture of the degree of spatial differentiation between

each pair of stations in our sample. In addition to the estimated cross-elasticity between

station pairs, ∂̂Qi
∂pj

pj
Qi

, summary statistics are also reported for the driving distance and the

share of common traffic between the stations. Recall from Section 4 that we define Common

Traffic as the proportion of station i’s passing traffic (in all directions) that has previously

passed station j on their travel routes. Drivers driving along travel routes where station

j is downstream to station i are not included in this Common Traffic calculation because

price changes at station j are unknown to them when visiting station j.

Not surprisingly, most station pairs have virtually zero cross-price elasticities. After all,

more than half of all station pairs have less than 1 percent common traffic share. Only 10

percent of the station pairs, typically involving a station’s 4 or 5 closest competitors, have

cross-price elasticities larger than 0.16. This makes sense given that 90 percent of station

pairs are over two miles away from each other and have a common traffic share of less than

16.0 percent. However, some stations do compete intensively. The top 2.5 percent of the

pairs have cross-price elasticities above 1.53 and have common traffic shares of greater than

47Wang (2009) finds similar station level price elasticity. He estimates an own-price elasticity of -18.77
for a station located right next to its closest competitor and -6.20 for a station whose closest competitor is
4.2 km away.
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35.8 percent.

Importantly, our model suggests that consumer learning can generate negative cross-

price elasticities across competing stations, as described in Section 6. Indeed, 17.5 percent

of all station pairs are estimated to have negative cross-price elasticities in our learning

model. This occurs when consumers adjust their price beliefs upon observing a price change

near the start of a route and change their purchase decisions at subsequent stations.48

Additionally, for a subsequent station C to have a negative cross-elasticity of demand with

respect to an upstream station A, there has to be at least one station in between them.

Consumers may interpret a price increase at the upstream station A as a sign that all prices

are high and search less. Consequently, consumers who would have formerly purchased at

station C may now purchase from an earlier station B prior to reaching station C. On the

other hand, if a low price is observed at station A, signaling a potential overall market-wide

price decrease, consumers who would have formerly purchased at the in-between station

B may now keep searching and purchase at station C. Consistent with the theory, the

complimentary station pairs identified by our model are never direct neighbors and are, on

average, 3.7 stations away from each other.49 In contrast, the no-learning model generates

all non-negative cross-price elasticity estimates.

Next, we examine how the estimated cross-elasticities between stations vary with geo-

graphic and product differentiation. Whereas most studies of gasoline competition rely on

simple measures like driving distance to account for geographic differentiation, our traffic

flow data allow us to more directly capture connectedness within the travel network using

the amount of traffic the stations have in common. The similarity in station characteristics

is also likely to influence substitution patterns. In our search model, the ex-ante known

mean utility of a station captures its expected attractiveness, reflecting both its character-

istics and average price level. If the mean utilities of two stations are sufficiently different,

price changes are unlikely to change the stations’ utility ranking on a particular day. As

a result, consumers driving past these two stations are unlikely to purchase from the less

desirable station even when its price is unexpectedly low.

In Table 7, estimated cross-price elasticities for each station pair are regressed on the

48Online Appendix C provides a detailed discussion of the theory of negative cross-price elasticity.
49The average is weighted by the number of consumers driving past each station pair.
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absolute difference in mean utility of the stations, |V̂i−V̂j|, as well as various measures of the

stations’ proximity within the travel network. In all specifications, the absolute difference

in mean utility has a precisely estimated negative coefficient, confirming that consumers

are more likely to substitute between similar stations. The estimates in Column (1) also

show that cross-price elasticities generally decline as the driving distance between stations

increases, but this relationship becomes much less precisely estimated once common traffic

measures are included (in Columns (2) through (3)). In fact, Column (2) suggests that

the traffic share explains a considerable fraction of the variation in substitution patterns

between stations. For example, when an additional 10 percent of station i’s passing traffic

has previously driven past station j, the cross-price elasticity between the two stations

increases by 0.43.50

Because some left-turns are costly, the ease with which shared traffic can access station

i may impact its cross-price elasticity of demand with respect to an upstream station j.

For this reason, we decompose our Common Traffic measure into two variables based on

the traffic’s ease of access to station i. Common Traffic Easy Access measures the share of

station i’s passing traffic that has previously passed station j and can visit station i with

no additional cost; that is, station i is on the same side as the traffic or is on the opposite

side with an easy left-turn. Correspondingly, Common Traffic Costly Left-Turn measures

the share of station i’s passing traffic that has previously passed station j and can only visit

station i by a costly left-turn. Indeed, the regression result in Column (3) suggests that

cross-price elasticities between stations are significantly higher when the common traffic

does not have to make a costly left-turn to access station i.51 Given the share of common

traffic, station i’s cross-price elasticity with respect to an upstream station j is about three

times larger when the common traffic can visit station i easily than with a left-turn cost.

8 Biased Priors and Asymmetric Search

Lewis (2011), Yang and Ye (2008), and Tappata (2009) each present theoretical models il-

50Many of these patterns are similar to those reported by Houde (2012) in his traffic-based analysis of
spatial competition between gas stations.

51We also considered the easy of access for the price-change station j. However, we did not find statis-
tically differentiated effects.
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lustrating why cost increases may be passed through more quickly than cost decreases when

searching consumers do not know the true price distribution. This asymmetric pass-through

arises because consumers search more intensively when prices rise and less intensively when

prices fall. Lewis (2011) and Lewis and Marvel (2011) offer empirical evidence consistent

with these predictions. As search intensity increases, competition becomes more intense,

and station-level demand becomes more elastic, explaining why gas station margins tend

to be low when prices are rising and high when prices are falling (Lewis and Marvel, 2011).

Estimating a structural model of search with learning allows us to more systematically

demonstrate the mechanisms through which imperfect knowledge of the price distribution

generates the asymmetric responses in search and demand elasticity that have been shown

to influence margins and cost pass-through.

Using the estimates from our learning model, we construct two measures of search

intensity: the share of searching consumers who choose to buy from their current travel

route rather than postpone their purchase and the average number of stations searched by

consumers who do purchase.52 Then, to illustrate how biased prior beliefs impact search

behavior, we regress each measure of search intensity on the difference between the current

price level and the price level 7 days ago. Column (1) and (2) of Table 8 report the results.

When the current price is unchanged from the previous week, our estimates suggest

that 60.7 percent of searching consumers will choose to purchase somewhere along their

travel route. On average, these purchasing consumers will observe the prices of 2.6 stations

before purchasing. However, when the current price level is 10 percent (or approximately 20

cpg) lower than the previous week, consumers observe the prices of only 2.2 stations before

purchasing—a 14.6 percent decrease in the number of stations searched. Additionally, 66.1

percent of searching consumers choose to purchase somewhere along their route rather than

postpone in search of better prices. This reduction in postponement corresponds to a 9.0

percent increase in gasoline demand, which is roughly consistent with the descriptive data

patterns described in Section 4 and Table 3. In contrast, when the model is estimated with

no learning, it only predicts a 2.6 percent reduction in postponement.

52The term searching consumers is used here to refer to those that have a positive postponement cost.
Recall that our model allows for a mass of consumers with postponement costs equal to zero as only a
portion of consumers are interested in buying gas on a given day.
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Within our model, changes in search intensity generate changes in the predicted elastic-

ity of demand faced by stations. In Column (3) of Table 8, we regress simulated own-price

elasticities at the station-day level on the difference between the current price and the

price level one week prior, controlling for station fixed effects. The estimated coefficient,

which we refer to as the elasticity asymmetry coefficient, suggests that when the current

price level is 10 cpg lower than the previous week, own-price elasticities decrease by 0.86

in absolute value—a 10 percent reduction from the average own-price elasticity of −8.4.

We further illustrate how fluctuations in own-price elasticity relate to prior bias, π,

and the prior uncertainty, α0, by using our model to simulate a series of counterfactuals.

First, to investigate the importance of biased expectations, we vary the degree to which

consumers’ priors of the current price distribution are biased toward past price levels. While

holding the other parameters constant at their estimated level, the prior bias parameter is

assigned various values ranging from π = 0, where the prior distribution is centered around

the actual price level, to π = 1, where the prior is centered around the previous period’s

price level. We simulate the predicted own-price elasticities for each prior bias parameter

value and then regress these elasticities on the change in the price level from the previous

week, mirroring the analysis from Table 8. The elasticity asymmetry coefficient and 95

percent confidence interval from each regression are plotted as a function of the prior bias

parameter in Panel (a) of Figure 6. The figure also plots the estimated average own-price

elasticity for each prior bias value.

As shown in the figure, the average own-price elasticity stays relatively flat at around -8

as the prior bias parameter varies. In contrast, as prior bias increases, the own-price demand

elasticities stations face when prices are rising compared to when prices are falling become

more asymmetric, as suggested by the more negative elasticity asymmetry coefficient. As

a result, the degree of demand asymmetry as a share of the average own-price elasticity

increases in the prior bias. More specifically, when consumers have a rational expectation

(π = 0), there is no significant demand asymmetry.53 On the other hand, when consumers

formulate their prior belief entirely on the past prices (π = 1), the demand asymmetry

coefficient is -11.1. On a day when prices are rising and the current price level is 10 cpg

53The asymmetry is not mathematically zero because the own-price elasticity is simulated based on the
observed prices.
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higher than last week’s price level, the predicted margin would be -11.1*0.1/-8=13.8 percent

lower than the margin on an average day in our sample.

A similar counterfactual analysis can be used to evaluate how the degree of certainty

consumers attribute to their prior beliefs asymmetrically impacts own-price elasticity fol-

lowing price increases and decreases. When consumers are more certain about their prior

beliefs, they place a greater weight on their priors and less weight on newly observed prices

when formulating expectations, leading to greater elasticity of demand. For example, con-

sumers are more likely to purchase when encountering a price they think is low because

they will be more certain about its low relative position within the price distribution and

place little value in the opportunity to continue learning from additional price observa-

tions. In addition, because the prior bias is assumed to remain at its estimated value of

0.59, placing additional weight on one’s priors allows this bias to generate more persistent

differences in consumers’ search behaviors when prices are rising and falling, resulting in a

more asymmetric response of own-price elasticities.

In Panel (b) of Figure 6 the average simulated own-price elasticity and the asymmetry

in that elasticity are plotted for different values of the prior weight parameter. First, the

average own-price elasticity grows in absolute value (implying margins are likely to de-

crease) when consumers place a higher weight on their prior beliefs. This is consistent with

the theory that consumers become more responsive to price changes when they are more

certain about their prior beliefs. Additionally, as prior weight increases, own-price demand

elasticities appear to become more asymmetric between periods of increasing and decreas-

ing prices, though the relationship is not monotone. More specifically, as prior weight

increases from 0.1 to 81, the demand asymmetry changes from -5.7 to -17.1. However, the

demand asymmetry as a share of the average own-price elasticity remains relatively stable.

As a result, when the current price level is 10 cpg higher than the last week’s price level,

the estimated own-price elasticities will be 10 percent larger, and the implied margins will

be 10 percent lower than on an average day, regardless of the prior uncertainty.
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9 Conclusion

This article has estimated a dynamic search model with learning where consumers se-

quentially search for lower gasoline prices in a predetermined order following their travel

routes. We allow consumers to be uncertain about the price distribution and hold prior

beliefs that may be biased by prices observed during previous purchases. Traffic flow data

are used to construct an empirical distribution of search sequences in the market. This

novel approach allows us to identify the consumer learning process, postponement costs,

and ex-ante seller differentiation using only market share data. We find that consumers

place significant weight on past prices when formulating their prior beliefs. However, con-

sumers are relatively uncertain about these prior beliefs. As a result, any initial bias in

consumers’ expectations diminishes quickly as they update their price beliefs based on new

price observations.

By incorporating the consumer learning process, we relax one of the crucial assumptions

of standard search models—the assumption that searching consumers are aware of the true

price distribution. Prior uncertainty and prior bias are both essential features in the retail

gasoline market, as volatile prices make it difficult for consumers to know the true price

distribution with any certainty. Consequently, consumers are likely to formulate their

expectations of prices based on prices observed in the recent past. More importantly,

we systematically demonstrate how prior uncertainty and prior bias can cause demand

elasticities to respond asymmetrically to price increases and decreases. This asymmetric

demand response offers an explanation for why firms pass through positive cost changes

more quickly than negative cost changes—a widely observed phenomenon that cannot be

explained by search frictions alone. Our results suggest that price fluctuations will have

a larger and more asymmetric impact on demand elasticities when consumers rely more

heavily on past prices in forming their priors and when consumers place a heavier weight

on these priors as they search for gasoline along their travel route.

The use of travel patterns to simulate unobserved search sequences is grounded in the

observation that consumers are likely to search for and purchase gasoline during everyday

driving rather than making dedicated trips to purchase gasoline. In addition to the identifi-

cation of the consumer learning process, our approach has other advantages. First, it allows
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us to introduce ex-ante vertical differentiation of stations without suffering from the curse

of dimensionality. Second, we use the observed traffic flows to replace the random sampling

assumption, allowing us to estimate more realistic substitution patterns that depend on

the amount of traffic stations share. Although the integration of travel patterns in a search

model is most relevant to the retail gasoline market, we envision its applications in other

markets. In cases where sellers have physical addresses, such as in a shopping mall, travel

patterns naturally constrain the search order. Even for sellers without physical addresses,

the order of visits can be affected by constraints such as a webpage layout.

Our article opens up several avenues for future research. We think the most important

is the modeling of the supply side decision. The pricing equilibrium arising in the ordered

search environment is likely to be quite different from the equilibrium of a random-search

model. Arbatskaya (2007) develops a price equilibrium for a row of sellers facing consumers

who travel in one direction. However, pricing decisions in the retail gasoline market are

more complicated, as stations are located on multiple travel paths with consumers driving

in different directions and passing different sets of competitors. Consequently, the demand

at a station, as the sum of the residual demand along each search route, is kinked. Spatial

differentiation, together with imperfect price information, creates interesting price dynam-

ics, which we leave for future work to explore. Also, asymmetric cost pass-through is often

regarded as anti-competitive and harmful to consumers. A supply-side model would enable

researchers to answer important welfare questions. For example, a counterfactual analysis

could examine how much consumers would benefit from being informed about the actual

price distribution and, therefore, facing a market with no asymmetric search intensity and

no asymmetric cost pass-through.
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Hortaçsu, A. and Syverson, C., “Product differentiation, search costs, and competition in

the mutual fund industry: A case study of S&P 500 index funds.” The Quarterly Journal

of Economics, Vol. 119 (2004), pp. 403–456.

Houde, J.-F., “Spatial differentiation and vertical mergers in retail markets for gasoline.”

The American Economic Review, Vol. 102 (2012), pp. 2147–2182.

Hu, M., Dang, C., and Chintagunta, P. K., “Search and Learning at a Daily Deals Website.”

Marketing Science, Vol. 38 (2019), pp. 609–642.

Jindal, P. and Aribarg, A., “The importance of price beliefs in consumer search.” Journal

of Marketing Research, Vol. 58 (2021), pp. 321–342.

46



Kim, J. B., Albuquerque, P., and Bronnenberg, B. J., “Online demand under limited

consumer search.” Marketing science, Vol. 29 (2010), pp. 1001–1023.

Kim, J. B., Albuquerque, P., and Bronnenberg, B. J., “The probit choice model under

sequential search with an application to online retailing.” Management Science, Vol. 63

(2017), pp. 3911–3929.

Koulayev, S., “Search with dirichlet priors: estimation and implications for consumer de-

mand.” Journal of Business & Economic Statistics, Vol. 31 (2013), pp. 226–239.

Koulayev, S., “Search for differentiated products: identification and estimation.” The

RAND Journal of Economics, Vol. 45 (2014), pp. 553–575.

Levin, L., Lewis, M. S., and Wolak, F. A., “Reference dependence in the demand for

gasoline.” Journal of Economic Behavior & Organization, Vol. 197 (2022), pp. 561–578.

Lewis, M. S., “Price dispersion and competition with differentiated sellers.” The Journal

of Industrial Economics, Vol. 56 (2008), pp. 654–678.

Lewis, M. S., “Asymmetric price adjustment and consumer search: An examination of the

retail gasoline market.” Journal of Economics & Management Strategy, Vol. 20 (2011),

pp. 409–449.

Lewis, M. S. and Marvel, H. P., “When do consumers search?” The Journal of Industrial

Economics, Vol. 59 (2011), pp. 457–483.

Lewis, M. S. and Noel, M., “The speed of gasoline price response in markets with and

without Edgeworth cycles.” Review of Economics and Statistics, Vol. 93 (2011), pp.

672–682.

Lin, H. and Wildenbeest, M. R., “Nonparametric Estimation of Search Costs for Differen-

tiated Products: Evidence from Medigap.” Journal of Business & Economic Statistics,

Vol. 38 (2020), pp. 754–770.

MacKinnon, J. G., “Bootstrap methods in econometrics.” Economic Record, Vol. 82 (2006),

pp. S2–S18.

47



Manuszak, M. D. and Moul, C. C., “How far for a buck? tax differences and the loca-

tion of retail gasoline activity in southeast chicagoland.” The Review of Economics and

Statistics, Vol. 91 (2009), pp. 744–765.

Matsumoto, B. and Spence, F., “Price beliefs and experience: Do consumers beliefs con-

verge to empirical distributions with repeated purchases?” Journal of Economic Behavior

& Organization, Vol. 126 (2016), pp. 243–254.

McCall, J. J., “Economics of Information and Job Search.” The Quarterly Journal of Eco-

nomics, Vol. 84 (1970), pp. 113–126.

Mehta, N., Rajiv, S., and Srinivasan, K., “Price uncertainty and consumer search: A

structural model of consideration set formation.” Marketing Science, Vol. 22 (2003), pp.

58–84.

Miller, N. H. and Osborne, M., “Spatial differentiation and price discrimination in the

cement industry: evidence from a structural model.” The RAND Journal of Economics,

Vol. 45 (2014), pp. 221–247.
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Table 1: Summary Statistics of the Station Characteristics

Obs. Mean SD 25% 50% 75%

Panel (a): All Stations
Avg. Price ($) 46 1.61 0.06 1.58 1.59 1.68
Avg. Quantity (gal.) 33 978.09 1207.78 235.76 396.09 1525.02
Major Brands 46 0.37 0.49 0.00 0.00 1.00
Number of Islands 46 3.59 1.73 2.00 3.00 5.00
Easy Left-Turns 46 0.26 0.44 0.00 0.00 0.75
No Left-Turns 46 0.28 0.46 0.00 0.00 1.00
Direct Traffic (1,000s) 46 11.52 4.99 8.32 10.66 15.09

Panel (b): Small Stations
Avg. Price ($) 25 1.63 0.06 1.59 1.61 1.69
Avg. Quantity (gal.) 19 379.58 372.86 206.64 253.93 376.10

Panel (c): Large-Format Stations
Avg. Price ($) 5 1.57 0.01 1.56 1.57 1.58
Avg. Quantity (gal.) 5 2947.87 1508.80 2217.85 2239.35 2572.08

Table 2: Summary Statistics of Relative Price and Price Level

Obs. Mean SD Min Max

Relative Price Changes
νjt 23732 0.000 0.032 -0.167 0.169

Price Level Changes
γt 529 1.622 0.249 1.084 2.042
abs(∆γt) 528 0.008 0.012 0.000 0.108
abs(∆γt−7) 522 0.045 0.037 0.000 0.186
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Table 3: Descriptive Evidence of Price Level Uncertainty

(1) (2) (3)

ln(Own Price) -2.632 -2.961 -2.942
(0.147) (0.160) (0.163)

ln(Past Price Level) 1.220 1.132 1.133
(0.108) (0.109) (0.116)

ln(1st Neighbor Price) 1.464 1.171 1.124
(0.152) (0.162) (0.163)

ln(2nd Neighbor Price) 0.757 0.786
(0.144) (0.146)

ln(Total Sales 1-Day Ago) 0.234
(0.043)

ln(Total Sales 2-Day Ago) -0.076
(0.042)

ln(Total Sales 3-Day Ago) -0.057
(0.042)

ln(Total Sales 7-Day Ago) -0.060
(0.038)

R2 0.928 0.928 0.929
Observations 15985 15985 14960

Notes: The dependent variable is the logarithm of the daily transaction vol-
ume at each station. We control for station fixed effects, day of week fixed
effects, and month of sample fixed effects in all specifications. Robust stan-
dard errors are in parentheses.

Table 4: Estimation Results

Learning No Learning
Coeff. SE Coeff. SE

Prior
Bias (π) 0.587 (0.061) 0.027 (0.039)
Learning (α0) 0.304 (0.116)

Station Attributes
Major Brand 1 0.505 (0.041) -0.065 (0.115)
Retail Brand 1 -0.131 (0.041) -0.168 (0.043)
Retail Brand 2 -0.064 (0.053) -0.322 (0.094)
Small-Sized Station -1.173 (0.043) -1.719 (0.099)
Large-Format Station 0.662 (0.058) 0.904 (0.052)
Left-Turn Cost 1.106 (0.060) 1.767 (0.152)

Postponement Cost
Constant (µc) -0.574 (0.063) -0.288 (0.061)
Standard Deviation (σc) 1.055 (0.092) 1.250 (0.095)

Pseudo-R2 0.888 0.870

Notes: The number of observation is 15985. The day of week and month of
sample fixed effect estimates are omitted from the table. The pseudo-R2 show
the fit of the non-highway stations. Standard errors calculated from 200 block
bootstrap samples are in parentheses.
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Table 5: Summary Statistics of the Station Average Own-Price Elasticity Estimates

Obs. Mean SD Min 50% Max

Panel (a): Learning
Price (p̃j,t) 37 -8.39 4.68 -24.40 -7.66 -2.67
Price Reputation (ψj) 37 -24.40 12.71 -60.74 -20.99 -8.70
Panel (b): No Learning
Price (p̃j,t) 37 -12.64 5.66 -25.91 -10.92 -5.05
Price Reputation (ψj) 37 -15.38 6.56 -29.35 -13.04 -6.83

Table 6: Summary Statistics on Cross-Price Elasticities and Measures of Spatial Differen-
tiation Between Stations

Obs. Mean SD 2.5% 10% 50% 90% 97.5%

Cross-Elasticity 1665 0.148 1.221 -0.229 -0.003 0.000 0.163 1.529
Driving Distance 1665 5.526 2.979 0.883 2.000 5.173 9.647 12.597
Common Traffic 1665 0.050 0.096 0.000 0.000 0.009 0.160 0.358

Table 7: Regression Results of Estimated Cross-Price Elasticities on Distance Measures
Between Stations

(1) (2) (3)

Driving Distance -0.067 0.001 -0.000
(0.015) (0.005) (0.006)

Abs. Mean Utility Distance -0.061 -0.082 -0.093
(0.024) (0.021) (0.021)

Common Traffic 4.286
(0.945)

Common Traffic Easy Access 5.144
(1.167)

Common Traffic Costly Left-Turn 1.748
(0.616)

Constant 0.574 0.008 0.026
(0.106) (0.054) (0.057)

R2 0.03 0.11 0.13
Observations 1665 1665 1665

Notes: The dependent variable is the cross-price elasticity. Robust standard errors
clustered at the station level are in parentheses.
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Table 8: Search Behavior and Demand and Past Prices

Share of Purchase No. Station Searched Demand Elasticity
(1) (2) (3)

∆φt−7 -0.272 1.909 -8.619
(0.008) (0.052) (3.971)

Constant 0.607 2.624
(0.000) (0.003)

R2 0.74 0.69 0.23
Observations 522 522 18726

Notes: Robust standard errors are in parentheses.

53



Figure 1: Average Retail Gasoline Price Level and Wholesale Cost
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Note: This figure plots both the average gasoline price in our sample
before federal and state taxes are applied and the Gulf Coast regular
spot price as a measure of wholesale cost of retail gasoline.

Figure 2: A Travel Route with Stations Passed

Note: This figure represents the road network of a random location.
The driving time is less than 5 minutes.
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Figure 3: Station Traffic Characteristics

(a) Transaction and Traffic Volume
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(b) Number of Price Observations
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Note: The slope of the log-linear fitted line in Panel (a) is 1.26, significant at 5 percent level.

Figure 4: Proportion of Stations Changing Price From Previous Day
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Figure 5: Competing Stations Along a Hypothetical Travel Route
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Figure 6: Prior Uncertainty, Prior Bias, and Asymmetry in Own-Price Elasticity
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(b) Prior Uncertainty and Elasticity Asymmetry
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