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Duality in testing multivariate hypotheses
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SUMMARY

This paper derives a duality result for a general class of hypothesis testing problems in
multivariate analysis utilizing the relationship between convex cones and their polar cones together
with the properties of minimum norm problems between points and cones in Euclidian space.
Special cases of this result yield generalizations of a well-known duality relation in multivariate
equality constraints testing. For example, any multivariate inequality constraints test on the
parameters of a multivariate normal random vector has an equivalent multivariate one-sided test
in terms of the vector of dual variables associated with the constraints. Also, any combination
multivariate inequality and equality constraints test has an equivalent combination multivariate
one-sided and two-sided test in terms of the vector of dual variables associated with both sets of
constraints.

Some key words: Convex cone; Duality in multivariate hypothesis testing; Multivariate inequality constraints
test; Multivariate one-sided test; Polar cone.

1. INTRODUCTION

This paper extends the classical duality result in testing multivariate equality constraints to a
general class of testing problems studied by Perlman (1969): H: u € P, versus K: u € P,, where
P, and P, are positively homogeneous sets with P;c P, and u is the mean of a multivariate
normal random vector.

This paper proceeds as follows. In this section we state a familiar special case of our duality
result for tests of multivariate equality constraints to provide the appropriate background for
subsequent sections and to motivate our work from the viewpoint of empirical multivariate
hypothesis testing. In § 2 we state and prove our general duality result. In § 3 we present applications
of this result to several testing problems in empirical multivariate analysis.

To state the duality relation in equality constraints testing, let 8 be a k x 1 vector and b= B+m,
where 7 is N(0, V) and V is a known k X k positive-definite matrix. Let R be a p X k matrix of
full row rank where p<k and r a px1 vector. Define a quadratic form function Q(x, M) =
1x'M'x, for xe R" and M a positive-definite n X n matrix.

The linear equality constraints testing problem in primal form is H: RB =r versus K: RB #r,
with likelihood ratio statistic

TLR=2irgf[Q{(l3—b), V} subject to Rb =r]. (1-1)

The optimization problem defining this statistic is a simple quadratic program. The general
procedure for solving quadratic programs entails constructing the Lagrangian Z=
Q{(b b), V}+ L'(r— Rb) and computmg the saddlepoint of this function in b and L. The
saddlepoint is defined as the minimum of Z with respect to b and maximum with respect to L.
Bazaraa & Shetty (1979) provide a thorough discussion of the theory of quadratic programming.
From the first-ordér conditions for (1-1) we have L= S(r— Rb) where L is the optimal L and
S=(RVR')"\. Define A as the expectation of L. This implies the following relation between A
and B:

A= E(L)= E{S(r— Rb)}=S(r— RB). (1-2)
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Given this definition of A, the equivalent dual test to H: RB =r versus K: RB % r in terms of B
is H: A =0 versus K: A +0, based on L, with likelihood ratio statistic T,y =2Q(L, S). This duality
relation follows because L is N(0, S) under the two equivalent null hypotheses RB =r and A =0,
and T g = Ty by definition of L in terms of b. Although the dual test is in terms of A and L and
the primal test is in terms of B and b, both are equivalent tests of H: RB =r versus K: RB #r.

2. A DUALITY RELATION IN MULTIVARIATE HYPOTHESIS TESTING
We first introduce some results from convex analysis. If C is a closed convex cone in R* then
its polar cone C° is defined as
{w*e R*|(w, w*)=<0, for all we C},

where (w, w*) is the inner product of two vectors in R*. For most applications of our duality
result, for example, those in § 3, C is a polyhedral cone in R¥, which is closed and convex by
construction and has the general form C ={w e R*| Bw =0}, where B is an n x k matrix and n is
any positive integer. The polar cone to C is

C°={y|y=-B'z,zeR", z;=0,i=1,...,n}.
We now state and prove our general duality result.

THEOREM 1. Let C be a closed, convex cone in R¥, with polar cone C°. Let Q be a known k x k
positive-definite matrix and ¢ and y vectors in R*. Consider the likelihood ratio statistics for the
hypothesis tests: (P), H: £ € C versus K: ¢ € R* based on one observation from x which is N(& Q),
and (D), H: y=0 versus K: ye C° based on one observation from y which is N(y, Q"). The

following results hold: (i) if y=Q"'x then the two likelihood ratio statistics are equal, and (ii) if
v =Q7 £ then the two test statistics have the same distribution.

Note that (i) is a statement about the relation between x and y as vectors in R* which leads
to an equality between two test statistics; (ii) specifies a relation between x and y as random
vectors in R* and yields an equality between two distributions.

Proof of (i). For any x € R, let f(z|x) = Q{(x —z), Q}, z € R*. The conjugate function to f(z|x)
is
[ %) =[Q{(Q 'x+2%),07"} - Q(x,Q)], z*eR
By Theorem 31.4 of Rockafellar (1970),
inf {f(z|x)|ze K}=—inf {f*(z*|x)|z* € K*},

for any nonempty closed convex cone K and its negative polar K*, where K*={—z*|z*e K°}.
The likelihood ratio statistic for (P) is, following the logic of Perlman (1969), Tp=
2inf[Q{(x —e), Q}|ee C]. Our conjugate function notation implies Tp=2inf{f(e|x)|ee C}.
Using Perlman’s approach, the likelihood ratio statistic for (D) is

To=25up[Q(r,27) - Q{(y—8), 2 '} ge C°l.
This can be rewritten using the definition of C* as
Tp=-2inf[Q{(y+£), 27}~ Q(), 27")|ge C*].

If the two vectors satisfy y = Q™ 'x, our new notation yields T, = —2 inf {f*(g|x)| g € C*}, so that
Te= Tp by the results of Rockafellar (1970) stated above.
The proof of (ii) follows by rewriting the two statistics as:

To=2inf[Q{(Q *x—Qte), I} ee C], Tp=2sup[Q(Qy, I)- Q{(Qly—Qlg), I}|ge C,

where I is a k x k identity matrix. If y=Q'¢ then both Q7 *x and Q*y are N(Q7*¢ I) random
vectors. Therefore Tp and Tp have the same distribution because they are equivalent quadratic
forms based on the same multivariate normal random vector. O
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3. APPLICATIONS OF DUALITY RESULT

In this section we apply the duality result to several multivariate hypothesis tests. Consider the
test of

H:RB=r versus K: Be R* (31)

in the notation and under the distributional assumptions for b given in § 1. Wolak (1987) discusses
several applications of (3-1) for the linear regression model. There the likelihood ratio statistic
for (3-1) is given by

Tu=2 irl}f[Q{(I; —b), V} subject to Rb=r], (3-2)

where IU is shorthand for an inequality constraints null hypothesis versus an unrestricted
alternative. The solution of quadratic program (3-2) gives rise to a vector of Kuhn-Tucker
multlpllers L=0, associated with the inequality constraints Rb = r. Using the definition of Lin
terms of b, the dual of quadratic program (3-2) can be written as

Te =2 sup [Q{L, S} — Q{(L—L), S} subject to L=0]. (3:3)

The optimal value of the objective function from (3-3) is equal to the likelihood ratio statistic for
the test H: A =0 versus K: A =0, for the A defined in (1-2). In this case the subscript E1 stands
for an equality constraints null hypothesis versus an inequality constrained alternative. The solution
to (3-3) is L defined above. Quadratic programs (3-2) and (3-3) satisfy the regularity conditions
of Gill, Murray & Wright (1981, p. 76) for the validity of duality theory, so that T,y = Tg;. Wolak
(1987) shows that the value of B which maximizes pr(T;y= c) under the null hypothesis for any
¢>0 is any B satisfying RB = r. This is the least favourable B used to compute critical values for
any size test of (3-1). This B implies the A defined by (1- 2) is zero, which suggests that the
equivalent dual test to (3-1) in terms of B and b is a multivariate one-sided test in terms of A
and L. After stating the null distributions for this multivariate one-sided test and hypothesis test
(3-1), we show the equivalence of these two tests is a special case of Theorem 1.

One benefit of this duality relation is that the null distribution for any size test of (3-1) can be
obtained from the results of the multivariate one-sided test derived by Kudd (1963), Nuesch
(1966) and Perlman (1969) applied to hypothesis test (3-1) in terms of A. These results yield:

pro,s(Te1=>¢) = ZO pr (x; = )w(p,j, 9), (34)
J
where the notation pro s (Tg; = c) is the probability of (Tg; = ) given that Lis N(A, S) with A =0,
and pr (x2= c) is the probability a chi-squared random variable with k degrees of freedom is
greater than or equal to c. Wolak (1987) derives the least favourable null distribution for any size
test of (3-1) by the primal approach as

S%P {prav (Tww=c)|RB=r}=prg«y (T1,= c)

P
Z r(xj=c)w(p,p—j S, (3-5)
<o
where B* is any B such that RB*=r. The weight function, w(p, j, ), used in (3-4) and (3:5) is
the probability that & has exactly j positive elements, where 4 is the solution to

inf [Q{(4 — ), Q} subject to u=0]
I

and geR" is N(0,Q). Wolak (1987) states the following relation for the weight function:
w(p,j,Q)=w(p,p—Jj, Q") (j=0,...,p) for all p, positive-definite (2, and w > 0. Therefore the
two weighted sums of chi-squared distributions given in (3-4) and (3-5) are identical. This leads
to the following corollary which is a special case of Theorem 1.
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CoROLLARY 1. Thetestof H: RB=rversusK: B e R"_based on I;, which is N(B, V), is equivalent
to, for any size test, H: A =0 versus K: A =0 based on L, which is N(A, S), for A defined by (1-2).

Proof. First transform the inequality constraints test in terms of 8 to one in terms of a convex
polyhedral cone and a. There exists an invertible affine transformation from the model b = B+m,
n is N(0, V), and RB=r to the model d=a+w, wis N(0, I) and Aa =0, where A is a pxk
lower triangular matrix with ones along the diagonal. The reduction of A to lower triangular form
and the normalization of the diagonal elements of A to equal one provides the maximum parametric
reduction possible for the problem and an illustration of a property of the weights function,
w(p, j, ), discussed later. The constraint set C ={a|Aa =0, a € R*} defines a polyhedral cone
in R% In terms of a, the inequality constraints test (3-1) becomes H: a € C versus K: a € R®,
The polar cone to C is

C’={y|ly=-A'z,ze R’ z=0,i=1,..., p}.
By Theorem 1, the equivalent dual testto H: a € C versus K: « € R*is H: a =0 versus K: o € C°,
because the covariance matrix of d is the identity matrix. If we specialize to a = (a,, a,)’, a € R?
and A a 2 X2 matrix, the graphical representation of C and C° given in Fig. 1 is possible. By the
definition of A, the two equations defining C are a;=0 and a,—aa; =0, where a is the (2, 1)
element of A. If we assume a >0, C takes the form given in Fig. 1.

@
a,—aa; =0

—.C

a,+a'a;=0

Fig. 1. Graphical representation of cone
C={a|Aa=0, acR?* and polar cone
C'={a|la=-A4'z,ze R? z=0}.

We now state the invertible affine transformation between testing problem (3:1) in terms of B8
and this same problem in terms of a. We are guaranteed the existence of k —p rows of length k,
denoted by R,, which make the matrix T =(R'RY)’ of full rank k. Choose a (k—p)x1 vector
of constants r, and define a kx1 vector t=[r'r,]'. Define a =h(B)=L(TB—t), where L is a
lower triangular matrix such that L(TVT')L' = I. The constraint matrix A is defined as follows.
By Proposition 5.1 of Eaton (1983), L™' is lower triangular. Define L™'=(M'M})’, where M is
a p X k lower triangular matrix and M, is a (k —p) X k matrix of the same form. All the diagonal
elements of L™' are positive (Dhrymes, 1978, p. 487). Let D be the diagonal matrix with d;; = I;
(i=1,...,k), where I; is the ith diagonal element of L. By Proposition 5.1 of Eaton (1983),
I7' = 1", where 1" is the ith diagonal element of L™". Define DL™' =[A’A/]". This yields the matrix
A, a p X k lower triangular matrix with ones along the diagonal and A, a (k—p) X k matrix of
this same form. For a and B related via the invertible function h(B8), {8|RB=r, B R*}
corresponds to C in terms of « and {8|S 'A =RB—r, A=0, A € R} corresponds to C° in terms
of a. Hence for A defined by (1-2), by Theorem 1 the duality relation between the multivariate
inequality constraints test in terms of B and the multivariate one-sided test in terms of A holds
for all B € R* and corresponding A € R”. O
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By the results of Wolak (1987), the null distribution of our inequality constraints test statistic
can be derived in terms of this geometric notation. For the least favourable value of a =0, this
distribution is

p
PTo,1 (Tarr= c)= 'Zo pr (X?B C)W(P, pP—J AA)), (3-6)
j=

where T,.r is the likelihood ratio statistic from the primal or dual test based on &, and
w(p, p—j, AA’) is the weights function associated with Ad and Ad, where 4 is the estimate of a
constrained to lie in C. By definition of A, we have AA’= D,MM'D,, where D, is the (p X p)
square submatrix composed of the first intersection of the p rows and columns of D. By definition
of M we have MM'=RVR'. Therefore AA' simplifies to D,RVR'D,. By definition of D,
D,RVR'D, and RVR’ have the same correlation matrix. Kudd (1963) shows that w(p, j, Q)
depends on Q only through the correlation matrix of Q. Therefore the null distribution in (3-6)
is equal to those given in (3-4) and (3-5).

The results of our theorem can be used to derive other duality relations. Let R, r and A be
partitioned as follows:

R=(RiRy), r=(rir))’, A=(AjA)),

where R, is gxk, Ry is (p—q)xk, r;is gx1, r,is (p—q)x1, A, is gxk and A, is (p—q) Xk
(g<p<k).Let C,={a|A;a=0, A,a =0, a € R*} and C}, be the polar cone of C,. For A defined
by (1-2), let A =(A}, A%)’, with A, € R? corresponding to R,8=r, and A,€ R”™? corresponding
to R,B = r,. We state the following duality relation without proof. The testing problem H: R,=r,
and R,B =r, versus K: B € R* is equivalent to, for any size test, H: A =0 versus K: A, =0 and
A, £0. This follows directly from the transformation h(8) and Theorem 1 which implies H: a € C,,
versus K: a€ R¥ and H: =0 versus K: a € C‘; are equivalent testing problems.

As claimed in § 1, the classical duality result for multivariate equality constraints testing is also
a special case of Theorem 1 because {a|Aa =0, a € R*}, the set of @ corresponding to the set
of B such that RB =r, is a polyhedral cone.
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