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Abstract

This paper uses daily expenditure data and prices from February 1, 2006 to December 31, 2009
for 243 United States cities to estimate the price responsiveness of the daily demand for gasoline
to changes in daily gasoline prices. Across a wide range of econometric model specifications, we
obtain price elasticity estimates ranging from —0.29 to —0.61 or roughly an order of magnitude
larger than estimates from recent studies using data that is more aggregated over both time and
locations. We investigate the divergence between these results and find that a virtually all of
the difference can be explained by the higher level of temporal and spatial aggregation. Since
our baseline estimates rely on a traditional demand estimation approach that does not properly
account for the distinction between expenditures on gasoline and demand for gasoline, we also
specify a frequency of purchase model that recovers the demand for gasoline from expenditures
and the number of purchases. In addition to confirming the robustness of our demand elasticity
estimates we find evidence that consumers are substantially less (more) likely to purchase gasoline
in the days immediately following a price increase (decrease). Finally, we allow for differences in
price elasticities across metropolitan areas and show that they appear to be associated with various
demographic characteristics as well as the availability of viable alternative modes of transportation
in the region.
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1 Introduction

Over the last decade gasoline prices in the United States have become increasingly volatile, at-
tracting the ire of consumers and the attention of policymakers armed with various proposals to
cushion the impact of price shocks on consumers and the broader economy. This price volatil-
ity has largely resulted from an increased uncertainty in the supply of oil and available refining
capacity—conditions that are likely to persist for the foreseeable future. Understanding consumers’
ability to respond to such price fluctuations is crucial for predicting the potential impact of future
supply disruptions and for estimating the value of proposed policy measures intended to limit the
associated price volatility.! Estimates of gasoline demand responsiveness are also frequently used

in macroeconomic analysis and in studies by public finance and environmental economists.

As a result, there has been a renewed interest in investigating the elasticity of gasoline
demand. The conventional wisdom has been that gasoline demand is fairly inelastic and perhaps
even more inelastic in the short run. Surveys of this literature by Dahl and Sterner (1991) and
Espey (1998) both find that estimates of short-run price elasticity averaging around —.26. How-
ever, these studies largely analyze data from the 1970s and 80s. A more recent study by Hughes,
Knittel and Sperling (2008) suggests that gasoline demand has become even less elastic in recent
decades. They estimate short run gasoline demand elasticities of —.24 to —.34 for the period from
1975-1980, but find elasticities of —.034 to —.077 for the period 2001-2006. Taking a different
approach Small and Van Dender (2007) estimate a structural model of demand for vehicle fuel
efficiency and miles traveled from 1966-2001. They also conclude that demand for gasoline is
highly inelastic in the short run: calculating an implied short run elasticity of —.087 over the

entire sample period and —.066 for the period from 1997-2001.

Most of these studies identify demand elasticity estimates using highly aggregated data;
often relying on monthly or annual data at a national level. For example, Hughes et al. (2008) use
a time-series of monthly U.S. gasoline consumption and nationwide average retail prices. Small
and Van Dender (2007) study annual state-level data. Other studies including Puller and Greening
(1999) and Kayser (2000) investigate gasoline demand using household level surveys, but these

data are typically observed on a quarterly or annual basis.? Monthly or annual regressions using

'Notable examples of policy proposals include the “gas tax holiday” suggested by several presidential candidates
during the 2008 elections and the release of oil from the strategic petroleum reserve which was utilized by President
Obama during the summer of 2011 amid oil supply disruptions in Libya and other areas of the Middle East.

2puller and Greening (1999) uses quarterly data from the U.S. Consumer Expenditure Survey during the 1980s while



national or state-level average prices and gasoline volumes could potentially mask a significant

share of the response by consumers in a given location to changes in the local gasoline price.

In addition to being highly aggregated, the quantity measures used in most of these studies
are also observed fairly high up the supply chain at a point far removed from the final point of
sale. This can be problematic if producers respond with a lag to changes in consumer purchases
and/or demand fluctuations are buffered by additions or withdraws from gasoline inventories at
various points in the distribution system. Moreover, these data often must be adjusted in an at-
tempt to more accurately reflect domestic gasoline usage. For example, the most closely watched
and heavily relied upon measure of U.S. gasoline consumption is the "product supplied" measure
reported by the Department of Energy’s Energy Information Administration (EIA). This measure
is constructed from data on refinery output and includes a correction to account for the share
of that production estimated to have been exported rather than destined for domestic consump-
tion. Some controversy recently arose over its accuracy when it was revealed that from late 2010
through August of 2011 the EIA had underestimated gasoline export volumes by as much as 50%
causing domestic product supplied measures to be inflated by over 3%.34 Clearly the use of highly-
aggregated production-based measures of gasoline volumes are not ideal for studying consumer

demand.

Our study uses daily gasoline prices and citywide gasoline expenditures from 243 U.S.
cities to provide an analysis of the impact of daily prices on daily gasoline demand. These high-
frequency panel data have several important advantages. First, the expenditure information comes
from credit card transactions at the point of sale and, therefore, offers a much more direct measure
of consumer demand. Second, the daily price variation that is masked by averaging in monthly,
quarterly, or annual demand models can now be used to identify high frequency demand re-
sponses. Finally, our panel data can be exploited by including extensive fixed effects to better

control for persistent differences in gasoline demand over time and across locations.

In the first part of our analysis we adopt a more traditional demand model similar to that
used in many of the previous studies. We obtain estimates of short-run demand elasticity ranging
from —.29 to —.61, roughly an order of magnitude more elastic than other recent estimates. To

investigate the source of this discrepancy we then aggregate our data to create a nationwide time

Kayser (2000) uses a cross-section from the 1981 wave of the Panel Study of Income Dynamics.

*See Cui (2012).

*A 3% error is quite large for this market. For example, in August 2011 the reported EIA numbers implied that U.S.
gasoline demand had fallen by 3.5 percent from a year earlier when in fact it had actually fallen by an impressive 6.5%.



series of monthly consumption and monthly average price, similar to the data used by Hughes
et al. (2008). Using our aggregated data we estimate a demand elasticities similar to those in
Hughes et al. (2008), suggesting that studies using aggregated data underestimate consumers’

responsiveness to gas price fluctuations.

We also consider the possibility that estimating elasticities using daily data may simply
identify a shorter-run demand response that is, in fact, more elastic than the longer-run response
captured using monthly aggregated data. To investigate this we incorporate lagged prices into
the demand specification and show that the elasticities estimated in our earlier specifications ac-
curately capture the persistent response of demand to changes in price. We do find evidence
that gasoline expenditures respond even more strongly in the days immediately following a price

change, but this temporary additional response largely dissipates after 4 to 5 days.

In the second part of our analysis we directly address the fundamental difference between
gasoline demand (or usage) and gasoline expenditures—a difference that becomes even more
pronounced when using daily data. Because consumers can use their car’s gas tank for short-term
storage, a consumer’s demand for gasoline will be very different from their pattern of expenditures.
Moreover, consumers may respond to price changes by altering both how much gasoline they use
and and when they decide to purchase. Traditional models that simply relate prices to gasoline

expenditures cannot separate these two potential effects.

In order to more accurately model the demand elasticity, we specify a two-equation model
of the consumer’s probability of gasoline purchase and daily gasoline demand that separates the
demand decision from the purchase decision in the most flexible manner possible given our city-
level expenditure data. For example, consumers may be more likely to buy on certain days and
the amount they purchase when they buy gasoline might fluctuate over time. Because we observe
both the number of gasoline transactions occurring in a city on a given day as well as the total
expenditures on gasoline we are able to separately identify changes in consumers’ probability of
purchase from changes in consumers’ underlying demand. Aggregating our two-equation model
of individual gasoline purchase and demand over all individuals in a metropolitan area yields a
model of daily aggregate gasoline expenditures that we can use to recover a price of elasticity

demand for the metropolitan area.

In general, our purchase model generates estimates of gasoline demand elasticity ranging

from —.28 to —.48. These are similar in magnitude to the elasticity estimates obtained using the



more traditional model and again are nearly an order of magnitude larger that estimates from
other recent studies. In addition, by extending the model to include prices of previous days in
addition to the current price we identify a significant response in the probability of purchase in the
days following a price change. The probability of purchase on the day following a price increase
tends to fall by .75% for every 1% change in price. However, this effect vanishes after a few
days and the remaining impact of a price change on expenditures results entirely from changes in

consumer’s gasoline usage.

Finally, as an illustration of the questions that can be addressed using our model and our
highly disaggregated daily city-level data, we then extend our model to allow the metropolitan
area demand elasticities to depend of observable characteristics of the metropolitan area includ-
ing various demographics and the frequencies with which alternative modes of transportation are
used. We find evidence that population density, the size of low income population, and the shares
of people commuting to work by subway, carpool, and walking or biking all are important predic-

tors of a metropolitan area’s demand elasticity.

2 Retail Gasoline Price and Expenditure Data

Our data contains daily gasoline price and expenditure data for 243 metropolitan areas through-
out the United States from February 1, 2006 to December 31, 2009. For each city average daily
retail prices of unleaded regular gasoline are obtained from the American Automobile Associa-
tion’s (AAA) Daily Fuel Gauge Report. The prices reported by AAA are provided by the Oil Price
Information Service (OPIS) which constructs the city average prices using prices collected from

fleet credit card transactions and direct feeds from gas stations.”

Our expenditure data were obtained from Visa. The data reflect the total dollar amount of
purchases by all Visa debit and credit card users at gas stations within a city on a given day. As
with the price data, cities are defined based on geographic definition of the associated Metropolitan
Statistical Area (MSA). One caveat of the data is that Visa does not directly observe the price paid
at the pump or the quantity purchased by the customer. This means that total expenditures at gas
stations may include other items purchased along with gasoline. Fortunately, any potential bias

arising from the inclusion of such purchases is likely to be small given that non-gasoline items

>The OPIS price survey is the most comprehensive in the industry and is commonly used in research on gasoline
pricing.



represent only a small portion of total expenditures at gas stations, and our analysis includes
fixed effects that control for any variation across cities or over time in the amount of non-gasoline
purchases being made. In addition, as a robustness check we utilize an alternative version of the
data that includes only purchases paid for at the pump which will not contain non-gasoline items.

We revisit this issue in more detail in Section 3.1.

In addition to total citywide expenditures, the Visa data also include the number of gasoline
transactions or purchases taking place at gas stations in each city during each day. This allows us to
separate the daily probability of purchase from the daily demand for gasoline. We also observe the
total number of Visa cards that are actively purchasing (any product) within the current month.
We use this as a measure of the total population of cards at risk of recording a gasoline purchase

during each day of that month.

2.1 Descriptive Statistics

Before we begin our empirical analysis it is helpful to highlight some important features of the
data. First, the price data reveal significant idiosyncratic fluctuation across cities. Though prices
in all cities are impacted by common factors like world oil prices, there are many other factors
that influence prices locally. Persistent price differences across states arise as a result of differences
in gasoline tax rates or in the blends of gasoline that are required. More importantly, significant
transitory differences in daily prices across the MSAs arise frequently during our sample period.
Figure 1 compares retail price fluctuations in Los Angeles, Chicago, and New York over a typical
100 day period in 2007. It is clear that daily city-level prices provide much richer price variation

than monthly data with which to study demand response.

Daily gasoline expenditures also follow different patterns across MSAs, presumably due to
both independent retail price movements and other city-specific events. Note that daily expen-
ditures necessarily change with retail prices because they represent the total quantity purchased
multiplied by the price paid. We can create a measure of the total quantity of gasoline purchased
each day using total daily expenditures divided by the daily average retail price for each MSA .
Figure 2 presents a normalized seven-day moving average of this measure of the daily quantity
purchased for the same three cities depicted in Figure 1 over the same period.® The daily quanti-

ties for each MSA are normalized by the average quantity purchased in that MSA over the sample

®A moving average of daily quantity is used here to eliminate the strong within-week purchase patterns that are
described below.



Figure 1: Daily Average Retail Gasoline Prices for Selected Cities
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Figure 2: Seven Day Moving Average of Total Quantity Purchased for Selected Cities Normalized
by the City Average
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period. Just as with the prices, the quantities move together at times but also exhibit significant

differences.

The daily expenditure data allows us to examine high frequency features of gasoline pur-
chase patterns. Gasoline demand is know to exhibit strongly seasonal variation, and our data
reflects this general pattern. We are also able to document a very strong within-week pattern in
gasoline purchasing behavior. Our data show that consumers buy roughly 17% more gasoline on
Fridays than the daily average and buy 15% less on Sundays than the daily average. Figure 3
shows the averages by day of week of the total daily gasoline expenditures of Visa card customers
across all 243 cities in our sample.” Within each city this pattern varies to some extent but Friday

is always the highest demand day and Sunday is always the lowest demand day.

Variation in the total expenditures across days can result either from fluctuations in the
number of transactions that occur or from fluctuations in the amount people purchase per transac-
tion. Figure 4 reports the average expenditure per transaction by day of week across all 243 cities
in our sample.® The within-week pattern in expenditure per transaction is notably different from
that of overall expenditures, and it exhibits much less day-to-day variation overall. This reveals
that the within-week pattern observed in total expenditures results largely from fluctuations in the

number of transactions occurring in each day.

3 Traditional Estimation of Gasoline Demand

In order to facilitate comparisons with earlier studies we begin our analysis of gasoline demand
using the traditional and more descriptive approach. This involves regressing a measure of gasoline
consumption on gasoline prices (often using a constant-elasticity or log-log form) while including
other variables that help control for shifts in demand so that the resulting price coefficient can be
interpreted as an elasticity of gasoline demand. While previous studies (particularly time-series
studies) generally rely on observable proxies such as income to control for demand shifts, we take
advantage of having highly disaggregated panel data to utilize and extensive set of city and time

fixed effects.

Following Hughes et al. (2008) we estimate the price responsiveness of per-capita gasoline

"Day-of-week averages of the total quantity sold in the sample exhibit the exact same pattern.
8This is a quantity weighted average which is equivalent to calculating (for each day of the week) the total expendi-
tures divided by the total number of transactions over the sample period in all cities.



Figure 3: Day-of-Week Averages of Daily Nationwide Gasoline Expenditures by Visa Customers in
our 243 Cities
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Figure 4: Day-of-Week Averages of Nationwide Gasoline Expenditures per Transaction by Visa
Customers in our 243 Cities
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Table 1: Traditional Model of Gasoline Demand

Dependent Variable: In(q;q) Qjd In(q;q) Qjd
(1) (2) (3) (4)
In(price;q) —0.358 —0.614
(0.027) (0.034)
pricejq —0.069 —0.114
(0.005) (0.007)
Fixed Effects:
Day of Sample X X X X
City X X X X
Month of Sample x City X X
Implied Elasticity —0.358 —0.373 —0.614 —0.623
of Demand

Note: g;; represents the per-capita amount of gasoline purchased in city j on day d. Standard errors
are robust and clustered to allow arbitrary serial correlation within a city. The implied elasticity of
demand for linear specifications is calculated at mean levels of price and per-capita consumption.

purchases so that the quantity variable is more comparable across cities. The quantity of gasoline
purchased in a city on a given day is measured as the total observed expenditure from gas stations
in the city on that day divided by the gasoline price in the city that day. Since we only observe
gasoline consumption by Visa card users, we define the population of potential gasoline consumers
as the number of consumers who used their Visa card for any type of transaction within that city

in that particular month. As a result our baseline specification can be expressed as:

In(gja) = aj + Aa + Bin(pja) + €;a, (1)

where ¢;4 and p;4 represent the quantity of gasoline purchased per-capita and the average gasoline
price in city j on day d, «; and )\ are fixed-effects for MSA j and day-of-sample d, and 3 represents
the price elasticity of demand. For robustness we also estimate a linear model. The results of these
specifications are reported in Column 1 & 2 of Table 1. Standard error estimates are clustered
at the city level to allow for arbitrary serial correlation within each city. The degree of demand
elasticity impled by the estimates for mean levels of price and quantity per capita are reported in

the last row of the table.

The day-of-sample fixed effects present in the first two specifications effectively control for
macroeconomic or gasoline market specific fluctuations that might impact demand at the national

level. However, large city specific or regional demand shifts occurring over time could bias these



elasticity estimates. For example, a city that is a popular warm-weather tourist destination may
have a higher demand in the winter (opposite from the rest of the country) and may also tend to
have slightly higher gasoline prices during the tourist season than the off-season. To allow for this
possibility we also estimate an additional set of specifications that include separate sets of month-
of-sample fixed effects for each city as well as a full set of national day-of-sample fixed effects.

These are reported in Columns 3 & 4 of Table 1.

Implied demand elasticity estimates from the linear and log-log specifications are fairly
similar. The specifications with city and day-of-sample fixed effects produce elasticities of around
—.36. When month-of-sample fixed effects are also included for each city the elasticity estimates
increase in magnitude to around —.62, suggesting that it may be important to control for city

specific fluctuations in gasoline demand.

These elasticity estimates are roughly an order of magnitude more elastic than the esti-
mates from the recent study by Hughes et al. (2008) which range from —.034 to —.077. The daily
city-level purchase data appears to reveal a much greater degree of short run demand response
than has been previously identified. In the remainder of this section and the following two sections
we focus our analysis on establishing the robustness of this result and investigating the causes of

the large discrepancy relative to other recent estimates.

3.1 Potential Biases from Non-gasoline Purchases

One potential limitation of our expenditure data is that we only observe total number and dollar
amount of all transactions at gasoline stations in a given day, and some of these transactions will
include non-gasoline purchases. To this point our analysis has effectively treated all purchases
as gasoline only, allowing us to divide the total expenditure by the gasoline price to produce a
measure of quantity. If non-gasoline purchases are present this can cause expenditures to appear
more elastic to gasoline price changes. For example, if the prices and demand for non-gasoline
items are not correlated with the price of gasoline, then dividing these expenditures by the price
of gasoline will mechanically generate an elasticity of —1 for the non-gasoline portion of the trans-
action. In general, the share of revenues generated by non-gasoline items is small but non-trivial.
According to the 2007 U.S. Economic Census, the average gasoline station in the U.S. receives just

over 21% of its total revenues from non-fuel sales.” These non-fuel items may represent a sub-

“Most of these non-fuel revenues come from food, cigarettes, and alcohol. Fuel sales often generate less than half of
a station’s profits, but given the high volume sold it still represents the vast majority of station revenues.

10



stantially smaller share of credit card purchases at gas stations since consumers who purchase in
the store and who make small purchases are more likely to pay with cash. Nevertheless, we want

to examine the robustness of our empirical analysis to potential biases from non-fuel purchases.

Fortunately, these biases are only a concern for in-store transactions, and our data includes
the daily city-level expenditures and number of transactions separately for pay-at-pump and in-
store purchases. Estimating our previous specification using only pay-at-pump transactions gives
an alternative estimate of demand elasticity that is free from this bias and may give some indication

the magnitude of the bias for in-store transactions.

Pay-at-pump purchases represent over 76% of total expenditures and over 64% of all trans-
actions in our data.!® Table 2 reports the coefficient estimates from the traditional demand spec-
ifications estimated using only gasoline purchased at the pump. These are directly comparable
to the specifications in Table 1 for all gasoline purchases. The estimated price coefficients from
the specifications with city and day-of-sample fixed effects in Columns 1 & 2 both imply elastici-
ties of demand for purchasing at the pump of around —.30. The specifications that also include
month-of-sample fixed effects for each city (Columns 3 & 4) result in elasticity estimates around
—.56. These are somewhat less elastic than the estimates from the previous section that used both

in-store and pay-at-pump purchases.

While estimates of demand elasticity derived from pay-at-pump purchases have the ad-
vantage of not being biased away from zero by the presence of non-fuel items, there are other
reasons why restricting our analysis exclusively to pay-at-pump expenditures may not be optimal.
First, individuals paying at the pump may differ from those paying in the store in terms of their
sensitivity to gasoline price changes. To the extent possible with our data, we want to identify
an overall measure of the elasticity of demand for gasoline in the population, and focusing on
particular groups of consumers may be misleading. In addition, the degree to which the gasoline
demand elasticity estimated from in-store purchases will be biased away from zero is not clear. As
noted above, we do not know the fraction of expenditures in our data that come from non-fuel
items. There is also reason to believe that non-fuel purchases may be negatively correlated with
fuel prices. Gicheva, Hastings and Villas-Boas (2007) show that consumers’ overall food purchas-

ing behavior does respond to gasoline price fluctuations. When gasoline prices increase consumers

1°0n average pay-at-pump transactions are larger (in dollar value) than in-store transactions. The most likely expla-
nation is that some in-store transactions include only non-fuel items which tend to be less expensive than the typical
gasoline purchase. Unfortunately, our data do not allow us to examine the distribution of individual transaction amounts
since we only observe the total expenditure for the day in each city.

11



Table 2: Traditional Model of Gasoline Demand Using only Pay-at-Pump Transactions

Dependent Variable: In(q;q) Qjd In(q;q) Qjd
(D) (2) (3) G
In(price;q) —0.288 —0.561
(0.026) (0.039)
price;q —0.043 —0.076
(0.003) (0.005)
Fixed Effects:
Day of Sample X X X X
City X X X X
Month of Sample x City X X
Implied Elasticity —0.288 —0.316 —0.561 —0.559

of Demand
Note: ¢;; represents the per-capita amount of gasoline purchased at the pump in city j on day d.

Standard errors are robust and clustered to allow arbitrary serial correlation within a city. The im-
plied elasticity of demand for linear specifications is calculated at mean levels of price and per-capita
consumption.

tend to substitute spending away from "food away from home" (which is relatively more expen-
sive) and buy more at the grocery store. In addition, within the grocery store, consumers tend to
substitute from more expensive to less expensive items. Within the context of convenience stores,
the National Association of Convenience Stores’ 2009 Consumer Fuels Report indicates that, out of
1,100 consumers surveyed, 24% indicated that they would purchase fewer items in the store when
gas prices rise. If non-fuel purchases fall when gas prices increase, this will mitigate the impact

that non-fuel sales have on the estimated elasticity for gasoline.

In the interest of completeness most of the remaining analysis will present both estimates
utilizing all purchases and estimates using only pay-at-pump purchases. Following the logic above,
the estimates using all purchases are likely to represent an overestimate of the true overall demand

elasticity while estimates using only pay-at-pump purchases may represent an underestimate.

4 Examining the Divergence from Previous Findings

Our empirical analysis consistently identifies elasticities that are nearly an order of magnitude
more elastic than those obtained in recent studies. In this section we will discuss, in turn, a

number of differences in our analyses that could potentially explain this disparity.

12



4.1 Sources of Gasoline Consumption Data

Perhaps the biggest challenge in studying gasoline demand is finding an accurate measure of con-
sumption. Nearly all available measures are recorded at a highly aggregated level and are likely to
measure actual gasoline usage with a considerable amount of error. The most common source is
that used by Hughes et al. (2008)—the U.S. Energy Information Administration’s (EIA's) data on
finished motor gasoline “product supplied”. These data are constructed from surveys of refineries,
import/export terminals, and pipeline operators, and the volumes reported reflect the disappear-
ance of refined product from these primary suppliers into the secondary distribution system (local
distributers and storage facilities). Each month the EIA reports the product supplied in each of the
nation’s 5 Petroleum Area Defense Districts (PADDs). Unfortunately, given distribution lags and
storage capabilities, the amount of product flowing from secondary distributors to retailers and
ultimately to consumers could differ substantially from the amount received by these suppliers in
any given time period. In addition, to generate a measure that represents domestic gasoline usage,
the EIA must net out from total production the estimated quantity of gasoline exported for use in
other countries. This step provides yet another dimension for potential error, and created serious

measurement issues in 2011 during a period of rapidly growing refined product exports.!!

Another potential data source is the Federal Highway Administration (FHWA), which col-
lects information from each state on the number of gallons of motor gasoline for which state excise
taxes have been collected each month. This measure would appear to be more closely linked to
consumption and it is available at the state level rather than the PADD level. However, a significant
amount of measurement error is generated by the fact that each state has its own procedures and
systems for collecting this information. The point in the supply chain at which the fuel is taxed
also varies across states. Some require taxes to be paid when the distributer first receives the fuel,
while others tax the volume of gasoline sold by the distributor. In fact, the FHWA includes in its
publications the disclaimer that the reported volumes “may reflect time lags of 6 weeks or more

between wholesale and retail levels.”!?

In contrast to the EIA and FHWA data, our measure of gasoline expenditures from Visa is
recorded at the final step of the distribution process—when the consumer purchases the product

from the retailer. This eliminates the possibility that changes in consumer purchase volumes are

See Cui (2012).
12EHWA Highway Statistics 2010, Table MF-33GA, Footnote 1.
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masked by additions or withdraws from local storage. Moreover, the volumes are observed at a
much more geographically and temporally disaggregated level, allowing changes in consumption

to be linked much more directly to contemporaneous local price fluctuations.

4.2 Estimating Demand Elasticity Using Aggregated Data

In general, using highly aggregated data has the potential to mask much of the temporal and
geographic co-variation in prices and quantities that result from consumer demand response. The
following simple theoretical model illustrates this point. Let D;4(p;q, X;q4) equal the daily demand
for gasoline in MSA j during day d, where pjq is price of gasoline in region j on day d and X, is
the vector of characteristics of region j and day d that enter the demand function for that region
and day. These daily demand functions for each MSA imply that @,,,, the aggregate demand for
gasoline during month m, is equal to

J

Qm= Y Dja(pja: Xja), (2)
1

d € S(m) j=
where S(m) is the set of days in month m and J is the total number of MSAs in the sample. This
aggregation process implies that the national monthly demand for gasoline depends on the daily
prices for all days during that month for all MSAs, rather than simply a single monthly national
average price. Similarly, the monthly state-level demand depends on the daily prices for all days
during that month for all MSAs in that state. Put another way, specifying an empirical model in
which total monthly state-level consumption is a function of only the average price for the month
in that state is equivalent to assuming that consumers’ daily demand for gasoline in each city
responds only to the average gasoline price for that month in the state rather than the actual price
of gasoline in that city on that particular day. Models using monthly state-level average prices are
also unable to utilize any within-month or within-state variation in prices around the average level
to help identify the demand elasticity. Consequently, it is not surprising that regressing the monthly
aggregate quantity of gasoline consumed at the state or national level on a single monthly average
price at the state or national level would yield a substantially smaller (in absolute) estimated

monthly demand response to changes in the monthly average price.

We are able to investigate the degree to which such data aggregation might impact elas-
ticity estimates by using our data to create new data sets with varying levels of temporal and

geographic aggregation. We construct daily data sets of state level and nationwide total quantity

14



purchased and average price, as well three monthly data sets at the city, state, and national levels
of aggregation. Aggregate per-capita quantities are simply the corresponding sum of the daily
quantity purchased divided by the total number of Visa customers in the combined area. Since
prices may be averaged across cities (or days) with very different quantities purchased, we com-
pute a quantity weighted average price. To facilitate a more direct comparison with Hughes et al.
(2008), average prices in the national monthly specification are converted to constant 2005 dollars
using the GDP implicit price deflator. Using real prices would not impact the other specifications

because the day- or month-of-sample fixed effects would absorb any price adjustment.

As in our main analysis, a complete set of time period and cross-sectional fixed effects are
used whenever possible to control for unobserved shifts in demand. When using daily national
time series data we include day-of-week and month-of-sample fixed effects. For the monthly na-
tional time series we are restricted to using month of year (i.e. seasonal) fixed effects, so per capita
real personal disposable income is included as an additional control for demand shifts.!® This final

specification is closest to that of Hughes et al. (2008).

The demand estimates for each level of aggregation appear in Table 3. The top rows
report the results when estimated using all purchases while the bottom rows report the results
for pay-at-pump purchases only. The first column reports the daily city-level results again for
comparison. The next three columns contain panel regressions with varying levels of temporal
and/or geographic aggregation. Price elasticity estimates from these specifications are all very
similar to each other (between —.27 and —.29 for all purchases and between —.21 and —.18
for pay-at-pump purchases) and are noticeably less elastic than corresponding estimates from the
disaggregated regression in Column 1. The elasticity estimates from the two time series regressions
in Columns 5 & 6 are even smaller in magnitude at around —.14 for all purchases and near zero
for pay-at-pump purchases. Clearly, increasing levels of aggregation lead to less elastic estimates

of demand, particularly when moving from panel to time series data.

Once aggregated to a national time series our elasticity estimates are fairly close to those
of Hughes et al. (2008). However, their study examined a slightly earlier time period than ours.
To generate a more accurate comparison we continue our analysis by replicating the Hughes et
al. (2008) specification using their data sources but for our later time period. As in their study,

gasoline consumption is measured using the EIA's monthly nationwide estimate of motor gasoline

¥Data on per capita personal disposable income comes from the Bureau of Economic Analysis and are converted to
constant 2005 dollars using the GDP implicit price deflator.
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Table 3: Regressions Using Aggregated Data

Dependent Variable = In(quantity per capita)

Geography: city city state state national national
Periodicity: daily = monthly daily monthly daily monthly
(1) (2) (3) C)) (5) (6)
All Purchases:
In(price;;) —0.358 —0.290 —0.297 —0.270 —0.143 —0.127
(0.027) (0.015) (0.007) (0.025)  (0.065)  (0.024)
In(income;;) —0.244
(0.440)
Pay-at-Pump
Purchases Only:
In(price;;) —0.288 —-0.214 —-0.206 —0.176 —0.020 0.002
(0.026) (0.017) (0.008) (0.028)  (0.069)  (0.024)
In(income;;) —0.734
(0.333)
Fixed Effects:
Day of Sample X X
Day of Week X
Month of Sample X X X
Month of Year X
City X X
State X X

Note: Standard errors for panel specifications are robust and clustered at the level of the cross-sectional unit
to allow for arbitrary serial correlation. Standard errors for time-series specifications are estimated using a
Newey-West procedure and are robust to first-order serial correlation.

“product supplied”. Price is measured using the U.S. city average price for unleaded regular gaso-
line as reported in the U.S. Bureau of Labor Statistics’ CPI-Average Price Data and is converted to

constant 2005 dollars using the GDP implicit price deflator.

To check our ability to replicate the Hughes et al. (2008) analysis we first estimate their
baseline double-log specification (equivalent to Column 5 of Table 3 above) for the period 2001-
2006. Results are reported in table 4, column 1. The estimate of price elasticity (—.042) is identical
to that of Hughes et al. (2008).'* Estimating the same specification using data from 2006-2009

yields a price elasticity that is slightly positive and not significantly different from zero. This

140Our estimate of the income elasticity is .32 as opposed to their estimate of .53. This discrepancy appears to have
been caused by the fact that Hughes et al. (2008) use previously published estimates of disposable personal income that
have since been revised by the BEA. We utilize the updated estimates so that our income measures are consistent with
those available for the 2006-2009 sample period.
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Table 4: Elasticity Estimates from Replication of Hughes et al. (2008)

Dependent Variable = In(quantity per capita)

Date Range: 2000-2006 2006-2009 2006-2009 2006-2009
Data Source: EIA/BLS EIA/BLS Visa/AAA Visa/AAA
(all purchases) (pay-at-pump)
(1) (2) (3) 4)

In(price;) —0.042 0.026 —0.127 0.002
(0.010) (0.024) (0.024) (0.024)

In(income;) 0.321 —1.272 —0.244 —0.734
(0.066) (0.405) (0.440) (0.333)

Month-of-Year X X X X

Fixed Effects

Note: Columns (1) and (2) use EIA data on “product supplied” to measure quantity and the CPI average price
data for unleaded regular to measure price. Column (3) uses our Visa expenditure data to measure quantity
and a weighted average of our AAA average price data to measure price. Standard errors are estimated using a
Newey-West procedure and are robust to first-order serial correlation.

is very similar to our estimate from the same specification using aggregated Visa pay-at-pump
purchase data (reported in Column 4) but is much less elastic than our estimate using all Visa
purchases (Column 3). The use of an alternative data source may be partially responsible for
differences between our elasticity estimates and those of previous studies, but overall the results

above suggest that most of the difference likely a result of the level of data aggregation.

4.3 Controlling for Demand Shocks

In addition to avoiding measurement error and aggregation bias the other important advantage
to using disaggregated panel data when estimating demand response is the ability to utilize fixed
effects to better control for demand differences across days and cities. Studies using time-series
data must either identify other observable variables (such as per-capita income) that account for
changes in demand or rely on instrumental variables to isolate gasoline price changes associated
with supply shocks. With panel data we observe many different locations experiencing the same
macroeconomic demand shocks so it is possible to identify demand response by observing how

idiosyncratic price deviations between cities result in corresponding quantity changes.

The results in Table 3 reveal that aggregating our panel data to a daily or monthly time-
series results in demand estimates that are substantially less elastic. In part this may be caused

by the fact that the full set of day-of-sample fixed effects can no longer be included. Elasticity
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Table 5: Regressions Using Different Time Fixed Effects

Dependent Variable = In(quantity per capita)

Geography: city city city
Periodicity: daily daily daily
(1) (2) (3)
All Purchases:
In(price;;) —-0.358 —0.252 —0.158
(0.027)  (0.014)  (0.005)
In(income;;) —0.323
(0.136)
Pay-at-Pump Purchases Only:
In(price;;) —-0.28%8 —0.159 —0.039
(0.026)  (0.014)  (0.004)
In(income;;) —0.444
(0.165)
Fixed Effects:
Day of Sample X
Month of Sample X
Month of Year X
Day of Week X X
City X X X

Note: Standard errors are robust and clustered by city to allow for arbi-
trary serial correlation.

estimates are likely to be biased downward if there are demand shocks that are not controlled for
by the day-of-week and month-of-sample fixed effects in the daily specification or by the month-
of-year and per-capita income variables in the monthly specification. In fact, the negative income
elasticities that are estimated in our 2006-2009 time series specifications are most likely biased
because observed income and month-of-year fixed effects are unable to sufficiently control for the

large shifts in gasoline demand that occurred before and after the recession of 2008.

In order to examine the extent to which the lower elasticity estimates in our aggregated
specifications are a result of the lack of control variables or fixed effects we estimate similar spec-
ifications (i.e., with incomplete time fixed effects) using our fully disaggregated data. The spec-
ifications reported in Table 5 are all estimated using daily city-level data, and all include city
fixed effects to account for differences across cities in average consumption and day-of-week fixed

effects (where identified) to control for weekly purchase patterns. The first column once again

18



reports the results from our baseline model with a full set of day-of-sample fixed effects. The
second specification includes only month-of-sample fixed effects. Here elasticity estimates drop
significantly to —.25 for all purchases and —.16 for pay-at-pump. The final specification includes
only month-of-year fixed effects and a measure of the national per-capita disposable income, just
as in the monthly time series specification in Table 3, Column 6. The elasticity estimates (of —.16
and —.04) are very similar to those of the corresponding aggregated specifications. Together the
results reveal that the ability to effectively control for changes in demand across days and locations
is a major reason why our estimates from our aggregated analysis are substantially different from

our disaggregated analysis.

We conclude that the typical consumer has a much more elastic short-run demand for
gasoline than national time series estimates would imply. One reason for this is that we are able
to utilize a measure of quantity consumed that is recorded at the final consumer purchase stage
rather than further upstream. The second, and perhaps more important, reason is that the use of
more highly disaggregated data on both price and quantity avoids problems of aggregation bias

and makes it possible to better control for demand shifts.

5 Short Run vs Longer Run Demand Elasticity

The findings of the previous section suggest that earlier studies may have produced relatively
inelastic estimates of gasoline demand due to their reliance on more aggregated data. We now
want to consider the alternative possibility that both estimates are, in fact, correct but that they
characterize distinctly different relationships—that our demand estimate (using daily data) is more
elastic because it captures consumers’ initial response following a price change while estimates
using more aggregated monthly data capture a longer run response. It is not unusual for the
demand curves to be more elastic in the short run than in the long run. Perhaps the most common
of these situations occurs when consumers can hold inventories and in the short run choose to add
to or withdraw from inventories in response to price changes even when they do not significantly
change their consumption in the long run. Gasoline consumers obviously hold small inventories of
gasoline in their vehicle’s tank, so this behavior is feasible on a limited scale. Similarly, consumers
may have the ability to postpone (or expedite) some necessary trips in response to a temporary
increase (or decrease) in price, regardless of how they change their overall driving habits. These

types of behavior imply that, for a given gasoline price today, the amount of gasoline purchased
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Table 6: Traditional Demand Model with Lagged Prices

Dependent Variable = In(quantity per capita)

All Purchases Pay at Pump
(1) (2)
In(price;q) —0.824 —0.853
(0.073) (0.079)
In(price; 4—1) —0.513 —0.610
(0.084) (0.100)
In(price; 4—2) 0.545 0.661
(0.078) (0.092)
In(price; 43) 0.323 0.403
(0.041) (0.046)
In(price; q—4) 0.146 0.183
(0.042) (0.047)
In(price; 45) 0.080 0.067
(0.036) (0.041)
In(price; q—10) —0.068 —0.085
(0.018) (0.022)
In(price; g—20) —0.025 —0.034
(0.018) (0.018)
Fixed Effects:
Day of Sample X X
City X X
Total Implied Elasticity —0.338 —0.267

20 Days After a Price Change

Note: Standard errors are robust and clustered to allow arbitrary serial correlation

within a city. The implied elasticity of demand for linear specifications is calculated
at mean levels of price and per-capita consumption.

today might depend on whether the price has been at or near its current level for a while or

whether it was significantly higher or lower a few days or a few weeks ago.

It is important to note that although we are using daily data the traditional demand spec-
ification doesn’t allow for this behavior. It assumes that the amount purchased today depends on
the current price and is not allowed to differ depending on prices in the recent past. This miti-
gates the extent to which such behavior could be responsible for the more elastic estimates found
in the daily city-level analysis above. We can, however, alter our specification by incorporating
past prices along with current prices in order to examine whether such behavior has an important

impact on gasoline purchases.

Table 6 reports the results of a specification that includes the log of the current price and
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the lagged prices from each of the previous 5 days as well as longer lags of 10 and 20 days. The
coefficients in Column 1 are estimated using all purchases while those in Column 2 are estimated
using pay-at-pump purchases only. When additional price lags of 40 and 60 days are included they

are jointly insignificant and do not substantially affect the estimates of the existing coefficients.

For both the all-purchase and pay-at-pump data, the coefficients on the current and previ-
ous day’s log price are negative and much larger in magnitude than the corresponding elasticity
estimated without lags. For example, the results imply that the amount of gasoline purchased at
the pump one day after a 1% price increase will will be 1.45% lower than it would have been with-
out the price increase. During the following 3 to 4 days, however, the amount purchased tends
to increase sharply, back towards its original level, canceling out much of the very strong initial
response in purchasing. The 10- and 20-day lags reveal that the price response becomes slightly

stronger once again, several weeks after the price change.

Adding together the coefficients of all the price lags in the regression gives the response of
demand 20 days after a permanent price change. This sum of coefficients is reported in the last row
of Table 6 and implies that the elasticity of demand response after 20 days is —.34 for all purchases
and —.27 for pay-at-pump purchases. These responses are roughly equivalent to the elasticities of
—.36 and —.29 identified in our baseline model with no lags. We conclude from this that the lower
elasticity estimates in previous studies and in our monthly aggregated regressions do not appear to
have resulted from consumers being less responsive to price changes that persist over longer time
periods. Instead it appears that the types of temporal aggregation bias and measurement error
discussed in the previous section are likely to be responsible for reducing estimates of demand
response below those reflected in the daily data. This explanation is also consistent with the
fact that additional aggregation of the analysis geographically produces a further reduction in
estimated demand response despite the fact that there is little reason to suspect that consumers

shift demand from state to state in response to relative price differences.

Nonetheless, the very-short-run responses we are able to identify using daily lagged prices
are interesting in their own right. Consumers appear to substantially alter their purchases in the
days following a price change. They purchase more gasoline sooner when prices fall and they
reduce their purchases for several days after prices rise, perhaps waiting to see if prices will fall
again before they have to buy. Of course, the more descriptive demand model we have been using

to this point makes it impossible to determine whether consumers actually alter their driving
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intensity following a price change or whether they simply delay or expedite purchases in the days
following the change. This is one of the main goals of the consumer purchase model described
in the next section—attempting to separate consumers’ demand (or usage) decision from their

purchase decision to gain a better understanding of how consumers respond to price fluctuations.

6 Model of Consumer Demand and Purchase Behavior

To this point we have shown that the gasoline purchases are much more responsive to price fluc-
tuations than previous studies have suggested. However, since we are working with daily data,
the effect of price on the amount of gasoline purchased may be very different from the effect on
the amount of gasoline people are actually demanding at any given time. Because consumers
can buy and store gasoline in their car, a consumer’s daily demand for gasoline can differ from
the consumer’s expenditures on gasoline. This section presents a theoretical model that recovers
an estimate of the daily price elasticity of the unobserved demand for gasoline from data on the
daily number of purchases and expenditures on gasoline for each MSA. A latent customer-level
daily demand for gasoline and daily purchase probability give rise to an econometric model for

customer-level daily gasoline expenditures that we then aggregate to the MSA level.

Suppose the daily demand for each customer in a city j on a day d takes the form:
djq = exp(oy + Aa + BIn(pja) + €ja), 3)

where «; is a fixed-effect for MSA j, \; is the fixed-effect for day-of-sample d, p;4 is the price of
gasoline for day d in region j, and 3 is the price elasticity of demand. For each j, the ¢;4 are a
sequence of unobserved mean-zero random variables that may be heteroscedastic and correlated
over time within each MSA but are distributed independently across MSAs and are independent
of p;jq. Consumers must periodically purchase gasoline to satisfy this level of daily usage. The

probability that a consumer in MSA j purchases gasoline on a day d is assumed to equal:
pjd =Yj + 0. (4)

where ~; is a fixed-effect for MSA j and ¢, is the day-of-sample fixed effect for day d. We as-
sume that the expenditure on gasoline during day d by each customer in MSA j, ejq, is related

to the consumer’s daily purchase probability and daily gasoline demand through the following
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relationship:

_ Pjadja
Pjd

This model implies that the actual quantity of gasoline purchased (if purchase occurs) times the

()

ejd

daily probability of purchase is equal to the daily quantity demanded by that customer. Since our
data is at the MSA level we aggregate the customer-level model of daily gasoline expenditures
over the total number of customers in MSA j during day d, N;q. The number of customers in
MSA j during day d making a gasoline purchase is equal to n;4. Therefore, F4, total gasoline
expenditures during day d for MSA j can be expressed as:

Pjad(Pjd, €jd)"ja
Pjd

(6)

Ej = ejdnjd =

Because we observe the total number of active Visa cards (V;4) in MSA j during day d,
and the total number of gasoline transactions (n;4), n;q4/N;q is an unbiased estimate of p;q4, the
probability of purchase for MSA j during day d. Accordingly, we can estimate the parameters of
equation 2 using OLS applied to:

Zéd = j + 0a + Vja, (7)
where the vj4 are a sequence of mean-zero random variables that may be heteroscedastic and
correlated with ¢;4 and over time within each MSA but are distributed independently across MSAs.
We can use the fitted values p;q = 4, + 44 to obtain a consistent estimates of the pjd. Substituting
the estimated purchase probability into Equation 6 and taking logs generates our econometric

model of gasoline expenditures:
In(Ejq) = aj + Xg + (B + 1)in(pja) + In(njq) — In(pja) + €ja- (8)
This model can alternatively be expressed in terms of the quantity purchased:

In(Qjaq) = aj + Ag + Bln(pja) + In(njq) — In(pja) + €5q, ©)

The empirical model in Equation 9 makes it possible to identify the underlying MSA-level
elasticity of demand for gasoline (/3) using only data on prices, the quantity purchased, and the
number of transactions. In Equations 3 & 4 the demand and probability of purchase are both
assumed to vary by city and day of sample, but, as in our earlier analysis, different combinations
of fixed effects can easily be used to generate alternative specifications for each of these conditional
mean functions. We will also consider a specification that includes both lagged and current prices

in the demand and purchase probability equations.
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Table 7: Estimates of Demand Using Purchase Model

Dependent Variable = In(quantity ;q)

All Purchases Pay-at-Pump Only
(1) (2) €)) 4 ) (6)
In(price;q) —0.448 —0.396 —0.480 —0.341 —-0.288 —0.351
(0.019) (0.009) (0.005)  (0.020) (0.006) (0.002)
In(# of transactionsq) 1 0.999 1.025 1 0.997  0.993
(0.005)  (0.003) (0.002) (0.001)
In(predicted probability -1 0.007  0.008 -1 —0.003 —0.007
of purchase;q) (0.002) (0.002) (0.001) (0.001)
Fixed Effects:
Day of Sample X X X X X X
City X X X X X X
Month of Sample x City X X

Note: Standard errors are generated using a nonparametric bootstrap that allows errors to be arbitrary serial
correlated within a city and jointly distributed with the error term in the first-stage regression.

7 Estimation of the Frequency of Purchase Model

Coefficient estimates from the model in Equation 9 are reported in Columns 1 & 2 of Table 7.
Standard error estimates are generated using a nonparametric bootstrap to account for the fact
that the predicted probability of purchase is estimated in a first-stage regression. The model
implies that coefficients on In(njq) and In(p;q) should be 1 and —1 respectively. We estimate
the model with this restriction and without for robustness. The model with all restrictions yields
an elasticity estimate of —.45. The unrestricted model in column 2 produces a similar elasticity
estimate of —.40. The unrestricted coefficient on in(njq) is very close to 1, but the coefficient on
In(pjq) is around .03; far from the —1 implied by the theory. This may be because the fixed effects
absorb most of the variation in the probability of purchase (given the functional form specified
in Equation 7), and any variation left may be measured with error. The estimated price elasticity
is still similar to that from the model with restrictions imposed. As in our traditional demand
analysis we also estimate a model including city-specific month-of-sample fixed effects in addition
to the day-of-sample fixed effects. This is reported in Column 3. The elasticity estimate is larger in

magnitude, at —.48, but not as large as was seen in the traditional demand analysis.

Column 4 through Column 6 of Table 7 report the results of the same three specifications

when estimated using only pay-at-pump transactions. These elasticity estimates exhibit a very

24



similar pattern to those in Column 1 through Column 3, though each is about .1 less elastic than
the estimates using all transactions. In general, the demand elasticity estimates generated using
the purchase model (ranging from —.29 to .48) are similar in magnitude to the corresponding
elasticity estimates found using the traditional demand model described above. We conclude from
these findings that the relatively strong short-run response of expenditures to gas price changes
that was revealed using the traditional model is largely a result of changes in consumers’ gasoline

usage rather than a response in the timing of purchase.

7.1 Purchase Model with Lagged Prices

Aside from identifying elasticities that were substantially larger than previous estimates, our tra-
ditional demand analysis also identified a sizable additional response in expenditures in the days
immediately following a price change once lagged prices were included in the analysis. This re-
sponse could result from consumers temporarily postponing (or expediting) some of their driving
or from consumers delaying purchases (or purchasing sooner) to try to take advantage of tem-
porary price swings. Using the structure of our consumer purchase model we have the ability to
decompose this very-short-run response to examine whether consumers appear to be significantly
altering gasoline usage or simply shifting when they make purchases in the days following a price

change.

We can allow for these very-short-run responses by incorporating past prices along with
current prices into our model of individual demand and purchase. If consumers are substituting
driving intertemporally in response to price changes then their daily demand may be influenced
by past prices. If consumers are using their inventories of gasoline strategically, both current and
past prices may influence a consumer’s probability of purchase. We alter Equations 3 & 4 to allow
for these types of behavior. The demand for each customer in a city j on a day d can be specified

as:

dja = exp(ag + Aa + Bln(pja) + Y (In(pja-1) + €ja), (10)
leL
where p; 4_; represents the price ! days prior to the current period and L represents the set of lags
lengths included in the specification. Similarly, the probability of purchase can be expressed as:

Pid = j =+ (5(1 + ¢ln(pjd) + Z nln(pj’d_l). (11)
leL
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Leaving the consumer purchase model from Section 3 otherwise unchanged results in the following
final representation of the aggregate quantity purchased in city j on day d:
In(Qja) = aj + Aa + Bln(pja) + > CIn(pja-t) + In(nja) — In(pja) + €a, (12)
leL

where the predicted purchase probability can be estimated from an OLS regression of:

.
]\% = + 0a + Yin(pja) + Z nin(pja—1) + vja- (13)
J leL

As in our traditional demand analysis with lagged prices we include in the demand equa-
tion lags of the log of price for each of the previous 5 days, as well as from 10 and 20 days previous.
These lags are also included in the purchase probability equation. Columns 1 & 2 of Table 8 report
the results when using all purchases and Columns 3 & 4 report results for pay-at-pump purchases
only. The final row of the table includes the total implied elasticity of the probability of purchase
or of demand response after 20 days.!®> The demand estimates are directly comparable to the

specifications without lags in Columns 2 & 5 of Table 7.

In general, the presence of a lagged price in the demand specification causes the coefficient
on the current value of In(p;4) to increase in magnitude, suggesting an even larger immediate de-
mand response to price changes. The coefficients on lagged prices are smaller and generally posi-
tive, indicating that the degree of response is reduced after the first few days. In all specifications,
sum of the coefficients on the current and lagged values of In(p;q) in the demand equations are
very similar to the coefficient estimates for In(p;4) when no lagged prices are included (Table 7,
Columns 2 & 5). In other words, the total demand response to a price shock that lasts longer than
a few days exhibits a demand elasticity of around —.42 for all purchases or —.28 for pay-at-pump
purchases—nearly identical to the estimates in our baseline purchase model. The results also re-
veal a small additional response within the first few days of a price shock, consistent with the idea

that consumers delay/expedite gasoline usage by a few days in response to price fluctuations.

The response in purchase probability to a price change is somewhat different. The prob-
ability of purchase falls (rises) significantly on the day of and particularly on the day following
a price increase (decrease). The coefficients on In(p;4) and in(p;q—1) imply that the purchase
probability one day after a price change exhibits an elasticity with respect to price of around —.76

(or —1.12 for pay-at-pump purchases) all else equal. However, this response in the probability of

15For the demand equations this is simply the sum of all the log-price coefficients. For the probability of purchase
equation this is the sum of all the log-price coefficients divided by the mean probability of purchase.
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Table 8: Purchase Model with Lagged Prices

All Purchases Pay at Pump
Purchase Demand Purchase Demand
Equation Equation Equation Equation
(1) (2) (3) C))
In(price;q) —0.007 —0.579 —0.009 —0.449
(0.004) (0.022) (0.003) (0.015)
In(price; 4—1) —0.032 0.001 —0.028 0.092
(0.004) (0.020) (0.004) (0.012)
In(price; 4_2) 0.024 0.090 0.023 0.0002
(0.004) (0.018) (0.003) (0.001)
In(price; 4_3) 0.016 0.058 0.014 0.054
(0.002) (0.013) (0.001) (0.008)
In(price; 4_4) 0.001 0.039 0.003 0.021
(0.002) (0.013) (0.002) (0.008)
In(price; 4—5) 0.007 0.001 0.003 —0.012
(0.002) (0.011) (0.002) (0.008)
In(price; 4—10) —0.004 —0.005 —0.003 0.0003
(0.001) (0.006) (0.001) (0.003)
In(price; 4—20) —0.0001 —0.025 —0.001 0.013
(0.001) (0.007) (0.001) (0.005)
In(# of transactions;q) 0.998 0.996
(0.007) (0.004)
In(predicted probability 0.025 —0.008
of purchase;) (0.007) (0.003)
Fixed Effects:
Day of Sample X X X X
City X X X X
Total Implied Elasticity 0.096 —0.420 0.061 —0.281

20 Days After a Price Change

Note: The dependent variable in Column 1 and Column 2 are (respectively) the share of Visa customers pur-

chasing and the log of the average quantity purchased per capita by Visa customers in city j on day d, and

in Column 3 & 4 are the share of Visa customers purchasing at the pump and the log of the average quantity

purchased at the pump per capita by Visa customers in city j on day d. Standard errors are generated using a

nonparametric bootstrap that allows errors to be arbitrary serial correlated within a city and jointly distributed

with the error term in the first-stage regression. The implied elasticity of demand for linear specifications is

calculated at mean levels of price and per-capita consumption.
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purchase in the day of and the day after a price change is entirely counteracted over the following
few days to leave the elasticity of the overall response of purchase probability to be small and
slightly positive at .09 for all purchases and .06 for pay-at-pump. As a result, it appears that both
gasoline usage and the probability of purchasing on a given day fall (rise) immediately after prices
increase (decrease), but the effects of consumers shifting when they purchase are very short lived,

while most of the impact of a price change on usage remains permanently.

These findings help to explain the estimated response of overall expenditure levels that
were identified when we included lagged prices in our traditional demand analysis. The results
from our consumer purchase model imply that much of the temporary portion (i.e., lasting several
days) of the very large response in expenditures to a price change is due to consumers delaying or
expediting purchases while the fraction of the response in expenditures that persists is largely due

to changes in underlying gasoline usage.

8 Geographic Variation in Demand Elasticity

In order to both test the plausibility of our estimates and illustrate the types of questions that
can be addressed using our high-frequency city-level panel data, we present one final extension
the purchase model that allows the elasticity of demand to vary across cities. One simple way to
illustrate the degree of variation in demand responsiveness is to include interactions between the
city fixed effects and the In(p;q) term in Equation 9. The results of this model reveal significant
variation across cities, though nearly all remain within a fairly tight range between —.35 and —.45.
Individual city elasticity estimates are fairly precise, with most having standard errors of .005 or

less. Figure 5 shows a histogram of elasticities for the cities in the sample.

Variation in demand elasticity across cities most likely results from differences in the way
consumers use gasoline or differences in resources consumers have to purchase gasoline. When
studying city level measures of demand elasticity it is difficult to identify exactly how differences
in consumer behavior or budget translate into price sensitivity. Nevertheless, we can examine how

city level demographic measures relate to our overall elasticity estimates.

MSA-level demographic characteristics from the 2000 U.S. Decennial Census are collected
for each of the cities in our sample. These include measures of population density in the MSA and

the share of the population in the MSA with income greater than twice the poverty level, as well as
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Figure 5: Histogram of Demand Elasticity Estimates Across Sample Cities
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the shares of workers in the MSA that use each of the following modes of transportation to work:
drive alone, carpool, bus, subway or rail, walk or bike. Summary statistics for these variables are

reported in Table 9.

In theory, gasoline demand is likely to be more elastic in areas where there are one or
more alternative modes of transportation available to consumers that are similar in cost and con-
venience to driving a car. Unfortunately, it is difficult to construct measures of the relative cost
and convenience of various modes of transit. Using measures of consumers’ actual transit choices
(from several years prior to our sample period) hopefully reveals information about the relative
attractiveness of the different modes, capturing differences across cities in geographic layout, the

quality of the various transit networks, prices of various modes, highway congestion, etc.

We estimate a region-varying elasticity model using the following estimation procedure.
Our demand model takes the same form as given in equation 7 except that we hypothesize the
following functional form for 3;4, the region-varying elasticity of demand: £;4 = 7 + Zj’. a7

where g ia an unknown parameter, Zj is the vector MSA-level variables described above, and ~

29



Table 9: Summary Statistics for City Characteristics
(Number of Cities = 224)

Mean S.D. Median Min Max
persons per square mile 1771 932 932 535 6313
In(persons per square mile) 7.35 0.494 7.32 6.28 8.75
population share over 0.704 0.071 0.712 0.483 0.898
twice the poverty level
share commuting by:
car (alone) 0.823 0.044 0.831 0.518 0.889
subway or rail 0.003 0.012 0.0002 0 0.088
bus 0.016 0.018 0.010 0.001 0.178
carpool 0.125 0.025 0.124 0.082 0.203
walking or bicycle 0.034 0.019 0.029 0.010 0.103

is unknown vector of parameters. Replacing /3 in equation 7 by this expression for j3;, yields:
In(Qja) = o + Mg +v0ln(pja) + In(pja) * Zigy + In(nja) — In(pjq) + €, (14)

where In(p;jq) * Z}, means that each element of Z;, is multiplied by In(p;q). We estimate the
model using all purchases as well as using only pay-at-pump purchases. The results are reported

in Table 10.

The signs and approximate magnitudes of the coefficient estimates are generally consistent
across the all-purchases and pay-at-pump specifications, with the exception being that the coeffi-
cient estimate on share of workers commuting in a carpool is smaller when using only pay-at-pump
purchases. The estimates reveal that, all else equal, more densely populated MSAs and those with
more low income households tend to have have more elastic demand for gasoline. MSAs with
more workers commuting by carpool or by walking or biking tend to have slightly less elastic de-
mand, while those in which more workers commute by subway or rail have (if anything) slightly

more elastic demand.

The magnitudes of the estimated coefficients are fairly small, but this is not surprising
given the relatively narrow range of city-specific demand elasticity estimates. For example, cities
where the share of commuters walking or biking to work is two standard deviation larger tend
to have a demand elasticity that is 0.02 larger in absolute value, all else equal. Cities in which
the share of the population with income below twice the poverty level is two standard deviations
larger are predicted to have demand elasticities that are around 0.03 lower. While these results are

only suggestive, they show that the cross-city differences in demand elasticities estimated by our
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Table 10: Estimated Demand Elasticities as a Function of City Characteristics

Dependent Variable = In(quantity ;q)

(all purchases) (pay-at-pump)

(M) (2)
In(p) = logarithm of —0.551 —0.420
price of gasoline (0.047) (0.033)
In(p)*In(persons per —0.010 —0.007
square mile) (0.005) (0.004)
In(p)*population share over 0.214 0.207
twice the poverty level (0.040) (0.029)
In(p)*share commuting by —0.302 —0.382
subway or rail (0.237) (0.153)
In(p)*share commuting by bus 0.034 0.009
(0.171) (0.113)
In(p)*share commuting by 0.492 0.178
carpool (0.120) (0.076)
In(p)*share commuting by 0.475 0.472
walking or bicycle (0.152) (0.103)
In(number of transactions) 0.997 0.996
(0.005) (0.002)
In(predicted probability of 0.006 —0.003
purchase) (0.003) (0.001)

MSAs Fixed Effects X X

Day-of-Sample Fixed Effects X X

Note: Standard errors are generated using a nonparametric bootstrap that allows errors to
be arbitrary serial correlated within a city and jointly distributed with the error term in the
first-stage regression.

empirical model appear to be correlated with differences in consumers’ characteristics and with

the existence and attractiveness of other viable modes of transportation.

9 Conclusions

In this study we use high frequency panel data on gasoline prices and expenditures to re-examine
the nature of gasoline demand in the U.S. Our demand estimates are significantly more elastic than
those of other recent studies. To investigate this discrepancy we aggregate our data and estimate
demand models similar to those used in previous studies. The results suggest that using more
aggregated data can lead to more inelastic estimates of gasoline demand. In addition, since our
data is recorded directly from consumer purchases it may also provide a more accurate measure

of actual demand response, generating a more elastic estimate than found in previous studies
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that use refinery level sales data. We also take advantage of the high frequency of our data to
more carefully study how consumers respond immediately following a change in gasoline prices.
We specify a model of gasoline purchase behavior that allows us to separately identify the short
run elasticity of gasoline usage or demand from change in consumers’ probability of purchase.
Our findings reveal a temporary response in the probability of purchase in the days following a
price change as well as an immediate response in usage that does not dissipate over time. Given
that gasoline demand elasticity estimates are commonly used in policy evaluation and in broader
economic research, our results provide valuable new evidence that gasoline demand may be more

responsive to short term price fluctuations than was previously believed.

Given that gasoline demand elasticity estimates are commonly used in policy evaluation
and in broader economic research, our results provide valuable new evidence that gasoline de-
mand may be more responsive to short term price fluctuations than was previously believed.
Moreover, the results can substantially impact the inferences one draws when evaluating market
disruptions. For example, in early October of 2012 an Exxon refinery near Los Angeles experienced
a power outage and was shut down for several weeks. This refinery represents 15% of total gaso-
line production in the state and 25% of production in Southern California. Several refineries in
the state were already out of operation or operating under full capacity and inventories were fairly
low, so the unexpected outage led prices in the Los Angeles area to increase by roughly 50 cents
(an increase of around 13%) within a matter of days. According to our demand elasticity estimates
of approximately -0.4, such a price increase might have caused the quantity demand to fall by as
much as 5%, substantially contributing to the alleviation of the temporary supply shortfall. In con-
trast, using demand elasticity estimates closer to those generated by other recent studies (say for
example -.05) would imply a negligible demand response of only 0.05%, suggesting that almost
the entire shortfall must have been made up through further withdraws from storage and expedit-
ing additional supplies from other markets. Having an accurate estimate of demand response is
crucial for understanding how the market adjusts for such disruptions, and our results reveal that
demand may play a much more important stabilizing role in the market than has recently been

suggested.
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