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Identification and Estimation of Cost
Functions Using Observed Bid Data

An Application to Electricity Markets
Frank A. Wolak

1. INTRODUCTION

This paper presents several techniques for recovering cost function estimates
for electricity generation from a model of optimal bidding behavior in a com-
petitive electricity market. These procedures are applied to actual data from
the Australian National Electricity Market (NEM1) to recover cost function
estimates for a specific market participant. I find close agreement between the
cost functions recovered from these procedures and those obtained from engi-
neering estimates. The techniques developed in this paper for recovering cost
function estimates are not limited to markets for electricity generation. They
can be used to recover cost function estimates for a participant in any bid-based
centralized market.

There are number of uses for the procedures developed in this paper. The
primary use is to measure the extent of market power possessed by a market par-
ticipant using only bid information and market-clearing prices and quantities.
A major research effort in empirical industrial organization is the measure-
ment of market power. Bresnahan (1989) summarizes much of this research,
although there has been an explosion of recent research on this general topic.
The techniques presented in this paper are a logical extension of the techniques
described by Bresnahan (1989) to bid-based markets.

A major challenge for designers of competitive electricity markets is to de-
vise market rules that limit the ability of generation unit owners to exercise
market power. Market power is the ability of a firm owning generation assets
to raise the market price by its bidding behavior and to profit from this price
increase. Until the recent trend toward industry restructuring, electricity was
supplied by vertically integrated geographic monopolies regulated by state pub-
lic utilities commissions in the United States or by goverment-owned national
or state monopolies in other countries around the world. All of the industry char-
acteristics that resulted in these two market structures make wholesale markets
for electricity generation ripe for the exercise of market power. Electricity is
extremely costly to store, there are binding short-run capacity constraints on
its production, and demand must equal supply throughout the electricity grid at
every moment in time. In addition, because of the manner in which electricity
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was sold to final customers during the former vertically integrated regime, the
retail demand for electricity is very price inelastic on hour-ahead, day-ahead,
and even month-ahead time horizons. These features of the electricity produc-
tion process and the insensitivity of retail demand to  wholesale price fluctua-
tions allow small defects in market design to enhance significantly the ability
of generation unit owners to exercise market power.

For this same reason, seemingly innocuous changes in market rules can
produce a large impact on market outcomes. Consequently, market design is
an extremely important aspect of the ongoing industry restructuring process.
The optimal market design problem can be thought of as a single-principal (the
market designer), multiple-agent (many electricity generation unit owners and
wholesale energy purchasers) problem. Although the rharket design problem
fits into the general class of common agency problems, given the complexity
of even an extremely simple transmission network, solving for the optimal
market design is an immensely complex task. The set of feasible mechanisms
for compensating generators for the energy and generation reserves they supply
and charging wholesale consumers for the energy they demand is enormous.
Consequently, for a given market structure there are many feasible market
designs, but the optimal market design is unknown.

Fortunately, all markets that currently exist in the United States have in place
a process whereby the market monitoring unit within the Independent System
Operator (ISO), the entity that operates the wholesale market and transmission
grid, studies all aspects of market performance in order to detect design flaws
that degrade market performance and enhance the ability of firms to exercise
market power.! The next step in this market design process is to devise and im-
plement market rule changes that eliminate these design flaws and move closer
to finding the optimal set of market rules for that market structure. Although
economic theory plays a major role in this process, there are very few empiri-
cal methods with a firm foundation in economic theory for analyzing the vast
volumes of bid and market outcomes data available to these market monitoring
units. This paper develops these sorts of tools and illustrates the1r use in the
market monitoring and design process.

The specific application I consider is the estimation of forward market energy
positions from spot market bid functions. In virtually all competitive wholesale
electricity markets generators and loads engage in forward financial or hedge
contracts, which allow them to fix the price for a specified amount of energy
delivered and consumed in real time.? As noted in Wolak (2000), even with

! For an across-country discussion of the institutions and performance of competitive electricity
markets, see Wolak (1999).

2 Hedge contracts are typically signed between a generating company and an electricity retailer.
They are purely financial obligations that guarantee the price at which a fixed quantity of electricity
will be sold at a mutually agreed-on time in the future to the purchaser of the forward contract.
If the relevant spot market price exceeds the contract price, then the contract seller pays to the
buyer the difference between these two prices times the contract quantity. If the market price is
less than the contract price, the buyer pays the absolute value of this same price difference times
the contract quantity to the seller.
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xnowledge of a firm’s bidding behavior in a competitive electricity market, it
;s difficult, if not impossible, to determine if the firm is able to exercise market

ower without knowing the generation unit owner’s forward contract position.
For a specific bid function and marginal cost function, there is a portfolio of
forward financial contracts that can rationalize that bid function as expected
proﬁt maximizing. Wolak (2000) also demonstrates the enormous inﬂuence a
generation unit owner’s financial contract position has on his or her incentive
to bid to attempt to increase the market-clearing price in the spot electricity
market. Consequently, a technique for estimating a market participant’s hedge
contract or forward market position from bids submitted to a spot market can
allow a market monitor to determine more precisely when the generatlon unit
owner is likely to possess significant market power.

The remainder of the paper proceeds as follows. Section 2 relates this re-
search to the general literature in empirical industrial organization on measuring
market power using data on market-clearing prices and quantities. This section
discusses the gain in econometric identification of the underlying cost function
that results from using bids in addition to market-clearing prices and quantities
in the estimation process. Section 3 presents a model of optimal bidding be-
havior with hedge contracts for a generic competitive electricity market. This
section defines a best-response bidding strategy as the set of daily bid prices
and quantities that maximize expected daily variable profits given the strate-
gies of other firms participating in the market. The section also defines the
best-response price as the market-clearing price that maximizes the realized
profits of the firm given the bids actually submitted by its competitors, the re-
alized value of the stochastic shock to the price-setting process. Both of these
concepts are used to derive estimates of the cost function for a bidder in a
competitive electricity market using actual bid information, the firm’s hedge
contract position, and actual market outcomes.

Section 4 presents my estimation methodology based on the best-response
price concept. Section 5 presents this methodology based on the best-response
bidding strategy. Section 6 then describes the essential features of the Australian
National Electricity Market and the data set used in my empirical analysis.
Section 7 presents the results of this empirical analysis. Section 8 describes
how these techniques might be used in the market design process and discusses
directions for future research.

2. IDENTIFYING MARGINAL COST FUNCTIONS
FROM BIDS AND MARKET PRICES
AND QUANTITIES

Beginning with Rosse (1970), empirical industrial organization (I0) economists
have devised estimation procedures to recover cost functions from data on
market-clearing prices and quantities. Rosse used a sample of monopoly local
newspapers and the assumption of profit maximization to estimate the underly-
ing marginal cost function of the monopolists. Porter (1983) employed a related
approach in his study of price wars in the U.S. railroad industry during the 1830s.
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He assumes a firm-level, homogeneous product, quantity-setting conjectura]
variation oligopoly equilibrium. He aggregates the firm-level first-order condj.
tions to produce an industrywide supply function, which he jointly estimateg
along with an industry-level demand function. Bresnahan (1981, 1987) quan-
tifies the extent of market power possessed by each vehicle model in the U §,
automobile industry using a discrete choice, differentiated products model of
individual demand with vertical product differentiation in the unobserved prod-
uct quality dimension. Aggregating these discrete purchase decisions across
U.S. households yields an aggregate demand system for all automobile models,

" Bresnahan assumes Nash-Bertrand competition among the automobile mak-
ers facing this aggregate demand system to estimate the implied marginal cost
of producing automobiles of each quality level. More recently, Berry (1994),
Berry, Levinsohn, and Pakes (1995), and Goldberg (1995) have extended the
techniques pioneered by Bresnahan to discrete choice oligopoly models with
horizontal product differentiation.

The basic idea of all the techniques just described can be illustrated using
the following example, which follows from the intuition given in Rosse (1970).
Let P(q, W, 0, ¢) denote the inverse demand function facing a monopolist and
C(q, Z, 0, n) its total cost function. The variables W and Z are demand and cost
function shifters, respectively. Here  is the vector of parameters to be estimated,
and ¢ and 7 are unobserved, to the econometrician, stochastic shocks. These
shocks are assumed to be observable to the monopolist. The profit function of
the monopolist is :

7(q) = P(q. W.0,6)q — C(q. Z.0, ). @D
The first-order condition for profit maximization is
7'(q) = P'(q, W,0,e)q + P(q. W,0,6)—C'(q, Z,0,n) =0.
(2.2).

The researcher is assumed to have only market-clearing price and quantity data
and the values of the demand and supply shifters, W and Z, for a cross section of
monopolists selling the same homogeneous product. The econometrician does
not have information on production costs for any of the firms. The researcher
could also have a time series of observations on the same information for one or
a small number of monopolists over time. This lack of cost data is the standard
case faced by empirical researchers studying unregulated industries, such as
those for automobiles, airlines, and personal computers, which are a few of the
industries in which these techniques have been applied. Industry associations or
government regulators usually publicly disclose information on market-clearing
prices and quantities, but they give little information on production costs.

For the econometrician to make any statement about the extent of market
power exercised in this market, she or he must have an estimate of the marginal
cost function, C'(q, Z, 9, n). This estimate is constructed in the following man-
ner. The econometrician first specifies a functional form for the inverse demand
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function. Suppose she or he selects P(g, W, 60, ¢) = a+bg +cW + ¢, where
a,b,and care elements of 6. The parameters of a, b, and ¢ must be estimated by
standard instrumental variables techniques to account for the fact that observed
q and unobserved ¢ are correlated. This correlation occurs because the observed
market-clearing quantity is determined by solving the first-order condition for
proﬁt maximization given in (2.2). This implies that g%, the equilibrium quan-

tity, is a function of 7 and & and the demand and supply shifters, W and Z,
so that g& = f(W, Z, n, &). The market-clearing price is then determined by
substituting gF into the inverse demand function.

Given these estimates for a, b, and ¢, the econometrician can then solve for the
value of C'(q, Z, @, n) implied by the first-order conditions for profit maximiza-
tion given in (2.2), using the observed market-clearing prices and quantities.
Rearranging (2.2) for the assumed parametric inverse demand function yields

C'(q5 Z,6,m) = P'(gE, W,6,6)g + P(q5, W, 6, &) =bg® + pE.
2.3)

For each value of p£ and g, the market-clearing prices and quantities, compute
an estimate of the marginal cost, C'(g%, Z, 8, ), using the right-hand side of
(2.3) and an estimate of the demand parameter b. This marginal cost estimate can
then be used to compute an estimate of the amount of market power possessed
by the firm in each market, by computing the Lerner index:

L =[pf - C'(q*. Z,6,m)/p". (2.4

The assumption of firm-level profit maximization implies that estimates of
only the parameters of the demand function are needed to compute an estimate
of the Lerner index of market power.

Researchers often select a functional form for C'(¢%, Z, 6, n) and use the im-
plied marginal costs derived from (2.3) to estimate the elements of 6 contained
in the cost function. An alternative approach, beginning with Rosse (1970).
estimates the parameters of the inverse demand and cost function jointly using
the assumption of profit maximization to identify the marginal cost function
from observed market-clearing prices and quantities.

The intuition embodied in this example is used in all of the papers de-
scribed thus far. Porter (1983) estimates the aggregate demand function facing
the oligopoly that he studies. He makes assumptions on the functional form of
costs for each individual firm and the nature of the strategic interaction among
firms — cartel or perfect competition — to deliver an aggregate supply func-
tion for the industry under each of these two behavioral assumptions. Then he
jointly estimates these aggregate supply and demand equations as a switching
regression model, using the assumption of profit maximization to identify pa-
rameters of the underlying individual cost functions from time series data or
market-clearing prices and quantities. _ ’

Bresnahan (1987) specifies a discrete-choice demand structure in which eacl
individual decides whether to purchase an automobile, and if so, which model.
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He aggregates this discrete-choice demand structure across all consumers to de.
rive a system of aggregate demand equations. Using various assumptions about
the nature of strategic interaction — specifically, Nash-Bertrand competition or
collusion among automobile producers — he estimates the parameters of thig
aggregate demand system along with the parameters of the marginal cost func.-
tions implied by the first-order conditions associated with profit maximization
Bresnahan (1981) allows for a richer stochastic specification in the aggregate
demand system, but follows the same basic procedure to recover estimates of
the marginal cost function.

Berry et al. (1995) allow for a multinomial logit discrete-choice demand
structure at the consumer level and assume unobservable (to the econometri-
cian) stochastic consumer-level marginal utilities of product attributes. These
marginal utilities are assumed to be independent and nonidentically normally
distributed across product attributes and independent and identically distributed
across consumers. Integrating individual-level purchase decisions with respect
to these normal distributions yields a product-level aggregate demand system
for automobiles. The authors assume that the conditional indirect utility func-
" tions for each consumer contain the same vector of unobservable (to the econo-
metrician) product characteristics, and that these product characteristics are
uncorrelated with all observable product characteristics. This stochastic struc-
ture induces correlation between equilibrium prices and the vector of unob-
served random product characteristics in the aggregate demand system. Berry
et al. propose and implement an instrumental variables estimation technique
that exploits this lack of correlation between observed and unobserved prod-
uct characteristics to estimate the demand system jointly with the marginal
cost function under the assumption of Nash-Bertrand competition among au-
tomobile producers. In contrast, Bresnahan (1981, 1987) relies on maximum
likelihood techniques.

Goldberg (1995) uses individual household-level data to estimate a general
discrete-choice model for automobile purchases at the household level. She
then uses weights giving the representativeness of each of these households in
the population of U.S. households to produce a system of aggregate demand
functions for automobiles based on the choice probabilities implied by her
model of household-level automobile demand. Using the assumption of Nash—
Bertrand competition among automobile producers, she then computes implied
marginal cost estimates similar to those given in (2.3), which she uses to estimate
a marginal cost function for each automobile model. :

The most important conclusion to draw from this line of research is that all
marginal cost estimates are the direct result of the combination of the assumed
functional form for the aggregate demand for the products under consideration
and the assumed model of competition among firms. Similar to the example
given here, the first-order conditions for profit maximization and the demand
function for each product determine the implied marginal cost for that product.
Consequently, a major focus of this research has been on increasing the flexi-
bility and credibility of the aggregate demand system used. However, because
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supply and demand functions are the econometrician’s creation for describing
the observed joint distribution of market-clearing prices and quantities across
markets, for any finite data set, a functional form for the demand curves faced

by the oligopolists or the monopoly must be assumed in order to estimate any
demand function. Although it may be possible to apply the nonparametric and
semiparametric identification and estimation strategies described in Blundell
and Powell (2003) and in Florens (2003) to this economic environment, all
existing work on modeling oligopoly equilibrium has relied on functional form
restrictions and models of firm-level profit-maximizing behavior to 1dent1fy the
underlying demand and cost functions.

Rosse (1970) and Porter (1983) explicitly make this functional form assump-
tion for aggregate demand. Bresnahan (1981, 1987) and Berry et al. (1995) as-
sume a functional form for the probabilities that determine individual purchase
decisions. They derive the aggregate demand system actually estimated by sum-
ming these individual choice probabilities across consumers. Goldberg (1995)

specifies a household-level choice model, which she estimates using household-
level data. The aggregate demand functions entering into her oligopoly model
are an appropriately welghted sum of these estimated household-level demand
systems across all U.S. households.

3. MODELS OF BEST-RESPONSE BIDDING
AND BEST-RESPONSE PRICING

This section shows how the techniques described herein can be extended to
estimate underlying marginal cost functions using data on bids and market-
clearing prices and quantities from competitive electricity markets. Specifi-
cally, I demonstrate how the availability of bids allows the econometrician to
identify the underlying firm-level cost function purely through an assumption
about firm behavior. A functional form assumption for aggregate demand is
no longer necessary. I consider two models of optimizing behavior by the firm
that recover an estimate of the firm’s marginal cost function. The first model
makes the unrealistic but simplifying assumption that the firm is able to choose
the market-clearing price that maximizes its profits given the bids submitted by
its competitors. The second model is more realistic, but entails a significantly

" greater computation burden. It imposes all of the constraints implied by the

market rules on the bids used by the firm to set the market-clearing price. The
firm is assumed to bid according to the rules of the competitive electricity mar-
ket to maximize its expected profits. The second appreach explicitly imposes
the reality that the only way the firm is able to influence the market-clearing
price is through the bids it submits.

A first step in describing both of these methodologies is a descnptlon of
the payoff functions and strategy space for participants in a generic compet-
itive electricity market. Specifically, I describe the structure of bids and how
these bids are translated into the payoffs that a market participant receives for
supplying energy to the wholesale electricity market.
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A competitive electricity market is an extremely complicated noncooperatiye
game with a very high-dimensional strategy space. A firm owning a single
generating set (genset) competing in a market with half-hourly prices must, at
minimum, decide how to set the daily bid price for the unit and the quantlty bid
for forty-eight half-hours during the day.? In all existing electricity markets,
firms have much more flexibility in how they bid their generating facilities, .
For instance, in NEM1, firms are allowed to bid daily prices and half- hourly
quantities for ten bid i increments per genset. Fora single genset, thisamounts to
490-dimensional strategy space (ten prices and 480 half-hourly quantities). Bid
prices can range from —9,999.99 $AU to 5,000.00 $AU, which is the maximum
possible market price. Each of the quantity increments must be greater than or
equal to zero and their sum less than or equal to the capacity of the genset. Most
of the participants in this market own multiple gensets, so the dimension of the
strategy space for these firms is even larger. The England and Wales electricity
market imposes similar constraints on the bid functions submitted by market
participants. Each genset is allowed to bid three daily price increments and 144
half-hourly quantity increments. Genset owners also submit start-up and no-
load costs as part of the day-ahead bidding process. Bidders in the California

ISO’s real-time electricity market bid eleven price and quantity increments,
both of which can vary on an hourly basis.

To compute the profit function associated with any set of bids the firm might
submit, I must have an accurate model of the process that translates the bids that
generators submit into the actual market prices they are paid for the electricity
for all possible bids submitted by them and their competitors and all possible
market demand realizations. The construction of a model of the price-setting
process in NEM1 that is able to replicate actual market prices with reasonable
accuracy is a necessary first step in the process of estimating cost functions
from generator bidding behavior and market outcomes. Wolak (2000) devotes
significant attention to demonstrating that the model of the price-setting process
used here accurately reflects the actual price-setting process in NEM1.

In preparation for the empirical portion of the paper, T describe the two proce-
dures for cost function estimation for NEM1 in Australia, although the modifica-
tions necessary to apply these methods to other competitive electricity markets
and other bid-based markets are straightforward. In NEM1, each day of the
market, d, is divided into the half-hour load periods i beginning with 4:00 A.M.
to 4:30 A.M. and ending with 3:30 A.M. to 4:00 A.M. the following day. Let Firm
A denote the generator whose bidding strategy is being computed. Define

" Qid, Total market demand in load period i of day d;
SO;4(p), Amount of capacity bid by all other firms besides
Firm A into the market in load period i of day d
at price p;

3 Electricity-generating plants are usually divided into multiple gensets or units. For example, a
2-GW plant will usually be divided into four 500-MW gensets.
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DRia(p) = Qid — SO:4(p), Residual demand faced by Firm A in load period
i of day d, specifying the demand faced by Firm

A at price p;
QCid- Contract quantity for load period i of day d for
: Firm A;
PCids Quantity-weighted average (over all hedge con-

tracts signed for that load period and day) contract
price for load period i of day d for Firm A;

ia(D)» Variable profits to Firm A at price p, in load pe-
riod i of day d;

MC, Marginal cost of producing a megawatt hour by
Firm A; and

SA;4(p), Bid function of Firm A for load period i of day

d giving the amount it is willing to supply as a
function of the price p.

For ease of exposition, I assume that MC, the firm’s marginal cost, does not
depend on the level of output it produces. For the general case of recovering
marginal cost function estimates, I relax this assumption.

The market-clearing price p is determined by solving for the smallest price
such that the equation SA;;(p) = DR;4(p) holds. The magnitudes QC;, and
PC,, are usually set far in advance of the actual day-ahead bidding process.
Generators sign hedge contracts with electricity suppliers or large consumers
for a pattern of prices throughout the day, week, and month, for an entire year
or for a number of years. There is some short-term activity in the hedge contract
market for electricity purchasers requiring price certainty for a larger or smaller
than planned quantity of electricity at some point during the year.

In terms of the aforementioned notation, I can define the variable profits*
(profits excluding fixed costs) earned by Firm A for load period i during day d
at price p as :

7tia(p) = DRig(p)(p — MC) — (p — PC;1)QC,,. 3D

The first term is the variable profits from selling electricity in the spot market.
The second term captures the payoffs to the generator from buying and selling
hedge contracts. Assuming QC;, > O (the generator is a net seller of hedge
contracts),if p > PC;4, the second term is the total payments made to purchasers
of hedge contracts during that half-hour by Firm A. If p < PCyy, the second
term is the total payments made by purchasers of hedge contracts to Firm A.
Once the market-clearing price is determined for the period, Equation (3.1) can
be used to compute the profits for load period i in day d.

Financial hedge contracts impose no requirement on the generator to deliver
actual electricity. These contracts are merely a commitment between the seller

4 Tor the remainder of the paper, I use variable profits and profits interchangeably, with the under-
standing that I am always referring to variable profits.
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(usually a generator) and the purchaser (usually a large load or load-serving
entity) to make the payment flows described herein contingent on the value of the
spot market-clearing price relative to the contract price. However, as discussed
" in detail in Wolak (2000), a generator that has sold a significant quantity of
financial hedge contracts will find it optimal to bid more aggressively (to sell
a larger quantity of energy in the spot market) than one that has sold little or
no hedge contracts. This point can be illustrated by computing the first-order
conditions for maximizing (3.1) with respect to p:

7},(p) = DR} ;(p)(p — MC) — (DR;4(p) — QCyy) = 0. (3.2)

Because the residual demand curve is downward sloping and the firm can pro-
duce only a nonnegative quantity of electricity (DR;4(p) > 0), the price that
solves (3.2) for QC;; > 0is smaller than the price that solves (3.2) for QC;; = 0.
This result implies that, for the same values of MC and DR;4(p), the firm
finds it profit maximizing to produce a larger amount of energy for QC;; > 0
than it does for QC;; = 0. Figure 1 from Wolak (2000) gives a graphical pre-
sentation of this logic. Another implication of the first-order condition (3.2)
is that the contract price, PC;4, has no effect on the firm’s profit-maximizing
market-clearing price or output quantity. The level of the contract price simply
determines the magnitude of the transfers that flow between the buyer and seller
of the hedge contract. These same incentives to participate aggressively in the
spot electricity market are also valid for a firm that has a contract guaranteeing
physical delivery of QC;, units of electricity at price PC;; during hour i of day d.

The expression for Firm A’s profits given in (3.1) illustrates two very im-
portant aspects of competitive electricity markets. First, unless a firm is able
to move the market-clearing price by its bidding strategy, its profits are inde-
pendent of its bidding strategy for a given hedge contract quantity and price.
Given the market-clearing price, all of the terms in (3.1), the firm’s actual vari-
able profit function for load period i in day d, depend on factors unrelated to
the bids it submits into the electricity market. Second, the difference between
Equation (3.1) and the usual oligopoly model profit function is that the residual
demand function DR;,(p) faced by Firm A is ex post directly observable given
the bids submitted by all other market participants besides Firm A. As shown
herein, the residual demand curve faced by Firm A at each price, p, is sim-
ply the aggregate demand function less the aggregate bid curve of all market
participants besides Firm A, DR;s(p) = Qia — SOia(p).

In the standard oligopoly context, the residual demand faced by each market
participant is not directly observable, because the aggregate demand function
is not observable ex post. For example, in the Cournot duopoly model, the
residual demand curve faced by one firm is simply the market demand, D(p),
less the quantity made available by that firm’s competitor: DR(p) = D(p) — 4.,
where ¢, is the quantity made available by the firm’s competitor. Different from
the case of a competitive electricity market, D(p) is not directly observable,
so that an estimate of DR(p) cannot be constructed without first econometri-
cally estimating D(p), the market aggregate demand function. In the case of a
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pid-based market such as electricity, even if load-serving entities could submit

rice-responsive demands, as is currently possible in most competitive electric-
jty markets, the residual demand curve facing any competitor in these markets
can be directly computed using all of the bids submitted by all other market
participants.

Because this residual demand function can be constructed by the econome-
irician using bid data, there is no need to make a functional form assumption
for the demand curve the bidder faces in order to compute its implied marginal
cost for any level of output. Given a model for the price-setting process in
this market and a behavioral model for bidders, implied marginal costs can be
constructed for each observed level of output by Firm A.

The ex post observability of each generator’s residual demand function has
jmportant implications for designing a competitive electricity market. Because
the price elasticity of the residual demand curve faced by a bidder determines

.the extent of market power that it is able to exercise, the goal of the market de-

sign process is to face all bidders with a perfectly price-elastic residual demand
function. Under these circumstances, no generator possesses market power.
However, the residual demand curve faced by one market participant depends
on the bids submitted by all other market participants. Therefore, aggressive
bidding (very price-elastic bid supply functions) by a firm’s competitors will
Jeave it with a very elastic residual demand. This will cause the firm to bid
very aggressively. This aggressive bidding will leave its competitors with elas-
tic residual demand curves, which will cause them to bid more aggressively:
This sequence of self-reinforcing aggressive bidding also works in the opposite
direction to reinforce less price-elastic bidding. Specifically, if a firm bids a
steep supply curve, that increases the incentive for its competitors to bid steep
supply curves, because they now face more inelastic residual demand curves.
Consequently, a very important aspect of the market design process is putting
in place very strong incentives for aggressive spot market bidding.

Active participation by wholesale demanders in the forward electricity mar-
ket is crucial to providing strong incentives for aggressive spot market bidding
by generation unit owners. If a firm that owns significant generating capacity
does not have a large fraction of this capacity tied up in forward contracts, then
given the extreme inelasticity of the demand for electricity in any hour, this
firm ‘will find it profit maximizing to bid substantially in excess of its variable
costs into the spot market during any hour that it knows some of its capacity
is needed to meet total demand. Forward market commitments for a significant
fraction of its capacity make this strategy less attractive because the firm earns
the spot price only on any spot market sales in excess of its forward market
commitments, rather than on all of its sales. In addition, because the number
of firms that can compete to supply forward contracts far in advance of the
delivery date is significantly greater than the number of firms that compete to
supply electricity on a month-ahead, day-ahead, or hour-ahead basis, the price
of electricity for delivery during these high-demand hours purchased far in ad-
vance is significantly cheaper than electricity purchased in short-term markets.
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In particular, at time horizons greater than two years in advance of delivery,
both existing and new entrants can compete to supply electricity. In contrast,
a few hours before delivery, only the large generating units that are operating
are able to compete to deliver electricity. Significant quantities of forward cop.
tracts guarantee that enough of these large generating units will be operating
a few hours before delivery to ensure a workably competitive spot market for
electricity. Wolak (2002) discusses these issues and the essential role of retaj
competition in developing an active forward electricity market.

I now introduce notation necessary to present the two procedures for recoy-
ering marginal cost estimates from bid data. Suppose that there are stochastic
demand shocks to the price-setting process each period, and that Firm A knows
the distribution of these shocks. This uncertainty could be due to the fact that
Firm A does not exactly know the form of SO(p) — this function has a stochastic
component to it — or it does not know the market demand used in the price-
setting process when it submits its bids — Q is known only up to an additive
error. Because I am not solving for an equilibrium bidding strategy, I do not -
need to be specific about the sources of uncertainty in the residual demand that
Firm A faces. Regardless of the source of this uncertainty, Firm A will attempt
to maximize profits conditional on the value of this uncertainty if the firm can
observe it. If Firm A cannot observe this uncertainty, it will then choose its
bids to maximize expected profits given an assumed distribution for this uncer-
tainty. The two procedures for recovering the firm’s underlying cost function
from bid data differ in terms of their assumptions about whether the firm is able
to achieve prices that maximize profits given the realization of this uncertainty
or achieve only market prices that maximize expected profits taken with respect
to the distribution of this uncertainty.

Let & equal this shock to Firm A’s residual demand function in load

period i (i =1, ..., 48). Rewrite Firm A’s residual demand in load period i,
accounting for this demand shock as DR;(p, ;). Define © = (py1,...,
PIKsQuals oo s QUIKs G201y s G2.0Ks -+ - 48,11, - - - » §48.7 k) @S the vector

of daily bid prices and quantities submitted by Firm A. There are K increments
for each of the J gensets owned by firm A. The rules of the NEM1 market
require that a single price, py;, is set for each of the k =1, ..., K bid incre-
ments for each of the j = 1, ..., J gensets owned by Firm A for the entire day.
However, the quantity g;;; made available to produce electricity in load period
i from each of the k = 1, ..., K bid increments for the j = 1, ..., J gensets
owned by Firm A can vary acrossi = 1, ..., 48 load periods throughout the
day. In NEM , the value of X is 10, so the dimension of ® is 10J + 48 % 10J.
Firm A owns a number of gensets so the dimension of @ is more than several
thousand. Let SA;(p,®) equal Firm A’s bid function in load period i as parame-
terized by ©. Note that by the rules of the market, bid increments are dispatched
based on the order of their bid prices, from lowest to highest. This means that
SA;(p, ®) must be nondecreasing in p. '

Figure 4.1 gives an example of two bid functions for different half-hours
of the same day that are consistent with the rules of the Australian electricity
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Figure 4.1. Sample bid functions for Australian electricity market.

market for the case of three bid price increments. Note that the only difference
petween the two bid curves is the quantity of energy that is made available at
each price level during the two half-hours. Both the peak and off-peak period
bid curves have the same price bids, as is required by NEM1 market rules,
but the peak period bid curve assigns a large quantity of the capacity from the
genset to the highest-price bid increment because the generator is reasonably
confident that its highest-price bid will set the market-clearing price during this
period. However, during the off-peak period that generator reduces the quantity
that it bids at the highest price in order to be ensured that significant fraction
of its capacity will be sold at or above the intermediate bid price.

Let p;(s;, ©) denote the market-clearing price for load period i given the
residual demand shock realization, &;, and daily bid vector ©. It is defined as
the solution in p to the equation DR;(p, &;) = SA;(p, ©). Let f(¢) denote the
probability density function of e = (g1, &2, ..., €48) . Define

oc oo 48
E(TI(®)) = / . / E [DR;(Pi(&;, ®), &)(Pi(&;, @) — MC)
JO 0 : .

i=l

—(Pi(ei,©) = PCHQC;1f(e)d &y - - - deas (3.3)

as the expected profits to Firm A for the daily bid vector ©.
Firm A’s best-reply bidding strategy is the solution to the following opti-
mization problem:

max E(TI(®)) subject toby = RO > b, . (3.4)

Define ©* as the expected profit-maximizing value of ©. Besides the extremely
large dimension of ®, there are several other reasons to expect this problem to
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be difficult to solve. First, in general, the realization of each residual demand
function faced by Firm A is a nondecreasing, discontinuous step function,
because the aggregate supply curve of all participants besides Firm A is a
nondecreasing step function. Second, to compute the value of the objective
function requires integrating with respect to a forty-eight-dimensional random
vector £. Most important, the dimension of ® for Firm A is greater than 2,000.
The linear inequality constraints represented by the matrix R and vectors of
upper and lower bounds by, and b, imply that none of the ¢;, can be negative and
the sum of the g;; relevant to a given genset cannot be greater than the capacity
of the genset and that the prices for each bid increment cannot be smaller than
—9,999.99 $AU or larger than 5,000.00 $AU. Wolak (2001a) computes this
optimal bidding strategy for one market participant in the Australian electricity
market and compares actual market outcomes with those that would exist under
this optimal bidding strategy for a sample of days in NEM .

At this point it is useful to compare the optimal bidding strategy problem
given in (3.4) to the problem of computing an optimal supply function with
demand uncertainty discussed in Klemperer and Meyer (1989) and applied to
the electricity supply industry in England and Wales by Green and Newbery
(1992). Rewrite Equation (3.1) with the residual demand function for load
period i that includes the shock for period i as

7ia(p, &) = DRia(p, €;)(p — MC) — (p — PC;41)QC,,. (3.5

Solving for the value of p that maximizes (3.5) yields p;*(¢;), which is the
profit-maximizing market-clearing price given that Firm A’s competitors bid to
yield the residual demand curve, DR;4(p, ¢;), with demand shock realization,
&;, for the hedge contract position, QC;; and PC;,;. This optimal price also
depends on QC;,, PC;4, and MC. I write it as p;*(e;) to emphasize that it is
Firm A’s profit-maximizing price given the realization of ¢;. Because this price
maximizes the ex post realized profits of Firm A, for the remainder of the-
paper I will refer to it as the best-response price for the residual demand curve
DR;4(p, &;) with demand shock realization ¢; for the hedge contract position
QC;, and PC;;. Substituting this value of p into the residual demand curve

- yields DR;4(p; *(¢:), &;). This price and quantity combination yields Firm A the

maximum profit that it can earn given the bidding behavior of its competitors
and the demand shock realization, g;.

Klemperer and Meyer (1989) impose sufficient restrictions on the underly-
ing economic environment - the demand function, cost functions, and distribu-
tion of demand shocks — so that tracing out the price—quantity pairs (p;*(¢i),

DR;s(pi*(ei), &) for all values of ¢; yields a continuous, strictly increas-

ing equilibrium supply curve, SA;(p), for their duopolists. For each demand
shock realization, their supply curve yields the best-response price for each
duopolist given the bidding strategies of its competitor. Because each real-
ization of ¢; in the Klemperer and Meyer model is associated with a uniqué
price—quantity pair, the symmetric equilibrium duopoly supply function in the
Klemperer and Meyer model does not depend on the distribution of ;. For this
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same reason, the Klemperer and Meyer framework can allow ¢; to be only one
gimensional.

However, the NEM1 market rules explicitly prohibit firms from submitting
continuous, strictly increasing bid functions. They must submit step functions,
where bid price remains constant for all forty-eight half-hours of the day, but the
jength of each price increment can change on a half-hourly basis. This market
rule constrains the ability of generation unit owners to submit supply bids that
set the ex post profit-maximizing price for all possible realizations of the ex post
residual demand function they face. Therefore, the expected profit-maximizing
step function bid function, SA;(p, ®), depends on the distribution of &;. For
this reason, our best-reply bidding framework can allow for residual demand
uncertainty, &;, that is multidimensional. ‘

Because the market rules and market structure in NEM1 constrain the feasi-
ble set of price and quantity pairs that Firm A can bid in a given load period, it
may be unable to achieve p;*(¢;) for all realizations of &; using its allowed bid-
ding strategy. As noted herein, the allowed bidding strategy constrains Firm A to
bid ten bid increments per genset, but, more importantly, the prices of these ten
bid increments must be the same for all forty-eight load periods throughout the
day. This may severely limit the ability of Firm A to achieve p;*(g;). To the
extent that it does, our best-response pricing procedure will yield unreliable
estimates of the firm’s underlying cost functions.

Best-response prices must yield the highest profits, followed by best-
response bidding, because the former is based on the realization of &; as shown
in (3.5), whereas the latter depends on the distribution of & as shown in (3.3).
The expected value of the generator’s actual profits can only be less than or
equal to the expected value of the best-response bidding profits. Recall that, by
definition, the best-response price, p; *(¢;), yields the maximum profits possible
given the bidding strategies of Firm A’s competitors and the realized value of
the residual demand shock, ;. The best-response bidding strategy that solves
(3.3) for the expected profit-maximizing vector of allowable daily bid prices
and quantities, ®*, yields the highest level of expected profits for Firm A within
the set of allowable bidding strategies. Therefore, by definition, this bidding
strategy should lead to average profits that are greater than or equal to Firm A’s
average profits from its current bidding strategy for the same set of competi-
tors’ bids and own hedge contract positions. The extent to which profits from
a best-response bidding strategy lie below the maximum possible obtainable
from best-response prices is not addressed here. Wolak (2001a) shows that a
significant fraction of the difference between the actual variables profits earned
by a firm in the Australian electricity market and the profits that it would earn
from best-reply prices is due to the fact that the market rules constrain the ability
of the firm to achieve p;*(¢;) for every realization of ¢; using a bidding strategy
that respects the NEM1 market rules. In addition, given the high-dimensional
strategy space available to Firm A, Wolak (2001a) also shows that a nonnegligi-
ble portion of the difference between the best-response pricing variable profits
and variable profits under Firm A’s current bidding strategy can be attributed
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- to the use of bidding strategles that are not best response in the sense of not
exactly solving the optimization problem (3.4).
Before both cost function estimation procedures are described in detall

is useful to compare their properties. The best-response pricing approach has
the advantage of computational simplicity and is broadly consistent with the
approach used in the empirical IO literature, which uses a parametric mogg)
for demand and the assumption of profit-maximizing behavior to recover a cog
function estimate. Similar to the empirical IO approach, this approach yie]qg
estimated marginal cost values for each observed level of output in the sample,
The validity of the best-response pricing approach relies on the assumptioy
that the firm is somehow able to achieve p;*(g;) for every realization of &
As discussed herein, this is unlikely to be strictly valid for NEMLI. In contragt,
the best-response bidding strategy approach respects all of the rules governing
bidding behavior and market price determination in NEM1 and relies only
on the assumption of bidding to maximize expected profits to recover cost
function estimates. Because it imposes all of the restrictions on bidding behavior
implied by the market rules, this approach is able to recover genset-level cost
function estimates. If the assumptions necessary for the validity of the best-
response pricing approach hold, then both approaches will yield valid cost
function estimates, but the best-response bidding approach should yield more
precise cost function estimates.

4. RECOVERING COST FUNCTION ESTIMATES
FROM BEST-RESPONSE PRICES )

This section describes a procedure for recovering marginal cost function esti-
mates based on my model of best-response pricing. This procedure can also
be used to recover estimates of a generator’s forward hedge contract position.
Recall that my assumption of best-response pricing does not impose any of the
‘restrictions implied by the market rules on the behavior of the firm under con-
sideration. This procedure assumes that the firm is able to observe the market
demand and the bids submitted by all other market participants. It then con-
" structs the realized value of its residual demand function implied by the market
demand and these bids and then selects the profit-maximizing price associated
with this residual demand given the firm’s hedge contract position and marginal
cost function. Because of its computationai simplicity, this approach should be
a useful diagnostic tool in recovering an estimate of a firm’s marginal cost func-
tion or in diagnosing the extent of market power a firm might possess when the
assumptions required for its validity are approximately true.

Let C(gq) denote the total variable cost associated with producing output
level g. Rewrite the period-level profit function for Firm A in terms of this
general variable cost function as

m(p) =DR(p, e)p — C(DR(p, &)) — (p — PC)QC. 4.1

To compute the best-reply price associated with this realization of the residual
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. and function, DR(p, €), differentiate (4.1) with respect to p and set the
(ries ult equal to zero:

+(p) = DR(p, £)(p — C'DR(p, &) + R(p, &) ~ QC) = 0.
4.2)

This first-order condition can be used to compute an estimate of the marginal
cost at the observed market-clearing price, p*, as

C'(OR(pE, &)) = pF — (QC — DR(p”, £))/DR'(p* , €). (4.3)

DR( pE , £) can be directly computed by using the actual market demand and bid
fanctions submitted by all other market participants besides Firm A. The market-
clearing price, pk, is directly observed. I also assume that QC is observed.
Computing DR/(pE, ¢) is the only complication associated with applying (4.3)
(o obtain an estimate of the marginal cost of Firm A at DR( pE,e).

For most competitive electricity markets, bidders submit step functions rather
than piecewise linear functions. Consequently, strictly speaking, DR/(pE, ©)
is everywhere equal to zero.” However, because of the large number of bid
jncrements permitted for each generating facility in the Australian market —ten

er generating unit — and the close to 100 generating units in the Australian
electricity market, the number of steps in the residual demand curve facing any
market participant is very large. In addition, because of the competition among
generators to supply additional energy from their units, there are usually a large
number of small steps in the neighborhood of the market-clearing price. Never-
theless, some smoothness assumption on DR(p, ¢) is still needed to compute a
value for DR'(p£, ¢) to use in Equation 4.3). .

I experimented with a variety of techniques for computing DR'(pf, &) and
found that the results obtained are largely invariant to the techniques used. One
technique approximates DR/(pE, ¢) by (DR(pf + 4, &) — DR( pE, e, for
values of & ranging from ten Australian cents to one Australian dollar. Another
technique approximates the residual demand function by

DR(p, &) = Qa(e) — SOu(p, &), (4.4)

where the aggregate bid supply function of all other market participants besides
Firm A is equal to

' N 10
SOu(p, &) = 9 9 40w PUp = POn)/ h)- 4.5)

n=1 k=1

5 For the now-defunct California Power Exchange (PX), bidders submitted piecewise linear bid
functions starting at point (0, 0) in price-quantity space and ending at (2500, x) for any positive
value of x. There were no limits on the number of these bid functions that any market participant
could submit for a given hour. Therefore, the residual demand function facing any PX market
participant was a piecewise linear function. Consequently, except at the points where two linear
functions join, DR'( pE, g)is a well-defined concept.
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Here go,; is the kth bid increment of genset n and po,y is the bid price for
increment k of genset n, where N is the total number of gensets in the market
excluding those owned by Firm A. The function &(t) is the standard normal
cumulative distribution function and /4 is a user-selected smoothing parameter.
This parameter smooths the corners on the aggregate supply bid function of
all other market participants besides Firm A. Smaller values of 4 introduce
less smoothing at the cost of a value for DR(p£, ¢) that may be at one of the
smoothed corners. This second technique was adopted because it is very easy
to adjust the degree of smoothing in the resulting residual demand function.
Using this technique results in

1 N 10
DR (p, &) ==+ > > 40, ¢(p = po,/ h). (4.6)

n=1 k=1

where @(¢) is the standard normal density function. Using this method to com-
pute DR'(p£, ¢), I can compute C'(DR(pE, ¢)) by using Equation (4.3) for each
market-clearing price. :

There are variety of procedures to estimate the function C’'(q) given the
C'(¢) and ¢ = DR(p*, ¢) pairs implied by (4.3) applied to a sample of market-
clearing prices and generator bids. In the empirical portion of the paper, I present
a scatter plot of these (C'(g), ¢) pairs and one estimate of C'(g).

The first-order condition for best-reply pricing can also be used to compute
an estimate of the value of QC for that half-hour for an assumed vatue for C'(g)
at that level of output. Rewriting (4.2) yields

QC = (pf — C'(DR(p~, £)))DR'(pE, &) + DR(pE, ¢). 4.7

Different from the case of estimating the generator’s marginal cost function,
I expect QC to vary on a half-hourly basis both within and across days. Never-
theless, there are deterministic patterns in QC within the day and across days
of the week. In the empirical portion of the paper, I quantify the extent to which
the half-hourly implied values of QC follow the same deterministic patterns
within the day and across days of the week as the actual values of QC.

In concluding this section, I find it important to emphasize that, strictly
speaking, this procedure for estimating Firm A’s marginal cost is valid only if
the firm is somehow to able to obtain best-reply prices for all realizations of &i-
As shown in Wolak (2000, 2001a), this is not possible because the market rules
constrain the ability of expected profit-maximizing generators to set best-reply
prices for all realizations from the joint distribution of forty-eight residual de-
mand functions that Firm A faces each day. Nevertheless, as Section 7 shows:
the deviation of actual prices from best-reply prices for Firm A is not so great
as to make these calculations uninformative about Firm A’s marginal cost func-
tion or its half-hourly hedge contract holdings. Given that these calculations ar¢
relatively straightforward to perform, I believe that they can be very useful diag”
nostic tools for computing marginal cost function estimates or forward contract
position estimates that can be used in market power monitoring and analysis-
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. RECOVERING COST FUNCTION ESTIMATES
FROM BEST-RESPONSE BIDDING

This section uses the assumption of best-response bidding, or, equivalently,
pidding to maximize expected profits subject to the market rules on feasible
bid functions, to recover estimates of genset-level marginal cost functions for
Firm A. Imposing all of the bidding rules on the methodology used to recover
the firm’s marginal cost function will produce more accurate estimates than the
methodology outlined in Section 4, even if the assumptions required for the
validity of this simple approach hold. However, the procedure described here
involves significantly more computational effort and econometric complexity.
Specifically, I derive a generalized method of moments (GMM) estimation
technique to recover genset-level cost functions for all of the units bid into the
market by Firm A.
Deriving this estimation procedure requires additional notation. Define

SA;;i(p, ©), The amount bid by genset j at price p during
load period i;

Cj(g. Bj)» The variable cost of producing output g from
genset j;

Bj The vector of parameters of the cost function

. - for genset j; and
SA(p,®) = Zj‘:l SA;i(p, ®), The total amount bid by Firm A at price p
during load period i.

In terms of this notation, write the realized variable profit for Firm A during
day d as

48
M4(©, &) = Y [DRy(Pi(e;, ©), &) Pile;, ©)

i=1

J
— Y Ci(SA;(Pi(ei, ©), ©), B))
=1

j
— (Pi(ei, ®) — PC)QC; |,

where ¢ is the vector of realizations of g; for i =1, ..., 48. As discussed
herein, p;(g;, ®), the market-clearing price for load period i given the residual
demand shock realization, ¢;, and daily bid vector @, is the solution in p to the
equation DR;(p, &;) = SA;(p, ®). As a way to economize on notation, in the
development that follows I abbreviate p;(¢;, ®) as p;. The best-reply bidding
strategy maximizes the expected value of I1,(®, ¢) with respect to ©, subject
to the constraints that all bid quantity increments, g;;, must be greater than or
equal to zero for all load periods, i, bid increments, &, and gensets, j, and that
for each genset the sum of bid quantity increments during each load period is
less than the capacity, CAP;, of genset j. As discussed earlier, there are also
upper and lower bounds on the daily bid prices. However, Firm A’s price bids
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for all bid increments, k, and gensets, j, and days, d, during my sample period
are strictly below the upper bound and strictly above the lower bound.

This result allows me to use the first-order conditions for daily expected profit
maximization with respect to Firm A’s choice of the daily bid price increments
to derive a GMM estimator for the genset-level cost function parameters. For
all days, d, the moment restrictions implied by these first-order conditions are

8 Hd(@dv 8))
E¢| —/— =0 5.1
( apkm ( )

for all gensets, m, and bid increments, k. I index ® by d to denote the fact
that there are different values of © for each day during the sample period.
Equation (5.1) defines the J x K moment restrictions that I will use to estimate
the parameters of the genset-level cost functions. The sample analog of this
moment restriction is as follows:

d Hd(Ody 8)

Tap Z [(DR;(P,'(&" ), &) Pi(¢;, ©)

+ (DRi(Pi(Ei, 0), &) —QC))

J
8SA, ap,
— ) Ci(SA;(Pi(si, ©)), B L) )=
‘;q j(Piei, ©)) ﬂ,)( 3P, ))apkm

- Z Ci(SAy;(Pi(ei, ©)), Bj)——

BSA,J:' 5.2)

akm

where p; is shorthand for the market-clearmg price in load period i. Let £;(8)
denote the J x K dimensional vector of partial derivatives givenin (5.2), where
B is the vector composed of B; for j = 1,..., J. Assuming that the functional
form for C;(q, B;) is correct, the first-order conditions for expected profit max-
imization with respect to daily bid prices imply that E(£;(8°)) = 0, where g°
is the true value of 8. Consequently, solving for the value of b that minimizes

1L T1 &
[5 ;mb) [5 dz:jledaa) | (53)
will yield a consistent estimate of 8. Let b (1) denote this consistent estimate
of B, where I denotes the fact that the identity matrix is used as the GMM

weighting matrix. I can construct a consistent estimate of the optimal GMM
weighting matrix using this consistent estimate of 8 as follows:

1 D
Vo(b(D) = & 3 La(b(D)) £a(b(D)) . 54
d=1

The optimal GMM estimator finds the value of b that minimizes

[3 > ed(b)] Vo(b(I))™ [5 > ed(b)} :
d=1 d=1
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Let b (O) denote this estimator, where O denotes the fact this estimator is based
on a consistent estimate of the optimal weighting matrix.

Operationalizing this estimation procedure requires computing values for
the partial derivative of SA;;(p, ®) with respect to p and pi, and the partial
derivative of p;(g;, ©) with respect to py;. I use the same smoothing technique
used in the previous section to compute the derivative of the residual demand
function with respect to the market price to compute these partial derivatives.
Define SA?j (p, ®) as

10 ‘
SAL(p,©) = du; ®((p — Pij)/ h), (5.6)
k=1 :

which implies

J

10
SAHp,©) =Y qu; ®((p — Pi)/ h)- (5.7)

j=1 k=1 _
This definition of SA;;(p, ©) yields the following two partial derivatives:

1

]

3sA; 1

5 =7 ;:1: Qij ((p — Pyj)/ h) and

3 SA;; 1

— = == — Dij)/ h). ‘ >-8
S = = G 9P = P/ ) ©8)

The final partial derivative required to compute the sample analog of (5.1)
can be computed by applying the implicit function theorem to the equation
DR;(p, &) = SA;(p, ®). This yields the expression
3 SA;(Pi(e;, ©), ©)
api(e, ©) 0 Dyj
9 Pyj DR;(Pi(&;, ©), &) — SA(Pi(&:, ©), ©)

(5.9

where the derivative of the residual demand curve with respect to price used
in this expression is given in Equation (4.6) and the other partial derivatives
are given in (5.8). Given data on market-clearing prices and the bids for all
market participants, I can compute all of the inputs into Equation (5.2). I only
need to choose a value for &, the smoothing parameter that enters the smoothed
residual demand function and the smoothed bid functions of Firm A. Once this
smoothing parameter has been selected, the magnitudes given in (5.8) and (5.9)
remain constant for the entire estimation procedure.

The final step necessary to implement this estimation technique is choos-
ing the functional form for the marginal cost function for each genset. Firm A
owns two power plants. One power plant has four identical gensets that the
firm operates during the sample period. I refer to this facility as Plant 1. The
gensets at Plant 1 have a maximum capacity of 660 MW and a lower operat-
ing limit of 200 MW. The other power plant has three identical gensets that
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the firm operates during the sample period. I refer to this facility as Plant 2.
The gensets at Plant 2 have a maximum capacity of 500 MW and a lower op-
erating limit of 180 MW. Because it is physically impossible for a genset to
supply energy safely at a rate below its lowest operating limit, I specify a func-
tional form for marginal cost to take this into account. Consequently, I assume
the following parametric functional forms for the two unit-level marginal cost
functions:

Ci(q, B1) = Bio + Bii(g — 200) + Bia(g — 200, (5.10)
Ci(q. B2) = B + Bai(q — 180) + Ba(q — 180>, (5.11)

These functional forms are substituted into (5.2) to construct the sample mo-
ment restrictions necessary to construct the objective function I minimize to
estimate '

B = (Bio, Bi1, Biz, B, Bai, B2

Recall that for each genset the value of q entering (5.10) and (5.11) in the
estimation procedure is the actual level of output produced by that unit during
the half-hour period under consideration. I now turn to summarizing the relevant
features of the NEM1 market in Australia necessary to understand the empirical
work.

6. OVERVIEW OF NEM1

The Victoria Power Exchange (VPX) is the longest-running wholesale elec-
tricity market in Australia. It was established under the Electricity Industry
(Amendment) Act of 1994 and formally began operation on July 1, 1994.
The New South Wales (NSW) State Electricity Market (SEM) began operation
May 10, 1996. NEM1 is the competitive electricity market established jointly

by NSW and Victoria on May 4, 1997. It introduced unrestricted competition
for generation dispatch across the two states; that is, the cheapest available
generation, after allowing for transmission losses and constraints, is called on
regardless of where it is located, and all wholesale energy is traded through
the integrated market. The spot price in each state is determined with electric-
ity flows in and between the state markets based on competitive bids or offers
received in both markets.

* The formation of NEM1 started the harmonization of the rules governing
the operation of the two markets in Victoria and NSW. The market structures
of the two electricity supply industries in Victoria and NSW are similar in
terms of the relative sizes of the generation firms and the mix of generation
capacity by fuel type, although the NSW industry is a little leéss than twice
the size (as measured by installed capacity) of the Victoria industry and the
largest three generators in NSW control a larger fraction of the total generation
capacity in their state than the three largest generators in Victoria control iD
their state. ' '
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Restructuring and privatization of the State Electricity Commission of Victoria
(SECV) in 1994 took place at the power station level.® Each power station was
formed into a separate entity to be sold. All former SECV generation capacity
is now privately owned. The new owners are from within Australia and abroad.
Currently there are eight generating companies competing in the VPX. The
NSW-SEM has four generators competing to supply power. All generating
assets are still owned by the NSW government. There are seven corporatized
state-owned electricity distribution and supply companies serving NSW and
the Australian Capital Territory (ACT). The eventual goal is to privatize both
the generation and supply companies.’

In both Victoria and NSW, there is an accounting separation within the dis-
tribution companies between their electricity distribution business and their
electricity supply business. All other retailers have open and nondiscriminatory
access to any of the other distribution companies wires. In NSW, the high-
voltage transmission grid remains in government hands. In Victoria, the high-
voltage transmission grid was initially owned by the government and was called
PowerNet Victoria. It was subsequently sold to the New Jersey-based U.S.
company, GPU, and renamed GPU-PowerNet. In NSW it is called TransGrid.

- Both the state markets operating under NEM1 — SEM in NSW and VPX in
Victoria — were state-owned corporatized entities separate from the bulk trans-
mission entities.

During 1997, the year of our sample, peak demand in Victoria was approx-
imately 7.2 GW. The maximum amount of generating capacity that could be
supplied to the market was approximately 9.5 GW. Because of this small peak
demand, and despite the divestiture of generation to the station level, three of

; the largest baseload generators had sufficient generating capacity to supply at
’ least 20 percent of this peak demand. More than 80 percent of the generating
plant is coal fired, although some of this capacity does have fuel-switching
capabilities. The remaining generating capacity is shared equally between gas
turbines and hydroelectric power.

During 1997, the NSW market had a peak demand of approximately 10.7 GW
and the maximum amount of generating capacity that could be supplied to the
market was approximately 14 GW. There were two large generation companies,
each of which controlled coal-fired capacity sufficient to supply more than
40 percent of NSW peak demand. The remaining large generators had hydro-
electric, gas turbine, and coal-fired plants. The Victoria peak demand tends to
occur during the summer month of January, whereas peak demand in NSW
tends to occur in the winter month of July.

The full capability of the transmission link between the two states is nomi-
nally 1,100 MW from Victoria to NSW, and 1,500 MW in the opposite direction,

6 Wolak (1999) provides a more detailed discussion of the operating history of the VPX:and
compares its market structure, market rules, and performance to the markets in England and
Wales, Norway and Sweden, and New Zealand.
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although this varies considerably, depending on temperature and systems con-
ditions. If there are no constraints on the transfer between markets, then both
states see the same market price at the common reference node. If a constraint
limits the transfer, then prices in both markets diverge, with the importing .
market having a higher price than the exporting market.

6.2. Market Rules in NEM1

With a few minor exceptions, NEM1 standardized the price-setting process
across the two markets. Generators are able to bid their units into the pool in
" ten price increments that cannot be changed for the entire trading day — the
twenty-four-hour period beginning at 4:00 a.M. and ending at 4:00 a.M. the
next day. The ten quantity increments for each genset can be changed on a
half-hourly basis. Demanders can also submit their willingness to reduce their
demand on a half-hourly basis as a function of price according to these same
rules. Nevertheless, there is very little demand-side participation in the pool. A
few pumped storage facilities and iron smelter facilities demand-side bid, but
these sources total less than 500 MW of capacity across the two markets. All
electricity is traded through the pool at the market price, and all generators are
paid the market price for their energy.

7. RECOVERING IMPLIED MARGINAL COST
FUNCTIONS AND HEDGE CONTRAC
QUANTITIES - S

This section presents the results of applying the procedures described in
Sections 4 and 5 to actual market outcomes. This requires collecting data on
generator bids and market outcomes for a time period in which I also have
information on the half-hourly values of QC, the quantity of the firm’s forward
contract obligations. I was able to obtain this information for a market partici-
pant in the Australian market for the period from May 15, 1997 to August 24,
1997. As discussed earlier, a major source of potential error in this analysis
is the possibility that I have not adequately modeled the actual price-setting
process in the Australian electricity market. Wolak (2000, Section 5) compares
different models of the half-hourly price-setting procedure to determine which
one does the best job of replicating observed half-hourly prices. This analysis
found that the process I use in this paper — setting the half-hourly price equal to
the price necessary to elicit sufficient supply from the aggregate half-hourly bid
supply curve to meet the half-hourly market demand — replicates actual prices
- with sufficient accuracy.

I first compute implied marginal cost estimates using bid data submitted
by Firm A’s competitors, actual market prices, and total market demand. To
give some idea of the range of residual demand curves faced by Firm A within
the same day, Figures 4.2 and 4.3 plot the actual ex post residual demand
curve faced by a firm in a representative off-peak demand period and on-peakK
demand period for July 28, 1997. These curves have been smoothed using
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Figure 4.4. Implied marginal cost.

the expression for the residual demand curve given in (4.4) and (4.5), using a
value of 2 = 1 $AU. These curves confirm the standard intuition that Firm A
possesses greater opportunities to exercise its market power during high market
demand periods as opposed to low market demand periods. At every price level,
Firm A faces a significantly higher residual demand during the high-demand
load period than in the low-demand load period. I use the value of # employed
to plot these figures for all of the results reported in this section. Repeating
these results for values of 4 = 10 $AU and 0.10 $AU did not substantially alter
any of the conclusions reported in the paragraphs that follow.

Figure 4.4 is a plot of the marginal cost and associated output demanded
pairs, (C'(DR(pZ, ¢)), DR( pE, ), for all of the half-hourly market-clearing
prices, p£. The figure also plots the predicted values from the following cubic
regression of the implied marginal cost, C'(q), on ¢, the associated implied
output of Firm A:

C'(q) =a+bg+cqg*+dqg’> +n.

Table 4.1 gives the results of this implied marginal cost function regression.
Although there is a considerable amount of noise in the sample of implied
marginal cost and output pairs, the regression results are broadly consistent with
the magnitudes of marginal costs implied by the heat rates and fuel prices of the
facilities owned by Firm A. In particular, in discussions with the management
of Firm A, they confirmed that their best estimates of their own marginal costs
fluctuate between 15 $AU/MWh and 10 SAU/MWh.
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Table 4.1. Implied marginal cost regression: C(q) = a + bq + cq* + dq°

parameter : Estimate ‘ Standard Error t-Stat
4 31 4.43 7.00
b —2.21 x 1072 4.61 x 1073 —4.78
¢ 8.47 x 1076 1.54 x 1076 5.49
d ~L11x 107 1.61 x 10710 —6.65

I now examine the accuracy of my procedure for estimating the half-hourly
values of QC. This process requires selecting values for the marginal cost at
any given output level. Consistent with the usual circumstances one is likely
to face in market monitoring, I assume that the form of the generator’s cost
function is unknown. Therefore, I perform this procedure by assuming a rough
estimate of the firm’s marginal cost function. I assume a constant value for
the marginal cost for all levels of output. More sophisticated marginal cost
functions can be assumed, but the results with constant marginal cost should
be the most informative about usefulness of this technique in market moni-
toring, because more accurate information on generation unit heat rates and
output rates are generally unavailable. The two values of MC, the fixed level
of marginal cost used in the procedure to recover estimates of QC for each
half-hour, bound the fitted marginal cost curve given in Figure 4.4. These val-
ues are 10 SAU/MWh and 15 $AU/MWHh. Figures 4.5 and 4.6 plot the implied
half-hourly values of QC and the associated actual half-hourly values of QC
for MC equal to 10 SAU/MWh and 15 SAU/MW h, respectively. Both of the
figures also have a graph of the line QC(implied) = QC(actual) to illustrate vi-
sually how closely my procedure tracks the desired relationship between these
two magnitudes. Both values of the marginal cost show a clear positive corre-
lation between QC(implied) and QC(actual), although the consistency with the
desired relationship seems greatest for an MC equal to 10 SAU/MWh.

The values of QC(actual) vary on a half-hourly basis within the day and
across days. However, there are still systematic patterns to these changes within
the day and across days. On average, QC(actual) is higher on weekdays than
weekends and higher during the peak hours of the day than the off-peak hours of
the day. Consequently, another way to determine the usefulness of my procedure
is to see if it captures the systematic variation in the values of QC(actual) within
the day and across days of the week. To do this, estimate the following regression
for both QC(actual) and QC(implied) for all load periods, i =1, ..., 48, and
days,d =1,...,D:

3 6 .
QC(J)id =o + Z P DMN(’n)id + Z VpDWKD(p)id

m=1 p=1
47
+ ) 4, DPD(r);.q + vid, (7.1)

r=I




Implied Quantity (MW)

Implied Quantity (MW)

. 1000 -

Wolak

5000 4

4000 A

3000 |

2000

1000 -
T

T M L L T 1 LA |
1000 2000 3000 4000 5000

Actual Quantity (MW)
" Figure 4.5. (MC = 10 $AU/MW h) Implied vs. actual contract quantities.

6000 -

5000 4

4000 +

3000 4

2000 4

T T——re—r—T— T T T T T T T LN S S S S S B St i et M S B

1000 2000 3000 4000 5000

Actual Quantity (MW)
Figure 4.6. MC = 15 $AU/MW h) Implied vs. actual contract quantities.




Cost Functions by Using Observed Bid Data 161

where DMN(m),, is a dummy variable equal to one when day d is in month m
and zero otherwise, DWKD(p);, is a dummy variable equal to one when day d
is on day-of-the week p and zero otherwise, and DPD(r);, is dummy variable
equal to one when load period i is in load period-within-the-day r and zero
otherwise. I compute estimates of the p,,, y¥,, and ¥, for both QC(actual)
and QC(implied), by estimating (7.1) by ordinary least squares. Table 4.2
reports the results of this estimation for QC(implied) with MC set equal to
10 $AU/MW h. Figures 4.7 and 4.8 plot estimated valuesof y, (p =1, ...,6)
and ¥, (r = 1, ..., 48) for QC(implied) with MC equal to 10 SAU/MWh and
for QC(actual). The first value of y, is associated with Sunday and the ex-
cluded day of the week is Saturday. The first value of ¥, is the half-hour
beginning at 4:00 A.M. and ending at 4:30 A.M. and the excluded load period
is the one beginning at 3:30 A.M. and ending at 4:00 a.M. the following day.
These figures show a remarkable level of agreement between the deterministic
part of the within-day and across-day variation in QC(implied) and QC(actual). -
These results provide strong evidence that even applying my procedure with
this crude assumed marginal cost function yields a considerable amount of in-
formation about the level and pattern of forward contracting that a firm has
undertaken. '

At this point is it important to note that a generation unit owner’s forward
contract position is generally unknown to the market monitor. However, the
analysis given here demonstrates that, with the use of the assumption of expected
profit maximization with data on actual bidding behavior, something that is
readily available to the market monitor, accurate estimates of the hourly levels
of forward contract obligations can be obtained. Consequently, even this very
rough procedure, which relies on best-response pricing, can be a very powerful
tool for determining those instances when a market participant is likely to
attempt to exercise market power in a spot electricity market. As shown in
Wolak (2000), a generation unit owner’s forward contract position is a very
important determinant of the amount of market power that it is able to exercise
in a spot electricity market.

I now examine the properties of my procedure for recovering genset-
level marginal cost functions implied by best-reply bidding. As discussed in
Section 5, Firm A has two types of identical gensets. Consequently, I estimate
two genset-level marginal cost functions, applying the GMM estimation tech-
nique outlined in that section. I compute estimates of these unit-level marginal
cost functions using both the identity matrix and a consistent estimate of the op-
timal weighting matrix. For all of the estimations reported, I assume h = 1 $AU,
although the results did not change appreciably for values of 4 ranging from
0.10 $AU to 50 $AU. : :

Table 4.3 reports the results of estimating C{(g, 1) and C5(q, B2), using the
identity matrix as the weighting matrix and a consistent estimate of the optimal
weighting matrix. Wolak (2001b) proves the consistency of these parameter
estimates under the assumiption that & tends to zero as the number of observa-
tions, D, tends to infinity. This paper also derives an expression for the variance




Table 4.2. Contract quantity regression for QC(implied) for (MC = $10)

Variable Estimate Standard Error t-Stat
Constant 1882.37 59.70 31.53
DWKD1 —126.34 25.02 —5.05
DWKD2 215.72 25.95 8.31
DWKD3. 282.29 25.64 11.01
DWKD4 330.84 25.54 12.95
DWKD35 391.34 25.01 15.65
DWKD6 397.24 25.45 15.61
DMNI1 —12.46 40.29 —-0.31
DMN2 34.90 39.19 0.89
DMN3 398.21 39.10 10.19
DPD1 —165.64 67.18 -2.47
DPD2 —147.10 -67.42 -2.18
DPD3 —26.59 65.32 —0.41
DPD4 —54.94 65.11 —0.84
DPDS 113.07 65.90 1.72
DPD6 315.23 66.53 4.74
DPD7 602.74 65.90 9.15
DPD8 581.09 66.56 8.73
DPD9 654.61 67.07 9.76
DPDI10 674.01 66.62 10.12
DPD11 743.62 66.84 11.13
DPDI12 736.64 67.07 10.98
DPD13 - 777.06 66.18 11.74 .
DPD14 822.59 66.18 1243
DPDI15 898.80 66.18 13.58
DPD16 877.76 66.16 13.27
DPD17 820.91 66.39 12.37
DPDi8 800.76 66.15 12.10
DPD19 757.67 66.15 11.45
DPD20 714.33 66.15 10.80
DPD21 706.38 65.93 10.71
DPD22 648.04 65.72 9.86
DPD23 663.86 65.93 10.07
DPD24 692.77 65.93 10.51
DPD25 741.97 66.14 11.22
DPD26 876.84 65.95 13.30
DPD27 866.17 65.91 13.14
DPD28 793.67 67.74 11.72
DPD29 739.79 67.68 10.93
DPD30 624.01 68.45 9.12
DPD31 695.82 66.32 10.49
DPD32 770.62 66.36 11.61
DPD33 879.34 66.82 13.16
DPD34 858.81 66.38 12.94
DPD35 848.25 67.27 12.61
DPD36 623.35 66.17 9.42
DPD37 739.35 67.07 11.02
DPD38 522.93 66.41 7.87
DPD39 462.97 67.04 6.91
DPD40 432.56 66.62 6.49
DPD41 421.45 67.06 6.28
DPD42 300.60 67.06 4.48
DPD43 145.39 67.06 2.17
DPD44 138.65 66.60 2.08
DPD45 64.44 66.60 0.97
DPD46 87.50 66.13 1.32
DPD47 55.02 65.68 0.84
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Table 4.3. Genset-level marginal cost functions

Plant 1 Plant 2

Identity Optimal Identity Optimal
Box 10.1 - 932 4.36 12.14
SE(Box) (1.23) (1.14) (1.53) 0.74)
Bix —0.002 0.00103 —0.000448 0.0017
SE(B) (0.006) (0.000087) (0.0041) (0.000784)
Bai 0.00000669 0.0000917 0.00031 0.0000686
SE(B%) (0.00001) (0.00001) (0.000085) (0.00001)

Note: SE(B) = estimated standard error of the coefficient estimate, using the asymptotic
covariance matrix given in Hansen (1982).

of the asymptotic normal distribution of these parameter estimates under the
same assumptions.

The coefficient estimates are fairly precisely estimated across the four
columns of results. As expected, the GMM estimates using a consistent es-
timate of the optimal weighting matrix appear to be more precisely estimated.
The optimized value of the objective function from the GMM estimation with
the consistent estimate of the optimal weighting matrix can be used to test the
overidentifying restrictions implied by best-reply bidding. To estimate the six
parameters of Ci(q, B1) and Cj(q, B>), I use seventy moment restrictions —
ten bid increments for seven gensets. From the results of Hansen (1982), the
optimized value of the objective function is asymptotically distributed as a chi-
squared random variable with 64 degrees of freedom — the number of moment
restrictions less the number of parameters estimated — under the null hypothe-
sis that all of the moment restrictions imposed to estimate the parameters are
valid. The optimized value of the objective function using a consistent estimate
* of the optimal weighting matrix is 75.40, which is less than the 0.05 critical
value from a chi-squared random variable with 64 degrees of freedom. This
implies that the null hypothesis of the validity of the moment restrictions given
in (5.1) cannot be rejected by the actual bid data. This hypothesis test implies
that given the parametric genset-unit cost functions in Equations (5.10) and
(5.11), the overidentifying moment restrictions implied by the assumption of
expected profit-maximizing behavior by Firm A cannot be rejected.

Figures 4.9 and 4.10 plot the estimated genset-level marginal cost functions
for Plant 1 and Plant 2 along with pointwise 95 percent confidence intervals
for the case of the consistent estimate of the optimal weighting matrix esti-
mation results. Using the identity matrix as the GMM weighting matrix did
not yield significantly different results. The confidence intervals indicate that
the marginal cost curves are fairly precisely estimated. The results-are broadly
consistent with the results for the case of best-reply pricing. However, consider-
ably more insight about the structure of Firm A’s costs can be drawn from these
results. Specifically, these results indicate the Plant 1 gensets are, for the same
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output levels, lower cost than Plant 2 gensets. This result was also confirmed
by discussions with plant operators at Firm A and the fact that Plant 2 gensets
are used less intensively by Firm A than are Plant 1 gensets.

The other result to emerge from this analysis is the increasing, convex
marginal cost curves for all cases except the identity weighting matrix and
the Plant 1 genset. One potential explanation for this result comes from dis-
cussions with market participants in wholesale electricity markets around the
world. They argue that genset owners behave as if their marginal cost curves
look like those in Figures 4.8 and 4.9 because they are hedging against the risk
of unit outages when they have sold a significant amount of forward contracts.
Because of the enormous financial risk associated with losing a genset in real
time combined with the inability to quickly bring up another unit in time to meet
this contingency, generation unit owners apply a large and increasing opportu-
nity cost to the last one-third to one-quarter of the capacity of each genset. That
way they will leave sufficient unloaded capacity on all of their units in the hours
leading up to the daily peak so that they can be assured of meeting their forward
financial commitments for the day even if one of their units is forced out.

This desire to use other units as physical hedges against the likelihood of

-a forced outage seems to be a very plausible explanation for the form of the
marginal cost functions I recover, in light of the following facts about Firm A.
First, during this time period, Firm A sold forward a large fraction of its expected
output, and in some periods even more than its expected output. Second, all of
Firm A’s units are large coal-fired units, which can take close to 24 hours to
start up and bring to their minimum operating level. Both of these facts argue in
favor of Firm A’s operating its units as if there were increasing marginal costs
at an increasing rate as output approached the capacity of the unit.

8. IMPLICATIONS FOR MARKET MONITORING
AND DIRECTIONS FOR FUTURE RESEARCH

There are a variety of uses for these results in market monitoring. Perhaps the
most obvious is in constructing an estimate of the magnitude of variable profits
earned by the firm over some time period. A major topic of debate among
policymakers and market participants is the extent to which price spikes are
needed for generation unit owners to earn an adequate return on the capital
invested in each generating facility. This debate is particularly contentious with
respect to units that supply energy only during peak periods. The methodology
presented in this paper can be used to inform this debate.

Using these estimated marginal cost functions and actual market outcomes,
one can compute an estimate of the magnitude of variable profits a generating
unit earns over any time horizon. This information can then be used to determine
whether the variable profit level earned on an annual basis from this unit is suf-
ficient to adequately compensate the owner for the risk taken. This calculation
should be performed on a unit-by-unit basis to determine the extent to which
some units earn higher returns than other units. By comparing these variable
profit levels to the annual fixed cost and capital costs of the unit, one can make a




determination of the long-term profitability of each unit. Borenstein, Bushnell,
and Wolak (2002) present a methodology for computing marketwide measures
of the extent market power exercised in a wholesale electricity market. They
apply their procedure to the California electricity market over the period'from
June 1998 to October 2000. These sorts of results should provide useful input
into the regulatory decision-making process on the appropriate magnitude of
allowable price spikes and the necessity of bid caps in competitive electricity
markets. Determining the answers to these questions is particularly important
in light of the events in all wholesale electricity markets throughout the United.
States during the summers of 1999 and 2000.

The framework outlined here can be extended in a number of directions. One
extension involves using these methods in multisettlement electricity markets
such as the California electricity supply industry. Here market participants make
day-ahead commitments to supply or demand a fixed quantity of electricity
and then purchase or sell any imbalance energy necessary to meet their actual
supply and demand obligations in the ISO’s real-time energy market. In this
case the generator’s profits from supplying electricity for the day are the result of
selling into two sequential electricity markets. Consequently, one way to model
this process is to assume best-reply pricing for the firm in both markets (and
that the firm knows that it will attain best-reply prices in the real-time market
when bidding into the PX market) and derive the implied marginal cost for the
generator. Preliminary results from applying this procedure to California ISO
and PX data are encouraging. Extending this procedure to the case of best-reply
bidding in both markets is significantly more challenging.

A second direction for extensions is to specify Firm A’s cost function as a
multigenset cost function such as C(qy, ..., g7, B). Assuming this functional
form, I can examine the extent to which complementarities exist in the operation
of different units. The marginal cost function for a given genset could also be
.generalized to allow dependence across periods within the day in the marginal
cost of producing in a given hour, so that the variable cost for genset k might take
the form Ci(qix, - - - » qas.k» Br), to quantify the impact of ramping constraints
and other factors that prevent units from quickly moving from one output level
to another. '
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