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SUMMARY 
A backcalculation procedure is presented for estimating both the cumulative incidence of the 
human immunodeficiency virus (HIV)-the total number of seropositive individuals as a function 
of calendar time-and the unconditional sampling distribution of this estimate. This estimation 
framework explicitly accounts for corrections for reporting lags in the most recent AIDS diagnosis 
data and imposes no functional form restrictions, besides a roughness penalty, on the resulting 
estimate of the cumulative incidence function. The construction of the sampling distribution for 
this estimate 'integrates out' the variation due to the use of estimated reporting lag and incubation 
distributions to obtain the unconditional distribution. The estimation procedure amounts to solving 
an inequality-restricted generalized least squares estimation problem subject to smoothness priors 
on the regression coefficients. We find that both the point estimate of the cumulative incidence 
curve for HIV and its associated upper and lower confidence bound paths remain stable over a 
wide range of estimation scenarios. In addition, not accounting for the use of estimated incubation 
and reporting lag distributions in the procedure for estimating the cumulative incidence curve can 
lead to a substantial underestimation of its sampling variability. 

Keywords: Confidence intervals for cumulative human immunodeficiency virus incidence curve; 
Human immunodeficiency virus incidence; Inequality-restricted regression; Multistage bootstrap 
sampling distribution; Smoothness priors 

1. Introduction 

This paper presents a backcalculation procedure, similar to those described in 
Becker et al. (1991), Brookmeyer (1991), Brookmeyer and Gail (1988), Rosenberg 
and Gail (1990, 1991) and Harris (1990), for estimating the cumulative incidence 
curve for human immunodeficiency virus (HIV, or HIV type 1). Our procedure 
yields a point estimate of the incidence curve for HIV-the total number of sero- 
positive individuals as a function of calendar time-which takes into account 
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uncertainties in the reporting lag and incubation distribution and imposes no 
functional form restrictions, besides a roughness penalty. The primary goal of 
the paper is to provide an estimate of the unconditional sampling distribution 
of this point estimate which is consistent with our estimation procedure so that 
confidence bound paths for our cumulative incidence curve estimate can be 
computed. 

HIV and the acquired immune deficiency syndrome (AIDS) have had a substan- 
tial effect on providing and financing health care over the past decade. Up to 
December 1992, the Centers for Disease Control (CDC) has reported 249199 cases 
of AIDS in the USA and 169623 AIDS-related deaths (Centers for Disease Control, 
1993). Also, new forms of therapy are substantially increasing the average cost of 
medical care per patient lifetime (Hay et al., 1991). To make informed policy 
decisions about future AIDS costs and resource utilization, both a point estimate 
for the cumulative HIV incidence curve and its associated unconditional sampling 
distribution are necessary to derive base-line, best case and worst case policy 
scenarios for the time path of future AIDS diagnoses in the USA. 

Following the presentation of our estimation procedure, we discuss how to use 
our cumulative incidence curve and its sampling distribution to compute a point 
estimate and associated confidence intervals for future AIDS diagnoses. Medley 
et al. (1991) and Brookmeyer (1991) also presented methodologies for constructing 
point estimates and confidence intervals for the future time path of AIDS diagnoses. 
Knowledge of these upper and lower confidence bounds will allow health policy 
makers to build into the health care delivery process the flexibility necessary to deal 
with the contingencies contained within these bounds. 

To clarify our estimation procedure, we first describe the three sources of error 
in the observed diagnosis data. The first source is due to the delay between the time 
that an AIDS case is diagnosed and when it is reported to the CDC. Consequently, 
the more recently reported AIDS diagnosis totals must be inflated to reflect this 
reporting lag. This inflation process introduces measurement error which we control 
for in our backcalculation procedure. In addition, we must use an estimate of the 
reporting lag distribution to construct these inflation factors. We allow for this 
increased variability in the calculation of the confidence interval paths for our 
cumulative incidence curve estimate. 

All backcalculation estimation procedures rely on an estimate of the AIDS 
incubation distribution, i.e. the time from HIV seroconversion to diagnosis of 
AIDS. Incubation distribution estimates are usually obtained from prospective 
studies of specific samples of high risk populations. In the construction of our 
confidence bound paths, we control for the additional source of variability intro- 
duced by using an estimated incubation distribution rather than the true incubation 
distribution. 

The third source of error is uncertainty in the incubation time. Even if we assume 
that the incubation distribution is known, for any individual the time between sero- 
conversion and diagnosis of AIDS is a random variable with this known distribu- 
tion. Ignoring, for the moment, the first two sources of error, there is still residual 
uncertainty concerning the exact number of seropositive people in the popula- 
tion because of the uncertainty about the time between infection and diagnosis. 
Our estimation procedure takes into account all three sources of uncertainty in 
estimating the cumulative HIV incidence curve and its confidence bound paths. 
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One outcome of our empirical results is a demonstration that failing to account for 
the use of estimated reporting lag and incubation distributions can substantially 
understate the variability in a cumulative HIV incidence estimate. 

Our procedure has several attractive features which we summarize here. First, 
the procedure does not require a specific distributional or functional form assump- 
tion for the reporting lag distribution estimation and correction procedure. Many 
of the available reporting lag correction procedures can be built into this estima- 
tion framework. For example, the procedures suggested by Harris (1990), Brook- 
meyer and Damiano (1989), Brookmeyer and Liao (1990), Zeger et al. (1989) and 
Rosenberg (1990) can, with varying computational effort, be integrated into this 
backcalculation procedure. The estimation procedure is also flexible to the form of 
the assumed incubation distribution; no functional form or distributional restriction 
is required. As long as an estimate of the sampling distribution of this incuba- 
tion distribution estimate is available, our procedure will utilize this information 
to control for both the form and the variability in the assumed incubation distribu- 
tion. Other than smoothness restrictions, our procedure imposes no functional form 
restrictions on the cumulative incidence curve. Finally, our procedure explicitly 
accounts for the discrete nature of the CDC data. For each observation in the CDC 
public information data set (Centers for Disease Control, 1991), only the month 
and year of the report date and diagnosis date are given. This estimation procedure 
allows the researcher to use precisely this level of time aggregation in computing 
an estimate of the cumulative HIV incidence curve. 

We consider various estimation scenarios to assess the effect of several of our 
modelling assumptions. First are the assumptions made about the AIDS incubation 
distribution during the first two years since seroconversion. As is well documented, 
an HIV-infected individual rarely progresses to AIDS in the first 24 months follow- 
ing infection (Bacchetti, 1990; Bacchetti and Moss, 1989; Brookmeyer and Goedert, 
1989; Hessol et al., 1989; Mufioz et al., 1989). Our modelling strategy deals with 
this very low probability of early progression to AIDS in various ways. 

Another distinction between our scenarios is the time period of analysis. We 
perform our estimation over two different sample periods: 

(a) a long sample - from 1979 to the middle of 1990- and 
(b) a short sample - from 1979 to the third quarter of 1987. 

The short sample ends before therapy, particularly the use of zidovudine and aerosol 
pentamidine, became indicated for AIDS treatment and thus potentially altered the 
HIV incubation distribution. A comparison of seroconversion totals estimated up 
to 1987 for both samples provides some insight into the debate between therapy 
versus slowing down in the number of infections as the cause of the recent levelling 
off of the monthly total AIDS case diagnoses (Gail et al., 1990). 

The point estimates of the cumulative incidence curve for both the long and the 
short samples are quite stable across the many estimation scenarios that we consider. 
For the long sample, we find that up to mid-1990 the cumulative number of sero- 
positive cases is approximately 670000, with a 95%o confidence interval from 
approximately 500000 to 850000. For the short sample, we find a total up to the 
third quarter of 1987 of 980000 with a 95%o confidence interval of approximately 
600000-1300000. More diffuse smoothness priors only slightly increase the size of 
the confidence interval estimates; tighter priors decrease the size of the confidence 
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intervals. These confidence intervals are for values of the smoothness prior which 
impose what we believe to be a small amount of smoothing on the estimated 
cumulative incubation function. 

The remainder of the paper is devoted to explaining our backcalculation and 
unconditional confidence path estimation procedure. We then summarize the results 
of our experience with the many different modelling scenarios used to assess the 
durability of our estimation results. The next section discusses the procedures that 
we use to adjust the recent AIDS diagnosis data totals for reporting lags. Section 
3 presents the statistical model used to estimate the cumulative HIV incidence curve 
under the assumption that the diagnosis totals for all time periods in the sample 
are measured without error. Section 4 details the adjustments to our statistical 
model and estimation procedure that are necessary to take into account errors intro- 
duced by the reporting lag correction procedure. Section 5 discusses the form of 
the smoothness priors imposed on the estimated cumulative incidence curve and the 
corrections made to the incubation distribution hazard rate for the first 24 months 
after infection. Section 6 outlines our procedure for computing an estimate of the 
unconditional sampling distribution of the cumulative HIV incidence curve and 
describes several procedures for constructing its associated confidence bounds. 
Section 7 summarizes the results of the estimation scenarios and presents what we 
believe is the most plausible cumulative incidence function estimates for our data 
set. In this section we quantify the additional variability in the cumulative incidence 
estimates which is caused by the use of estimated reporting lag and incubation 
distributions. Section 8 outlines how this cumulative incidence estimate and asso- 
ciated sampling distribution can be used to predict future diagnoses of AIDS. The 
final section discusses directions for future research. 

2. Reporting Delay Adjustment Procedure for Acquired Immune Deficiency 
Syndrome Cases 

There are two determinants of AIDS case underreporting. First, diagnosed AIDS 
cases are reported to the CDC with a stochastic lag. Second, some portion of 
AIDS cases are never reported to the CDC. The CDC estimates that 150o of all AIDS 
cases are permanently unreported (Centers for Disease Control, 1990). A recent 
study by Rosenblum et al. (1992) found less underreporting: between 100o and 5/o. 
Rather than to attempt to account for this second source of underreporting in our 
sample, we instead present our results assuming the existence of only the first source 
of underreporting error. Even if the fraction of unreported cases is assumed fixed 
for all time periods in our sample, correcting for this second source of underrepor- 
ting will have a non-linear, rather than simply a proportional, effect on the 
estimated time path of HIV incidence. Because of the uncertainty associated with 
the true proportion of unreported cases for each month in our sample, we instead 
focus on estimating the cumulative incidence curve only for those infections that 
will be reported when diagnosed. 

The first step in Rosenberg's (1990) procedure is to construct the analogue to 
Table 1 given in his paper. Our data set is diagnoses of AIDS in all adults and 
adolescents for the USA up to the second quarter of 1990. Table 1 contains our 
version of Rosenberg's Table 1. Our table differs from Rosenberg's in two respects. 
First we assume that no reporting lag is longer than 4 years, rather than the 3 



TABLE 1 
Calendar period of diagnosis versus reporting delay in months for US AIDS cases reported to the CDCt 

Diagnoses No. of cases for the following reporting delays in months: Total Imputed 
period 0 1-3 4-6 7-9 10-12 13-15 16-18 19-21 22-24 25-27 28-30 31-33 34-36 37-39 40-42 43-45 46+ total 

Year Quarter 

1982 1 31 49 32 10 5 10 5 2 4 0 2 0 0 0 0 0 35 185 185 
1982 2 40 67 11 5 10 9 7 3 0 2 1 3 1 0 1 0 41 201 201 
1982 3 78 73 32 21 12 11 1 3 1 2 2 1 1 1 2 2 50 293 293 
1982 4 96 129 30 33 17 5 2 3 1 0 2 3 1 0 0 1 58 381 381 
1983 1 134 177 68 34 14 12 4 7 4 3 4 2 1 2 0 67 536 53681 
1983 2 57 378 85 43 20 18 12 9 5 6 5 0 5 5 2 3 52 705 705 > 
1983 3 69 420 113 34 19 12 10 10 4 4 3 4 3 3 7 4 50 769 769 
1983 4 26 513 109 55 25 17 7 8 4 3 7 9 8 7 5 0 48 851 851 z 
1984 1 55 675 151 59 32 26 18 8 9 7 7 4 9 7 5 6 70 1148 1148 
1984 2 82 790 164 85 57 36 16 4 11 9 6 12 9 11 5 11 65 1373 1373 
1984 3 108 845 241 112 47 40 18 16 15 9 8 8 5 13 11 7 70 1573 1573 
1984 4 118 960 247 112 65 30 27 15 11 
1985 1 146 1191 252 129 83 67 34 20 18 22 15 18 22 27 29 21 68 2157 2157 4 
1985 2 160 1454 292 143 93 58 48 35 24 20 29 46 33 31 23 27 62 2578 2578 
1985 3 152 1620 400 225 101 71 53 39 20 56 55 44 29 -35 22 21 54 3997 2997 
1985 4 97 1739 422 164 120 58 52 52 57 65 83 41 37 27 29 17 47 3107 3107 
1986 1 148 2046 406 218 107 118 56 107 135 102 813 9 3 40 26 30 53 3775 31077 
1986 2 362 2039 555 200 143 91 152 160 133 94 77 66 41 31 27 38 54 4263 4263 z 
1986 3 232 2444 532 275 148 196 229 165 123 80 62 58 36 42 39 31 11t 4692 4862 
1986 4 181 2441 763 290 240 282 183 143 101 82 67 35 38 50 39 8t 0 4935 5152 
1987 1 224 2981 673 408 370 353 224 185 99 126 85 85 78 56 20 0 0 5947 6256 Z 
1987 2 129 3260 897 592 426 272 193 125 133 121 91 96 74 9t 0 0 0 6409 6806 
1987 3 96 3567 1207 569 374 227 156 138 102 118 117 85 19t 0 0 0 0 6756 7249 
1987 4 135 3847 1218 444 315 247 195 128 149 140 102 21t 0 0 0 0 0 6920 7519 
1988 1 163 4401 1096 462 354 334 196 186 203 140 102 01 0 0 0 0 0 7690 7519 
1988 2 307 4608 968 500 372 284 225 231 182 516 0 0 0 0 0 0 0 7677 8628 
1988 3 332 4521 1186 569 334 317 222 193 63t 0 0 0 0 0 0 0 0 7674 8808 t 
1988 4 256 4525 1327 487 375 387 268 88t 0 0 0 0 0 0 0 0 0 7625 8975 
1989 1 311 5016 1248 569 527 438 82t 0 0 0 0 0 0 0 0 0 0 8109 9843 
1989 2 342 5186 1370 814 512 146t 0 0 0 0 0 0 0 0 0 0 0 8224 10443 
1989 3 349 5124 1515 830 188t 0 0 0 0 0 0 0 0 0 0 0 0 7818 10511 
1989 4 192 4998 1745 272t 0 0 0 0 0 0 0 0 0 0 0 0 0 6935 10206 
1990 1 276 5646 706t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5922 10898 
1990 2 329 2092t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 329 9187 

Total June 1986-June 1990 132170 162321 
133683 

tAdapted from Rosenberg (1990). 8 
tCells with incomplete data because of reporting delays. w 
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years that he assumes. (Although some AIDS cases have reporting lags of 5 years 
or longer from the time of diagnosis, they are quite uncommon. Some experimenta- 
tion with allowing longer maximum reporting lags led to barely noticeable changes 
in our results.) In addition, we use only data after the first quarter of 1982 to 
estimate the reporting lag distribution. Following Rosenberg, let Rl9, . . ., R34 
denote the row sums of Table 1 corresponding to the third quarter of 1986 until 
the second quarter of 1990 and Yl9, . . ., Y34 denote the unobserved actual number 
of cases diagnosed in these periods. The Ri and Yi are related by the reporting lag 
distribution pj (j=O, 1, . . ., 16), where pj denotes the probability that a case 
diagnosed in quarter t is reported in quarter t+j, and E> tp1= 1, because of our 
assumption that no reporting lag is longer than 4 years. 

Rosenberg's estimation procedure produces maximum likelihood (ML) estimates 
of the parameters f0, P1, . . *, P under the modelling assumptions given in 
Brookmeyer and Damiano (1989) which assume a stationary reporting lag distribu- 
tion. (Work by Harris (1990) and Brookmeyer and Liao (1990) provides evidence 
against this assumption.) The Yi are estimated by multiplying the observed R, 
(i=19, 20, .. ., 34) by the inflation factor (PO+P1+ +P34-i)-1 The last 
column of Table 1 contains our actual totals for the period between the first quarter 
of 1982 and the second quarter of 1986 and the imputed totals from the third quarter 
of 1986 until the second quarter of 1990. This column of estimated AIDS diagnoses 
and the quarterly diagnoses totals from the first quarter of 1979 to the last quarter 
of 1981 are used to compute our point estimate of the cumulative HIV incidence 
curve. 

3. Statistical Model of Acquired Immune Deficiency Syndrome Infection 
Distribution 

Our statistical procedure approximates the cumulative HIV incidence curve by 
a step function which has as many steps as there are time periods for observed AIDS 
diagnosis data and in this sense imposes no functional form restrictions. We impose 
our a priori restrictions in the form of smoothness priors on the parameters deter- 
mining the step function. We discuss these smoothness priors after the descrip- 
tion of the estimation procedure for the case of reporting lag-correction-induced 
measurement error. 

For estimation purposes our time period of observation is a quarter of a year; 
however, the model allows the selection of any discrete time period as the unit of 
observation. Because the CDC data have been reported monthly, for all practical 
purposes the minimum unit of observation is 1 month. Preliminary experimentation 
indicated very little difference in the results across monthly and quarterly levels of 
aggregation. To reduce computational time substantially we use quarters as the time 
period of analysis. 

First we define the following notation. Let Yt denote the number of AIDS cases 
diagnosed in quarter t. Let xti denote the probability that an individual who sero- 
converts in quarter i is diagnosed with AIDS in quarter t. Both i and t are indices 
running from 1 to T, the total number of quarters in our sample, with T denoting 
the most recent quarter (the second quarter of 1990) and t = 1 the most distant 
quarter (the first quarter of 1979). These xti are derived from an estimated AIDS 
incubation distribution. (This procedure does not require the incubation distribution 
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to be stationary (independent of calendar time), because xti is explicitly indexed by 
both the time of infection and the time of diagnosis, not by the difference between 
the two as is required for stationarity. Although the incubation distribution used 
in our empirical analysis assumes stationarity, the AIDS incubation distribution 
may have changed (Taylor et al., 1991; Gail et al., 1990) because of the recent wide- 
spread use of therapy. This form of non-stationarity could be accounted for by 
computing different xj for different infection times.) Let 1i denote the number of 
individuals seroconverting in quarter i (i = 1, . . ., T). 

According to our model, the observed pattern of AIDS case diagnoses arises in 
the following way. Let zti denote the number of individuals who seroconvert in 
quarter i who then are diagnosed with AIDS in quarter t. Let Zi = (zTij Z(T- 1)ij 
... IzZ1)'. (We follow the standard convention that all vectors are column 
vectors.) Using this notation define Z4* = (Z(t T)i, Zi')', where Z(t> T)i denotes the 
sum of all individuals who seroconvert in period i and are diagnosed with AIDS 
in all periods t > T. Under the assumptions of our model, we have the following 
result: Z4* has a multinomial distribution with parameters (1 - IT=1Xti XTi, X(T- 1)i 

.. ., xii) and fi. Consequently, our model of the AIDS infection process assumes 
that Oi individuals seroconvert each quarter during our sample and then progress 
to AIDS in the current and succeeding quarters according to a multinomial distribu- 
tion derived from the AIDS incubation distribution relevant for seroconversions 
occurring in the ith quarter (i = 1, . . ., T). Because the probability of progression 
to AIDS for an individual seroconverting in quarter i is independent of that same 
probability for an individual seroconverting in any other quarter, the Z4* are 
independent draws from known multinomial distributions conditional on the xi 
(i=l, . ., T) (t=1, . . ., T) and 1i (i=l, . . ., T). 

Define the following vectors: Xi= (xTi, XTi, . .. ., xli)', Y= (YT, YT-1, I 
Yi)' and 3 = (fT, T-1, .. ., fI1)'. Let X= (XT, XT-1, .. ., X) denote the Tx T 
matrix of elements xti. (This construction of the X-matrix and Y-vector differs 
from the standard approach of putting the most distant observations in the first 
row and the most recent in the last row. However, our desire to retain chronological 
order in our time index t necessitated this counter-intuitive construction of the 
X-matrix and Y-vector.) In terms of this notation we have the result E,T=I Zi = Y. 
Consequently, Y, the realized value of the AIDS case diagnoses vector, is the sum 
of T independent multinomial random vectors. This implies the result 

T T 
E(Y) = ZE(Zi) = ZXii = Xf. (1) 

i=l ~~i=l 

For the covariance matrix of Y (var(Y)), we have 
T T 

var(Y) = E= E var(Zi) = j {diag(xT,xT i, i. .., xli) - XAX1'}fl, (2) 
i=l i=l 

where diag(xTi, XTli . ., xh) is a Tx T diagonal matrix with X(T+ 1 -k)i as the 
diagonal element in the kth row and column. We have now characterized the first 
two moments of the AIDS diagnosis vector in terms of our statistical model. Note 
that, because a person cannot be diagnosed with AIDS before seroconverting, 
xti =0 for all i > t. 

Our model can be written in the familiar linear regression form as 
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Y = X: + e (3) 

where e = (et, . . *, rT)' satisfies the following moment restrictions: E(e) = 0 and 
E(EE') = E. Conditional on the value of X, what we call the progression matrix, we 
can apply ordinary least squares (OLS) to obtain unbiased estimates of the elements 
of f. However, because of its interpretation as the number of new seroconversions 
in a given time period, a negative point estimate of fi makes no sense. To make 
our estimated statistical model biologically meaningful, we impose the restriction 
that all the elements of : are non-negative, so that 0 is the lower bound on the 
estimated number of seroconversions for each time period. In this way, our estima- 
tion procedure imposes the logical constraint that the step function approximating 
the cumulative HIV incidence curve can only remain the same or increase as time 
progresses. 

Because the covariance matrix of the disturbance vector e is non-scalar, OLS will 
not yield the most efficient estimates. This form of our model should be estimated 
by a multistep generalized least squares (GLS) approach subject to inequality restric- 
tions on all the elements of f. The first step estimates e by inequality-restricted least 
squares, to obtain &. (Liew (1976) discussed inequality-restricted least squares 
estimation. Bazaraa and Shetty (1979) discussed the computational aspects of 
constructing this estimator, which involves solving a quadratic program.) Using 
f0, EO, an estimate of E, is constructed by replacing : with 0 in equation (2). 
Using O, OG, the inequality-restricted GLS estimate of 3, is computed. 

These two estimates of f are the solutions to the following two quadratic 
programming problems: 

sup1{(Y-X13)'(Y-X3)} (4) 

and 

sup{i(Y - XO) E0 ( Y - X:)}. (5) 

We then perform one further GLS iteration updating E using OG, which entails 
inequality-restricted GLS with ?G. Carroll et al. (1987) stated that there is little 
justification (in terms of efficiency gains) for updating beyond this estimate of E. 

As discussed in Section 2, we do not observe the true Yt for the most recent 16 
quarters. The use of reporting lag-corrected diagnosis data will induce measurement 
error into these Yt which will change the covariance matrix of the disturbance 
vector in the linear model used to estimate f. We now describe the properties of 
the measurement error induced by the data imputation techniques discussed in 
Section 2 and our procedure for correcting for its presence. 

4. Estimation Technique with Reporting Lag Measurement Error 

To assess the effect of the measurement error in Yt which results from using the 
reporting-lag-corrected diagnosis totals in the analysis, we must rewrite our regres- 
sion model in the notation 

Yt = X;:l + t (t=1, . . ., T) (6) 
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where X;' is the (T+ 1 - t)th row of the X-matrix defined earlier. Recall that the 
index t is defined as follows: t = 1 is the first quarter of 1979; t =2 is the second 
quarter of 1979; . . ., t = 46 = T is the second quarter of 1990. Recall from Section 
2 that Pi is the estimated probability of a reporting lag of exactly i quarters and 
that pi is the true value of this probability. Define A, =E= Pr, so that A5 is the 
probability of a reporting lag of less than or equal to s quarters. Define ei such 
that eO = R34, el =R33, . . ., el5= R19, where Ri is as defined in Section 2. In terms 
of this notation, conditional on Yt (t = T, T- 1, . . ., T- 15), eT-t has a binomial 
distribution with parameters AT_t and Yt. Conditional on Yt the expectation of eT-t 

iS AT- tYt and var(eT- t) =AT- t ( - AT- t)yt. Define 
~true 7 yt = eTtAT-t (7) 

If AT-t were measured without error, equation (7) would give the value of Yt used 
in our analysis. Because we estimate the reporting lag distribution, we must replace 
AT-t with our point estimate of ATt, which we denote AT-t, to compute 

9t = eT-tIAT-t (t = T, T- 1, ... ., T- 15) . (8) 

These are the estimated values of Yt used in our analysis. 
Replacing AT-t with AT-t to compute the estimated number of AIDS case 

diagnoses for quarter t implies that any estimate of a obtained will be conditional 
on the value of AT-t used. Because of our desire to obtain the unconditional 
sampling distribution of the cumulative HIV incidence curve, we must control 
for the use of AT-t instead of AT-t in computing this unconditional sampling 
distribution. 

Even if AT-t were known, the use of 9t rather than Yt to estimate the cumulative 
incidence curve introduces a measurement error in Yt for all observations which 
are corrected for the reporting lag. The logic for this claim is as follows. Treating 
AT_t as if it were ATt, .9t and Yt satisfy the equation 9t =Yt + nt, where E(qt IYt) = 0 
and 

E(72 Iyt) = 1 AT-t Yt. 
AT- t 

These facts imply that the conditional expectation of qt given Xt is 0 and the 
conditional variance E(7 IX;) is {(1 - ATt)/AT_t}XX'. Let -q denote the T- 
dimensional vector whose first 16 elements are rt as defined above and the remain- 
ing elements are 0. Let D denote the Tx T diagonal matrix with E(t 2I Xt) (t = T, 
T- 1, ., T- 15) as the first 16 diagonal elements and zeros for the remaining 
diagonal elements. In this notation, our model which accounts for the measurement 
error in the most recent Yt takes the form 

Y= X: + ?* (9) 

where q* = tq + E, for e as defined in Section 3. In this notation Y is identical with 
Y except that its first 16 elements are 9t rather than Yt. For this model, the error 
term q* satisfies the following two conditional moment restrictions: 

(a) E(-q* IX) = 0; 
(b) var(,q* IX) = Q = E + D. 
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TABLE 2 
Point estimate of reporting delay densityt 

Reporting delay Probability Reporting delay Probability 
(quarter) (quarter) 

0 0.0358 9 0.0168 
1 0.5076 10 0.0138 
2 0.1361 11 0.0116 
3 0.0643 12 0.0096 
4 0.0438 13 0.0090 
5 0.0362 14 0.0074 
6 0.0258 15 0.0070 
7 0.0216 16 0.0351 
8 0.0185 

tRosenberg's (1990) estimation procedure for the data from the first quarter of 
1982 to the second quarter of 1990. 

Given an estimate of 1, we can compute an estimate of D in the same manner as 
used to construct an estimate of E. Consequently the inequality-restricted OLS 
followed by two rounds of inequality-restricted GLS estimation is identical with that 
described above with E replaced by D. 

Before concluding this section, we should comment on the intuition embodied 
in our modified estimation procedure which takes into account the measurement 
error induced by the reporting lag correction. This correction introduces an addi- 
tional independent heteroscedastic error into the more recent AIDS diagnosis 
observations. By inspection of var(f7, 1 Xt), the smaller A, is, the larger the variance 
of var(,qtjXt[). Table 2 presents the point estimates of the reporting lag probabili- 
ties. These imply a value of Ao = 0.0358. Inserting this value of Ao into the expres- 
sion for (1 - AO)/AO yields 29.39. In addition, Xt'f for t = T should be quite large. 
Therefore, the conditional variance of 71T will be a very large number, which 
indicates that YT will (as intuition requires) receive a very small weight in the GLS 
estimation of 1. By this same logic, the residuals from the more recent observations 
will be downweighted relative to those further in the past in the estimation of 3. 
This correction to the estimation procedure provides a model-based statistical 
rationale for data-dependent downweighting of more recently diagnosed AIDS cases 
due to the reporting lag correction procedure. 

5. Additional Information Used in Estimation 

In this section we discuss various sets of restrictions placed on the form of the 
cumulative incidence curve. All these restrictions take the form of smoothness 
priors on the shape of the curve. We impose these priors for the following reasons. 
Incubation distribution estimation techniques exist which yield 0 or values very 
close to 0 as the point estimate of the hazard rate for the AIDS incubation dis- 
tribution during the first several months following seroconversion (e.g. Bacchetti 
(1990)). (These low hazard rate estimates are consistent with the well-known low 
probability of progression to AIDS within the first 24 months following seroconver- 
sion.) Consequently, the most recent O's cannot be identified, or identified with 
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any precision, without further assumptions. By imposing smoothness priors on the 
relationship between the elements of : over the entire sample we can overcome this 
problem. 

Selecting the degree of smoothness for the cumulative incidence curve is an 
extremely difficult task. Here the researcher's prior beliefs explicitly enter the 
analysis. We now try to motivate our specific selections for the smoothness prior. 
In Section 7, we examine the sensitivity of the results to our choices. We consider 
two types of smoothness prior. Both can be written in the generic form 

0 = Rf + v, (10) 

where v is a Tx T random variable with mean 0 and diagonal covariance matrix 
kIT (IT is a Tx T identity matrix and k is a positive scalar) and R is a square 
matrix which depends on the type of smoothness restrictions imposed. The two 
sets of restrictions that we consider are first-difference and second-difference 
restrictions. By first-difference restrictions we mean that the successive differences 
between fl and fl -l have mean 0 and variance k. In this case R has a 1 in the (i, i) 
position and -1 in the (i, i + 1) position for i = 1, 2, ..., T. The remaining 
elements of R are 0. 

The second-difference constraint imposes prior information on the successive 
differences of the first differences: 

t - t-1 - (t-1 - Ot-2)* (11) 
In this case the R-matrix has 1 in the (i, i) element -2 in the (i, i + 1) element and 
1 in the (i, i+ 2) element, i = 1, 2, . . ., T. The remaining elements of R are set to 0. 

The tightness of the prior is determined by the value of k in the covariance matrix 
of v. If we are willing to assume that v is close to a Gaussian distribution, we can 
make informal probabilistic statements about the degree of confidence that we have 
in our prior. For example, by the properties of the normal distribution there is a 
95 %o probability that v lies in the interval [ - 1.96k112, 1.96k112]. Once we have 
selected a form for R, using this 95'0o probability interval for each element of v, 
and our beliefs about the likely variability in the magnitudes of the first differences 
and second differences in the ft, we can select an appropriate value for k. 

Once k and R have been selected we repeat our inequality-restricted combination 
OLS and GLS procedure to compute estimates of from the Theil and Goldberger 
(1961) stacked mixed regression model 

(0) (R + ( v ) (12) 

in the same manner as described earlier. The first step computes the least squares 
estimates of : imposing the smoothness prior and the second stage computes an 
estimate of Q based on the OLS estimate of : and utilizes this covariance matrix 
estimate to apply GLS with the smoothness prior. The final iteration computes an 
estimate of Q from the GLS estimate of : and then re-estimates f by GLS imposing 
the smoothness prior. Experimentation with further iterations of Q0 and :- yielded 
very little change in either the point estimates of : or the estimate of its sampling 
distribution. 

The OLS and GLS procedures involve the solution of the following two quadratic 
programming problems: 
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sup {-2 Y'Xo + a3'(X'X + k 1R'R)j } (13) 

and 
sup { -2Y' -X3 + fl'(X''X - 1X + k - 1R'RR)} (14) 

where Q is the estimate of Q that is appropriate for that round of the estimation. 
Because of the Os in the estimated hazard rate, the estimated Q will, in general, be 
positive semidefinite. In these instances we can use the generalized inverse of Q in 
the GLS estimation. 

An alternative procedure which imposes additional prior information to solve the 
problem of singular X'X and Q matrices involves assuming a minimum base-line 
hazard for progression to AIDS in the first 2 years since seroconversion. Rather 
than allowing this hazard to equal exactly 0, we account for the very rare possibility 
that a progression to AIDS can occur and assign a value of 10-6 as the minimum 
hazard rate for the progression to AIDS in any given quarter. In our empirical 
analysis, we use the AIDS incubation distribution estimated in Bacchetti (1990) to 
compute the progression matrix X for time intervals of a quarter. The lower bound 
on the quarterly hazard rate is only binding in the first three quarters following 
infection for Bacchetti's point estimate for the AIDS incubation distribution hazard 
function. This number implies a minimum 1 in 1 million probability of progression 
to AIDS in a given quarter conditional on not having progressed to AIDS at the 
beginning of that quarter. This assumption guarantees that the X-matrix is of full 
rank and that the estimated Q-matrix is always positive definite. We call this X- 
matrix the adjusted hazard rate progression matrix. 

6. Unconditional Sampling Distribution of Cumulative Incidence Curve 
In this section we describe the procedure that we use to compute an estimate 

of the unconditional distribution of the cumulative HIV incidence curve. This 
approach relies very heavily on the bootstrap resampling procedure introduced by 
Efron (1979, 1981, 1982). In the present case, the computational complexities are 
such that an analytical solution for the sampling distribution of our cumulative 
incidence curve estimate is impossible to compute; a computer-intensive technique 
such as the bootstrap is ideal for circumventing these analytical difficulties. 

We begin by defining the notation necessary to describe our procedure. Let 
t t 

G(t) = E fk and G(t) = Z fk (15) 
k=l k=1 

be the true cumulative incidence curve and its estimate respectively. Recall that we 
use the following convention for t: t = 0 corresponds to immediately before the first 
quarter of 1979, t = 1 to the first quarter of 1979, and so on until t = T, which 
corresponds to the second quarter of 1990. Let X denote the true value of X, our 
estimate of the progression matrix for the AIDS incubation distribution. Let A = 
(A,O A2, . . ., A16)' represent the vector of true values of the reporting lag correction 
factors and A = (A0, A2, . . ., A16)' denote the vector of estimated correction 
factors. Our estimated cumulative incidence curve is dependent on the point 
estimates of A and X. Conditional on the point estimates A and X, we obtain an 
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estimate of : from our estimation procedure. We can apply the bootstrap to obtain 
an estimate of the empirical distribution of G conditional on A and X. Write this 
conditional distribution asf( IX, A) and its estimate (constructed via the boot- 
strap) as f( IX, A). 

To compute confidence intervals for G(t), we need an estimate of 

f(1:) = |j f(IX, A)g(X)h(A)dAdX (16) 

where g(X) and h(A) are the sampling distributions of X and A, and e and A are 
the support sets over which X and A range respectively. We compute this estimate 
of f(A) using estimates g(X) and A'(A) of the two marginal distributions and the 
bootstrap estimate of f( X, A). 

The estimated marginal distributions are constructed as follows. Because the 
progression matrix X is constructed from differences in values of the incubation 
distribution, we can compute the sampling distribution of X from the sampling 
distribution of the incubation distribution estimate. Bacchetti's (1990) procedure 
nonparametrically estimates the discrete monthly hazard rate for each month of the 
AIDS incubation distribution by using a penalized likelihood estimation procedure 
to impose smoothness restrictions on the form of the estimated hazard function. 
We have a bootstrap estimate of the empirical distribution of this hazard function 
estimate, namely the 1000 bootstrap resamples used to compute Fig. 6 of Bacchetti 
(1990). Each of these 1000 resamples of the hazard rate can be transformed into 
a progression matrix, so that in this way we can compute g(X), a bootstrap estimate 
of g(X). 

We construct a bootstrap estimate of h(A) as described in Rosenberg (1990). 
Rosenberg's procedure entails first computing N, the sum of all the elements of the 
matrix given in Table 1, and then computing pi = X,j/N, where Xij is the (i, j) 
element of the reporting lag matrix. Treating the matrix given in Table 1 as a draw 
from a multinomial distribution with parameters pii, i = 1, . . ., 34 and j =0, 1, 
.. ., 16, and N, we resample this matrix and recompute A based on this draw of 
the reporting lag matrix. Repeating this procedure 1000 times yields /(A), an 
estimate of h(A). 

We now describe our bootstrap procedure for computing an estimate of f(X, 
A), the conditional distribution for : given X and A, the point estimates of X and 
A. To begin, suppose that we have computed the second-round estimate of 3, fG, 
conditional on X and A for a given value of the smoothing parameter. For each 
element of G, OG,, draw a value of the (T+ 1) x 1 random vector zc from a 
multinomial distribution with parameters (1 -=1 xj, Xi') and int(OG), where 
int( ) denotes the integer part of a real number. Construct yb as 

T 

ybZ= E Zib. (17) 
k=1 

The vector yb is a resampled value of the true AIDS diagnosis data vector. 
However, to resample the reporting-lag-corrected AIDS diagnosis data, we must 
add measurement error to the first 16 elements of yb. To do this, we proceed as 
follows. For each of the first 16 elements of yb, draw ET-t from a binomial dis- 
tribution with parameters (AT-t, int(yt)), where AT_t is the point estimate of the 
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reporting lag correction factor AT-t and y' is the tth element of yb. Define 
?t = [ET-t AT {int(yt A)}]/T-t and Xb = (N, N 7T-1, .. * T-15S 0, . . ., 0)'. In 
this notation, define fb = yb + 7b. The vector yb is a resampled value of the 
reporting-lag-corrected vector of AIDS case diagnoses. Note that 9tb = ETt/ATt 
for t = T, T- 1, . . ., T- 15, and 9b - yb for the remaining values of t. Given this 
value of 2", and an estimated progression matrix X, we can follow our two-round 
estimation process to obtain b. Repeating this resampling and estimation proce- 
dure M times yields f( O1x, A), a bootstrap approximation to the distribution of OG 
conditional on X and A. 

We now have estimates for all the ingredients necessary to compute an estimate 
of the unconditional distribution of fG. To compute the integrals in equation (16) 
which are necessary to calculate the unconditional distribution of OG, we use a 
variant of the bootstrap procedure. The algorithm proceeds by first choosing a value 
of Xb from the empirical distribution of X and a value Ad from the empirical 
distribution of A to construct reporting-lag-corrected estimates of the vector of 
AIDS diagnoses. Estimate OG conditional on these values of Xb and Ad. Call this 
estimate 3G(Xb, Ad). Given fG(Xb, Ad), compute the bootstrap approximation to 
the distribution of G(Xb, Ad) as described above. Let Im(Xb, Ad), m = 1, . . .,M 
denote the M resamples of G(Xb, Ad). Repeat this procedure B times for each of 
the values of Xb and D times for each of the values of Ad from the bootstrap 
distributions of X and A respectively. The values of Im(Xb, Ad), m = 1, . . .,M 
b= 1,..., B and d= 1 ... ., D, give the bootstrap approximation to the uncondi- 
tional distribution of fiG which does not depend on X, the point estimate of the 
incubation distribution, or A the point estimate of the reporting lag corrections. We 
use this unconditional distribution of fG to construct confidence bounds on G(t). 
From this bootstrap estimate of F(G), the distribution of G, we can compute a 
bootstrap estimate of the distribution of the estimated cumulative incidence curve 
for HIV. 

Recall that G(t) is a function on the compact set [0, T], so that we are computing 
a distribution function for a random function. As opposed to the usual goal of 
computing confidence intervals for a single point estimate, we are interested in 
computing confidence bounds on sample paths of a stochastic process, i.e. we wish 
to construct upper and lower sample paths U(t) and L(t) defined on [0, T] such 
that 

pr{U(t) > G(t) > L(t), V t E [0, T]} = 1 - a, (18) 

where 1 -a is the size of the confidence bound paths. There are many ways to 
compute upper and lower confidence sample paths for the point estimate of our 
cumulative incidence curve, depending on the metric that we use to measure 
distances between functions. We now describe two ways to construct confidence 
bounds for the cumulative incidence curve estimate. 

The first procedure is perhaps the most conservative because it focuses on the 
values of the estimated cumulative incidence curve at the end of the sample period. 
The first step of this procedure involves computing the upper and lower 1 a- 
quantiles of the distribution of G(T) and which we call Ue(T) and Le(T). By 
definition, (1 - u)Oo of the resampled values of G(T) lie within this confidence 
interval. To construct the upper and lower sample paths, first remove from con- 
sideration all sample paths with values of G(T) larger than Ue(T) or smaller than 
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Le(T). At each value of t < T, define Ue(t) as the supremum and Le(t) as the 
infimum over all the remaining resampled cumulative incidence curve estimates. 
Proceeding in this manner for all t yields upper and lower sample paths which 
contain (1 - oa)o of all sample paths. Because they are based on values of G(T), 
we refer to these confidence sample paths as the end point sample path confidence 
bounds. 

Our second methodology for computing sample paths follows in the spirit of the 
Bickel and Freedman (1981) approach to bootstrapping the empirical process. Let 
G(t) denote the point estimate of G(t) obtained from the point estimates of X and 
A and fG. Let G'(t) denote one of the BDM bootstrap estimates of G(t) which 
comprise the bootstrap approximation to the distribution of G(t). For each 1= 1, 
2, ..., BDM, compute 

sup I G'(t) - G(t) I = (19) 

so that DI is the distance between G'(t) and G(t) in the supremum norm. The next 
step in the procedure entails computing the (1 - a)-quantile of DI. Call this magni- 
tude D(a). Consequently, the upper and lower sample path bounds on G(t) are 
given by G(t) ? D(a). Once again, by construction, the sample path bounds contain 
(1 - a)%/o of the resampled sample paths G'(t). We call these the empirical process 
confidence bound paths. 

A common procedure for computing confidence bounds entails computing point- 
wise upper and lower 1}a confidence bounds for each value of G(t), and then 
connecting the pointwise bounds to construct upper and lower sample path bounds. 
However, these confidence bounds will lead to excessively tight bounds on the 
estimated sample path for all except the last period. 

7. Estimation Results 
Initially, we considered many short sample and long sample scenarios for various 

values of B, D and M. We found that both the point estimates and the confidence 
intervals obtained by using the corrected hazard rate progression matrix were 
virtually identical with those obtained by using the uncorrected hazard rate progres- 
sion matrix for the same value of k. Consequently, we set any estimated zero hazard 
rate to our minimum hazard rate for all the scenarios because imposing this 
minimum hazard rate bound simplified the computations involved in the construc- 
tion of the confidence bound paths. For each scenario we computed our two upper 
and lower sample path confidence bounds. For the same value of the smoothing 
parameter, we found no perceptible change in these confidence intervals for wide 
ranges of values of B and D beyond 25 and values of M beyond 5. 

We now discuss the selection of our smoothness prior. The advantage of our 
formulation is that it gives an explicit interpretation to the magnitude of the 
smoothing parameter k as the variance on each element of the vector Rf + v. 
Because we impose non-negativity restrictions on the elements of fG, it is not 
necessary to impose a smoothness prior on our estimation technique to obtain a 
biologically meaningful cumulative incidence curve estimate. However, the very 
small probability of progression to AIDS in the first 2 years following seroconver- 
sion causes these estimates to be extremely volatile. We found the major cause of 
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this volatility to be the unbalanced nature of the progression matrix rather than the 
variability in either X or A. For example, for XC, the minimum hazard-corrected 
(minimum quarterly hazard 10-6) point estimate of the true progression matrix X, 
the ratio of the largest to the smallest diagonal element of the X-matrix is of the 
order of 1010. Without further restrictions on the estimation problem, this large 
condition number for the X-matrix will lead to very unstable estimates of the 
individual elements of ,B. In addition, without a smoothness prior, the step function 
estimate of G(t) can have very few active steps. This introduces substantial bias 
into the point estimates of intermediate values of G(t) (0 < t < T). This observa- 
tion leads to our first criterion for selecting a smoothness prior: most of the elements 
of G should be larger than 0. Our procedure for selecting k entails estimating G 
for decreasing values of k until G(t) just begins to smooth out. To assess the effect 
of further smoothing on the estimate of G(t), we continued to reduce k until 
excessive smoothing set in. As should be clear from the above discussion, this 
process is not precise. Nevertheless, intuition suggests that the true cumulative 
incidence curve is smooth; the question is how smooth? 

The degree of smoothness in the adjusted AIDS case reporting series given in the 
last column of Table 1 provides some information about the degree of smoothness 
to impose on the estimated cumulative incidence curve. We should caution that a 
smooth cumulative diagnosis function could mask a less smooth incidence function 
because diagnosis dates are stochastic translations in time (because of uncertainty 
in incubation and reporting lag) of AIDS infection dates. Table 3 contains the 
sample mean and sample standard error for Ayt =Yt -Yt- 1 for the second quarter 
of 1982 until the second quarter of 1990 and for the second quarter of 1982 until 
the first quarter of 1990. The second column contains the same figures for 
A2yt = Ayt - Ayt- for the third quarter of 1982 until the second quarter of 1990 
and for the third quarter of 1982 until the first quarter of 1990. We exclude the 
most recent value of yt (t corresponding to the second quarter of 1990) from one 
set of each of the calculations because of the tremendous amount of uncertainty 
(due to the small value of AO) associated with it. Applying a rough multiple of 
5:1 for the ratio of the number of seropositives to the number of reported AIDS 
cases gives a range of standard errors for AI3t (values of k112) of approximately 
1500-2500. (This 5:1 multiple is computed by dividing the point estimate of the total 
number of seropositives up to the second quarter of 1990 by the total number of 
estimated AIDS case diagnoses up to the second quarter of 1990. Admittedly, this 
is an extremely ad hoc procedure, but we feel that it is useful for providing a very 

TABLE 3 
AIDS diagnosis data summary statistics 

Variable Results for the following sampling periods: 
Ay,, second quarter A2y1, third quarter Ay,, second quarter A2yt, third quarter 
1982-second quarter 1982-second quarter 1982-first quarter 1982-first quarter 

1990 1990 1990 1990 

Mean 270.2 - 57.5 334.8 15.8 
Standard deviation 451.5 557.9 292.9 371.8 
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rough estimate of the degree of smoothness that should be imposed on the 
cumulative incidence curve.) Applying this same multiple for A2'3t yields a range 
of standard errors (values of kl2) from 2000 to 3000. Values for khigh up to 
k112= 25000 for the first difference of St smoothness priors result in very little 
change in the point estimates of G(t) or the confidence bound paths but add several 
flat portions to the estimated function. These appear to be artefacts of insufficient 
smoothing rather than an indication of an actual decline in the rate of infection. 
Values of k below klw led to little change in the point estimates, but some tighten- 
ing in the confidence intervals. 

For brevity, we present one point estimate and set confidence paths for each type 
of smoothness prior. Fig. 1 presents our short and long sample results for k112 = 
10000 with the first-difference form of R for the end point confidence bound paths. 
The confidence bound paths have 1 - a = 0.95 coverage probability. Fig. 1 illustrates 
several points which are consistent across all values of k and types of R-matrix. The 
major uncertainty concerning the value of G(t) occurs for the more recent quarters 
(t close to T corresponding to the second quarter of 1990). Part of the fanning out 
of the long sample results relative to the short sample results for the end point 
confidence bound paths can be attributed to the uncertainty about the most recent 

CUMULATIVE 
INFECTIONS 

1200000 

1100000 / 

1000000/ 

900000 

800000/ 

700000/ 

600000, 

500000. 

400000 

300000 

200000 

100000 , / 

79 80 81 82 83 84 85 86 87 88 89 90 91 
PERIOD 

Fig. 1. First-difference restrictions, 95% confidence paths constructed using the end point region, 
k = 1.0 x 108: --------, short sample; , complete sample 
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Yt due to the use of reporting-lag-corrected data and the explicit account of this 
fact in the estimation procedure. In contrast, for the short sample results, the 
reporting lag correction has a very minor effect on the last few Yt used in the 
estimation. Fig. 1 also shows two features of the short and long sample results which 
hold across all of our modelling scenarios. First, the short sample results up to the 
third quarter of 1987 yield a much larger number of seropositives, usually of the 
order of 300000, than do the long sample results over the same time period. Second, 
both sets of results place the same number of infections in the time period begin- 
ning in 1979 to the middle of 1985, but the long sample results suggest a substantial 
levelling off in the rate of infection, whereas the short sample results imply almost 
the same rate of infection after 1985 as in the 1983-85 time period. 

Fig. 2 presents the results for k112 = 3000 and the second-difference restrictions 
on our cumulative incidence curve estimates for the short and long samples using 
the empirical process confidence bound paths. The second-difference restrictions 
allow substantially more curvature (some of which may be excessive) in the estimate 
of G(t). This is reflected in the slightly larger confidence bound paths and the 
greater number of elements of f, which are near 0 relative to Fig. 1. The end point 
confidence bound paths for these second-difference results are similar in shape, 
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but slightly wider at t = T corresponding to the second quarter of 1990, relative to 
those given in Fig. 1. Fig. 3 presents a comparison of the pointwise confidence 
bound paths and the end point confidence bound paths for the long sample results 
and smoothness prior and value of k used to construct Fig. 2. Fig. 3 illustrates the 
excessive optimism implied by constructing confidence paths in this manner, even 
for the case of tighter 900o confidence interval paths. 

The sampling distributions for the long sample (from the first quarter of 1979 
to the second quarter of 1990) cumulative incidence curve estimation results for the 
USA given in Figs 1 and 2 each yield mean cumulative HIV infections through 
mid-1990 of approximately 670000. The differences between the mean, median and 
point estimates of G(t) are very small for all except the last few years, and even 
then the divergence is not excessive. Fig. 4 presents these three sample paths for 
second-difference smoothness priors and k112 = 3000. Similar results hold for first- 
difference smoothness priors. These results imply that, according to the bootstrap 
unconditional sampling distribution of G(t), our estimation procedure yields very 
close to an unbiased estimate of G(t) for a wide range of values for k. 

The long sample backcalculation estimation paths imply a median infection time 
for the USA (the time until 50% of all infections occurred) of mid-1983, with 
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80-90Wo of all infections having occurred by the end of 1985. This time pattern of 
infection is consistent with several previous backcalculation model results for the 
USA (Hay, 1989; Hay and Wolak, 1990; Hyman and Stanley, 1988; Harris, 1990). 

To assess the increase in variability in the estimated cumulative HIV incidence 
curve due to the use of estimated incubation and reporting lag distributions, we 
perform the following variance decomposition on the bootstrap resamples which 
comprise the estimated cumulative incidence curve. (We are grateful to Jeff Harris 
for suggesting this variance decomposition.) 

We require the following additional notation. In the notation of Section 6, define 

Gmd(t) = E -m (Xb, Ad), (20) 
i=l 

where j(Xb, Ad) is the ith (i = 1, . . ., T) element of the vector m(Xb, Ad)e 
pT. Therefore, Gbd(t) is the step function estimate of G(t) for the bth resample 

from the bootstrap distribution of X, the dth resample from the bootstrap distribu- 
tion of A and the mth resample from the bootstrap distribution of PG conditional 
on Xb and Ad. 
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Following the two-way analysis-of-variance (ANOVA) framework, define the 
total sum of squared deviations of G61(t) around the mean 

B D M 

G(t) 
G 

BDMZ Z Z G bd(t) as b=1 d=1 m=1 

as 
B D M 

SST(t) = >E E E {Gbmd(t) - G(t)}2. (21) 
b=1 d-I m=1 

Define the 'between' Xb resamples sum of squared residuals as 
B 

SSX(t) = DMZ {Gb(t) - G(t)}2, (22) 
b-I 

where 
D M 

G() D d=I m = tl 
d=1 m=1 

The between Ad resamples sum of squared residuals is defined as 
D 

SSA(t) = BM>j {Gd(t) - G(t)}2, (23) 
d=1 

where 
B M 

&t)MB Yi = i bd 
m = b=1 m=1 

The 'within' Xb and Ab resamples sum of squared residuals is 
B D M 

SS, (t) = j E E {GIbd(t) - Gb (t) - Gd (t) + G(t)}2* (24) 
b=1 d=1 m=1 

Recall that SST(t) = SS,(t) + SSX(t) + SSA(t) for t =1, 2, .. ., T. The quantity 
SSx(t) measures the amount of SST(t) that is due to variability in X, SSA(t) the 
amount due to A and SS, (t) is the amount due to variability in the estimate of 
G(t) conditional on X and A. 

In Table 4 we present the values of SST(t), SSx(t)/SST(t), SSA(t)/SST(t) and 
SSO (t)/SST(t) for four points along the cumulative incidence curve (t = 12, 23, 35, 
46) and for two values of k for each type of smoothness prior for the long sample 
estimation results. Table 5 presents the same two quantities for t = 12, 23, 35 and 
both smoothness priors for the same values of k for the short sample results. For 
both sets of results SST(t) is normalized by 1012. All results in Tables 4 and 5 are 
for B=50, D=50 and M= 10. 

Several conclusions emerge from Tables 4 and 5. First the uncertainty in X and 
A explains most of the variability in G-M (t) for all except the most recent time 
periods. The ratio SSx(t)/SST(t) far exceeds 0.5 for small values of t and grows 
larger for intermediate values of t. After values of t near the midpoint of the sample 
period this ratio slowly begins to decline until it falls very rapidly at the end of 
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TABLE 4 
Two-way ANOVA for the estimated cumulative incidence curve (complete sample estimates) 

Time (t) Smoothness (k) Difference SST(t)t SSx(t)/SST(t) SSA(t)/SST(t) SS(t)/SST(t) 

12 1.0 x 108 First 2.8029 0.7955 0.0004 0.2041 
23 1.0 x 108 First 1.8038 0.9389 0.0012 0.0600 
35 1.0 x 108 First 28.0644 0.8978 0.0038 0.0983 
46 1.0 x 108 First 162.0879 0.2804 0.0093 0.7103 
12 1.0x 107 First 2.1791 0.9376 0.0002 0.0622 
23 1.0 x 107 First 15.3328 0.9806 0.0007 0.0187 
35 1.0x 107 First 32.1788 0.9336 0.0033 0.0631 
46 1.0 x 107 First 73.8765 0.6568 0.0064 0.3368 
12 9.0x 106 Second 1.5702 0.8283 0.0004 0.1713 
23 9.0x 106 Second 17.4118 0.9612 0.0009 0.0379 
35 9.0 x 106 Second 27.5889 0.9281 0.0033 0.0686 
46 9.0x 106 Second 333.0727 0.1037 0.0057 0.8906 
12 3.0 x 106 Second 1.7493 0.9182 0.0003 0.0815 
23 3.0 x 106 Second 17.3052 0.9759 0.0008 0.0233 
35 3.0 x 106 Second 28.5841 0.9368 0.0030 0.0602 
46 3.0 x 106 Second 61.4252 0.3946 0.0034 0.6020 

tAll numbers in this column have been divided by 1012. 

TABLE 5 
Two-way ANOVA for the estimated cumulative incidence curve (short sample estimates) 

Time (t) Smoothness (k) Difference SST(t)t SSx(t)/SST(t) SSA(t)/SST(t) SS(t)/SST(t) 

12 1.0 x 108 First 3.2992 0.8264 0.0002 0.1734 
23 1.0 x 108 First 19.5738 0.9128 0.0007 0.0864 
35 1.0 x 108 First 239.8909 0.3238 0.0027 0.6735 
12 1.0x 107 First 2.3125 0.9386 0.0001 0.0613 
23 1.0 x 107 First 18.7249 0.9762 0.0006 0.0232 
35 1.0 x 107 First 85.2177 0.6557 0.0026 0.3417 
12 9.0x 106 Second 1.9609 0.8540 0.0003 0.1457 
23 9.0 x 106 Second 19.4410 0.9062 0.0006 0.0932 
35 9.0x 106 Second 812.5445 0.1536 0.0029 0.8435 
12 3.0 x 106 Second 1.9027 0.9109 0.0002 0.0889 
23 3.0 x 106 Second 21.5210 0.9570 0.0005 0.0425 
35 3.0 x 106 Second 432.2561 0.2090 0.0032 0.7878 

tAll numbers in this column have been divided by 1012. 

the sample period. The ratio SSA(t)/SST(t), as intuition suggests, increases mono- 
tonically in t for fixed k. Second, the total variability in Gm (t) for t =35 in the 
short sample results is substantially larger than the corresponding magnitude for 
t = 46 for the long sample results for all values of k and types of smoothness prior. 
Third, for all except the case k = 9.0 x 106 and second-difference smoothness priors 
for both the short and the long sample results, variability in X and A accounts for 
at least 20Wo of the total variability in Gbd(t) for all t. Even for this selection of 
smoothing priors and smoothing parameter, for all except the most recent values 
of t, the fraction of SST(t) accounted for by SSx(t) is above 90Wo, implying that 
failing to account for the use of both estimated incubation and reporting lag 
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distributions in the cumulative incidence curve estimation process can substantially 
underestimate its variability. 

A final initially surprising aspect of Tables 4 and 5 is the relatively small amount 
of the total variability in G-1 (t) which is accounted for by variability in Ad. There 
are three reasons for this. First, on the basis of the bootstrap approximation to its 
sampling distribution, A is very precisely estimated. Second, with the exception of 
A0, the estimated Ai are above 0.5, which does not imply very large inflation 
factors for the most recent incomplete AIDS diagnosis data, which in turn does not 
imply the introduction of very substantial errors into the reporting lag correction 
process. Finally, because our estimation procedure explicitly accounts for the use 
of reporting-lag-corrected diagnosis data, the effects of the more recent diagnosis 
totals on the estimate of f3 will be appropriately downweighted. 

8. Using Estimation Results to Project Future Cases of Acquired Immune 
Deficiency Syndrome 

Given our estimated cumulative incidence curve and an estimate of the incubation 
distribution we can project future AIDS cases by running our backcalculation model 
forwards in time. Because we have the sampling distribution for both the cumulative 
incidence curve and the AIDS incubation distribution we can apply a bootstrap 
technique to compute confidence intervals for these point estimates. 

Our point estimate of the total number of new diagnoses for period T+ J is 

YT+J = XT+JBT+J (25) 
where XT+J and BT+J are (T+ J)-dimensional vectors defined as follows: 

XT+J = (X(T+J)(T+J), X(T+J)(T+J-1), X(T+J)2, X(T+J)1) (26) 

BT+J = (1T+J, . . . lT+1, 3Y). (27) 
The progression probabilities xi are computed from the AIDS incubation distribu- 
tion as described in Section 2. The parameters (13T+J, . . . 13T+ 1) are the assumed 
number of new seroconversions for quarters T+ 1 to T+ J. If we wish to incorporate 
our uncertainty about the values of these elements of BT+J, then we can assume 
that these parameters are drawn from a known multivariate distribution with this 
mean vector. For our sample, the parameter vector f E _WT gives our estimate of 
the total number of new seroconversions for each quarter from the first quarter of 
1979 to the second quarter of 1990, for a total of T= 46 quarters. 

To compute an estimate of the sampling distribution for our point estimate of 
AIDS diagnoses for period T+ J, we apply a bootstrap procedure to our equation 
for YT+J. For each resample m, we draw an XT+j(m) from the bootstrap distribu- 
tion of XT+J, a O3m from the bootstrap distribution of jl and, if desired, a (fMT+J, 
. .*m+)' from the assumed prior distribution for the vector of future quarterly 

seroconversion totals. Using these three resampled values we compute 

Y +J = XT+J(m)'BT+J (28) 
Repeating this procedure M times yields a bootstrap estimate of the sampling 
distribution of YT+J from which we can compute confidence intervals. To compute 
estimates of future AIDS diagnosis totals for all values between T+ J and T+ 1, 
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we construct a matrix version of equation (25) which involves BT+J. Computing 
the sampling distribution of this vector of future diagnosis totals proceeds in the 
same way. We can then apply the procedures discussed in Section 6 to compute 
confidence interval paths for this time series of future diagnosis totals. 

9. Conclusions and Directions for Future Research 
We now review several caveats to our results discussed throughout the paper and 

then discuss some possible directions for future research. 
First, as mentioned in Section 2, there is some unknown fraction of AIDS 

diagnoses that are never reported. It is unclear how to adjust our totals and asso- 
ciated confidence bound paths for these permanently unreported AIDS cases. 
Further research is needed to understand the magnitude and variability of this 
source of underreporting. 

A second caveat is our use of a smoothing prior, or roughness penalty, on the 
estimated cumulative incidence curve for HIV. As mentioned in the discussion of 
our results, the point estimates of G(t) for both the short sample and the long 
sample are unaffected by changes in k, for a very wide range of values. However, 
the 95% confidence paths did vary with k. For the most recent quarters, because 
of the form of the AIDS incubation distribution, the only hope for obtaining a 
useful confidence bound on G(t) is to impose a priori restrictions on the form of 
G(t). One choice is to impose a specific functional form for G(t); our choice was 
simply to require the function to conform to our intuition that it be smooth. As 
we have demonstrated, imposing what appears to be a mild roughness penalty on 
G(t) yields fairly tight confidence bounds. The larger the roughness penalty we 
are willing to impose the tighter these bounds can become. Nevertheless, to make 
useful confidence interval statements for the most recent quarters, some smoothness 
priors or functional form restrictions must be imposed. If we are not willing to make 
these kinds of assumption very little can be said about the variability in the 
cumulative incidence curve for HIV for the recent past. 

Our procedure can be extended in several directions. The major cost of this 
undertaking is computational expense. Because of the linear model formulation, the 
backcalculation procedure that we have presented can be reformulated to take into 
account covariates in both the incubation distribution and the reporting lag distribu- 
tion, as long as the covariates are discrete and take on a finite number of values. 
In this case, a separate model of the form given in equation (3) is estimated for 
each of the values of the covariate vector. The resulting 13-vectors for each possible 
value of the covariate vector can then be aggregated to create an estimated popula- 
tion cumulative incidence curve. We hope to undertake this analysis, as more 
research is produced incorporating covariates into both the incubation distribution 
and the estimation process for the reporting lag distribution. 
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