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A B S T R A C T

Energy demand flexibility from buildings remains a largely untapped resource in electric power systems, in
spite of its potential to be a low-cost substitute for investments in rarely used generation capacity. We develop
a general methodology to estimate the aggregate cooling demand response for a large number of co-located
buildings to thermostat temperature set point increases using empirically estimated building-level demand
reductions in a subset of these buildings. For this subset of buildings, estimates were previously computed from
real-world experimental data. The response of each remaining building is estimated as a different weighted
sum of the empirical estimates, where the weights depend on observable characteristics of the buildings. We
apply our method to a district energy system at a university campus that is roughly equivalent to a city of
30,000 people. Cooling is produced at a central energy facility with electric heat pumps and distributed to 124
commercial buildings through a chilled water loop. The response of six of these buildings to 1.1 ◦C (2 ◦F) daily
temperature set point adjustments was previously estimated. Our methodology provides estimates for all 124
buildings and an estimate of the campus-wide demand response potential by leveraging a dataset including both
structural (e.g. age, square footage) and operational (cooling loads and types of building operation) features
for the full set of buildings. We estimate a 13.47% reduction in the campus energy system capacity needs
under a 1.1 ◦C daily set point increase in all campus buildings during the 10 highest system demand days in
2020. On the highest demand day of 2020, we find that our predicted demand reduction could provide services
equivalent to those provided by a lithium-ion battery with $4.6–$8.0 million installation cost at current prices
and a storage capacity of 35.6–52.6 MWh.
1. Introduction

1.1. Motivation and context

Residential and commercial buildings accounted for 29% of total
final energy consumption in the United States in 2020 [1]. Increased
deployment of renewable generation technologies coupled with retire-
ments of conventional, dispatchable generation resources has led to
challenges managing the real-time balance of supply and demand [2].
Active management of energy consumption in buildings – and in com-
mercial buildings in particular – holds potential to provide significant
flexibility in electric grids with a high share of intermittent renewable
generation [3].

Commercial buildings in California accounted for 34.0% of the
state’s electricity demand in 2020 [4]. According to the 2006 California
Commercial End Use Survey, heating ventilation and air condition-
ing (HVAC) accounts for 29% of commercial building electricity use,
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which implies 9.9% of total in-state electricity consumption in 2020.
Moreover, because this is an annual average, the share of consumption
devoted to air conditioning is considerably higher during peak demand
hours of hot summer days.

Thermal demand response through control of HVAC system ther-
mostat temperature set points has the potential to provide sizeable
energy demand reductions with relatively small impacts on the heating
and cooling services delivered to building occupants [5,6]. Dynamic
thermostat set point control can also reduce the need for future HVAC
capacity investments.

District heating and cooling systems are of particular interest for
harnessing demand-side energy flexibility because of their large en-
ergy demands. They consist of groups of buildings with their heating
and cooling needs served through a central energy facility (CEF).
Types of locations that may have heating and cooling provided by this
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type of system include university campuses, medical centers, corporate
campuses, and buildings in urban areas [7].

The capital investment required to upgrade heating and cooling
capacity for district energy systems is substantial. Moreover, where
systems are designed to meet peak loads that are a large multiple of
average loads, this implies that a high proportion of capacity is used
infrequently. Dynamic thermostat set point changes can increase the
capacity utilization rate of a district energy system while at the same
time can also provide real-time energy and operating reserves to the
electric system operator.

Deriving estimates of district energy system demand reductions
from temperature set point increases with an acceptable degree of
accuracy is challenging. Physics-based building-level models require a
large amount of input data and the demand response estimates obtained
can be highly sensitive to modeling assumptions. A statistical model of
the relationship between building-level energy use and the temperature
set point recovers an estimate based on actual use of the building,
but implementing these set point changes and measuring their impacts
on building-level energy use is expensive. Consequently, leveraging
estimation results from a small subset of buildings where set point
increases are implemented can be a low-cost way to estimate the
demand reduction from set point changes in all buildings in a district
energy system.

We propose a methodology to extend set point increase estimation
results from a small number of buildings under a variety of summer
month weather conditions to the level of the district energy system
using observed structural and operational characteristics of all build-
ings in the system. We focus on a district energy system that serves
a university campus in Northern California. In this system, the CEF
produces heated and chilled water to serve the HVAC demands of 124
buildings through hot and cold water loops. The system includes cold
water chillers, hot water generators, heat recovery chillers, and hot
and cold water storage. See de Chalendar, et al. [8] for a detailed
description of this district energy system and the optimization problem
of the system operator. Methods described here also will be applicable
to other similar settings where district energy systems are deployed to
serve groups of buildings [9], and to estimate the demand flexibility in
larger building stocks more generally. In this study we focus only on
managing cooling demand of the system, and do not address heating
capacity requirements. This is because the cooling capacity is the bind-
ing constraint in this system and experimental data was only available
for cooling demand response to set point changes.

Fig. 1 displays the daily cooling load duration curve for this campus
energy system for 2020 (with 2018 and 2019 as dashed lines for
reference). This load duration curve displays the daily cooling demand
of the system arranged from the highest to lowest day of the year.
The horizontal axis of the plot labeled ‘‘Day of the year’’ indicates the
ranking of each daily cooling load in the associated year (e.g. day 1 is
the highest demand day of the year, day 2 is the second highest, and so
on). This curve provides an indication of how much potential there is
for demand flexibility to save on CEF capacity. In this study we define
‘‘demand flexibility’’ as the change in demand that can be realized as
the result of a particular load control action. If the CEF is designed with
the capacity necessary to serve cooling demand on all days of the year
with no forced curtailment, this amounts to a ‘‘design for the worst
day’’ approach. For a system with the load duration curve pictured in
Fig. 1, this would lead to a sizeable amount of capacity being used very
infrequently. The cross-hatched area in the figure denotes the amount
of unused installed capacity if a system were designed to meet the
maximum demand of this year.

Fig. 1 also shows a steep downward sloping curve in the top
left region of the plot, indicating an opportunity for cooling demand
reduction on a small number of days to save on installed capacity. For
example, for a district energy system designed to meet the daily cooling
demands for 2020, 10% of the capacity would only be needed on five
days of the year, while 20% of the capacity would only be needed
2

Fig. 1. 2020 daily cold water duration curve (2018 and 2019 indicated as dashed
lines).

fifteen days of the year. This implies that load flexibility on the highest
demand days can greatly reduce the need for installed capacity.

In this study, we assess the load flexibility potential of a 1.1 ◦C
(2 ◦F) air conditioning set point increase on high cooling demand days
for this district energy system. To do this, we devise a methodology
based on building feature clustering to estimate the likely demand
response of all buildings on the campus using the average measured
demand response for each of a small set of buildings on the campus to
a 1.1 ◦C set point change under a variety of summer month weather
conditions. We then use the resulting demand response estimates for
all buildings to construct a counterfactual annual cooling load duration
curve that reflects the impact of a 1.1 ◦C set point change in all
buildings on the campus during the ten highest demand days of the
year. We find a predicted annual peak demand reduction of more
than ten percent. This result is encouraging for the use of building
load flexibility as a lower cost alternative to managing demand peaks
relative to batteries or other energy storage devices.

1.2. Review of related work

Estimating demand response potential of residential and commer-
cial buildings has been the topic of a number of studies in recent
years. In contrast to the current study, the majority of research in this
area leverages simulation through physics-based models, rather than
experimental methods. Previous research summarized here has focused
on (i) estimation and simulation of building-specific demand response
potential under thermostat set point adjustments, (ii) characteristics
of commercial buildings that are important determinants of flexibility,
(iii) estimating demand response potential in large building stocks, and
(iv) clustering methods for characterizing building stocks.

A large number of studies use the EnergyPlus modeling software to
simulate building energy use and demand response [10–12]. For exam-
ple, Li et al. [13] use EnergyPlus and regression models to investigate
the demand response potential of office buildings in Beijing, China.
They find an average 10.1% decrease in energy consumption during
working hours under a 1 ◦C set point increase. Liu et al. [14] compare
EnergyPlus simulation results with data from 12 commercial buildings
participating in a demand response program in California. The authors
find much greater variation of energy reductions across multiple DR
events in field data compared to simulation.

Other studies have used EnergyPlus to test the efficacy of less
computationally intensive statistical methods. Yin et al. [6] investigated
how piece-wise linear modeling can be a computationally efficient
method to estimate HVAC demand response potential at the hourly
level comparing model performance to a large database of EnergyPlus



Applied Energy 336 (2023) 120816R.C. Triolo et al.

(

m
e
i
2
i
r
w
f
d
s
p

a
f
o
h
i

f
i
a
d
p
o
C
a
G
a
p
b

p
o
a
H
S
g
b

t
a
d
a
d
r
o

a
f
u
i
p

p
l
o
b
i
u
f

e
a
t
t
f
t

g
e
h
w
H

t
b
t
a
a
e
c

v
p
b
f
a
g
c
a
d
m
p
a

M
m
c
b
s
l
t
t
e
u
o

1

d
c
s
p
i
F
s
f
e
d
t

simulation data. Other physics-based modeling tools have been used,
such as eQuest, used by Cai et al. [15] to estimate HVAC demand
response potential in a single three story building in the Chicago area.
The study found only a 1.6% average daily energy savings with a 5 ◦F
2.8 ◦C) set point increase.

Examples of demand flexibility assessments that employ experi-
ental methods using thermostat set point adjustments include Aduda

t al. [16] where the authors find that an average-sized office building
n the Netherlands reduced peak cooling demand by up to 25% for
0 min of operation. An experimental study on commercial buildings
n Northern California found that chiller electricity consumption can be
educed by approximately 33% over a four hour demand response event
hile maintaining building interior temperatures within a defined com-

ort range [17]. Yin et al. [18] explores pre-cooling strategies for peak
emand reduction in eleven office buildings in California, comparing
imulation results to field tests. The authors find that a strategy with
re-cooling can reduce peak electrical demand by 15%–30%.

The results of studies measuring HVAC demand flexibility indicate
high degree of heterogeneity in demand response potential. Demand

lexibility in commercial buildings is likely to depend on a large number
f physical parameters and other non-static factors. A variety of studies
ave focused on the identification of the characteristics that are most
mportant for determining HVAC demand flexibility potential.

Certain characteristics of commercial buildings that have been
ound to be important for determining building demand flexibility
nclude surface area to volume ratio, window area to external surface
rea ratio, insulation of walls and ceiling, thermal mass, and occupancy
etails [6,18]. Khalilnejad et al. [19] found that occupancy and higher
eak load relative to base load of buildings were key determinants
f energy use flexibility with increased HVAC thermostat set points.
hen et al. [20] found that thermal mass and occupant behavior
re important determinants of building energy flexibility. A study by
hahramani et al. [21] investigated the effect of various structural
nd operational building characteristics on HVAC demand response
otential through thermostat set point adjustment in commercial office
uildings.

Aggregation of demand response across many buildings has the
otential to unlock a large amount of demand flexibility [22]. A variety
f techniques have been used in the literature to estimate flexibility at
large scale. Hoyt et al. [23] use EnergyPlus to demonstrate the large
VAC load savings that can be achieved in a variety of climate zones.
tinner et al. [24] propose a methodology to measure flexibility in small
roups of buildings. However, the building cluster assumed identical
uilding characteristics and only included four buildings.

Simple physics-based models can be used in a bottom-up approach
o estimate flexibility in building stocks. Hedegaard et al. [25] use

reduced-order resistance–capacitance model for the space heating
emand response of 159 homes in Aarhus, Denmark. The authors use
statistical model to update parameters important for determining

emand response potential including window to floor ratio, infiltration
ate, insulation value (U-value), occupant density, and thermal capacity
f construction elements.

An alternative to physics-based models is to use building features,
s in Reynders et al. [26], where thermal storage and heating demand
lexibility are estimated for the Belgian building stock. The authors
se factors such as age of buildings, renovation status, size of build-
ngs, building structure, and heating system type to estimate flexibility
otential.

Other work has focused on demonstrating the importance of incor-
orating aggregations of electric loads, and thermostatically controlled
oads in particular, in power system operation to achieve reliable
peration of power grids under high renewable penetration [27]. The
enefits and challenges of demand side management (DSM) generally
n the UK context is discussed in [28]. The author points to low
tilization of generation and network infrastructure as an opportunity
3

or DSM (including demand response) to provide efficiency gains in e
lectricity systems. Callaway [29] investigates the dynamic response of
ggregations of thermostatically controlled loads over short time scales
o smooth output from wind generators. The author finds that small
hermostat adjustments can provide significant balancing of short term
luctuations in wind power output with minimal impact on building
emperatures.

Clustering approaches have been used to characterize local, re-
ional, and national building stocks for simulation and estimation of
nergy usage performance and flexibility. Some clustering approaches
ave taken building characteristics as features upon which to cluster
hile others have used time series data of energy usage profiles or
VAC system operational state.

A review of demand response potential estimation in building clus-
ers shows that classification and clustering of buildings based on
uilding characteristics and occupant behavior have been used to es-
imate the potential at a large scale [30]. The review suggests that
ccurate estimation of demand response potential requires models that
ccount for diversity among buildings, where diversity may be in
nergy inputs, end-use equipment, building types, building thermal
haracteristics, and occupancy details.

Jones et al. [31] describes a software tool (the Energy and En-
ironmental Prediction Model) intended for sustainable development
lanning at the urban scale. The clustering technique uses features of
uildings including location, building dimensions, building age, built
orm (e.g. number of floors and window to wall ratio), and additional
ssumptions (e.g. U-values, heating and cooling equipment types) to
roup buildings with similar expected energy use patterns. Although
omputer hardware and software capabilities have advanced consider-
bly since the publication of this work, the methodology in this study
emonstrates that there exists a precedent for using feature clustering
ethods in estimating building energy usage and performance, and
rovides evidence in academic literature as to building features that
re indicative of energy usage patterns.

A number of studies are based on K -means clustering. Gao and
alkawi [32] employ this method to predict building energy perfor-
ance and find an improvement from the results of their proposed

lustering algorithm over the EPA’s Energy Star approach for energy
enchmarking of commercial buildings. Zhan et al. [33] employ a two-
tep K -means clustering process to categorize buildings using daily
oad profiles and conduct energy benchmarking. The authors quan-
ify operational dissimilarity between buildings as the Euclidean dis-
ance between feature vectors. The method is also used by Patteeuw
t al. [34] to find representative residential buildings to estimate energy
se flexibility in large building stocks. The authors use time series data
n electricity demand and air conditioning system status (on/off).

.3. Research contribution

This paper makes three main contributions. First, a methodology is
eveloped to estimate cooling demand flexibility of a large number of
o-located buildings based on their observable characteristics and mea-
ured daily cooling energy demand reduction from a temperature set
oint increase in a small number of buildings. Second, the methodology
s applied to a real-world district energy system serving 124 buildings.
lexibility estimates were available from previously published work for
ix of these buildings, our method allows us to now provide demand
lexibility estimates for all 124 buildings and for the combined district
nergy system. Finally, the results of this study provide insights into
istrict energy system capacity planning and the potential role that
hermal demand response from commercial buildings can play in future

lectricity systems.
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2. Methodology

We estimate the demand flexibility potential in a commercial build-
ing stock where air conditioning demand is served by a district energy
system. In a first step, thermostat set point adjustment experiments
were conducted in a subset of the buildings to empirically measure the
achievable cooling demand reductions under a 1.1 ◦C (2 ◦F) daily set
point increase. Second, we constructed a dataset of building features
for all buildings in the building stock. Feature data were selected
that capture the most important building characteristics that determine
cooling demand flexibility. In a third step, we develop and implement
a methodology to extend the empirical demand flexibility estimates to
estimate the flexibility potential of unobserved buildings. Finally, using
these building-level estimates we construct an estimate potential load
reduction for the entire building stock.

In the following subsections we describe the methodology imple-
mented for the first three steps here. The first step was described in
detail in a previous study [35]. In Section 2.1 we provide a brief
summary of that work. Sections 2.2 and 2.3 describe the methodology
of the second and third steps here. The system level estimate results of
the fourth step are discussed in Section 4. In Section 4.1 we implement
a leave-one-out (LOO) validation process to test the accuracy of the
methodology and choose appropriate model parameters.

2.1. Estimating cooling demand flexibility of the observed buildings

During the summer of 2021 temperature set point adjustment ex-
periments were conducted in six buildings in the district energy system
under study. All buildings had a business as usual (BAU) upper bound
thermostat set point of 74 ◦F (23.3 ◦C). On treatment days the upper
ound of the set point was increased to 76 ◦F (24.4 ◦C) for the entire
ay. For a detailed discussion of the experimental setting and results,
ee de Chalendar et al. [35].

In that study, the following regression model was estimated to
redict the daily cooling load reduction for each building under the
◦F (1.1 ◦C) set point increase for the day:

og 𝑦𝑡 = 𝛽𝐼𝑆𝑃 ,𝑡 + 𝜃0𝑇𝑡 + 𝜃1𝐼𝑊 ,𝑡 + 𝜃2 + 𝜖𝑡. (1)

Here, observations were at the daily level, indexed by 𝑡. 𝑦𝑡 is the
building cooling load for day 𝑡, measured in joules (J). 𝐼𝑆𝑃 ,𝑡 is an
indicator variable equal to 1 if the buildings set point was increased
on day 𝑡 and 0 otherwise. 𝑇𝑡 is the daily mean outdoor temperature
(◦F), measured and recorded onsite. 𝐼𝑊 ,𝑡 is an indicator variable equal
to 1 if day 𝑡 is a weekend day and 0 otherwise. For buildings that were
determined to not have a changing weekend and weekday schedule,
the variable 𝐼𝑊 ,𝑡 was excluded from the regression. The parameters 𝛽,
𝜃0, 𝜃1, and 𝜃2 are estimated for each of the six buildings by ordinary
least squares. Estimates of the model parameters are indicated by 𝛽,
̂0, �̂�1, and �̂�2, respectively. 𝜖𝑡 is a random error term with mean zero.
or more details on alternative statistical models considered and the
erformance of this model see [35].

The assumed data generating process and regression structure imply
hat the value of 𝛽 provides an estimate of the mean daily cooling
oad reduction, as a percent of BAU load, controlling for daily average
emperature and a weekend indicator. In particular, the estimated daily
ercent load reduction is given by: 100 ⋅ (1 − exp(𝛽)). Values of 𝛽,
tandard error (S.E.) of 𝛽, and the associated estimated percentage
emand reduction for each building are shown in Table 1. In this work,
e seek to obtain estimates of 𝛽 for out-of-sample buildings for which
4

xperimental data is not available. l
Table 1
Estimated coefficients of the temperature set point treatment for
in-sample buildings.

Building 𝛽 S.E. Estimated load reduction

BLDG-1 −0.24 0.048 21.3%
BLDG-2 −0.33 0.028 28.1%
BLDG-3 −0.14 0.031 13.1%
BLDG-4 −0.23 0.022 20.5%
BLDG-5 −0.044 0.017 4.3%
BLDG-6 −0.034 0.0092 3.3%

2.2. Feature selection

From the values of 𝛽 reported in Table 1, we observe that there is
a high degree of heterogeneity in demand response potential among
the observed buildings, with predicted daily cooling load reductions
ranging from 3.3% to 28.1% for a 1.1 ◦C (2 ◦F) set point change.
This result implies that heterogeneity in demand responses is likely
to be present in the 118 remaining buildings in the campus energy
system under study. The experimental buildings differed from each
other in a variety of aspects that contribute to heterogeneity in demand
response potential. Some buildings had a high proportion of floor space
taken up by offices, while others have higher proportions of classrooms,
laboratories, or library facilities. Buildings also varied in their energy
intensity and ratio of daily maximum demand to daily average demand.
In addition, there was variety in building size, year of construction,
building materials, and other characteristics.

In order to extend these experimentally derived demand response
results to the entire system, we create a metric of similarity or dis-
similarity of out-of-sample buildings relative to the buildings in the
experimental data set. We hypothesize that an out-of-sample building
that is more similar to a certain in-sample building according to the
metric will tend to have a demand response potential closer to that
building than another building to which it is less similar. This similarity
metric is based upon a set of feature data, observable for all buildings,
that is related to building energy demand and potential for flexibility.

We use a vector of features that is intended to capture the most
important building characteristics that determine cooling load flexi-
bility potential. We then use these features to quantify the similarity
of out-of-sample buildings to the observed buildings. A review of
relevant literature was undertaken to inform the selection of building
characteristics (Section 1.2). Data features were then chosen that can
capture these characteristics to the greatest extent possible given the
availability of data.

Nine features were collected for each of the 124 buildings in the
system. The nine features are: (1) ‘‘Area’’: total floor space of the
building (m2); (2) ‘‘LAB’’: proportion of floor space accounted for by
laboratories; (3) ‘‘CLS’’: proportion of floor space accounted for by
classrooms; (4) ‘‘LIB’’: proportion of floor space accounted for by library
facilities; (5) ‘‘OFF’’: proportion of floor space accounted for by offices;
(6) ‘‘Intensity’’: average cooling demand intensity over the study’s
time horizon (MJ/m2/day); (7) ‘‘Year’’: year of building construction
completion; (8) ‘‘Peak’’: metric of daily load increase relative to daily
average load; and (9) ‘‘SA-Vol’’: surface area to volume ratio.1

2.3. Estimating similarity scores

To quantify the similarity of unobserved buildings to those in the
experimental dataset we have developed a ‘‘similarity score’’ that as-
signs an estimate of 𝛽𝑖 for all remaining buildings on the campus, which
ultimately allows us to estimate demand response under a 1.1 ◦C set

1 ‘‘Peak’’ is defined as the average of (𝑎𝑘−𝑏𝑘)∕𝑐𝑘 across all summer weekdays
ndexed by 𝑘. Here 𝑎𝑘: maximum hourly load on day 𝑘; 𝑏𝑘: minimum hourly
oad on day 𝑘; and 𝑐 : average daily load on day 𝑘.
𝑘
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point change at the campus level. The calculation of this similarity
score draws upon the logic of K -means clustering in the machine
earning literature. K -means clustering is an unsupervised learning
pproach to partition a set of data into sets of similar observations
ased on individual feature vectors [36]. The premise is that a non-
xperimental building that is closer, measured by Euclidean distance
n the feature space, to one in-sample building is expected to behave
ore like that building than a building further away.

The computation of similarity scores appears in Eqs. (2)–(4).

𝑖,𝑠 =
‖

‖

‖

𝐱𝑖 − 𝐱𝑠
‖

‖

‖

(2)

𝑖,𝑠 =
min(𝛾𝛼𝑖,⋅)
𝛾𝛼𝑖,𝑠

(3)

𝜋∗𝑖,𝑠 =
𝜋𝑖,𝑠

∑

𝑠∈ 𝜋𝑖,𝑠
(4)

Let  be the set of observed, in-sample buildings and let  be the
et of all buildings in the system where 𝑆 ⊂ 𝐼 . Let 𝛽𝑠 for all 𝑠 ∈ 

represent the values of 𝛽 for the in-sample buildings, where point
estimates and asymptotic distributions were estimated via Eq. (1). Let 𝛽𝑖
or all 𝑖 ∈ ∖ represent the unknown value of 𝛽 for each out-of-sample
uilding. 𝐱𝑖 is an 𝑚-element vector of building feature data (where 𝑚 is

the number of features) for building 𝑖. The feature data is normalized
to have zero mean and standard deviation 1 across all buildings in the
dataset. Feature data used in this analysis are discussed in greater detail
in Section 3.

In (2) for a given out-of-sample building, 𝑖, the Euclidean distance in
the feature space is computed between that building and each in-sample
building, 𝑠, and denoted by 𝛾𝑖,𝑠. Values 𝜋𝑖,𝑠 are computed in (3), note
that a value of 1 is assigned to the element associated with the closest
in-sample building while values of less than or equal to 1 are assigned
to the elements associated with the other buildings. Finally, in (4) the
vector 𝜋𝑖,⋅ is normalized such that ∑𝑠 𝜋

∗
𝑖,𝑠 = 1. Here, 𝛼 is an important

uning parameter that serves as a penalty on distance from building 𝑖
o building 𝑠, the properties of which are discussed in greater detail
elow.

Once a similarity score vector has been computed we then compute
or all out-of-sample buildings the following estimate of 𝛽, which is a
eighted average of the in-sample estimated responses, with relative
eighting given by the vector 𝜋∗𝑖,⋅:

�̂� =
∑

𝑠∈
𝜋∗𝑖,𝑠𝛽𝑠 (5)

The estimate 𝛽𝑖 has the following properties with respect to the
uning parameter 𝛼:

1. 𝛼 = 0 results in a simple average of 𝛽𝑠 ∀𝑠 ∈ .
2. 𝛼 = 1 results in a weighting of 𝛽𝑠 ∀𝑠 ∈  inversely proportional

to Euclidean distance in the feature space.
3. As 𝛼 → ∞, 𝜋∗𝑖,𝑠 → 1 for the building 𝑠 that is closest in the feature

space to building 𝑖 measured by Euclidean distance, while 𝜋∗𝑖,𝑠 →
0 for all others (i.e. the estimated response of building 𝑖 tends to
exactly that of the building to which it is closest).

Finally, we may apply weighting to the relative importance of each
eature by replacing Eq. (2) with Eq. (6):

𝑖,𝑠 =
‖

‖

‖

𝜦(𝐱𝑖 − 𝐱𝑠)
‖

‖

‖

(6)

Here, 𝜦 is a diagonal 𝑚 × 𝑚 matrix. Let 𝝀 = diag(𝜦) where 𝝀 is an
-element vector of weights associated with each feature in the vector
𝑖. Larger, and smaller, values of 𝝀 allow for features to have more, or
ess, influence in the similarity calculation, respectively. This weighting
ay be applied if the analyst has reason to believe that certain features
ay be more important than others in determining demand response
otential. Note that using the unweighted version in Eq. (2) implicitly
ssumes that each feature is equally important in determining demand
esponse potential.
5

a

. Overview of data

The data used in this analysis were the following: (i) daily cooling
emand served from the CEF (2017–2021, inclusive); (ii) daily cold wa-
er demand for each of the 124 buildings in the district energy system
or the same time horizon; and (iii) a dataset of features associated with
he buildings in the energy system.

.1. Daily system load served

The daily total system cooling load served is a key metric of interest.
his is the total amount of energy delivered via chilled water to serve
he cooling demand of the district energy system. Here, daily values are
onsidered because during hot summer days cooling load in afternoon
ours leads to the greatest demand on the system while water can be
hilled overnight to refill the cold water storage tanks. Thus a daily
ycle is the most appropriate for determining the maximum capability
f the system to serve cooling demand.

Data observations are collected at the hourly level and then sum-
arized at the daily level. Over the five year period five hourly obser-

ations were unavailable and filled using linear interpolation. Six days
ere known to have some amount of curtailed load, and counterfactual
on-curtailed loads were approximated using a linear model described
n the Appendix.

.2. Building level demand data

Hourly cooling demand was collected for all 124 buildings in the
tudy for all hours of the years 2017–2021, inclusive. Data were sum-
arized at the daily level. Procedures for dealing with missing data are
escribed in Appendix A. Table 2 provides a summary of the building
evel cooling load data over the five years.

.3. Building feature data

Feature data were collected for all in-sample and out-of-sample
uildings in the district energy system. Feature values for the in-sample
uildings and a summary of the building feature data are displayed in
able 3. The building feature data were normalized to have mean zero
nd standard deviation of one before computing similarity scores as
escribed in Section 2.3.2

Fig. 2 displays the correlation matrix of the building feature data.
he associations here show that in our dataset buildings with high
urface area to volume ratios also tended to have higher cooling en-
rgy intensity. Buildings with high surface area to volume ratios also
ended to be smaller buildings, measured by floor space. Buildings with
igh summertime peak cooling demand relative to average demand
ended to have lower cooling energy intensity. Buildings with a high
roportion of office space tended to be older, and buildings with a high
roportion of offices tended to have less research laboratory space.

. Results

In this section we present the results of the estimation procedure
ith feature weighting as described in Section 2.3. First, we discuss the
rocess used for selection of model parameter value 𝛼 and weighting
ector 𝝀. Secondly, we provide an overview of the estimates of demand
esponse potential for buildings in the district energy system. Finally,
e discuss the simulation of a counterfactual demand response program
nder global temperature set point adjustments across all buildings in

2 Surface area to volume ratio was approximated using number of floors and
loor area by story. We assume the building footprint to have equal length and
idth with footprint area defined as the average of floor area by story and an
ssumed story height of 4.27 m (14 ft).
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Table 2
Summary of building level daily cold water demand data (GJ/day). Values indicate mean (standard
deviation) of the specified statistic across the 124 buildings for the specified year. ‘‘P10’’ and ‘‘P90’’ indicate
the 0.1 and 0.9 quantiles, respectively.

Statistic 2017 2018 2019 2020 2021

Mean 17.54 (43.02) 16.80 (38.79) 18.93 (47.55) 19.35 (53.88) 17.56 (48.00)
P10 8.86 (28.24) 7.85 (22.52) 8.99 (25.87) 9.13 (29.40) 8.79 (27.50)
Median 15.86 (41.02) 15.75 (38.23) 16.59 (43.63) 17.46 (51.39) 15.47 (44.29)
P90 28.19 (61.51) 27.53 (58.23) 32.02 (76.01) 31.90 (82.36) 28.80 (73.78)
Table 3
Feature values for observed buildings and summary statistics of feature values for all buildings in the system (𝑁=124).
LAB: research laboratory, CLS: classroom, LIB: library facilities, OFF: office, SA-Vol: surface area to volume ratio,
prop.: proportion.

Building/ Area LAB CLS LIB OFF Intensity Year Peak SA-Vol
Statistic (m2) (prop.) (prop.) (prop.) (prop.) (MJ/m2/day) (ratio) (ratio)

Feature values for observed buildings

BLDG-1 13,427 0 0 0.005 0.267 0.544 2000 2.27 0.057
BLDG-2 2,640 0.118 0 0 0.423 0.418 1893 2.23 0.105
BLDG-3 15,768 0.061 0.083 0.307 0.133 0.228 1966 2.02 0.048
BLDG-4 9,780 0.202 0.036 0 0.314 0.899 1998 1.63 0.060
BLDG-5 6,975 0.196 0.030 0 0.361 4.267 1965 1.05 0.061
BLDG-6 7,108 0.297 0 0 0.305 1.912 1963 0.70 0.061

Summary statistics for all building in system (𝑁 = 124)

Mean 8,312 0.134 0.034 0.037 0.265 2.456 1969.0 1.57 0.087
P10 1,143 0.000 0.000 0.000 0.022 0.481 1901 0.63 0.054
Median 5,280 0.014 0.000 0.000 0.230 1.355 1979 1.53 0.074
P90 15,920 0.439 0.083 0.051 0.543 5.115 2013 2.37 0.142
Fig. 2. Correlation matrix of feature data (LAB: research laboratory, CLS: classroom, LIB: library facilities, OFF: office, SA-Vol: surface area to volume ratio).
the system over the data time horizon (2017–2021, inclusive) with
emphasis on demand reduction for the highest demand year, 2020. All
calculations presented were implemented in the Python programming
language (version 3.8.13) with the following packages: Numpy (version
1.21.1), Pandas (version 1.3.1), and Scikit-learn (version 0.24.2) [37].

4.1. Leave-one-out validation of parameter values

The 𝛼 parameter in the above calculation is an important tuning
parameter that penalizes the distance of an out-of-sample building to
the in-sample buildings. To determine the values of 𝛼 and 𝝀 that are
most appropriate for this study we have implemented a LOO validation
process. However, because we only have six in-sample buildings upon
which we can train our data, we must be sensitive to the possibility of
6

overfitting to our observed data. In this subsection we discuss how we
select a vector 𝝀, and then select our preferred value of 𝛼.

To implement the LOO validation process, for each building 𝑠 ∈ 
we remove this building from the set  and compute the predicted 𝛽 for
that building for a range of values of 𝛼 using the proposed estimation
algorithm and for a set of candidate values of 𝝀. The first candidate
value of 𝝀 is ‘‘uniform weights’’ where each value in the vector is 1,
corresponding to the unweighted formulation in Eq. (2). An additional
10 candidate values of 𝝀 were tested as ‘‘weighted’’ vectors where
weights were chosen based on assumed importance of the features. The
set of candidate weight vectors was developed by the authors and is
intended to capture the relative importance of features in determining
flexibility. The specific values are qualitatively based upon a review of
relevant literature and researcher judgement based on familiarity with
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Fig. 3. Root mean squared error (RMSE) versus values of parameter 𝛼 (‘‘uniform
weights’’ and the selected weight vector, ‘‘weights 1’’, pictured in bold).

the field. See Appendix B for the specific values used in the candidate
weight vectors and additional discussion.

Fig. 3 displays the results of the tuning procedure. Note that the
names (1 to 10) of weight vectors are simply labels and do not indicate
ordering. For each value of alpha the error is defined as the difference
between the actual value of 𝛽 for the building that was estimated with
experimental data, and the value of 𝛽 that was computed with the
similarity score vector computed as in Section 2.3. For a given value
of 𝛼 the square of this error is computed and averaged across the six
buildings, and the square root is taken, resulting in the root mean
squared error (RMSE) pictured in Fig. 3. In the figure, the RMSE for
uniform weights and the selected weights are shown in bold.

For all values of 𝛼, all candidate weight vectors had lower RMSE
than the uniform weights vector. For values of 𝛼 less than 4 we found
similar RMSE in the LOO procedure across the ten candidate weight
vectors with ‘‘weights 5’’ resulting in the lowest RMSE for these values.
For high values of 𝛼 (greater than 31) ‘‘weights 5’’ also had the lowest
RMSE. This weighting vector achieved the lowest RMSE of 0.0688 at
𝛼 = ∞. As discussed in Section 2.3, 𝛼 = ∞ results in a matching
algorithm that assigns one of the six observed 𝛽𝑠 values to each of the
unobserved buildings. However, in the building stock, we have high
heterogeneity across features (building vintage and size, for example),
and some buildings may be further away (as measured by Euclidian
distance) in the feature space than those included in the observed set.
Thus a high penalty on distance in the feature space is likely to overfit
to the small set of observed buildings. For these reasons we expect
that the actual response will be better represented by some weighted
average of the 𝛽𝑠 given by a lower value of 𝛼. See Appendix C for
more discussion on how the selection of 𝛼 affects the estimated demand
response potential values, and see Appendix D for a sensitivity analysis
that tests how the choice of 𝛼 affects the system-wide flexibility result.

The vector ‘‘weights 1’’ resulted in lowest RMSE for values of 𝛼 from
4 to 31, and resulted in minimum RMSE at 𝛼 = 14. In Fig. 3 we can
see the lower RMSE of the ‘‘weights 1’’ vector over this range. Because
this vector achieved the lowest RMSE for this range of values of 𝛼 this
was the weighting vector selected to be used for the remainder of the
analysis. The values of the selected weight vector 𝝀 are displayed in
Table 4. The uniform weights vector resulted in minimum RMSE at
𝛼 = 6.

For the minimum error values of 𝛼 we present the predicted versus
actual values of 𝛽 in Fig. 4. In the figure we observe that the selected
weighted prediction outperforms the uniform weight predicted values
for four of the six buildings. The only building for which the weighted
7

Table 4
Values of 𝝀 for the selected weighting vector (LAB: research laboratory, CLS: classroom,
LIB: library facilities, OFF: office, SA-Vol: surface area to volume ratio).

Area LAB CLS LIB OFF Intensity Year Peak SA-Vol

1.0 0.5 0.5 0.5 0.5 2.0 1.0 1.5 1.0

prediction does significantly worse is BLDG-3. Note, that in this for-
mulation the prediction is a weighted average of the other buildings.
Here, across the feature vector BLDG-3 was more similar to the high
response buildings than the low response buildings and resulted in this
error. For BLDG-2, we observe that the estimation procedure results
in a considerable under-estimation of flexibility, however, because the
estimate is a weighted average of the five remaining buildings, the
estimate cannot be closer than the value of the second largest response
building. However, the estimate does improve under the weighted
estimation process.

The results of the LOO tuning procedure suggest that the similarity
score procedure is likely to provide reasonable estimates of demand
flexibility in out-of-sample buildings. These results also suggest that
the weighted score is likely to outperform the unweighted version,
however, the high 𝛼 value corresponding to minimum RMSE applies a
very high penalty on distance in the feature space, closely correspond-
ing to a matching algorithm. Due to the small number of in-sample
buildings and the risk of overfitting to the observed sample, we use
𝛼 = 3 for the analysis in this paper with weighting vector 1. In
Appendix C we provide more details about the choice of this 𝛼 value,
and in Appendix D we provide a sensitivity analysis to investigate how
the choice of parameter value 𝛼 and weight vector 𝝀 affect our results.

4.2. Estimates of building-level response potential

Values of 𝛽 were estimated for all 118 unobserved buildings in
the system using 𝛼 = 3, and the weighting vector 𝝀 as defined in
Section 4.1. The corresponding estimated load reduction (%) under a
1.1 ◦C (2 ◦F) daily set point increase was computed for each building
in the system.

Fig. 5 displays a histogram of estimated demand response potential
for each of the 124 buildings in the system, including the six observed
buildings. The average estimated response across all buildings in the
system (including observed experimental buildings) was 16.1% with a
standard deviation of 5.3%, and a median response of 16.0%. Half of
all estimated responses fell between 12.6% and 19.3%, while 90% of all
estimated responses fell between 7.0% and 25.2%. The minimum and
maximum estimated response values were those of the minimum and
maximum responding buildings in the observed sample with values of
3.3% and 28.1%, respectively.

Table 5 reports the pairwise correlations between the estimated
demand response and building features. The high correlation between
the ‘‘Peak’’ feature and the estimated demand response potential in-
dicates that for buildings that had large peak to trough load relative
to average load on summer weekdays, we estimated higher demand
response potential, with a relatively high correlation value (0.796).
This result aligns with the expectation that buildings that tend to
have greater afternoon increases in cooling demand will have more
potential to reduce that demand with a thermostat set point increase.
In addition, buildings with a high proportion of office space tended to
have higher estimated demand response potential but with a relatively
weaker linear association. Meanwhile, buildings with higher energy
intensity and buildings constructed more recently tended to have lower
estimated demand response potential. Note that both of these features
were negatively correlated with the ‘‘Peak’’ value (see Fig. 2).
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Fig. 4. Predicted versus actual values of 𝛽 (uniform weight: 𝛼 = 6; weighted: 𝛼 = 14).
Fig. 5. Histogram of estimated building demand response potential for 𝛼 = 3.
Table 5
Correlation of building characteristics and estimated demand response (𝛼 = 3) (LAB:
research laboratory, CLS: classroom, LIB: library facilities, OFF: office, SA-Vol: surface
area to volume ratio).

Area LAB CLS LIB OFF Intensity Year Peak SA-Vol

−0.123 −0.123 0.077 −0.087 0.345 −0.278 −0.364 0.796 0.118

4.3. System-wide demand response potential

Using the demand response estimates presented in Section 4.2 we
can estimate the load reduction potential of a counterfactual demand
response program in the district energy system. We assume that the
load control action under this demand response program is a system-
wide 1.1 ◦C thermostat set point increase on the 10 highest cooling
demand days of the year. We then construct a modified load duration
curve to visualize maximum load before and after the demand response
program. The pre- and post-demand response load duration curves for
2020 are displayed in Fig. 6 for the top 100 load days of that year.3 Note

3 The highest demand days in 2020 are of particular importance in this
analysis. Note that none of the days in 2020 experienced known curtailments
where load served was estimated as described in Section 3.1.
8

that although the experiments discussed in Section 2.1 were conducted
in 2021, we focus on the 2020 calendar year in this section. This is
because 2020 experienced the highest daily cooling demand over the
time horizon and is thus most relevant for design decisions relative
to system installed capacity. In this analysis, we assume that the 10
highest demand days of the year are known, and these are the days
in which demand response is implemented. In practice, the highest
demand days must be forecasted in advance, but we do not address
the issue of demand forecasting in this work.

The 2020 calendar year experienced the highest daily cooling load
over the time horizon reaching 5.588 TJ (441.3 kiloton-hours). Under
the demand response program, estimates indicate that maximum daily
load would be reduced by 13.47% to 4.835 TJ, with a 95% confidence
interval of (11.70%, 15.24%). We estimate the asymptotic distribution
of the counterfactual load using the delta method, as described in
Appendix E. This confidence interval treats the values of 𝜋𝑖,⋅ as fixed
constants, capturing the asymptotic variance of the estimates of 𝛽𝑠 ∀𝑠 ∈
.

In the top panel of Fig. 6 we see the effect that the demand response
program has on the 2020 demand curve.4 At the left of the plot,

4 In the bottom panel we have reordered the counterfactual load duration
curve to show how the load duration curve changes under this program.
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Fig. 6. 2020 actual and counterfactual load duration curves, top 100 days, with 95% confidence interval pictured (BAU: ‘‘business as usual’’). ‘‘Min. Effect’’ and ‘‘Max. Effect’’
indicate the load duration curve that would result if all unobserved buildings have the demand response potential of the building with the smallest (BLDG-6) and largest (BLDG-2)
estimated response, respectively. The top panel shows the counterfactual demand in the same order as actual demand. The bottom panel shows the counterfactual demand reordered
from highest to lowest.
where the orange line is shifted downward, load has been reduced
due to the load control action. The percent reduction for each day will
differ slightly due to variability in the proportion of load each building
accounts for on that day. For days that were not in the top 10 load days,
the load duration curve remains unchanged. The shaded area in the plot
denotes the 95% confidence interval for each day. The dashed lines
denote the modified load duration curve if all unobserved buildings
were to have the estimated response of the least and most responsive
building in the observed sample, labeled as minimum and maximum
effect, respectively.

An important point illustrated in the load duration curves in the
top panel of Fig. 6 is that the steepness of the curve on the top days
enables a large reduction in maximum daily demand with a small
number of demand response days. Observe that the daily load on the
highest demand day that is not a demand response day is lower than the
estimated demand on the highest demand response day after the load
reduction. For 2020, we have pictured 10 days of demand response, but
this still would have been true with only 8 days of demand response.
This means that if the objective is to reduce peak daily load, the
amount of load reduced is the full amount reduced on the highest
BAU demand day. If the load duration curve were not as steep, with a
9

similar amount of load reduction, daily load on the highest non-demand
response day may be higher than all demand response days. In this case
the maximum daily load reduction would be the difference between
the maximum BAU load, and maximum daily load of the non-demand
response days.

The bottom panel of Fig. 6 shows what the load duration curve
would look like after demand response, ordered from highest to lowest
load. In Section 1 it was noted that the 2020 BAU daily load duration
curve suggested that 10% of system capacity would be used only on
five days of the year, and 20% of capacity needed only on 15 days of
the year.5 In contrast, if the system was designed to meet the highest
demand day after the implementation of demand response, 5.6% of
system capacity would be used on only five days, while 11.4% of
capacity would be necessary for the top 15 days.

In Appendix D we provide a sensitivity analysis that includes results
for selected values of 𝛼 and results for maximum daily load reduction
for all years in the time horizon. The estimated reduction in peak daily

5 This calculation is under the assumption that the system was designed
precisely for the maximum load day of the year.
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load in 2020 ranged from 9.98% (𝛼 = ∞) to 15.46% (𝛼 = 0). Estimates
or peak daily load reduction varied little across different years for a
iven value of 𝛼. See Appendix D for more details.

. Discussion

.1. Demand response program design requires system level estimates

With cooling demand growth over time due to expansion of the
ystem and/or increasing temperatures as a result of climate change,
istrict HVAC system operators may be faced with a decision to invest
n costly capacity upgrades or implement a demand response program
o defer these upgrades. In the short-run, because of the impossibility of
capacity increase, some systems may be faced with the possibility of

orcibly curtailing the provision of cooling services when capacity limits
re exceeded, and a demand response program may be a preferable
lternative. However, implementing thermal demand response in a
istrict energy system can be challenging, and even if thermostat set
oint changes are small, deviating from BAU set points can impose
ome degree of inconvenience on building occupants. The benefits
f such a program can be substantial, and to quantify these benefits
o justify its implementation, a reliable estimate of the magnitude of
ystem-wide demand reductions is needed.

We propose a methodology to compute such estimates based on a
eries of set point changes in a small subset of buildings and a set of
uilding features for all buildings in the energy system. In many district
nergy systems, such as the one in this study, there is a high degree
f heterogeneity across buildings in the system. This heterogeneity in
tructural characteristics and operational features results in significant
eterogeneity across buildings in the magnitude of the demand re-
ponse for the same thermostat temperature set point increase. In the
bserved buildings, the demand response estimates ranged from 3.3%
o 28.1% cooling demand reduction under a 1.1 ◦C (2 ◦F) daily cooling
et point adjustment. This large difference across buildings in estimated
emand response makes it important to determine if the unobserved
uildings have high or low flexibility potential. Leveraging building
eature data to extend the experimental results to the entire building
tock leverages the heterogeneity in building characteristics to estimate
avings in a large, heterogeneous group of buildings.

The methodology proposed here is a data-driven alternative to
hysics-based models and provides certain advantages. First, we mea-
ure actual, realized energy use changes in the building. Second, phys-
cal models require a large amount of information about all buildings
o reliably estimate the demand reduction for a given building, while
ur methodology makes use of available data without the need for
ssumptions about physical model parameters.

The methodology proposed here, may also be used to target demand
esponse implementation under a budget constraint that does not allow
or implementation of demand response across the entire system. If

budget constraint allows for implementation in only a subset of
uildings, the methodology can be used to identify the high demand
lexibility buildings in the system.

.2. Load duration curves inform demand response potential to reduce
ystem capacity needs

In many systems, adjusting thermostats on a small number of days
an lead to a large reduction in capacity needs. Inter-annual variability
n cooling demand will mean that the highest demand years will require
he most days of load flexibility while lower demand years require less,
nd some years needing no intervention at all, to maintain the daily
ooling demand below an available capacity limit.

By examining annual daily cooling load duration curves we can see
ow load control can reduce capacity needs in the system under study.
ig. 7 displays daily cooling load duration curves (top 150 days) for
017–2021. Indicated in the plot are lines for the minimum installed
10

p

apacity necessary to serve all load both with and without a demand
esponse program, that includes the load control action of a system-
ide 1.1 ◦C set point adjustment. Over this time horizon, 2020 was

he year with highest daily demand with a peak daily demand of 5.588
J. This peak cooling demand day over the time horizon determines the
inimum capacity needed to reliably serve cooling demand. Results of

his study suggest that implementing a 1.1 ◦C set point increase on that
ay would reduce cooling demand by 0.753 TJ to 4.835 TJ. This result
mplies that the minimum system capacity required is 15.6% higher
ithout a demand response program when compared to the reduced

ooling demand under the program.
The load duration curves pictured in Fig. 7 show how inter-annual

ariability and a small number of extreme demand days drive capacity
eeds over the time horizon. In addition, the figure shows that achiev-
ng a large reduction in capacity needs would require implementing
hermostat set point adjustments on a very small number of days over
he five year period. The load duration curve for 2020 exhibits a steeply
eclining slope moving to the right from the vertical axis suggesting
hat only eight demand response days would need to be called to reduce
emand on all days of that year below the 4.835 TJ threshold. We may
lso observe that with only five days of demand response in 2019, two
ays in 2017, and no required demand response in 2018 or 2021, the
ystem could have maintained maximum daily load under this level.
his suggests that with only 15 demand response days over the five year
eriod from 2017–2021, the system could have maintained installed
apacity needs below the lower 4.835 TJ level. With installed capacity
osts for such district energy system facilities measured in the millions
f dollars this implies a large financial benefit for an infrequent load
ontrol action.

The authors note that the estimates here assume perfect foresight
nd under real-world implementation a larger number of demand
esponse days may be required due to forward-looking uncertainty. The
nalysis also does not account for load growth over time or changing
limate patterns. However, the result demonstrates that an infrequent
oad control action with low impact to occupants can have a very
eaningful impact on system capacity needs.

.3. Leveraging demand-side flexibility in electricity systems with high re-
ewable deployment

In California, high deployment of solar generation has led to elec-
ricity supply challenges in the early evening hours on high demand
ays. When solar generation comes offline while electricity demand
s still high, a large amount of ramping capacity, supplied mostly
y natural gas peaking units, is needed to balance supply and de-
and. Limited dispatchable capacity led to forced load curtailment
uring the summer of 2020 [2]. Mobilizing demand-side flexibility
hrough intelligent HVAC control can be a valuable resource as the
alifornia Independent System Operator (CAISO) and other electricity
ystem operator territories continue to experience higher penetration
f renewable generating technologies.

In the system under study, days in which the local district energy
ystem is experiencing high cooling demand conditions correspond
losely to the days in which the bulk grid is most in need of additional
apacity or demand reductions. These conditions tend to occur on hot
ummer days when air conditioning demand is high. Fig. 8 displays
aily average day ahead Locational Marginal Price (LMP) in the CAISO
arket (24 h average of DLAP-PGAE) and daily CAISO peak net load for

ll days of 2020.6 CAISO net load is defined as system load less wind
nd solar generation. The points in red indicate the top ten cooling
oad days for the district energy system. We observe in the figure that
hese highest demand days are days in which the CAISO peak net load

6 ‘‘DLAP-PGAE’’ is the Pacific Gas and Electric default load aggregation
oint.
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Fig. 7. Load duration curves 2017–2021, top 150 days, with estimated peak reduction.
Fig. 8. 2020 Day ahead LMP versus daily CAISO peak net load with top 10 campus
cooling load days in red (LMP is 24-hour average of DLAP-PGAE; net load is defined
as system load less wind and solar generation).
Data source: CAISO.

is very high and prices are high. If a demand response program were
designed such that thermal demand response days were called on the
ten highest demand days in the local system, not only would the system
be reducing installed capacity requirements, but the daily reduction in
electricity demand would be providing needed demand reduction to the
CAISO system.

The university campus in this study reaches peak hourly electricity
demands of over 50 MW during the summer, with nearly 20 MW
of this accounted for by the CEF chillers on high cooling demand
days. Reduced demand for chilled water on high demand days enables
flexibility in cold water chiller operational schedules. The on-site cold
water storage provides thermal energy storage enabling intertemporal
shifting of electricity demands and the ability to greatly reduce system
electricity demand when it is most valuable.

In recent years, deployment of lithium ion batteries for station-
ary storage has increased rapidly, and costs of battery storage have
11
fallen significantly. Battery energy storage systems are likely to be an
important component of a future grid with high deployment of renew-
able energy technologies. However, despite falling costs, it remains
extremely costly to provide all needed demand side flexibility with
battery systems.

In this study, the 2020 load control simulation indicated a daily load
reduction of 0.753 TJ on the highest demand day for the 24 h period.
The CEF in this system includes both conventional chillers and heat
recovery chillers. The overall efficiency of the CEF ranges from 47.39–
69.90 kWh per GJ.7 This suggests an approximate electrical energy
reduction of 35.68–52.63 MWh for the day. As of this writing, costs of
lithium ion batteries were approximately $130–$140/kWh (hardware
costs only) [38]. We also consider a range of discharge efficiencies from
92%–100%. For this range of assumptions, the system would require
a battery with capital investment cost of $4.6 to $8.0 million USD to
provide an equivalent amount of demand response. The authors note
that this is a very rough estimated range, simply to provide an order
of magnitude comparison. For example, this figure does not include
balance of system costs, operating costs, or cost of charging. It also does
not consider the additional services that a dispatchable energy storage
system can provide. However, in comparison to a battery system, the
costs of implementing thermal demand response in commercial build-
ings can be very low. This high-level estimate suggests that achieving
demand-side flexibility in electricity systems needed to enable large
scale renewable deployment at lowest cost should include a strong
emphasis on mobilizing thermal demand response programs.

6. Conclusion

Thermal demand response in commercial buildings holds potential
to provide large amounts of needed electricity demand flexibility as
electricity grids in the United States and around the world decommis-
sion conventional fossil fuel generators in favor of renewable energy
resources. Moreover, in many district energy systems where capital
expenditure for installed capacity is considerable, a large proportion
of installed capacity is used on only a small number of days. Demand

7 The efficiency range of the CEF stated here is based on both the engi-
neering design documentation of the CEF, and an estimate based on observed
operational data.
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flexibility through temperature set point adjustments can be imple-
mented where even relatively small and infrequent temperature set
point adjustments can translate into large savings while simultaneously
providing valuable demand flexibility.

Methods are needed to estimate the specific savings that can be
achieved in district energy systems, in particular where high hetero-
geneity exists among buildings in the system under consideration. Such
estimates are required to enable relevant stakeholders to balance po-
tential benefits against costs of implementation. In this work, we have
demonstrated a methodology by which experimental measurements of
load flexibility can be extended to the level of a district energy system.
The methods presented here are not specific to district energy systems
and may be implemented for large building stocks to estimate demand
response in any well defined group of buildings. The methodology
can be generalized to any quantitative or categorical building features
that may be available in other settings, and with an increased number
of buildings in the observed set, the estimates of demand response
potential will increase in accuracy.

Under a range of assumptions, we find that the load control action
of a system-wide 1.1 ◦C (2 ◦F) thermostat set point increase results in an
estimated reduction in peak daily cooling load for the highest demand
day of the year of at least 10%. Implementing this load control action
would accrue savings through reduction of investment on installed
capacity at the district energy system’s CEF, reduction of energy costs,
and potential reduction of demand charges. Moreover, we have shown
that the highest demand days in the district energy system tend to
correspond to the days in which generation capacity is most scarce in
the bulk grid. Such a demand response program would then also reduce
demand during the times in which this capacity is most needed on the
grid.

The methodology presented in this study estimates cooling demand
flexibility in a large number of unobserved buildings based on observ-
able features and results of real-world flexibility experiments in a small
number of observed buildings. This can be a valuable complement to
simulations of building energy behavior using physics-based models. An
interesting area of study that we leave for future work is to integrate
building simulation tools and empirical, data-driven methods. Details
of district energy system operation under load control actions, such as
investigating the efficiency impacts of dynamic set point adjustments,
will also be an interesting area of research.

In this study we have not investigated the effect of set point ad-
justments on occupant comfort and this will be a valuable area of
future research. Moreover, here we have limited our attention to a
1.1 ◦C thermostat set point increase universally implemented across all
buildings in the system. In future work we plan to investigate additional
load control actions including set point changes of greater or lesser
magnitude and heterogeneous set point changes that differ by building.
These additional actions are likely to enable deeper load reductions
while minimizing the costs imposed on building occupants.
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Appendix A. Methods for data cleaning and completion of raw
building data

In this study we use real-world energy usage data over five years
(2017–2021, inclusive) from two data sources: (1) cold water delivered
to the system by the CEF of the district energy system and (2) the cold
water consumption measured at each of 138 meters at 124 buildings
in the system. The data for both sources are in units of ton-hours and
recorded at the hourly level. A number of data points were missing or
unreliable due to recording errors or other events. In this section we
describe the processes that were used to verify the validity of available
data and estimate data points that were unavailable.

For the CEF the dataset was nearly complete. In Section 3.1 it was
noted that only five hourly data points were missing for the entire time
horizon and filled using linear interpolation of neighboring data points.
A sum of hourly data for each day was computed to find the daily cold
water served for each day. For six days where some unknown amount
of load curtailment occurred, a linear model was used to estimate
counterfactual load:

𝑧𝑡 = 𝜈0 + 𝜈1𝑇𝑡 + 𝜂𝑡 (A.1)

here 𝑧𝑡 is the daily CEF load (ton-hours) on day 𝑡, 𝑇𝑡 is the daily
verage temperature, and 𝜂𝑡 is an error term with mean zero. The model
as fit with all available data points (excluding curtailment days),
nd the estimated parameters were used to compute expected load for
hose days. Log-linear and quadratic models were also tested. The linear
odel was selected to complete the dataset because it was both the
ost accurate and the most conservative of the models.

For the 138 meters at the 124 buildings served by the cold water
oop, hourly cooling energy delivered is recorded at the point of de-
ivery to the building. Here the difference in cold water temperature
n the send and receive pipes and flow rate are measured to compute
ooling energy delivered, recorded in units of ton-hours. A number of
ata points were not available due to data write failure for unknown
easons. Any data points that were in excess of three times the P99
alue were assumed to be erroneous and discarded. For data points
ot available, wherever three or less consecutive hours were identified
he values were linearly interpolated. For buildings where cold water
ervice curtailments where known to have occurred, or temperature set
oint increases were implemented, these data points were discarded.

For the unavailable data points, a random forest model was imple-
ented to estimate missing values at the hourly level. The features used

o fit the random forest model were CEF hourly cooling demand served,
ourly temperature (measured onsite), year indicator variables, month
ndicator variables, hour indicator variables, and weekday/weekend
ndicator variables. In the completed dataset 4.3% of total load was
ccounted for by estimated data points over the study time horizon.
hese hourly data were then summarized at the daily level for a
omplete dataset of daily cooling load for each building.

As noted above, the CEF cooling demand served dataset was nearly
omplete. In order to ensure that the building level data conformed to
he CEF level data a scaling multiplier was applied to the daily building
ata such that the sum of building data would precisely match the
EF data. The same scaling factor was applied to all buildings with
ne scaling factor per day. The mean scaling factor was 0.969, with
tandard deviation of 0.032. Data in units of ton-hours were converted
o joules in the main text of this study.
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Table B.6
Definitions of candidate feature weighting vectors. LAB: research laboratory, CLS: classroom, LIB: library facilities,
OFF: office, SA-Vol: surface area to volume ratio, prop.: proportion.
Candidate Area LAB CLS LIB OFF Intensity Year Peak SA-Vol
index (m2) (prop.) (prop.) (prop.) (prop.) (MJ/m2/day) (ratio) (ratio)

1 1 0.5 0.5 0.5 0.5 2 1 1.5 1
2 1 0.5 0.5 0.5 0.5 1 1 1 1
3 1 0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5
4 1 0.5 0.5 0.5 0.5 1.5 1.5 2 1
5 1.5 0.5 0.5 0.5 0.5 1 1 2 1.5
6 1 0.25 0.25 0.25 0.25 2 1 1.5 1
7 1 0.25 0.25 0.25 0.25 1 1 1 1
8 1 0.25 0.25 0.25 0.25 1.5 1.5 1.5 1.5
9 1 0.25 0.25 0.25 0.25 1.5 1.5 2 1
10 1.5 0.25 0.25 0.25 0.25 1 1 2 1.5
Appendix B. Selection of weighting vector 𝝀

In Section 4.1 we discuss the results of the tuning procedure by
which we select the weighting vector 𝝀. Two possible approaches
to choosing the weighting vector are: (i) optimize for weights that
minimize the validation RMSE, or (ii) test a set of candidate weights
and choose the candidate vector that minimizes the validation RMSE.
We have chosen the latter approach due to the concern of overfitting
to the small sample of six observed buildings. We developed a set of
10 candidate weight vectors and chose the best performing (in terms
of RMSE) as the preferred weight vector.

The candidate weighting vectors are displayed below in Table B.6.
The features ‘‘LAB’’, ‘‘CLS’’, ‘‘LIB’’, and ‘‘OFF’’ all were indicators of
the occupancy, equipment, and types of operations in the buildings
and thus were all equally down-weighted across the candidate vectors.
The review of literature suggested that ‘‘Intensity’’ and ‘‘Peak’’ were
relatively important features in predicting cooling demand flexibility
and thus received higher weights across most candidate vectors [6,18–
21]. Candidate vector 1 achieved the lowest RMSE for moderate values
of 𝛼 (Fig. 3) and was thus the chosen weighting vector.

Appendix C. Selection of 𝜶 parameter value

The value of the tuning parameter 𝛼 applies a penalty on distance in
the feature space when computing estimated values of 𝛽 for the unob-
served buildings. Under the tuning procedure described in Section 4.1
we found that a value of 𝛼 = 14 achieved the lowest RMSE for the
chosen weighting vector. However, due to concern that a high 𝛼 value
will lead to overfitting to the small number of observed buildings we
selected 𝛼 = 3 as our preferred parameter value.

Figs. C.9–C.16 display histograms of estimated daily building cool-
ing demand flexibility (%) for selected values of 𝛼 under the chosen
weighting vector. In Fig. C.9 we observe that the parameter value
𝛼 = 0 results in a simple average of observed buildings assigned to all
unobserved buildings. As the value of 𝛼 increases there is an increased
penalty on distance in the feature space when computing the estimates.
At the limit when 𝛼 approaches infinity, the calculation becomes a
matching algorithm where each unobserved building is assigned the
flexibility estimate of the building to which it is the closest in the
feature space. This is shown in Fig. C.16.

Fig. C.15 displays a histogram for 𝛼 = 14. Although this value
achieved the lowest RMSE, in the figure we observe that the relatively
high tuning parameter led to a strongly multi-modal distribution of
estimated effects. Due to concern that this may lead to overfitting to the
small number of observed buildings, we chose to select the parameter
value that resulted in a nearly bell-shaped distribution of estimated
flexibility.

Parameter values 𝛼 = 2 and 𝛼 = 3 (Figs. C.11 and C.12) were
the values for which the estimated flexibility values most closely ap-
proximated a bell-shaped distribution. Parameter value 𝛼 = 2 did not
result in any estimated flexibility values in the range of 4.4% to 8.7%,
and in addition 𝛼 = 3 had a lower RMSE in the LOO tuning process.
13
Fig. C.9. Distribution of estimated demand response potential for 𝛼 = 0.

Fig. C.10. Distribution of estimated demand response potential for 𝛼 = 1.

Fig. C.11. Distribution of estimated demand response potential for 𝛼 = 2.

Therefore we selected 𝛼 = 3 as our preferred tuning parameter value.
We investigate the effect the choice of tuning parameter value has on
our results in Appendix D.
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Fig. C.12. Distribution of estimated demand response potential for 𝛼 = 3.

Fig. C.13. Distribution of estimated demand response potential for 𝛼 = 4.

Fig. C.14. Distribution of estimated demand response potential for 𝛼 = 10.

Fig. C.15. Distribution of estimated demand response potential for 𝛼 = 14.

Appendix D. Sensitivity analysis

A sensitivity analysis was conducted to investigate the degree to
which the choice of the parameter value 𝛼 and weight vector 𝝀 affected
our results. To test the sensitivity to the selected 𝛼 value, we estimated
14
Fig. C.16. Distribution of estimated demand response potential for 𝛼 = ∞.

system-wide peak load reduction under a range of selected parameter
values, and for each year of the time horizon. All results here use
the selected vector of feature weights as described in Section 4.1. The
results are displayed in Table D.7.

Across all selected parameter values and years, the highest esti-
mated percentage reduction was 15.47%, while the lowest was 9.97%.
The highest percentage reductions were estimated for 𝛼 = 0, where the
estimated flexibility was simply an average of the observed building
effects. The system-wide estimated flexibility decreased with higher 𝛼
parameter values. The lowest estimates were for 𝛼 = ∞. In Fig. C.16
observe that more buildings had estimated flexibility of greater than
15% than had estimated flexibility of less than 15%. This implies
that although less buildings had low estimated flexibility, this smaller
number of buildings accounted for a larger share of cooling demand.
Also note that across all parameter values the estimated peak day
load reduction varied little in percentage terms across years. The 95%
confidence intervals were slightly less than ±2% across all estimates.

To test the sensitivity of our results to the selected weight vector (𝝀),
we compute the estimated system-wide demand reduction for the peak
demand day of 2020 using all candidate weight vectors. The results
are displayed in Table D.8. Here, all estimates use a parameter value
of 𝛼 = 3. Note that candidate weight vector 1 corresponds to our
selected weight vector and our central result. The estimate is relatively
stable under different weight vector assumptions ranging from 13.30%
to 14.03%.

Appendix E. Counterfactual demand variance calculation

In this section we describe the method by which we compute the
asymptotic variance of system load under the counterfactual demand
response program. Where 𝐷 is the counterfactual load on a certain day,
𝑡 (with 𝑡 subscript omitted) as a function of the vector �̂� we have the
following expression:

𝐷(�̂�) =
∑

𝑖∈
𝑑𝑖exp(�̂�𝑖) (E.1)

where 𝑑𝑖 is the BAU load on day 𝑡 for building 𝑖 ∈ , where  is the
set of all buildings in the system. Here, �̂�𝑖 is the weighted sum of the
coefficients of the six in-sample buildings, i.e.:

̂ 𝑖 =
∑

𝑠∈
𝜋𝑖,𝑠𝛽𝑠 (E.2)

where 𝛽𝑠 is the estimate of the coefficient of building 𝑠 ∈  where
 is the set of in-sample buildings. Then, 𝜋𝑖,𝑠 is the weighting of
each coefficient 𝛽𝑠 in the estimation of �̂�𝑖. Under the assumption that
the weighting terms are non-stochastic and the estimated building
coefficients, 𝛽𝑠 are independent, we have:
√

𝑇 (𝛽 − 𝛽 ) → 𝑁(0,AVar(𝛽 )) (E.3)
𝑠 𝑠 𝑠
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Table D.7
Estimated peak daily demand (TJ) and percent reduction by year for selected values of 𝛼 (C.I.: confidence
interval).

Alpha Year Peak daily load Peak daily load with DR (C.I.) Percent reduction (C.I.)

0 2017 4.921 4.161 (4.066, 4.256) 15.43% (13.51%, 17.36%)
0 2018 3.938 3.330 (3.255, 3.406) 15.44% (13.52%, 17.36%)
0 2019 5.321 4.498 (4.396, 4.600) 15.46% (13.54%, 17.38%)
0 2020 5.588 4.724 (4.616, 4.831) 15.46% (13.54%, 17.38%)
0 2021 4.488 3.794 (3.708, 3.880) 15.47% (13.55%, 17.39%)

3 2017 4.921 4.260 (4.173, 4.346) 13.43% (11.67%, 15.19%)
3 2018 3.938 3.396 (3.326, 3.466) 13.77% (11.99%, 15.56%)
3 2019 5.321 4.595 (4.501, 4.690) 13.63% (11.85%, 15.41%)
3 2020 5.588 4.835 (4.736, 4.934) 13.47% (11.70%, 15.24%)
3 2021 4.488 3.881 (3.801, 3.960) 13.54% (11.77%, 15.32%)

14 2017 4.921 4.339 (4.248, 4.431) 11.81% (9.96%, 13.66%)
14 2018 3.938 3.460 (3.389, 3.532) 12.14% (10.31%, 13.96%)
14 2019 5.321 4.690 (4.594, 4.784) 11.86% (10.08%, 13.65%)
14 2020 5.588 4.939 (4.839, 5.039) 11.61% (9.82%, 13.40%)
14 2021 4.488 3.965 (3.885, 4.046) 11.65% (9.85%, 13.44%)

∞ 2017 4.921 4.378 (4.282, 4.474) 11.02% (9.07%, 12.97%)
∞ 2018 3.938 3.516 (3.442, 3.591) 10.72% (8.83%, 12.61%)
∞ 2019 5.321 4.772 (4.671, 4.873) 10.32% (8.42%, 12.21%)
∞ 2020 5.588 5.030 (4.923, 5.137) 9.98% (8.06%, 11.89%)
∞ 2021 4.488 4.041 (3.954, 4.127) 9.97% (8.05%, 11.90%)
Table D.8
Estimated 2020 peak daily demand reduction
(%) for all candidate weight vectors (𝝀) for
𝛼 = 3.

Candidate weight Percent demand
vector index reduction

Unweighted 13.90%
1 13.47%
2 13.98%
3 13.67%
4 13.30%
5 13.63%
6 13.42%
7 14.03%
8 13.70%
9 13.31%
10 13.59%

where AVar(𝛽𝑠) is the asymptotic variance of estimator 𝛽𝑠. Therefore,
he asymptotic distribution of �̂�𝑖:

𝑇 (�̂�𝑖 − 𝜓𝑖) → 𝑁(0,
∑

𝑠∈
𝜋2𝑖,𝑠AVar(𝛽𝑠)) (E.4)

where 𝜓𝑖 is the linear combination of the true 𝛽𝑠.
Let us define 𝜴 as the variance–covariance matrix of the vector �̂� .

he �̂�𝑖 are linear combinations of the 𝛽𝑠 and thus for 𝑖 ≠ 𝑗, we derive
he asymptotic covariance of �̂�𝑖 and �̂�𝑗 as:

𝑖,𝑗 =
∑

𝑠∈
𝜋𝑖,𝑠𝜋𝑗,𝑠AVar(𝛽𝑠) (E.5)

here 𝜔𝑖,𝑗 is element (𝑖, 𝑗) of 𝜴.
Then, using the delta method we can express the asymptotic distri-

ution of 𝐷(�̂�) as:

𝑇 (𝐷(�̂�) −𝐷(𝝍)) → 𝑁(0,∇𝐷(𝝍)𝑇𝜴∇𝐷(𝝍)) (E.6)

where each element of the gradient vector ∇𝐷(𝝍) is given by:

∇𝐷(𝝍)𝑖 = 𝑑𝑖exp(𝜓𝑖) (E.7)

which is computed using �̂�𝑖 as an estimate of 𝜓𝑖.
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