
RAND Journal of Economics
Vol. 0, No. 0, May 2024
pp. 1–32

Search with learning in the retail gasoline
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This article estimates a model of optimal search where consumers learn the distribution of gaso-
line prices during their driving trips. Our model incorporates traffic information and leverages
this ordered search environment to recover parameters of the search and learning process using
only station-level price and market share data. We find that learning is a crucial component of
search in this market. Consumers’ prior beliefs regularly deviate from the true price distribution
but are updated quickly following each new price observation. Counterfactuals reveal how these
learning dynamics generate asymmetric search patterns commonly associated with asymmetric
cost pass-through.

1. Introduction

� Since Stigler (1961) and McCall (1970), consumer search models have played an important
role in explaining imperfectly competitive behavior in many markets. Consumers in these models
tradeoff the cost of searching to acquire additional price information against the expected benefit
of search, derived from consumers’ beliefs about the price distribution. Standard search models
rely on the convenient, yet strong, assumption that consumers know the true price distribution,
thereby simplifying the calculation of consumers’ gains from search. In many cases, however,
when the prices in a market are unfamiliar to consumers or the price distribution changes reg-
ularly with market conditions, consumers are unlikely to know the price distribution with any
degree of certainty.1 Rothschild (1974), Dana (1994), and Benabou and Gertner (1993), among
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1 For example, Matsumoto and Spence (2016) and Jindal and Aribarg (2021) use survey and experiments to elicit
price beliefs and find that consumers have prior price beliefs different from the actual price distribution and update their
beliefs in response to search outcomes.
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others, have relaxed this assumption, developing theoretical models of search with learning where
consumers engage in costly search not only to reveal the prices of particular sellers but also to
learn about the actual price distribution. Nevertheless, empirical studies of search behavior have
largely continued to leverage the assumption that consumers search from a known price distribu-
tion.

In this article, we relax the assumption of a known price distribution and estimate a model
of optimal search by consumers who may be unaware of the true price distribution but update
their prior beliefs as they search. We are able to estimate the parameters governing the consumer
learning process by taking advantage of the fact that price draws occur in a known sequence. In
many contexts, prices are revealed based on the order in which consumers encounter different
sellers as they navigate through the marketplace. For example, consumers observe prices in a
specific order as they pass sellers within a market or scroll down a list of products on an online
shopping website. In our setting, we leverage a crucial observation in the retail gasoline market:
consumers are likely to search and learn the distribution of prices during their driving trips. This
feature allows us to recover the parameters of our model from observed prices, station market
shares, and the volume of traffic that passes each gas station.

Estimates of this model offer several new insights. First, in contrast to the known price
distribution assumption, we find that consumers’ initial priors often differ significantly from
the true price distribution, resulting in what we refer to as a biased prior.2 Second, we find
that consumers are relatively uncertain about their prior beliefs and, therefore, learn quickly
from observed prices. Third, the model reveals how biased beliefs and learning influence search
behavior and demand. These insights clarify a mechanism through which price fluctuations can
asymmetrically influence search. Such asymmetric search patterns are commonly cited as an
explanation for why cost increases and decreases are passed through asymmetrically in a wide
variety of product markets (Peltzman, 2000).3

The retail gasoline market is an ideal environment to study consumer search and learning be-
havior. Frequent price changes resulting from a volatile wholesale cost, as presented in Figure 1,
make it difficult for consumers to maintain accurate information on each station’s price as well
as the distribution of these prices in the market. Our analysis of search introduces two important
components that are likely to characterize consumers in this environment. First, consumers are
assumed to be uncertain about the price distribution. Second, consumers’ prior beliefs are likely
to differ from the empirical price distribution.

To capture these features, we propose a sequential search model with learning that builds on
Rothschild (1974), emphasizing spatial and ex ante vertical differentiation of sellers. Forward-
looking consumers start from diffuse prior beliefs likely influenced by prices observed during
past driving trips. As consumers encounter a new price observation along their predetermined
travel route, they update their beliefs about the price distribution in a Bayesian fashion before
deciding whether to purchase gasoline or continue searching. Consumers stop at a station when
the realized utility is higher than the continuation value of search conditional on their posterior
beliefs. The continuation value of search summarizes the expected value of purchasing at the
remaining stations along a route and the alternative of waiting to purchase during a future trip
where they might encounter better offers. However, postponing a purchase becomes difficult if
one is low on gas. Thus, the search friction in this market takes the form of postponement costs.

To estimate the model, we utilize a panel dataset of station-specific prices and quantities
for gasoline stations in a small city from December 20, 2014, to May 31, 2016, and combine it
with data on traffic flows in the city. Based on the assumption that price search is ordered and
determined by driving patterns, we can construct an empirical distribution of search sequences of

2 For brevity, we use prior bias to refer to the notion that consumers’ prior mean of the price level does not neces-
sarily match the true average price. It is rational for consumers to have beliefs different from the true price distribution
when they only observe past prices and noisy signals of current prices.

3 Asymmetric pass-through is particularly common and well documented in gasoline markets (Borenstein,
Cameron, and Gilbert, 1997; Lewis, 2011) and is similarly prevalent in our sample (see Figure 1).
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WU, LEWIS, AND WOLAK / 3

FIGURE 1

AVERAGE RETAIL GASOLINE PRICE LEVEL AND WHOLESALE COST

Notes: This figure plots both the average gasoline price in our sample before federal and state taxes are applied and the
Gulf Coast regular spot price as a measure of wholesale cost of retail gasoline.

gasoline stations using the traffic data. Total daily gasoline sales at each station are then modeled
as an aggregation of the purchase decisions of individuals searching and learning along different
travel routes.

Our novel utilization of traffic data also allows us to more realistically model the search
behaviors in the retail gasoline market without losing tractability. By replacing the common ran-
dom sampling assumption with ordered search determined by observed traffic flows, our model
allows substitution patterns to depend on the amount of traffic stations share. In addition, we are
able to introduce publicly observable vertical differentiation of sellers, allowing consumers to
be familiar with the time-invariant characteristics of the stations they regularly encounter along
their driving routes.

Our search with learning model nests the standard search model with a known price distribu-
tion, providing us the opportunity to test empirically the assumption of a known price distribution
in the context of the retail gasoline market. Our estimation results suggest that consumers’ initial
prior beliefs are significantly biased. Specifically, the average absolute difference between the
estimated prior mean and the actual price level is 2.7 cents per gallon (cpg), approximately 3.3
times the size of the average day-to-day price change. However, consumers put relatively little
weight on these priors, updating beliefs rather quickly and considerably reducing the bias after
a few current price observations. The findings overwhelmingly reject the null hypothesis of a
known price distribution which assumes both a correct price belief and no learning. They also
highlight the importance of accounting for learning when analyzing search behavior. Learning
occurs rapidly in our context, and models with learning produce much more accurate predictions
of consumer behavior. Estimates from a restricted version of the model with no learning fail to
identify prior bias and overestimate the median postponement costs by approximately 33%.

Estimating a structural model of search with learning also provides a powerful framework
for examining the nature of spatial competition in the market. Demand is estimated to be highly
elastic at the station level. A typical station has an estimated own-price elasticity of -8, similar to
the findings in Wang (2009). In addition, the traffic data allow the model to generate realistic sub-
stitution patterns across stations. If an additional 15% of a station’s passing traffic has previously
driven past a neighbor station, the cross-price elasticity between the two stations is predicted to
be 0.64 higher, sufficient to move the station pair from the 5th percentile to the 95th percentile of
the cross-price elasticity distribution.

C© The RAND Corporation 2024.
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Incorporating learning into the search environment helps explain important patterns that
alternative models can not capture. For example, a non-trivial share of competing stations are
found to have negative cross-price elasticities of demand, which can arise because the informa-
tion conveyed by one station’s price can impact consumers’ beliefs about prices at subsequent sta-
tions. Learning also creates an environment where station-level demand elasticities can change
over time with price fluctuations. We estimate demand to be more elastic when prices are ris-
ing than when prices are falling, creating an environment in which cost changes can be passed
through asymmetrically. In a counterfactual exercise, we investigate how the learning process
influences demand asymmetry. We find that when past price levels more heavily influence prior
beliefs about the distribution of prices, demand elasticities respond more asymmetrically to price
changes. However, conditional on the degree of prior bias, higher prior uncertainty leads to less
asymmetric demand.

The remainder of the article is organized as follows. Section 2 places our work in the context
of related literature. Section 3 introduces the data used to estimate our model. Section 4 presents
descriptive statistics and key features of the market that motivate our model. The model of search
with learning is introduced in Section 5, and the estimation strategy and model identification
process are discussed in Section 6. Section 7 presents the estimation results. Section 8 discusses
our counterfactual analysis. Section 9 concludes.

2. Related literature

� Much of the empirical literature on consumer search quantifies search frictions and em-
phasizes their importance in various markets based on the assumption that consumers know the
distribution of offers or match values (e.g., Hortaçsu and Syverson, 2004; Hong and Shum, 2006;
De los Santos, Hortaçsu, and Wildenbeest, 2012; Koulayev, 2014; Honka, 2014; Nishida and Re-
mer, 2018; Lin and Wildenbeest, 2020; Moraga-González, Sándor, and Wildenbeest, 2022).4 We
build on this literature by incorporating consumers that learn about the true price distribution as
they search, and show this to be an important aspect of behavior in the retail gasoline market.
Our work adds to a developing body of empirical research on consumer search with learning.
Both Koulayev (2013) and De los Santos, Hortaçsu, and Wildenbeest (2017) empirically analyze
models of search with learning and show that ignoring learning can bias search cost and elasticity
estimates. However, they do not estimate the learning process and take prior beliefs as given. In
contrast, we develop an empirical strategy to identify both prior uncertainty and prior bias using
only aggregate data. Several more recent studies have modeled learning behavior in settings dif-
ferent from ours. Ursu, Wang, and Chintagunta (2020) estimate a sequential search model where
consumers search to learn their individual match values for restaurants on a review website. Their
estimates suggest a high prior uncertainty that rationalizes the considerable time consumers spent
searching each restaurant. Hu, Dang, and Chintagunta (2019) develop a dynamic model of search
and Dirichlet learning to study consumers’ purchase behavior on Groupon. They find that new
consumers have an overly optimistic prior about the distribution of deal quality. Through their
interaction with the website over time, consumers have more certain and accurate beliefs about
the quality distribution. Consumer learning explains the observed declines in click-throughs and
increases in conditional purchase probability. However, unlike our study, estimation in each of
these articles requires individual search and purchase history data.

The underlying consumer search process and identification method employed in our model
also differ from the existing literature. A number of studies have developed methodologies to
estimate search costs using only aggregate data (e.g., Hortaçsu and Syverson, 2004; Hong and
Shum, 2006; Moraga-González and Wildenbeest, 2008; Wildenbeest, 2011). These studies over-
come the curse of dimensionality when integrating over the unobserved search sequences by
applying the assumption of random sampling and ex ante product homogeneity. We propose a

4 See Ellison (2016) and Honka, Hortaçsu, and Wildenbeest (2019) for a review of the studies on consumer search.

C© The RAND Corporation 2024.

 17562171, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1756-2171.12466 by U

niversité T
oulouse 1 C

apitole, W
iley O

nline L
ibrary on [06/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



WU, LEWIS, AND WOLAK / 5

new estimation strategy for settings where the order of price observations is determined by how
consumers navigate through the marketplace. In particular, we replace the random sampling as-
sumption with variation in search sequences identified using data on driving patterns. With this
approach, we can introduce learning and ex ante seller differentiation into a sequential search
setting without losing tractability. Additionally, we can allow for more realistic substitution pat-
terns between stations. Our search technology also differs from the literature on sequential search
for ex ante differentiated products (e.g., Weitzman, 1979; Kim, Albuquerque, and Bronnenberg,
2010, 2017) in that we model consumer search order as exogenously given by the traffic data
rather than endogenously determined by the decreasing order of reservation utilities.5

Moreover, our article provides valuable insights into extensive literature on retail gasoline
price dynamics. A large body of empirical research provides evidence of asymmetric cost pass-
through in the retail gasoline market (e.g., Borenstein, Cameron, and Gilbert, 1997; Lewis and
Noel, 2011; Byrne, 2019). Tappata (2009), Yang and Ye (2008), and Lewis (2011) develop theo-
retical models showing such pricing behavior can arise when consumers have imperfect knowl-
edge of the price distribution. Lewis and Marvel (2011) and Byrne and de Roos (2017) offer
evidence of the influence of price movements on search activity and illustrate that observed pat-
terns of asymmetric cost pass-through and fluctuations in price dispersion are consistent with the
search dynamics. However, little is known about consumers’ price beliefs. Our structural model
contributes to this literature by estimating how consumers form their price beliefs in this market.
We demonstrate how learning primitives, prior bias and prior uncertainty, cause the intensity of
consumer search and the elasticity of demand faced by stations to change over time in response to
gas price fluctuations. Therefore, this article brings together two streams of literature, structural
analysis of consumer search and research on cost pass-through in the retail gasoline market.

Our analysis also relates to the broad set of studies examining and modeling spatial compe-
tition and its consequences, particularly those using spatial information on consumers to identify
the intensity of competition (e.g., Smith, 2004; Thomadsen, 2005; Davis, 2006; Manuszak and
Moul, 2009; Houde, 2012; Miller and Osborne, 2014). These studies incorporate the distance
between sellers and consumers into a discrete-choice demand framework while assuming full
information. In particular, our model is most similar to that of Houde (2012), who also uses road
network structure and traffic flow volume to determine the degree of spatial competition between
stations. However, we incorporate imperfect price information and learning, allowing consumers’
expectations to be influenced by past price levels. Therefore, a unique feature of our model is that
a station’s demand and the elasticity it faces can change over time with fluctuations in consumers’
beliefs about the price distribution. Moreover, search and learning allow for a different structure
of cross-price elasticities than the full-information spatial model of Houde (2012). For example,
in some circumstances, negative cross-price elasticities can arise between competing sellers as a
result of the information conveyed through prices.

3. Data

� We use aggregate data to make inferences about consumers’ search and learning behavior
that leads to gasoline purchases. Our sample consists of 46 gasoline stations in a small city with
an urbanized area population of approximately 75,000.6 The sample period runs from December
20, 2014, to May 31, 2016, for a total of 529 days, during which time we observe the daily price
of gasoline at all 46 stations and the daily gasoline transaction volume for 33 of these stations.7

5 Our ordered search can be interpreted as a special case of Weitzman’s sequential search where the costs of devi-
ating from the current travel route are much larger than the potential gains.

6 The city name is not disclosed to protect the identities of the gas stations.
7 Because our primary focus is to study search behavior for gasoline, we exclude 14 mom-and-pop establishments

that operate primarily as convenience stores and have a gasoline sales volume lower than the smallest station in the
sample.
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We complement the gasoline price and quantity data with data on vehicle traffic flows for our
sample region. We use this traffic data to construct search sequences of stations in the city. The
following subsections describe the three primary data sources used for our empirical analysis.

Gasoline price data. The per-gallon price of regular unleaded gasoline is collected from two
separate gasoline price reporting websites. The primary source is MapQuest.com, an online web
mapping service whose gasoline price data are provided by the Oil Price Information Service
(OPIS).8 We record prices from MapQuest.com once per day for every station in the city. Unfortu-
nately, MapQuest (OPIS) does not update every station’s price daily. On average, a station’s price
is updated on 54% of the sampled days.9 To address the issue, we complement MapQuest.com’s
data with price data collected daily from GasBuddy.com.10 Unlike MapQuest.com, prices on
GasBuddy.com are reported by volunteer spotters in the area. To minimize any issues caused
by the potential inaccuracy of prices reported on GasBuddy.com, we only use prices from Gas-
Buddy.com when MapQuest.com does not report the corresponding price for that station on that
day.11 Stations are matched across the two data sources based on the geographic coordinates of
the stations, cross-validated with Google Map’s geographic coordinates to ensure accuracy.12 Af-
ter merging the price data from these two sources, station prices are missing for only 9.2% of
the sample days. The remaining missing prices are replaced with the most recent price observed
at that station. The average duration over which prices are imputed is 1.6 days.13 Besides price
data, we also obtain information on station characteristics from these sources, including name,
brand, address, and geographic coordinates. Moreover, we visit Google Street View and manually
collect additional information such as the number of islands and pumps and street conditions for
each station.

Gasoline transaction data. Daily station-level expenditure data have been obtained from a ma-
jor financial services provider for 33 of the 46 stations in our price sample.14 These data reflect the
total dollar amount of purchases made using debit and credit cards associated with the provider’s
purchase processing network at each station on each day. Pay-at-pump and in-store purchase
totals are reported separately. To eliminate the measurement error caused by non-gasoline trans-
actions, we use pay-at-pump transactions only. A daily measure of the quantity of gasoline pur-
chased at each station is constructed by dividing the total pay-at-pump expenditures by the price
of regular unleaded gasoline at the station on that day.15 Although this quantity measure excludes
gasoline purchased with cash or in the store, around 72% of consumers purchase gasoline at the
pump (NACS 2016 Retail Fuels Report: https://www.convenience.org/Topics/Fuels/Documents/
2016/2016-Retail-Fuels-Report). Therefore, we believe that our measure of the quantity of

8 OPIS obtains price information from credit card transactions and direct feeds from gas stations.
9 The price coverage rate is slightly lower than other studies that use OPIS data. A possible reason is that the sample

city is mid-sized and has more low-volume stations than the major cities studied by other researchers. Fewer credit card
transactions result in fewer price feeds to OPIS.

10 Gasoline price data collected from MapQuest.com and GasBuddy.com are widely used in the literature on retail
gasoline prices, for example, Lewis and Marvel (2011) and Remer (2015).

11 Atkinson (2008) shows that prices on GasBuddy.com can accurately identify the features of retail gasoline price
competition despite occasional errors. GasBuddy.com price data match that from MapQuest.com for 76% of the days
when both are available. A closer data investigation reveals that most unmatched prices are likely due to intra-day
price changes.

12 A station’s name or address cannot be used as a unique identifier for the matching because a station’s name is not
unique to a station, and different websites may use different aliases for a street or highway.

13 Our estimation cannot accommodate missing prices because a station’s price affects many stations’ sales through
the traffic network. One missing price will result in a large number of lost observations.

14 The name of the provider as well as the station names and locations in the data are withheld to protect
confidentiality.

15 This construction introduces potential measurement error, as it overestimates the quantity transacted for mid-
grade and premium gasoline, which have higher prices. However, it has been estimated that only 15% of gasoline trans-
actions are mid-grade or premium.
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gasoline transacted at each station reasonably describes the behavior of consumers searching
for and purchasing gasoline.

Empirical distribution of search routes. As individuals drive along their travel routes, the de-
cision to purchase gasoline at a particular station is affected by the prices observed up to this
station as well as the characteristics of the remaining stations along the route. Consequently, we
model consumers’ search and purchase decisions at the search-route level. A search route is de-
fined as a unique ordered sequence of stations visited, exogenously determined by consumers’
travel needs.

The empirical distribution of search routes describes the predicted share of drivers traveling
along each possible ordered sequence of stations on an average day. Its construction involves two
elements: (i) the number of drivers traveling from an origin to a destination and (ii) the route
drivers take along the street network connecting the two points.

For the first element, we use the origin-destination travel demand estimates for local res-
idents produced by the state Department of Transportation,16 which report an estimate of the
average number of drivers traveling from one Traffic Analysis Zone (TAZ) to another TAZ. The
origin-destination table spans a seven-county area around the focus city and contains approxi-
mately 1800 TAZs. Most TAZs are relatively small, with 75% of the traffic zones occupying an
area of less than 1.5 km2. The larger traffic zones have few residents and are at the fringe of
the counties.

To compute the route drivers take traveling from an origin TAZ to a destination TAZ, we
assume that all drivers take the route that minimizes driving time. We select the centroid of the
origin and destination TAZ as the drivers’ start and end locations and determine the single fastest
travel route for every origin and destination TAZ pair based on the street network in the area.17

The ArcGIS Network Analyst package is used to calculate the fastest travel route, with road
network data obtained from ArcGIS StreetMap North America.18

Next, we identify the stations along each travel route and the order in which they are passed.
Figure 2 provides an example of a travel route connecting a starting location A and an ending
location B, including the three stations available to drivers on this route. In many cases, it is
difficult for drivers to visit stations on the opposite side of the street because some left-turns
cannot be easily made. To consider the potential cost of making left-turns in the model, we also
record the side of the street a station is on along each route. We discuss the different left-turn
types and their difficulties in the next section.

A search route in our model is formally defined by a specific sequence of stations. As mul-
tiple travel routes (origin and destination pairs) may pass the same set of stations in the same
order, travel routes are aggregated to the search-route level.19 A total of 991 search routes are
identified at the beginning of the sample, and the number increases to 1046 after two additional
stations enter the market.20 The number of travelers on a search route is constructed by summing
up all drivers traveling past the same ordered set of stations (and only those stations). Dividing
it by the total number of daily travelers in the area produces a vector of the share of travelers on
each search route.

16 The Origin and Destination Table is an output of the travel demand model constructed by the Department of
Transportation to forecast the traffic in the year 2020.

17 To reduce the computation burden, we grouped the TAZs in each of the surrounding counties into 8 clusters of
TAZs based on their locations using the K-Mean algorithm.

18 ArcGIS Network Analyst extension: https://www.esri.com/en-us/arcgis/products/arcgis-
network-analyst/overview. StreetMap North America: https://www.arcgis.com/home/group.html?id=
ddd06a0bde9c45a1b3e786a2b4e695e8#overview.

19 Travel routes passing no stations are excluded from the sample. We also exclude search routes with fewer than
20 daily drivers.

20 In the structural estimation, the sample periods are divided into three parts based on the entry date. The empirical
analysis is based on the empirical distribution of search routes in each period, respectively.
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FIGURE 2

A TRAVEL ROUTE WITH STATIONS PASSED

Notes: This figure represents the road network of a random location. The driving time is less than 5 minutes.

Although our daily station-level gasoline expenditure data provide many advantages, there
are a few limitations. First, expenditure data are only observed for around 70% of the stations
in the market. Our model predicts demand at every station, but the identification is based on the
stations with observed quantity data. Variation in observed station characteristics is also limited,
so the vertical differentiation of sellers is incorporated into the model based on station type. To
maintain group size and protect each retailer’s identity, we apply three brand dummies to account
for brand heterogeneity: one dummy for major-branded stations and two for retailer brands. The
remaining stations are collectively classified as generic stations. Additionally, we include a small
station dummy and a large-format station dummy to control for the station scale.

Stations located near Interstate Highway exits also present a challenge. The origin-
destination traffic data only describe the travel patterns of local drivers, so potential demand
from Interstate drivers is not accurately reflected. Interstate drivers also observe prices and make
purchase decisions very differently than the local drivers modeled in this article. To more accu-
rately capture demand at these stations, our model includes a separate dummy variable to account
for the average differences between the model predicted and the observed market shares for each
station located at an Interstate Highway exit.

4. Retail gasoline market overview

� Before introducing the structural model, we discuss the features in the retail gasoline mar-
ket that motivate our modeling choice. More specifically, we first examine the relationship be-
tween the station average transaction volume and station characteristics. We then discuss why
consumers are likely to have imperfect price information and why it is important to incorporate
learning when modeling consumer search in this market.

Station transaction volume and station characteristics. Table 1 summarizes the station-level
average prices and quantities as well as some important station characteristics. The top panel
provides statistics for all of the stations in the city, whereas the lower panels separately con-
sider specific station types. Average gasoline prices vary somewhat across stations, exhibiting
an interquartile range of 10 cents per gallon around a city-wide average of $1.61 per gallon
(before taxes). Considerably more heterogeneity is exhibited in station-level average transac-
tion volume. Among the 33 stations for which we observe quantity data, the 75th percentile
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WU, LEWIS, AND WOLAK / 9

TABLE 1 Summary Statistics of the Station Characteristics

Obs. Mean SD 25% 50% 75%

Panel (a): All Stations
Avg. Price ($/gal.) 46 1.61 0.06 1.58 1.59 1.68
Avg. Quantity (gal.) 33 978.09 1207.78 235.76 396.09 1525.02
Major Brands 46 0.37 0.49 0.00 0.00 1.00
Number of Islands 46 3.59 1.73 2.00 3.00 5.00
Easy Left-Turns 46 0.26 0.44 0.00 0.00 0.75
No Left-Turns 46 0.28 0.46 0.00 0.00 1.00
Direct Traffic (1000s) 46 11.52 4.99 8.32 10.66 15.09

Panel (b): Small Stations
Avg. Price ($/gal.) 25 1.63 0.06 1.59 1.61 1.69
Avg. Quantity (gal.) 19 379.58 372.86 206.64 253.93 376.10

Panel (c): Large-Format Stations
Avg. Price ($/gal.) 5 1.57 0.01 1.56 1.57 1.58
Avg. Quantity (gal.) 5 2947.87 1508.80 2217.85 2239.35 2572.08

station sells 6.5 times more gasoline than the 25th percentile station. Major-branded stations such
as Shell, BP, and Exxon, among others, account for approximately 37% of the stations in the
city.

On some streets, it may be difficult for drivers traveling in a certain direction to visit stations
on the opposite side of the street. For this reason, we classify three types of stations based on
left-turn difficulty. Approximately 26% of our sample stations can be easily visited by drivers
traveling on both sides of the street. These include stations on two-lane or multi-lane roads with
a left-turn zone in the center. Another 28% of the stations are located where no left-turns are
possible because the street has a physical curb or median in the center. The remaining stations
are located at major intersections with a traffic light. Casual observation suggests that drivers
are likely to forgo possible price savings at these stations to avoid waiting for the left-turn traffic
light, especially when the intersection is busy. To provide a conservative measure of the number
of consumers each station faces, we define a station’s direct traffic as the number of drivers who
can easily visit the given station, which includes drivers driving on the same side of the street
as the station or on the opposite side of the street where a left-turn can be easily made without
involving a traffic light. As shown by the last row of the top panel, 11.5 thousand drivers directly
drive past a station on average.

Panel (a) of Figure 3 depicts a positive relationship between the direct traffic volume and
the transaction volume at a station, both measured in logarithms,21 revealing that stations passed
by more drivers also sell more gasoline.22 There is significant variation around this relationship,
suggesting that other station attributes such as price reputation and brand quality may also in-
fluence station sales. Nevertheless, the pattern demonstrates the advantage of using traffic data
to simulate consumers’ search patterns for gas stations. Other empirical studies of consumer
search (e.g., Hong and Shum, 2006; Wildenbeest, 2011; Nishida and Remer, 2018) have typically
adopted an equal-probability random sampling assumption when individual search histories and
quantity data are not observed. Our data suggest that consumer search along travel routes better
represents consumer behavior than the random sampling assumption.

In recent years, stations with a large number of islands and a large convenience store at-
tached are becoming increasingly popular (e.g., Noel, 2016). We group stations into three cate-
gories based on their scale: large-format retailers, small-sized stations, and mid-sized stations. In

21 We exclude the stations at the exit of the interstate highway from this figure because we do not have data mea-
suring highway traffic volume.

22 The correlation between the average gasoline transaction volume and the passing traffic volume is 0.28, similar
to the correlation of 0.3 reported by Houde (2012).
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10 / THE RAND JOURNAL OF ECONOMICS

FIGURE 3

STATION TRAFFIC CHARACTERISTICS

Notes: The slope of the log-linear fitted line in Panel (a) is 1.26, significant at 5 percent level.

particular, we define large-format stations as retail stations with at least six islands.23 All large-
format stations in our sample have a sizable convenient store attached. In contrast, small stations
have no more than three islands, with a small booth in the center. The remaining stations are cat-
egorized as mid-sized stations. The bottom two panels in Table 1 describe the price and quantity
distributions for the small and large-format stations. Although the average price at large-format
stations is, on average, six cpg cheaper than at small-sized stations, the average daily sales vol-
ume at large stations is 7.8 times greater than at small stations. Notably, large-format stations
all have average prices in the lowest quartile of the city distribution, whereas their average sales
volumes are all in the highest quartile. The negative correlation between stations’ average price
and average sales volume is consistent with consumers preferring stations with a reputation for
lower prices.

Our traffic data also reveal that drivers pass enough stations to allow them to search without
deviating from their travel routes, as we assume later in the structural model. All stations in our
sample display their prices on large signs, so passing traffic in both directions can easily observe
prices. Panel (b) and (c) of Figure 3 show the distributions of the number of prices drivers see
as well as the number of stations they directly drive past along their travel routes. On average,
a driver sees 3.5 prices and directly drives past 2.2 stations along their travel route. Thus, the
number of options for drivers is comparable to the number of stores searched by consumers
before purchases in other markets documented by the search literature.24

Two types of price uncertainty. Frequent price changes in the retail gasoline market make it
difficult for consumers to maintain accurate price information. Figure 4 shows the distribution
across days of the proportion of stations changing their price from the previous day. The average
probability of such a price change is 32%.25 Frequent price changes generate two types of un-
certainty in the market: (i) ex ante uncertainty about the price at each station and (ii) uncertainty

23 An island is an elevated platform where pumps are located. The number of islands provides a better measure on
the station scale than the number of pumps. A small station can have four or more pumps cramped on an island, whereas
a large-format station generally has two pumps sitting on an island.

24 Using data on individual online browsing and purchase histories, De los Santos, Hortaçsu, and Wildenbeest
(2017) find consumers visit on average 2.82 online retailers before buying an MP3 player, and De los Santos (2018) finds
consumers searched 1.3 online bookstores before purchasing a book.

25 This number is only a conservative measure of the proportion of stations with price changes on a day due to
missing prices. Some price changes are likely not recorded.
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WU, LEWIS, AND WOLAK / 11

FIGURE 4

PROPORTION OF STATIONS CHANGING PRICE FROM PREVIOUS DAY

about the overall price level in the market. To further analyze the different sources contributing
to these two types of uncertainty, we perform the following regression,

pjt =
J∑

j=2

ψ jStationj +
T∑

t=1

γtDayt + ν jt, (1)

where the price at station j on day t is decomposed into a station fixed effect ψ j, a day-of-sample
fixed effect γt , and an idiosyncratic error term ν jt .

Using this decomposition, overall variation in price can be viewed as the sum of persistent
price differences across stations, captured by station fixed effects ψ j and a time-variant com-
ponent p̃ jt = γt + ν jt . The time-variant price, p̃ jt , combines the day-of-sample fixed effect, γt ,
which is driven by changes in aggregate market conditions (e.g., wholesale cost) common to all
stations, and the station-day-specific price shock, ν jt .

Drivers regularly observe prices during everyday driving and are likely to be relatively
knowledgeable about which stations tend to have higher or lower prices. In contrast, drivers
are largely unaware of the wholesale market conditions responsible for fluctuations in the aver-
age retail price of gasoline (except what they might infer from recently observed prices), and,
on any given day, they don’t know which stations are charging unusually high or low prices un-
til they begin searching. Our empirical model captures these institutional features by assuming
that average price differences across stations, reflected by station fixed effects ψ j, are known
by consumers so that their uncertainty over prices results entirely from temporal price varia-
tion. This structure allows for the possibility that customers respond more strongly when a sta-
tion begins consistently offering a lower price (which becomes known to consumers) than when
a station offers an abnormally low price on a given day (which would not be known prior to
search).

Fluctuations in station prices relative to one another are represented by the station-day-
specific price shocks, ν jt (e.g., Lewis, 2008). Chandra and Tappata (2011) provide direct empir-
ical evidence of such variation, showing that gasoline station pairs exhibit reversals from their
normal price ordering approximately 15% of the time. This variation creates uncertainty by pre-
venting consumers from knowing a station’s location in the current price distribution prior to
search. Empirical studies that structurally estimate models of consumer search focus primarily
on this type of uncertainty. The known price distribution assumption assumes that market condi-
tions are constant over time and known to consumers (e.g., Hong and Shum, 2006; Wildenbeest,
2011; Nishida and Remer, 2018).
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12 / THE RAND JOURNAL OF ECONOMICS

TABLE 2 Summary Statistics of Relative Price and Price Level

Obs. Mean SD Min Max

Relative Price Changes
ν jt 23,732 0.000 0.032 −0.167 0.169

Price Level Changes
γt 529 1.622 0.249 1.084 2.042
abs(�γt ) 528 0.008 0.012 0.000 0.108
abs(�γt−7 ) 522 0.045 0.037 0.000 0.186

In reality, however, frequently changing market conditions can make it difficult for con-
sumers to know the level of the overall price distribution, as measured by γt . In our sample,
the price level fluctuations are responsible for 93% of the overall retail price variation. This in-
troduces a second important source of price uncertainty. In this environment, consumers may
form expectations of the price level today based on prices observed during past trips or gasoline
purchases, resulting in biased beliefs (Lewis, 2011). Collecting new price observations allows
consumers to learn more about the current distribution, but the presence of station-specific price
variation, ν jt , prevents them from fully resolving uncertainty in γt . Therefore, biased prior be-
liefs will continue to impact consumers’ posterior beliefs about the current price level, though
the weight placed on these priors decreases as more new information is obtained. Incomplete
knowledge of the price distribution can have important impacts on consumer behavior. For ex-
ample, biased beliefs provide one explanation for why wholesale gasoline cost increases are often
passed through to retail prices more quickly than cost decreases, as depicted in Figure 1.

Based on the decomposition in equation (1), Table 2 presents the relative magnitudes of the
two components of price variation that give rise to uncertainty. The ν jt , has a standard deviation
of 3.2 cpg, confirming the presence of substantial idiosyncratic price variation within a day. In
addition, the price levels, γt , exhibit considerable fluctuation during our sample period, spanning
from a minimum of $1.08 to a maximum of $2.04 before taxes. The average across days of the
absolute difference in the price level, |γt − γt−1|, is 0.8 cpg. However, the discrepancies between
the priors and the actual price levels might be much larger, as consumers are likely to use the
price at their last gasoline purchase as a reference price (Lewis, 2011). For example, the average
absolute difference between the current price and the price 7 days prior is 4.5 cpg.

We now provide some descriptive evidence on whether consumers know about the current
price distribution under the premise of consumer search. If consumers have correct knowledge
about the actual price distribution, past prices should not affect consumers’ search decisions.
In contrast, when consumers are uncertain about the actual price distribution and formulate their
price expectations based on prices acquired from past driving trips or purchases, these past prices
may bias consumers’ perceived benefit of price search and influence consumer search in certain
directions. In particular, lower past prices may bias consumers’ price expectations downward,
causing more consumers to postpone their purchases to future trips searching for better prices,
consequently lowering current gasoline sales. Similarly, higher past prices may reduce the per-
ceived benefit of search or postponement, leading to more purchases on current driving trips. To
investigate the relationship between purchases and past prices, we regress the logarithm of a sta-
tion’s daily transaction volume on its own price, its closest competitors’ prices, and the average
price level in the city 7 days prior while controlling for station as well as day-of-week and month-
of-sample fixed effects.26 We measure a station’s closest competitors in terms of the amount of
traffic the stations have in common. Note that under imperfect price information, price changes
at subsequent stations along a travel route are unknown to consumers and thus do not affect their
search or purchase decisions at the current station. In other words, a price change at an upstream

26 We use the price level 7 days ago, γt−7, as a measure of the prices that consumers observe on their past trips or
purchases. We have estimated the model using the price level on various days prior and obtained similar results.
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WU, LEWIS, AND WOLAK / 13

TABLE 3 Descriptive Evidence of Price Level Uncertainty

(1) (2) (3)

ln(Own Price) −2.632 −2.961 −2.942
(0.147) (0.160) (0.163)

ln(Past Price Level) 1.220 1.132 1.133
(0.108) (0.109) (0.116)

ln(1st Neighbor Price) 1.464 1.171 1.124
(0.152) (0.162) (0.163)

ln(2nd Neighbor Price) 0.757 0.786
(0.144) (0.146)

ln(Total Sales 1-Day Ago) 0.234
(0.043)

ln(Total Sales 2-Day Ago) −0.076
(0.042)

ln(Total Sales 3-Day Ago) −0.057
(0.042)

ln(Total Sales 7-Day Ago) −0.060
(0.038)

R2 0.928 0.928 0.929
Observations 15985 15985 14960

Note: The dependent variable is the logarithm of the daily transaction volume at each station. We control for station
fixed effects, day of week fixed effects, and month of sample fixed effects in all specifications. Robust standard errors are
in parentheses.

station can influence the demand at a downstream station but not the other way around. There-
fore, we define a station’s common traffic shared with a neighbor station as the proportion of the
given station’s passing traffic (in all directions) that has previously passed the neighbor. We then
rank neighbors in terms of common traffic shares for each station.27 Table 3 provides the coeffi-
cient estimates for the panel regression. An increase in a station’s daily gasoline sales predicts a
decrease in its own price and an increase in the prices of its closest two neighbors, as expected.
Importantly, the coefficient on the logarithm of the past price level is positive and precisely es-
timated in all specifications. These results are consistent with consumers being uncertain about
the current price level but contradict the assumption of a known prior distribution, where past
prices should not affect search and purchase decisions.

It is also possible that past prices influence current demand not through prior beliefs but
due to consumers timing their gas purchases using their gas tank storage. If more (fewer) con-
sumers fill up their tanks as a result of recent low (high) prices, fewer (more) will be in the
market to purchase gas today. To investigate this potential channel formally, Column (3) intro-
duces the logarithm of past total gasoline transactions from various days ago to control for the
number of consumers who have purchased gas in the recent past. If the negative lag-price effect is
entirely due to purchase timing, then the lag-price coefficient should become a much less impor-
tant predictor once lagged total transactions are controlled for.

Moreover, adjustments to purchase timing should generate a negative relationship between
past and current sales, whereas, Column (3) shows that the coefficient on the past sales 1-day ago
is positive and precisely estimated. The positive coefficient likely reveals some degree of serial
correlation in unexplained shocks to gasoline demand. The coefficient on past sales from 2-days
ago is negative and precisely estimated, consistent with timing purchases, but the coefficient
estimates become imprecise for longer lags. The estimates suggest that adjustments to purchase
timing, if they occur at all, tend to happen within a window of several days, consistent with
the findings in Levin, Lewis, and Wolak (2022). Most importantly, the coefficient on the lagged

27 The magnitude of these common traffic shares is discussed later when we consider station pair characteristics in
Section 7.
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14 / THE RAND JOURNAL OF ECONOMICS

price level remains precisely estimated and unaffected by the inclusion of lagged sales volumes,
suggesting that past prices primarily impact demand through the formulation of consumers’ prior
expectations about the price distribution.

5. Model of sequential search

� Based on the important institutional details of the retail gasoline market, we specify a model
of price search in which consumers are uncertain about the current price distribution and learn
about the distribution as they observe prices. The model considers heterogeneous and forward-
looking individuals, each traveling along a particular (exogenously determined) route, sequen-
tially encountering a known set of stations, perhaps from home to work or from home to a store.
Consumers hold prior beliefs about the distribution of prices in the market, likely based on the
prices observed from past driving trips or purchases. As a consumer passes each station, she
updates her price beliefs before optimally deciding whether to stop and purchase or continue on
to potentially purchase at a subsequent station.28 Consumers also have the option of postponing
purchase until a future trip but some will incur a postponement cost (that varies across con-
sumers) to reflect that certain consumers need to purchase gasoline more urgently than others.29

Therefore, the probability that a consumer will purchase from a station depends on the realized
utility of purchasing at the observed price and the expected value of continuing to search given
her posterior belief of the price distribution.

Although our search model characterizes an individual consumer’s purchase decision, our
empirical model will be estimated using station-level quantity and price data. A station’s poten-
tial customers may be traveling along many different routes and encountering different sets of
competing stations. The quantity of gasoline sold at a particular station can then be modeled by
aggregating individual predicted purchase decisions over the empirical distribution of consumers
across search routes. The following subsections detail the different components of the individ-
ual search model. Then, in the next section, we discuss the construction of the empirical model,
including aggregation to the station level and the additional assumptions required for estimation.

Utility. Gasoline demand is characterized by consumers sequentially searching the prices of
stations along their travel routes. We consider a city containing a set, J , of J stations indexed
j = 1, 2, . . . , J . Consumers each demand 10 gallons of gasoline.30 We assume consumers have
an indirect utility for gasoline at station j on day t equal to:

ujt = Xjβ − pjt,

where Xj represents station j’s non-price characteristics, and pjt is the unit cost of gasoline (per
gallon price multiplied by 10 gallons). The coefficient on the price is normalized to −1, so
utilities are expressed in dollar value. Because around 30% of the stations in our sample do not
have market share data, it is not possible to introduce station fixed effects or allow unobserved
station attributes in the model. Instead, we use brand and scale group dummies to parameterize
the station-specific unobserved attributes, similar to the approach used by Goldberg (1995).31

28 Although gasoline consumption does respond somewhat to changes in price, this study focuses instead on how
consumers decide where and when to make that gasoline purchase. In our empirical estimation, we use time fixed effects
to control for the changes in overall demand level as detailed in Section 6.

29 We allow for a mass of consumers with zero postponement cost to account for drivers whom have recently
purchased gas and are not considering another purchase.

30 A unit of gasoline purchase of 10 gallons is a scalar chosen for the convenience of interpreting the estimation re-
sults.

31 Given that gasoline is less differentiated than most products, any remaining unobserved quality should be negli-
gible. Additionally, we find little correlation between the estimated utility generated by the non-price characteristics Xjβ̂

and the persistent price difference across stations ψ̂ j , suggesting that any remaining unobserved quality is unlikely to be
correlated with price.
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WU, LEWIS, AND WOLAK / 15

Based on the price decomposition in equation (1), we can rewrite the indirect utility as

ujt = Xjβ − ψ j − γt − ν jt

= Vj − p̃ jt, (2)

where γt represents the daily average price level in the city, ψ j captures the persistent price
difference between stations, and ν jt is the idiosyncratic deviation of station j’s price on day t from
its own average and the city average. Therefore, the customer’s indirect utility of consuming at
station j on day t can be partitioned into two components: the value of station j’s time-invariant
characteristics, Vj = Xjβ − ψ j, and a time-varying price component, p̃ jt = γt + ν jt .

This partition of the customer’s indirect utility function is motivated by the features of the
retail gasoline market. Repeated observations and frequent purchases at a number of stations al-
low consumers to become aware of the station characteristics that are constant over time. These
include the station’s location, brand, and reputation for being a high- or low-priced station (rep-
resented in the model by ψ j). The Vj component then represents the part of utility known to
consumers before search. In contrast, time-variant prices, representing the changes in prices over
time and across stations, are unknown to consumers, as discussed in the previous section.

Consumer learning and prior belief. We assume that time-variant prices, p̃ jt ∼ N (γt, σ
2),

where σ 2 denotes the magnitude of the actual price dispersion.32 We make the independence
and normality assumptions to make the model tractable because the conjugate prior of a normal
distribution is itself, even though the distribution may be inconsistent with the equilibrium price
distribution.33 Based on past experiences, consumers are likely familiar with the typical level of
idiosyncratic price variability in the market. Therefore, we assume that consumers know σ 2.34

Because retail gasoline prices frequently rise and fall in response to volatile wholesale
prices, consumers are uncertain about the average price level, γt . We capture this uncertainty
by assuming consumers hold some common prior beliefs about the price level.35 In particular, we
assume consumers perceive possible price levels as random variables,

m0t ∼ N

(
μ0t,

σ 2

α0

)
, (3)

where μ0t is the mean (expectation) of the perceived price levels, later referred to as the prior
mean. Following the literature, we denote the variance of the prior belief as a ratio of the known
price variance σ 2 and α0. Here, α0, commonly known as the prior weight, is inversely related to
the prior uncertainty about the price level. For example, a smaller α0 suggests a more diffuse prior.

Due to relative price variation, each price observation only provides a noisy signal of the
true price level, γt . As consumers observe new prices, they update their beliefs about the price
level. Let xn be the realization of the nth time-variant price observation. According to Bayes’ rule,
the posterior belief about the price level after observing n prices follows a normal distribution

mnt ∼ N

(
μnt,

σ 2

α0 + n

)
, (4)

32 We assume that the price dispersion is constant over time. Although the degree of gasoline price dispersion has
been shown to fluctuate over time when price levels change (Chandra and Tappata, 2011; Lewis and Marvel, 2011), our
article abstracts from this second-order effect.

33 Empirically, the normal distribution provides a fairly accurate characterization of the distribution of ν jt , though
the empirical distribution does have somewhat heavier tails. Solving the supply-side prices in the presence of complex
route structures and evolving consumer beliefs is beyond the scope of this article.

34 This assumption is also necessary for the identification of the prior weight (Mehta, Rajiv, and Srinivasan, 2003;
Ursu, Wang, and Chintagunta, 2020). In the analysis, σ is set to 0.32 to match the empirical distribution presented in
Table 2.

35 The common prior assumption is for analytical tractability. However, as consumers observe different prices along
different search routes, their posterior beliefs become different.
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16 / THE RAND JOURNAL OF ECONOMICS

where

μnt = h(μn−1,t, n, xn) = (α0 + n − 1)μn−1,t + xn

α0 + n
. (5)

The posterior uncertainty, σ 2

α0+n
, falls in the number of price observations. Based on equa-

tion (5), the posterior mean of the perceived price level can also be expressed as a weighted
average of the prior mean and the new price observations,

μnt = α0

α0 + n
μ0t + 1

α0 + n

n∑
k=1

xk. (6)

The posterior belief, which captures the learning process, depends on two critical compo-
nents: prior uncertainty and prior mean. The prior weight, α0, determines the speed of learning.
When α0 is smaller, meaning that consumers are more uncertain about their prior beliefs, the
posterior mean is updated more by each price observation. On the other hand, a larger α0 sug-
gests a slower update, as the posterior mean depends more on the prior mean. Moreover, when
consumers are perfectly certain of their prior beliefs about the price level (α0 is infinite), the
posterior mean always equals the prior mean regardless of the new price observations, μnt = μ0t .
In other words, no learning occurs, and consumers believe that any observed price deviation
from their prior mean is the result of a station’s specific price change rather than a market-level
price change.

The prior mean, μ0t , also plays a vital role in formulating the posterior beliefs. Importantly,
the prior mean does not need to equal the actual price level, γt . In fact, as discussed in Section 4,
prior beliefs are likely biased as consumers formulate their prior beliefs based on the prices
observed from previous gasoline purchases or driving trips.

Ordered search. Drivers typically pass multiple gas stations while driving to their desired des-
tinations. As a result, unlike some other product markets, consumers can sequentially search the
prices of multiple stations with zero search cost. In practice, drivers rarely alter their routes or
make separate trips to visit additional stations. Hence, we adopt a model that assumes such de-
viations from the travel route, including recall (driving back to a previously passed station), are
too costly. Consumers’ price search is sequential and ordered, as they know ex ante the predeter-
mined order in which they will pass a specific set of differentiated stations.

We assume that consumers update their beliefs based on the price observations from both
sides of the street. However, we introduce a visit cost (or turn cost), τrn ∈ {0, τ,∞} to account
for the higher cost of visiting stations across the street. This cost is zero if the traveler is on
the same side of the street as the station or if a left-turn is easy to make, but will take on a
non-negative value, τ , if a left-turn requires waiting for traffic lights at a major intersection. For
travelers who are unable to visit the station due to left-turn restrictions, this turn cost parameter
becomes infinite.36 With some abuse of notation, let r(n) return the station index j for the nth
station along route r. This station’s route-specific ex ante known utility is then

Vrn = Vr(n) − τrn. (7)

Consider a consumer i’s search decision as she drives along a route r on day t. For notational
simplicity, the day index t is suppressed until necessary. As the consumer drives to each station,
she costlessly observes the price. She updates her belief about the prices at the other stations
before deciding whether to purchase gasoline at this station or go to the next one. This decision
amounts to an optimal stopping problem involving a value function, Wr, with three state variables:
the number of prices already observed, n, the price at the current station, xrn, and the posterior
mean, μrn. Upon observing the price at a station n prior to the final station on the route, the
consumer trades off the realized utility at the nth station with the value of continuing searching,

36 See Section 4 for additional discussion of how left-turn difficulty is determined for each station.
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WU, LEWIS, AND WOLAK / 17

evaluated based on her current estimates of the price distribution given the price information
obtained. Therefore, the value function can be recursively defined as,

Wirn(μrn, xrn) = max

{
Vrn − xrn,

∫
Wirn+1(h(μrn, n + 1, xrn+1), xrn+1) · dFrn(xrn+1)

}
, (8)

where Frn(xrn+1) is the posterior predictive distribution of possible unobserved prices at the n +
1th station given the n prices already observed along route r. As we show in online Appendix A, it

follows a normal distribution with xrn+1 ∼ N
(
μrn, σ

2 + σ 2

α0+n

)
. The predictive distribution takes

into account both the station-specific price variation, σ 2, conditional on a possible price level as
well as the posterior uncertainty over the price levels, σ 2

α0+n
.

In practice, drivers typically travel on a variety of different routes to and from their various
destinations. Some may choose not to purchase on their current trip, instead continuing to search
for a better deal on a future trip along a different route. This option becomes increasingly costly
when a consumer is close to running out of gas. In our model, if a consumer does not purchase
from a station along the current travel route, she pays a postponement cost ci. This ci will be
higher for those who need to purchase now, and lower for those seeking to buy gasoline but
not under pressure to do so immediately.37 Because our data do not track individuals’ driving
behaviors over time, we assume that consumers face the same set of ordered search routes R. Let
λr denote the share of drivers traveling along route r given by the traffic data.

Therefore, at the final station n = Nr, the value function becomes

WirNr (μrNr , xrNr )=max

{
VrNr − xrNr ,−ci +

∑
r′∈R

λr′ ·
∫

Wir′1(h(μrNr , 1, xr′1), xr′1) · dFrNr (xr′1)

}
.(9)

The continuation value of search at the end of a search route is then the sum of the postponement
cost and the weighted sum of the expected value function at the start of a new travel route. We
assume consumers are myopic in the sense that each day the consumer solves a completely new
ordered search problem. When considering postponement, consumers perceive the expectation of
the future price level to be the same as the expectation of the price level based on their subjective
posterior beliefs at the end of a route.38 However, consumers’ uncertainty about the future price
level is reset to σ 2/α0 (n = 0), as they have not yet observed any prices on the next travel route.
Therefore, FrNr (·) is a normal distribution with mean μrNr and variance σ 2 + σ 2

α0
.

Conditional on consumer taste and learning parameters θ , we denote the continuation value
of search at any station n < Nr along route r as

Zrn(μrn, ci|θ ) =
∫

Wirn+1(h(μrn, n + 1, xrn+1), xrn+1) · dFn(xrn+1) (10)

=
∫

max {Vrn+1 − xrn+1,Zrn+1(h(μrn, n + 1, xrn+1), ci|θ )} · dFrn(xrn+1), (11)

where equation (11) is obtained by combining equations (8) and (10). At the final station n = Nr,

Z0(μrNr , ci|θ ) = ZrNr (μrNr , ci|θ ) =

−ci +
∑
r′∈R

λr′

∫ {
Vr′1 − xr′1,Zr′1(h(μrNr , 1, xr′1), ci|θ )

} · dFrNr (xr′1). (12)

37 The postponement cost can be interpreted as the psychological cost of worrying about running out of gasoline
or expectation of a future stock-out cost.

38 This is a realistic assumption, as the average price level series follows a random walk.
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18 / THE RAND JOURNAL OF ECONOMICS

Proposition 1. The continuation value of search can be written as Zrn (μrn, ci|θ ) = zrn(ci|θ ) − μrn

for any r ∈ R and n = 1, 2, . . . ,Nr. Solving the recursive relationship presented in equations (11)
and (12), the continuation value of search can be simplified as follows:

When n < Nr,

zrn(ci|θ ) = zrn+1(ci|θ ) + σ

√
α0 + n

α0 + n + 1
· (ζrn+1 ·(ζrn+1) + φ(ζrn+1)), (13)

and when n = Nr,

zrNr (ci|θ ) = z0(ci|θ ) = −ci +
∑
r′∈R

λr′

[
zr′1(ci|θ ) + σ

√
α0

α0 + 1
· (ζr′1 ·(ζr′1) + φ(ζr′1))

]
, (14)

where ζrn+1 = Vrn+1−zrn+1(ci|θ )

σ

√
α0+n
α0+n+1

. (·) and φ(·) are the CDF and PDF of the standard normal distribu-

tion, respectively.

Proposition 1 shows that the continuation value of search Zrn is the sum of posterior mean,
μrn, and a function of the postponement cost, zrn, conditional on the consumer parameters (see
online Appendix B for proof). In other words, zrn(ci|θ ) summarizes the value of the time-invariant
characteristics of the remaining options along a route for the consumer with postponement cost
ci. Based on the recursive relationship, we can numerically solve for z0, and subsequently zrn as a
function of ci at any station along any route. In practice, the solution is given by linear interpola-
tion.

Having not purchased at any previous stations on the route, purchase occurs at the nth sta-
tion if Vrn − xrn ≥ zrn(ci|θ ) − μrn, where μrn = α0

α0+n
μ0 + 1

α0+n

∑n
k=1 xk . It is straightforward to

show that zrn is decreasing in ci for any r ∈ R and n = 1, 2, . . . ,Nr. Additionally, zrn(ci|θ ) >
max{zrn+1(ci|θ ),Vn+1} for any n < Nr and ci from equation (13).

The ordered search generates intuitive properties. First, the value of a route, zrn, increases
with the number of stations remaining along the route. Second, zrn is bounded from below by the
maximum of the ex ante known utility of the remaining stations along a route for any ci. As such,
if there is a low-price/high-quality station down the route, where the persistent utility difference
between the station and the other stations outweighs the magnitude of any relative price changes,
consumers driving along this route will drive past the other stations and buy from the ex ante
desired station.

Therefore, as long as the realized utility at a station is greater than the lower bound of the
continuation value of search conditional on the posterior mean, zrn(+∞|θ ) − μrn, the critical
postponement cost c∗

rn that makes the consumer indifferent between purchasing and continuing
to searching satisfies the following,

zrn(c∗
rn|θ ) = Vrn − xrn + μrn

= Vrn − α0 + n − 1

α0 + n
xrn + 1

α0 + n

n−1∑
k=1

xrk + α0

α0 + n
μ0. (15)

If the realized net utility is less than the lower bound, the consumer will continue searching. In
this case, c∗

rn becomes infinite so that no consumers purchase at the current station.
Intuitively, for the consumer to optimally purchase at a station, her postponement cost must

be large enough to make the realized utility greater than the continuation value of search. There-
fore, the lower bound of postponement cost necessary for the consumer to stop searching is c∗

rn.
Additionally, suppose the consumer has already driven past at least one station along the route.

C© The RAND Corporation 2024.
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WU, LEWIS, AND WOLAK / 19

For the consumer to optimally purchase at the current station, her postponement cost should not
be so large that she has already purchased at a previous station. Therefore, we denote the up-
per bound of postponement cost as c∗∗

rn = min(c∗
r1, . . . , c∗

rn−1) when n > 1. At the first station, we
define c∗∗

r1 = ∞, so that the consumer will purchase if ci ≥ c∗
r1.

Conditional on searching along route r, the proportion of consumers who purchase from the
nth station is

qrn =
{

G(c∗∗
rn ) − G(c∗

rn) if c∗∗
rn ≥ c∗

n

0 otherwise,
(16)

where G(·) is the CDF of the postponement costs.
Equation (16) shows that the conditional purchase probabilities along a route are given by

the postponement cost distribution evaluated at the critical values. Equation (15) establishes the
relationship of the critical values with seller utilities and the posterior beliefs resulting from
consumer learning.

6. Estimation

� Given our data, two important assumptions are necessary to estimate the structural model.
First, we assume that the gasoline transactions are made by a new group of drivers each day.
Therefore, the model is estimated at the day level. The prior mean is parameterized as a weighted
average of the price level 7 days ago and the current price level:

μ0t = πγt−7 + (1 − π )γt . (17)

The price level 7 days ago proxies the price observations from recent driving trips or gasoline
purchases. The prior bias π , a variable from 0 to 1, reflects the influence of past price observations
when consumers formulate their prior price expectations.

This specification of the learning process closely relates to the existing search literature. Due
to data limitation, most existing empirical studies on search with learning, including Koulayev
(2013) and De los Santos, Hortaçsu, and Wildenbeest (2017), do not estimate the parameters
governing the learning process and assume a correct prior belief (π = 0) and a prior weight equal
to the number of product and seller combinations. Similar to Hu, Dang, and Chintagunta (2019),
we estimate the learning process. However, our focus is on how much the past prices bias the prior
mean rather than estimating the prior mean itself. Our specifications also allow us to empirically
distinguish alternative search model assumptions based on our data. The prior bias π allows
us to test empirically whether consumers have correct expectations about the price distribution
(π = 0) or use past price observations as a reference price (π = 1, e.g., Lewis, 2011). When
π = 0 and α0 = ∞, our model nests the standard search models with a known price distribution.

We further aggregate the purchase decisions made by drivers searching along their respec-
tive search routes to construct each station’s daily market share, matching the observation level
of our gasoline data. We start by defining the total size of the market as the total number of
drivers driving on a day who use the financial company’s credit or debit cards for their gasoline
purchases. The traffic data describe the average daily drivers in the city. Because other payment
methods, such as cash and other companies’ credit or debit cards, are available, we assume a 30%
market share for the company in the payment means.39 Then, a station’s observed market share is
the share of the company’s card users who purchase gasoline at that station on a day. The number
of people who purchase at a station is calculated by the daily quantity of gasoline transacted at
the station divided by 10 gallons, the unit amount of gasoline per purchase.

39 We do not use the actual market share to protect the financial service company’s identity. Different proportionality
assumptions do not affect our estimation results.
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20 / THE RAND JOURNAL OF ECONOMICS

Only a small share of the drivers purchase gasoline on any given day because most already
have sufficient gasoline remaining in their tanks. In particular, 8.3% of the drivers on an average
day purchase at the stations where quantity data are observed. To capture the behaviors of the
drivers who do not consider a purchase in our model, we allow the distribution of postponement
costs to have a probability mass of 1 − ηt at zero.40 The remaining ηt share of drivers have a
positive probability of purchasing gasoline on their search routes. Note that ηt includes a set of
day of week and month of sample dummy variables to account for the changes in overall demand
(frequency of purchase) for gasoline over time.41 For example, larger ηt reflects more frequent
gas purchases during summer seasons. We assume the positive postponement costs follow a
log-normal distribution with E (ln(c)) = μc and Var (ln(c)) = σ 2

c . Therefore, following equa-
tion (16), the share of total consumers who travel on route r and purchase from the nth station in
period t can be rewritten as

qrnt =
{
ηt

[


(
ln(c∗∗

rnt )−μc

σc

)
−

(
ln(c∗

rnt )−μc

σc

)]
if c∗∗

rnt > c∗
rnt

0 otherwise.
(18)

Let r−1( j) return the location index n of station j on route r. We obtain the expected market
share of station j at time t given all station characteristics at time t by aggregating the conditional
purchase probabilities across all the routes the station is on,

E(s jt | p̃,X , λ) =
∑
r∈R

λrqr(r−1( j))t1( j ∈ r), (19)

where p̃ is the vector of time-variant prices for all stations, X is a vector of all station character-
istics, including the persistent price differences across stations ψ , and λ is the vector of the share
of drivers traveling on each possible search route.

Equation (19) shows how we map the observed market share at a station into the conditional
purchase probabilities resulting from consumers’ search and learning decisions. This relationship
allows us to estimate the model using nonlinear least squares. More specifically, to estimate the
model, we first use the regression results from equation (1) to separate prices into persistent
price differences across stations ψ j and time-variant prices p̃ jt . Whereas consumers know ex
ante a station’s price reputation along with other station characteristics, they search to realize
the time-variant price at each station and update the posterior mean. Second, we calculate the
purchase probability at the station-route level. Given a set of parameters, we can numerically
solve for z0(), an unknown function of ci, over a set of equations described by equations (14)
and (13) using the fixed point algorithm. Then we can obtain a numerical solution for zrn() as a
function of ci for each station along each route. All solutions are given by linear interpolation on
a grid of ci. For each station along a route, we can calculate the realized utility net of the posterior
mean and determine the critical c∗

rn that makes an individual indifferent between purchase and
searching using interpolation on the grid of zrn(). Equation (16) specifies the probability that
consumers on a route will purchase at a station given these critical postponement cost levels.
Finally, we aggregate the conditional purchase probabilities over the empirical distribution of
search routes to obtain the expected market shares according to equation (19). We choose the
set of parameter values to minimize the sum of squared deviations between the observed and
expected market shares.

40 Because the price distribution follows a normal distribution and is not bounded, the value of continuing to search
is infinite when the postponement cost is zero. Consequently, the drivers with zero postponement costs will never make
a purchase.

41 The month-of-sample fixed effects can also account for changes in the market size over time, such as the possible
growing adoption of card payments.
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WU, LEWIS, AND WOLAK / 21

FIGURE 5

COMPETING STATIONS ALONG A HYPOTHETICAL TRAVEL ROUTE

Identification. The parameters to be estimated are consumer preferences, βs, the postponement
cost, μc and σc, the prior belief, π and α0, and a set of time fixed effects in ηt . The joint varia-
tion between market shares and station characteristics identifies the preference parameters. For
example, given our knowledge of the sampling probabilities observed from the traffic data, a
higher-priced station may have a similar market share to a lower-priced station, suggesting that
its characteristics are favorable enough to consumers to offset the persistent price difference. The
panel feature of the dataset identifies the postponement cost parameter. If prior weight, α0, is
known, the day-to-day price fluctuations change the critical value c∗

jt at a station. The associated
variation in the station’s market share can inform the postponement cost density at the critical
values and thus μc and σc.

The identification of the prior weight, α0, relies on the exogenous search orders provided
by the traffic data. The substitution patterns predicted by search models with learning differ
from those where no learning occurs. In particular, negative cross-price elasticities can arise
between spatially dispersed stations as a result of the information conveyed through ordered
price observations.

To illustrate, consider the following route that consists of three stations labeled 1, 2, and 3,
as depicted in Figure 5. For consumers traveling east, the critical postponement cost solves c∗

1 =
z−1

1 (V1 − α0

α0+1
x1 + α0

α0+1
μ0), c∗

2 = z−1
2 (V2 − α0+1

α0+2
x2 + 1

α0+2
x1 + α0

α0+2
μ0), and c∗

3 = z−1
3 (V3 − α0+2

α0+3
x3 +

1
α0+3

(x1 + x2) + α0
α0+3

μ0), respectively. Consider an example where the critical postponement cost
at each station follows +∞ > c∗

1 > c∗
2 > c∗

3, so that a positive share of consumers will pur-
chase from each station, and the respective shares are q1 = 1 − G(c∗

1 ), q2 = G(c∗
1 ) − G(c∗

2 ), and
q3 = G(c∗

2 ) − G(c∗
3 ). If price increases at station 1, c∗

1 increases as a result, and the marginal
consumers would substitute to station 2. Moreover, through learning, both c∗

2 and c∗
3 decrease

as consumers adjust their (posterior) beliefs upward, expecting a general price increase in the
market. In other words, additional search at any subsequent stations becomes less attractive, and
consumers will be more likely to purchase at an earlier station along the route. In addition to
the marginal consumers gained from station 1, station 2 also gains consumers who would have
formerly continued searching and purchased from station 3. Thus, an increase in station 1’s price
always increases the demand of its closest competitor, which is station 2 in this case. However, the
price effect on a subsequent station, like station 3, can be positive or negative. If station 3 loses
more consumers to station 2 than those gained from postponement, it has a negative cross-price
elasticity of demand with respect to the price at station 1. Where two stations lie within the route
structure in our ordered search environment dictates both how closely they compete and how
information is conveyed, therefore influencing how a change in one station’s price positively or
negatively impacts the other’s demand. In contrast, standard search models with no learning can
only generate non-negative cross-price elasticities. Online Appendix C shows data patterns con-
sistent with the implications of consumer learning. The magnitude of these negative cross-price
elasticities helps determine the size of the learning parameter. Furthermore, observing stations
on opposite sides of a street also contributes to the identification of learning. Suppose station 1
were on the other side of the street where drivers passing stations 2 and 3 could not access. If
learning is occurring, station 1’s price can affect consumers’ purchase decisions at stations 2 and
3 through posterior beliefs.

Once the prior weight has been identified, we can recover the prior bias π by exploiting
the observed correlation between current sales and past price levels. This relies on the assump-
tion that the price level 7 days ago only influences current sales through consumers’ beliefs. As
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22 / THE RAND JOURNAL OF ECONOMICS

discussed in Section 4, consumers may respond to price fluctuations by adjusting their purchase
timing using their gas tank as storage, which can also cause current sales to be correlated with
past price levels. However, based on the evidence presented in Section 4 and the findings of
Levin, Lewis, and Wolak (2022), consumers only shift purchases over a shorter period (of 2 to
3 days), and the relationship between current sales and the price level 7-day ago is independent
of any changes in sales over the last few days. As such, the data broadly supports our identifying
assumption regarding consumers’ beliefs.42

Whether due to purchase timing or persistence in unexplained demand shocks, we do ob-
serve some degree of serial correlation in sales that could generate incorrect standard errors if
not accounted for in estimation. We address this by using a block bootstrap procedure to cal-
culate standard errors in all our specifications to control for the potential auto-correlation and
heteroskedasticity (MacKinnon, 2006). Each block contains 7 consecutive days of observations,
allowing dependency in the model’s unobservables across stations and time within a block and
randomness of each bootstrap sample.

Notice that we do not include idiosyncratic taste shocks in our model. Similar to Hortaçsu
and Syverson (2004), our model relies on heterogeneous postponement costs to provide horizon-
tal differentiation and create non-degenerate market shares. Because gasoline is less differenti-
ated than most products and features frequent price changes, we focus on modeling imperfect
price information rather than taste heterogeneity. Moreover, identifying postponement costs with
taste shocks would require observing data on individual search sequences and variables that shift
postponement costs independently of taste shocks, like in Yavorsky, Honka, and Chen (2021).
By abstracting away from the possibility of taste shocks, our model demonstrates how exoge-
nous search order can be used to identify the learning parameters using only aggregate data on
prices, market shares, and the distribution of search orderings.

Lastly, the fluctuations in the drivers’ overall demand for gasoline over time identify the
day of week and month of sample fixed effects in ηt , holding the postponement cost distribution
constant. For example, transaction data show that drivers consume more gasoline in the summer
than in the winter. Larger ηt estimates in the summer months reflect a larger share of consumers
in the market actively searching for gasoline, likely resulting from more frequent purchases.

We present Monte Carlo simulations in online Appendix E to confirm that our estimation
approach can separately identify and consistently estimate our model parameters.

7. Results

� To facilitate comparison, we estimate our full search model with learning as well as a re-
stricted version that does not incorporate consumer learning (i.e., α0 = +∞).43 The results are
presented in Table 4, with estimates from the full model in Column (1) and estimates from the
restricted model in Column (2). Estimates of the bias and learning parameters in Column (1) re-
veal that consumers’ initial beliefs regarding the distribution of prices are significantly different
from the actual price distribution. As consumers observe new prices, they update their beliefs rel-
atively quickly. More specifically, the bias parameter suggests that, before observing any prices,
59% of a consumer’s prior belief depends on prices observed in the prior period. This statistically
significant weight on past prices rejects the common assumption that consumers behave as if they
have a correct expectation about the price distribution. The average absolute difference between
the estimated prior mean and the actual price level is 2.7 cpg, approximately 3.3 times the size
of the average day-to-day price change. However, this large initial bias is quickly moderated as
the consumer observes new prices along her travel route. The estimated weight on the initial
prior is 0.3, suggesting a fast rate of learning. For example, after one new price observation, the

42 In online Appendix D, we also consider a specification where the share of consumers with a positive probability
of gas purchase, ηt , depends on lagged sales. Table D.1 suggests that purchase timing and correlation of sales do not
confound our estimation results.

43 In estimation, we set α0 to a very large number for the no-learning model.
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TABLE 4 Estimation Results

Learning No Learning

Coeff. SE Coeff. SE

Prior
Bias (π ) 0.587 (0.061) 0.027 (0.039)
Learning (α0) 0.304 (0.116)

Station Attributes
Major Brand 1 0.505 (0.041) −0.065 (0.115)
Retail Brand 1 −0.131 (0.041) −0.168 (0.043)
Retail Brand 2 −0.064 (0.053) −0.322 (0.094)
Small-Sized Station −1.173 (0.043) −1.719 (0.099)
Large-Format Station 0.662 (0.058) 0.904 (0.052)
Left-Turn Cost 1.106 (0.060) 1.767 (0.152)

Postponement Cost
Constant (μc) −0.574 (0.063) −0.288 (0.061)
Standard Deviation (σc) 1.055 (0.092) 1.250 (0.095)

Pseudo-R2 0.888 0.870

Note: The number of observations is 15985. The day of week and month of sample fixed effect estimates are omitted from
the table. The pseudo-R2 shows the fit of the non-highway stations. Standard errors calculated from 200 block bootstrap
samples are in parentheses.

bias reduces by 77% to 0.6 cpg, and after two new price observations, the bias reduces by 87%
to 0.4 cpg in expectation. This rapid learning is consistent with the fact that the distribution of
gasoline prices changes regularly in response to wholesale cost volatility.44 More specifically,
the estimated standard deviation of the prior mean is 5.8 cpg, and the standard deviation of the
current price and the price 7 days prior is 5.9 cpg. The similarity in these standard deviations
suggests that, on average, consumers make their purchase decisions consistent with those who
have a decent understanding of the price level variation through their repeated interaction with
the market.

With regard to station attributes, the estimates suggest that consumers purchasing 10 gallons
of gasoline are willing to pay $1.11 more to avoid waiting for the left-turn signal at a busy
intersection. Consumers also appear to value the features offered at large-format stations, placing
a $0.66 premium on purchasing gas at these stations. In contrast, the willingness to pay for a gas
purchase at a small station is $1.17 lower than at a medium-sized station. We also find that
consumers are willing to pay $0.51 more at a major branded station than at a generic station, all
else constant.

Based on the postponement cost estimates, for drivers who have a positive probability of
purchasing gasoline, the median cost of postponing purchase to a future trip is $0.56, and 25%
of these drivers are willing to pay $1.15 more to purchase on the current route rather than to
postpone their purchase. Note that the postponement cost reflects both the risk of running out of
gas as well as the trade-off between purchase on the current trip and purchase on a future trip
where a consumer is not only uncertain about the prices and their distribution but also the set of
stations she will drive past.

In the restricted version of the search model that does not allow learning (Column (2) of
Table 4), the prior weight in equation (3) is set to positive infinity, meaning that a driver’s pos-
terior beliefs about the price level always equal to her prior belief. However, we still allow for
the possibility that past prices may bias the initial prior. Without learning, any bias present will
persist and influence purchase decisions regardless of how many new prices a consumer ob-
serves. Compared to the full model in Column (1), the search model without learning fits the

44 The estimated speed of learning is much faster than what is previously assumed by the literature. For example,
Koulayev (2013) and De los Santos, Hortaçsu, and Wildenbeest (2017) choose the prior weight to be the number of
product-retailer combinations, resulting in a much slower rate of learning.
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TABLE 5 Summary Statistics of the Station Average Own-Price Elasticity Estimates

Obs. Mean SD Min 50% Max

Panel (a): Learning
Price (p̃ j,t ) 37 −8.39 4.68 −24.40 −7.66 −2.67
Price Reputation (ψ j) 37 −24.40 12.71 −60.74 −20.99 −8.70

Panel (b): No Learning
Price (p̃ j,t ) 37 −12.64 5.66 −25.91 −10.92 −5.05
Price Reputation (ψ j) 37 −15.38 6.56 −29.35 −13.04 −6.83

data worse, as suggested by the pseudo-R2.45 In addition, the bias parameter estimate becomes
much smaller and statistically indistinguishable from zero. A comparison to the results of the full
model is particularly informative here. When learning is incorporated into the search model, esti-
mates reveal that substantial bias in consumers’ priors can arise but is quickly mitigated through
learning. In other words, bias may influence a consumer’s expectations when visiting the ini-
tial stations along the travel route, but will have little impact when visiting subsequent stations.
The restricted no-learning model assumes that expectations remain fixed throughout, therefore,
making it impossible to identify the presence of biased priors for a subset of stations on the
travel route.

The estimates of the postponement costs are also very different for the no-learning model.
The median postponement cost is $0.75 from the no-learning model, approximately 33% higher
than the estimate in the learning model. The higher postponement costs in the no-learning model
make sense within our theoretical context (equation (15)). With no learning, consumers behave
as if they are certain about the price distribution and how it compares to the current price ob-
servation. So this model will predict greater responsiveness to price changes. As a result, the
estimated postponement cost parameter will be inflated to allow the no-learning model to fit the
relatively low level of price responsiveness observed in the data.

Own-price elasticities. We next investigate consumers’ predicted responses to station-specific
price changes based on the search with learning model as well as the no-learning model. Price
elasticities are obtained by simulating how station-specific gasoline purchases change following
a one-cent increase in a particular station’s price.46 Each station’s price in our model can be de-
composed into a time-varying component p̃ jt and a price reputation componentψ j which remains
fixed for all periods. Therefore, separate elasticities of demand can be constructed for changes in
each price component.

Table 5 summarizes each station’s own-price elasticities based on the parameter estimates
in Table 4 for the learning model (Column (1)) and the no-learning model (Column (2)). In
the learning model, the average of a station’s own-price elasticity with respect to a change in
the time-variant price is -8.4. In contrast, the own-price elasticity with respect to the station’s
price reputation is -24.4. In other words, consumers are approximately 2.9 times more responsive
to a change in price reputation than to a change in time-variant price. Two factors contribute
to the considerable difference in price elasticities. First, a change in the time-variant price is
unknown to consumers prior to search, whereas a change in the price reputation is known ex
ante. Consequently, an increase in the time-variant price at a station can only affect the purchase
decisions for consumers who have driven by the station and have not purchased from a previous
station. On the other hand, an increase in the station’s price reputation may cause more consumers

45 The pseudo-R2 is calculated using 1 -
∑

(s−ŝ)2∑
(s−s̄)2 , where ŝ is the model predicted market share. Additionally, the

F1,15944 statistic for restricting α0 to a very large number is 1067.2, which implies that the null hypothesis of the no-
learning model is overwhelmingly rejected.

46 A large proportion of the highway stations’ gasoline transactions likely come from the outside drivers driving
past the city via the interstate highway. Because we do not model these passing drivers’ purchase decisions, we exclude
the highway stations from the own- and cross-elasticity analysis.
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TABLE 6 Summary Statistics on Cross-Price Elasticities and Measures of Spatial Differentiation Between Sta-
tions

Obs. Mean SD 2.5% 10% 50% 90% 97.5%

Cross-Elasticity 1665 0.148 1.221 −0.229 −0.003 0.000 0.163 1.529
Driving Distance 1665 5.526 2.979 0.883 2.000 5.173 9.647 12.597
Common Traffic 1665 0.050 0.096 0.000 0.000 0.009 0.160 0.358

to purchase at earlier stations along their travel route, even before passing that station. Second,
when consumers are uncertain about the current price level in the market, a relative price change
at a station is confounded by changes in price levels, reducing consumers’ responsiveness. They
will be less likely to substitute away from a station charging an unexpectedly high price because
of the possibility that it reflects an increase in the entire price distribution rather than a relative
increase in the station’s price. In contrast, consumers will respond more strongly to an increase
in a station’s price reputation, knowing that it represents a relative deviation from the broader
price distribution.

The importance of learning is also highlighted by comparing with the own-price elasticities
from the no-learning model in Panel (b). In this model, the average demand elasticity with respect
to price reputation is only 22% larger than the elasticity with respect to time-variant prices.
When consumers do not learn, they do not adjust their prior beliefs about the price level as they
observe new prices. Therefore, any observed price change at a station is believed to be specific
to that station.

Spatial competition and cross-price elasticities. Estimating a structural model of search with
learning also provides a useful framework for examining the nature of spatial competition in
the market. The stations in our sample exhibit substantial variation in both their characteristics
and their locations within the route network. These differences generate considerable variation in
own-price elasticity across stations. The estimated station-average own-price elasticities reported
in Table 5 Panel (a) range from -24.40 to -2.67, with a standard deviation of 4.68.47 Stations with
very elastic demand tend to face competition from similar stations located nearby. In contrast,
stations with the least elastic demand often share little common traffic with other stations or have
very different characteristics.

Table 6 provides a more complete picture of the degree of spatial differentiation between
each pair of stations in our sample. In addition to the estimated cross-elasticity between station

pairs, ∂̂Qi

∂ p j

p j

Qi
, summary statistics are also reported for the driving distance and the share of com-

mon traffic between the stations. Recall from Section 4 that we define Common Traffic as the
proportion of station i’s passing traffic (in all directions) that has previously passed station j on
their travel routes. Drivers driving along travel routes where station j is downstream to station
i are not included in this Common Traffic calculation because price changes at station j are
unknown to them when visiting station j.

Not surprisingly, most station pairs have virtually zero cross-price elasticities. After all,
more than half of all station pairs have less than 1% common traffic share. Only 10% of the station
pairs, typically involving a station’s 4 or 5 closest competitors, have cross-price elasticities larger
than 0.16. This makes sense given that 90% of station pairs are over two miles away from each
other and have a common traffic share of less than 16.0%. However, some stations do compete
intensively. The top 2.5% of the pairs have cross-price elasticities above 1.53 and have common
traffic shares of greater than 35.8%.

Importantly, our model suggests that consumer learning can generate negative cross-price
elasticities across competing stations, as described in Section 6. Indeed, 17.5% of all station pairs

47 Wang (2009) finds similar station level price elasticity. He estimates an own-price elasticity of -18.77 for a station
located right next to its closest competitor and -6.20 for a station whose closest competitor is 4.2 km away.
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TABLE 7 Regression Results of Estimated Cross-Price Elasticities on Distance Measures Between Stations

(1) (2) (3)

Driving Distance −0.067 0.001 −0.000
(0.015) (0.005) (0.006)

Abs. Mean Utility Distance −0.061 −0.082 −0.093
(0.024) (0.021) (0.021)

Common Traffic 4.286
(0.945)

Common Traffic Easy Access 5.144
(1.167)

Common Traffic Costly Left-Turn 1.748
(0.616)

Constant 0.574 0.008 0.026
(0.106) (0.054) (0.057)

R2 0.03 0.11 0.13
Observations 1665 1665 1665

Note: The dependent variable is the cross-price elasticity. Robust standard errors clustered at the station level are in paren-
theses.

are estimated to have negative cross-price elasticities in our learning model. This occurs when
consumers adjust their price beliefs upon observing a price change near the start of a route and
change their purchase decisions at subsequent stations.48 Additionally, for a subsequent station
C to have a negative cross-elasticity of demand with respect to an upstream station A, there
has to be at least one station in between them. Consumers may interpret a price increase at the
upstream station A as a sign that all prices are high and search less. Consequently, consumers
who would have formerly purchased at station C may now purchase from an earlier station B
prior to reaching station C. On the other hand, if a low price is observed at station A, signaling a
potential overall market-wide price decrease, consumers who would have formerly purchased at
the in-between station B may now keep searching and purchase at station C. Consistent with the
theory, the complimentary station pairs identified by our model are never direct neighbors and
are, on average, 3.7 stations away from each other.49 In contrast, the no-learning model generates
all non-negative cross-price elasticity estimates.

Next, we examine how the estimated cross-elasticities between stations vary with geo-
graphic and product differentiation. Whereas most studies of gasoline competition rely on simple
measures like driving distance to account for geographic differentiation, our traffic flow data al-
low us to more directly capture connectedness within the travel network using the amount of
traffic the stations have in common. The similarity in station characteristics is also likely to in-
fluence substitution patterns. In our search model, the ex ante known mean utility of a station
captures its expected attractiveness, reflecting both its characteristics and average price level. If
the mean utilities of two stations are sufficiently different, price changes are unlikely to change
the stations’ utility ranking on a particular day. As a result, consumers driving past these two
stations are unlikely to purchase from the less desirable station even when its price is unexpect-
edly low.

In Table 7, estimated cross-price elasticities for each station pair are regressed on the ab-
solute difference in mean utility of the stations, |V̂i − V̂j|, as well as various measures of the
stations’ proximity within the travel network. In all specifications, the absolute difference in
mean utility has a precisely estimated negative coefficient, confirming that consumers are more
likely to substitute between similar stations. The estimates in Column (1) also show that cross-
price elasticities generally decline as the driving distance between stations increases, but this
relationship becomes much less precisely estimated once common traffic measures are included

48 Online Appendix C provides a detailed discussion of the theory of negative cross-price elasticity.
49 The average is weighted by the number of consumers driving past each station pair.

C© The RAND Corporation 2024.

 17562171, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1756-2171.12466 by U

niversité T
oulouse 1 C

apitole, W
iley O

nline L
ibrary on [06/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



WU, LEWIS, AND WOLAK / 27

(in Columns (2) through (3)). In fact, Column (2) suggests that the traffic share explains a con-
siderable fraction of the variation in substitution patterns between stations. For example, when an
additional 10% of station i’s passing traffic has previously driven past station j, the cross-price
elasticity between the two stations increases by 0.43.50

Because some left-turns are costly, the ease with which shared traffic can access station i
may impact its cross-price elasticity of demand with respect to an upstream station j. For this
reason, we decompose our Common Traffic measure into two variables based on the traffic’s ease
of access to station i. Common Traffic Easy Access measures the share of station i’s passing
traffic that has previously passed station j and can visit station i with no additional cost; that
is, station i is on the same side as the traffic or is on the opposite side with an easy left-turn.
Correspondingly, Common Traffic Costly Left-Turn measures the share of station i’s passing
traffic that has previously passed station j and can only visit station i by a costly left-turn. Indeed,
the regression result in Column (3) suggests that cross-price elasticities between stations are
significantly higher when the common traffic does not have to make a costly left-turn to access
station i.51 Given the share of common traffic, station i’s cross-price elasticity with respect to an
upstream station j is about three times larger when the common traffic can visit station i easily
than with a left-turn cost.

8. Biased priors and asymmetric search

� Lewis (2011), Yang and Ye (2008), and Tappata (2009) each present theoretical models
illustrating why cost increases may be passed through more quickly than cost decreases when
searching consumers do not know the true price distribution. This asymmetric pass-through arises
because consumers search more intensively when prices rise and less intensively when prices
fall. Lewis (2011) and Lewis and Marvel (2011) offer empirical evidence consistent with these
predictions. As search intensity increases, competition becomes more intense, and station-level
demand becomes more elastic, explaining why gas station margins tend to be low when prices
are rising and high when prices are falling (Lewis and Marvel, 2011). Estimating a structural
model of search with learning allows us to more systematically demonstrate the mechanisms
through which imperfect knowledge of the price distribution generates the asymmetric responses
in search and demand elasticity that have been shown to influence margins and cost pass-through.

Using the estimates from our learning model, we construct two measures of search inten-
sity: the share of searching consumers who choose to buy from their current travel route rather
than postpone their purchase and the average number of stations searched by consumers who do
purchase.52 Then, to illustrate how biased prior beliefs impact search behavior, we regress each
measure of search intensity on the difference between the current price level and the price level
7 days ago. Columns (1) and (2) of Table 8 report the results.

When the current price is unchanged from the previous week, our estimates suggest that
60.7% of searching consumers will choose to purchase somewhere along their travel route. On
average, these purchasing consumers will observe the prices of 2.6 stations before purchasing.
However, when the current price level is 10% (or approximately 20 cpg) lower than the previous
week, consumers observe the prices of only 2.2 stations before purchasing—a 14.6% decrease in
the number of stations searched. Additionally, 66.1% of searching consumers choose to purchase
somewhere along their route rather than postpone in search of better prices. This reduction in
postponement corresponds to a 9.0% increase in gasoline demand, which is roughly consistent

50 Many of these patterns are similar to those reported by Houde (2012) in his traffic-based analysis of spatial
competition between gas stations.

51 We also considered the ease of access for the price-change station j. However, we did not find statistically
differentiated effects.

52 The term searching consumers is used here to refer to those that have a positive postponement cost. Recall that
our model allows for a mass of consumers with postponement costs equal to zero as only a portion of consumers are
interested in buying gas on a given day.
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TABLE 8 Search Behavior and Demand and Past Prices

Share of Purchase No. Station Searched Demand Elasticity
(1) (2) (3)

�φt−7 −0.272 1.909 −8.619
(0.008) (0.052) (3.971)

Constant 0.607 2.624
(0.000) (0.003)

R2 0.74 0.69 0.23
Observations 522 522 18726

Note: Robust standard errors are in parentheses.

FIGURE 6

PRIOR UNCERTAINTY, PRIOR BIAS, AND ASYMMETRY IN OWN-PRICE ELASTICITY

with the descriptive data patterns described in Section 4 and Table 3. In contrast, when the model
is estimated with no learning, it only predicts a 2.6% reduction in postponement.

Within our model, changes in search intensity generate changes in the predicted elasticity of
demand faced by stations. In Column (3) of Table 8, we regress simulated own-price elasticities
at the station-day level on the difference between the current price and the price level one week
prior, controlling for station fixed effects. The estimated coefficient, which we refer to as the
elasticity asymmetry coefficient, suggests that when the current price level is 10 cpg lower than
the previous week, own-price elasticities decrease by 0.86 in absolute value—a 10% reduction
from the average own-price elasticity of −8.4.

We further illustrate how fluctuations in own-price elasticity relate to prior bias, π , and
the prior uncertainty, α0, by using our model to simulate a series of counterfactuals. First, to
investigate the importance of biased expectations, we vary the degree to which consumers’ priors
of the current price distribution are biased toward past price levels. While holding the other
parameters constant at their estimated level, the prior bias parameter is assigned various values
ranging from π = 0, where the prior distribution is centered around the actual price level, to π =
1, where the prior is centered around the previous period’s price level. We simulate the predicted
own-price elasticities for each prior bias parameter value and then regress these elasticities on
the change in the price level from the previous week, mirroring the analysis from Table 8. The
elasticity asymmetry coefficient and 95% confidence interval from each regression are plotted as
a function of the prior bias parameter in Panel (a) of Figure 6. The figure also plots the estimated
average own-price elasticity for each prior bias value.

As shown in the figure, the average own-price elasticity stays relatively flat at around -8
as the prior bias parameter varies. In contrast, as prior bias increases, the own-price demand
elasticities stations face when prices are rising compared to when prices are falling become more
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asymmetric, as suggested by the more negative elasticity asymmetry coefficient. As a result,
the degree of demand asymmetry as a share of the average own-price elasticity increases in the
prior bias. More specifically, when consumers have a rational expectation (π = 0), there is no
significant demand asymmetry.53 On the other hand, when consumers formulate their prior belief
entirely on the past prices (π = 1), the demand asymmetry coefficient is -11.1. On a day when
prices are rising and the current price level is 10 cpg higher than last week’s price level, the
predicted margin would be −11.1*0.1/−8=13.8% lower than the margin on an average day in
our sample.

A similar counterfactual analysis can be used to evaluate how the degree of certainty con-
sumers attribute to their prior beliefs asymmetrically impacts own-price elasticity following price
increases and decreases. When consumers are more certain about their prior beliefs, they place
a greater weight on their priors and less weight on newly observed prices when formulating ex-
pectations, leading to greater elasticity of demand. For example, consumers are more likely to
purchase when encountering a price they think is low because they will be more certain about
its low relative position within the price distribution and place little value in the opportunity to
continue learning from additional price observations. In addition, because the prior bias is as-
sumed to remain at its estimated value of 0.59, placing additional weight on one’s priors allows
this bias to generate more persistent differences in consumers’ search behaviors when prices are
rising and falling, resulting in a more asymmetric response of own-price elasticities.

In Panel (b) of Figure 6 the average simulated own-price elasticity and the asymmetry in
that elasticity are plotted for different values of the prior weight parameter. First, the average
own-price elasticity grows in absolute value (implying margins are likely to decrease) when con-
sumers place a higher weight on their prior beliefs. This is consistent with the theory that con-
sumers become more responsive to price changes when they are more certain about their prior
beliefs. Additionally, as prior weight increases, own-price demand elasticities appear to become
more asymmetric between periods of increasing and decreasing prices. More specifically, as prior
weight increases from 0.1 to 81, the demand asymmetry changes from −5.7 to −17.1. However,
the demand asymmetry as a share of the average own-price elasticity remains relatively stable. As
a result, when the current price level is 10 cpg higher than last week’s price level, the estimated
own-price elasticities will be 10% larger, and the implied margins will be 10% lower than on an
average day, regardless of the prior uncertainty.

9. Conclusion

� This article has estimated a dynamic search model with learning where consumers sequen-
tially search for lower gasoline prices in a predetermined order following their travel routes. We
allow consumers to be uncertain about the price distribution and hold prior beliefs that may be
biased by prices observed during previous purchases. Traffic flow data are used to construct an
empirical distribution of search sequences in the market. This novel approach allows us to iden-
tify the consumer learning process, postponement costs, and ex ante seller differentiation using
only market share data. We find that consumers place significant weight on past prices when
formulating their prior beliefs. However, consumers are relatively uncertain about these prior be-
liefs. As a result, any initial bias in consumers’ expectations diminishes quickly as they update
their price beliefs based on new price observations.

By incorporating the consumer learning process, we relax one of the crucial assumptions
of standard search models—the assumption that searching consumers are aware of the true price
distribution. Prior uncertainty and prior bias are both essential features in the retail gasoline
market, as volatile prices make it difficult for consumers to know the true price distribution
with any certainty. Consequently, consumers are likely to formulate their expectations of prices

53 The asymmetry is not mathematically zero because the own-price elasticity is simulated based on the ob-
served prices.
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based on prices observed in the recent past. More importantly, we systematically demonstrate
how prior uncertainty and prior bias can cause demand elasticities to respond asymmetrically to
price increases and decreases. This asymmetric demand response offers an explanation for why
firms pass through positive cost changes more quickly than negative cost changes—a widely
observed phenomenon that cannot be explained by search frictions alone. Our results suggest
that price fluctuations will have a larger and more asymmetric impact on demand elasticities
when consumers rely more heavily on past prices in forming their priors and when consumers
place a heavier weight on these priors as they search for gasoline along their travel route.

The use of travel patterns to simulate unobserved search sequences is grounded in the ob-
servation that consumers are likely to search for and purchase gasoline during everyday driving
rather than making dedicated trips to purchase gasoline. In addition to the identification of the
consumer learning process, our approach has other advantages. First, it allows us to introduce ex
ante vertical differentiation of stations without suffering from the curse of dimensionality. Sec-
ond, we use the observed traffic flows to replace the random sampling assumption, allowing us to
estimate more realistic substitution patterns that depend on the amount of traffic stations share.
Although the integration of travel patterns in a search model is most relevant to the retail gaso-
line market, we envision its applications in other markets. In cases where sellers have physical
addresses, such as in a shopping mall, travel patterns naturally constrain the search order. Even
for sellers without physical addresses, the order of visits can be affected by constraints such as a
webpage layout.

Our article opens up several avenues for future research. We think the most important is
the modeling of the supply side decision. The pricing equilibrium arising in the ordered search
environment is likely to be quite different from the equilibrium of a random-search model. Ar-
batskaya (2007) develops a price equilibrium for a row of sellers facing consumers who travel
in one direction. However, pricing decisions in the retail gasoline market are more complicated,
as stations are located on multiple travel paths with consumers driving in different directions
and passing different sets of competitors. Consequently, the demand at a station, as the sum of
the residual demand along each search route, is kinked. Spatial differentiation, together with im-
perfect price information, creates interesting price dynamics, which we leave for future work to
explore. Also, asymmetric cost pass-through is often regarded as anti-competitive and harmful
to consumers. A supply-side model would enable researchers to answer important welfare ques-
tions. For example, a counterfactual analysis could examine how much consumers would benefit
from being informed about the actual price distribution and, therefore, facing a market with no
asymmetric search intensity and no asymmetric cost pass-through.
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