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1 Introduction

Software packages such as R, SAS/SPSS, and Stata can report parameter estimates up to

an arbitrary number of decimal digits. A well-known reason to report few decimal digits,

typically three or four, is the numerical reliability of the underlying computations. The

same econometric estimator applied to the same data can produce different exact values for

coefficient and standard error estimates depending on the software package or the computer

used to perform the calculations. Tables 1 and 2 of McCullough and Vinod (1999) provide

examples of this phenomenon.

Improvements in computational power and accuracy have significantly reduced the like-

lihood that the same estimation routine applied to the same data on different computers

(or on the same computer using different software packages) produces different estimates up

to at least three decimal digits.1 However, the question of whether all the decimal digits

reported, although numerically accurate, are statistically meaningful remains.

For example, a reported demand price elasticity estimate of −1.136 with a standard

error estimate of 0.342 implies much less statistical precision and economic content than a

demand price elasticity estimate of −0.951 with a standard error estimate of 0.021. In the

first case, there is support for the conclusion of a downward sloping demand curve in price,

but there is insufficient statistical precision to conclude that the demand for this product

is price elastic or inelastic.2 In the second case, the parameter estimate and associated

standard error support both conclusions: (i) that the demand curve is downward sloping

in price and (ii) that the demand for the product is price inelastic. However, the current

dominant practice in empirical work in economics is to report three decimal digits for both

coefficient estimates.

We believe that reporting a fixed number of decimal digits for econometric estimates

represents a missed opportunity to increase the statistical and economic content of tables

of parameter estimates. For instance, in the above example, we believe that it makes more

sense to report fewer decimal digits for the coefficient estimate and its standard error in the

1The requirement that authors produce replication packages containing the raw data and software pro-
grams used to produce all empirical results reported in published papers in economics journals has helped
achieve this outcome.

2Greater or less than one in absolute value, respectively.
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first case than in the second one, both to convey the appropriate level precision in each price

elasticity estimate and to avoid cluttering tables of parameter estimates with statistically

meaningless digits.

How can a researcher decide how many digits to report in coefficient estimates and stan-

dard error estimates? Would such a reporting rule be easy to implement? Does current

practice significantly depart from this reporting rule? Building on insights from the testing

statistical hypotheses of equivalence literature,3 we propose a procedure to determine which

decimal digits to report in empirical work. We first derive exact closed-form expressions for

the number of digits to report for a coefficient estimate for the normal linear conditional

mean model.4 This approach is asymptotically valid for a range of more general econometric

models. Our procedure only involves straightforward calculations from variables that are

already computed by standard software packages. It could therefore easily become the de-

fault setting of post-processing routines that researchers typically use to generate tables of

estimation results.

To investigate whether our procedure would make a substantial difference in the way

empirical results are reported in economics, we retrieve all coefficient estimates and associated

standard errors published in the American Economic Review between 2000 and 2022 to

obtain a dataset of over 90,000 coefficient estimates each with its associated standard error

estimate. We find that 81% of coefficient estimates are reported with either two (23%) or

three (58%) decimal digits. We then show that over 60% of the decimal digits of the coefficient

estimates would not be printed according to this criteria. If the procedure is relaxed to also

report the first non-statistically-meaningful digit, then over 33% of the published digits would

not be printed according to this criteria. We conclude that adopting either the restricted or

relaxed version of our procedure would imply non-trivial changes in how estimation results

are reported. Tables of coefficient estimates would generally become more reader-friendly

by conveying precision in the number of reported decimal digits. The risk of subsequent

misuses of parameter estimates in applications that are sensitive to their reported precision

3Wellek (2010) provides an accessible book-length treatment of the theory of testing statistical hypotheses
of equivalence.

4We also derive tight lower bound for the number of digits to report for the standard error estimate
associated with a coefficient estimate from the normal linear conditional mean model.
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would likely decrease.

Our proposal is inspired by current practice in other scientific fields. In particular, re-

searchers in natural sciences pay particular attention to “significant digits” (also called “sig-

nificant figures”) when reporting empirical results.5 Specifically, scientists typically report

decimal digits only up to the point where measurement errors prevent further confidence

in the precision of the number recorded. The rationale for this practice is that errors are

inevitable in measuring a magnitude of interest. For example, the metering device may be

impacted by small changes in background conditions. Therefore, measurements in natural

sciences only report the digits whose order of magnitude is higher than the likely magnitude

of possible idiosyncrasies in the measurement process.6

We argue that empirical research in economics could use an analogous concept of “signifi-

cant digits,” based on insights from the testing statistical hypotheses of equivalence literature.

If the econometric model and associated dataset is thought as the measurement device em-

ployed by a researcher to obtain an estimate of an economic magnitude of interest, such as

the above demand price elasticity, then our procedure can be seen as a way to assess the

precision of this measurement device. The empirical estimate of this economic magnitude

would then only be reported at the number of “significant digits” justified by our assessment

of this precision.

Different measurement devices—in our case, datasets and econometric models—could

imply reporting different numbers of significant digits. For example, applying our procedure

to the first case above could suggest reporting −1 as the estimated demand price elasticity.

In the second case, our procedure could instead imply reporting −0.95 as the estimated

demand price elasticity.

Our approach has several advantages, particularly for reporting estimates of economic

magnitudes. First, it would direct attention to the precision of a parameter estimate, which

can often have important economic implications. In the case of a demand price elasticity, a

negative value implies that a price increase reduces the quantity demanded, but a value of

5See for example Britannica: https://www.britannica.com/science/significant-figures(last ac-
cessed December 17, 2023).

6An example of this phenomenon is the estimated distance between the orbits of planets in the solar
system which are typically reported with only a few decimal digits for distances of tens to hundreds of
millions of miles.
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−0.95 implies that a price increase also increases total revenue, an economic conclusion not

supported by a value of −1. Second, our procedure would generally greatly simplify tables

of estimation results, and thus make it easier to assess their economic content. Third, it

would typically decrease the sensitivity of the values reported for parameter estimates and

standard errors estimates to uncertainty in the precision of the underlying data.7

The rest of the paper is organized as follows. Section 2 discusses issues related to the

current lack of standardized practice to convey precision in empirical research in economics.

Section 3 formally introduces our concept of a “significant digit” and shows how to imple-

ment it for the normal linear conditional mean model. Section 4 uses a simple example where

the true data generating process is known to illustrate how our procedure for reporting “sig-

nificant digits” could be implemented in practice. Section 5 assembles an original dataset

of all coefficient estimates and associated standard errors from the articles published in the

American Economic Review between 2000 and 2022. We use this dataset to study quantita-

tively the extent to which current practice differs from the two reporting rules we propose.

We also provide evidence from a number of other top economics journals that support the

view that we would have obtained similar results had we chosen different publication outlets

and/or restricted attention to the main estimates of interest instead of including all reported

parameter estimates in our dataset. Section 6 concludes.

2 Conveying Precision in Empirical Studies

Empirical results in economics are derived from identification assumptions and estimated on

small samples, making them inherently uncertain, as emphasized by Manski (2011, 2019).

For this reason, detecting or failing to detect a non-zero parameter estimate has been the

main focus of statistical inference in empirical economic research.

As the cost of data collection declines, larger and larger datasets have become available.

7How the same economic magnitude is measured can change over time and across locations because of tech-
nical change in how this magnitude is collected—manually versus using electronic monitors, for example—and
the extent to which components of this magnitude must be estimated. Although these changes are unlikely
to impact the value of the first one or two digits of the measured magnitude, they can impact values of its
remaining digits. The procedure we propose would make reported parameter estimates largely invariant to
reasonably low levels of uncertainty in the underlying input data.
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As a result, the statistical power to detect non-zero effects has increased dramatically. For

this reason, empirical research in economics seems likely to shift from detection to mea-

surement. In other words, the key question in statistical inference may no longer be “is a

coefficient estimate different from zero?” but instead “how precise is a (non-zero) coefficient

estimate?”.

This paper proposes to report point estimates using a standardized approach that com-

municates their precision. In doing so, we hope to contribute to improving the credibility of

empirical research in economics and increase the emphasis on economic significance relative

to statistical significance of a parameter estimate.

2.1 Credibility of Empirical Economic Research

In recent years, economists have dedicated significant attention to the credibility and trans-

parency of their empirical research.8 A major concern has been that journals may not

publish a random sample of the underlying distribution of possible estimation results. A

widely held view is that “statistically significant” (Franco et al., 2014; Andrews and Kasy,

2019; Brodeur et al., 2023) and “surprising” (DeLong and Lang, 1992) results are more likely

to be published.

Establishing precision as another salient attribute of reported results would likely reduce

the emphasis put on obtaining “statistically significant” results and highlight that uncer-

tainty in each reported decimal digit is an essential feature of empirical work in economics,

that can often lead to different conclusions about an economic magnitude of interest, as

shown in our earlier demand price elasticity estimates example.

2.2 Economic versus Statistical Significance

A greater emphasis on the precision of parameter estimates also highlights the distinction

between“statistical” and “economic” significance. The latter refers, broadly speaking, to the

magnitude of the estimated effects, while the former simply tests whether a point estimate is

8See the essays in the symposium “Con out of Economics” of the Journal of Economic Perspectives
(Angrist and Pischke, 2010; Leamer, 2010; Keane, 2010; Sims, 2010; Nevo and Whinston, 2010; Stock, 2010).
Notable earlier contributions to this literature include Hendry (1980) and Leamer (1983).
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distinct from zero. Many authors have stressed that putting too much emphasis on statistical

significance often diverts researchers away from answering the main research questions of

interest (DeLong and Lang, 1992; McCloskey and Ziliak, 1996; Ziliak and McCloskey, 2004).

However, statistical significance is only useful in so far as it acts as a gate-keeper to

economic significance. In our example above, both demand price elasticity estimates imply

a statistically significant negative relationship between price and demand. Yet, only the

second demand price elasticity estimate and standard error imply a significant difference from

a unitary price elasticity of demand, an economically significant result. Our methodology

reports fewer digits in the first case than in the second case, drawing attention to the economic

implications of the greater statistical precision of the second demand price elasticity estimate.

3 Significant Digits in Economics

This section introduces the notation and statistical inference framework necessary to assess

whether a given digit in a parameter estimate from an econometric model rejects a non-

equivalence hypothesis test relative to its two nearest digits.

3.1 Definitions

Let θ̂ be a scalar parameter estimate from a sample of data. In most of what follows, θ̂

will be a coefficient estimate, but we will also discuss the case where θ̂ is a standard error

estimate.9 The vast majority of empirical estimates reported in results tables in economics

articles fall into one of these two categories.

Because it is a real number, θ̂ can be written as an infinite sequence of digits {di}+∞
i=−∞.

For example, the number:

θ̂ = 1.234 . . .

can be seen as a sequence of digits {. . . , 1, 2, 3, 4, . . .} where the leading “. . .” are all zeros

and the lagging “. . .” refer to the infinite sequence of remaining decimal digits.

9For simplicity, we sometimes refer to θ̂ as the “estimated parameter” even though the standard error of
a coefficient estimate is not strictly speaking a parameter of the estimated model.
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We can define this sequence formally for any real number as the sum of the product

di × 10i for i = −∞ to i = +∞ for specific values of d−∞ . . . d+∞ :

θ̂ ≡
+∞∑

i=−∞

di10
i (1)

For the above example of θ̂ = 1.234 . . ., di = 0 for i ≥ 1, d0 = 1, d−1 = 2, d−2 = 3, d−3 = 4,

etc.

For obvious practical reasons, researchers only report a limited number of decimal digits.

For instance, if the parameter estimate is reported with two decimal digits, the “published”

or “printed” value of θ̂, which we denote with θ̂p, will be:

θ̂p = 1.23

In empirical work in economics, the choice of how many digits to report is typically

arbitrary. Researchers usually report estimated parameters with either 2 or 3 decimal digits

(see Section 5), which is also the default setting of most software routines available to print

results tables. This choice does not typically reflect in any way the researchers’ confidence

in the precision of reported parameter estimates.

We argue that researchers could instead consider rounding the estimates they report in

a way that reflects their precision. Specifically, rather that reporting an exogenously fixed

number of decimal digits for all parameter estimates and standard errors, researchers could

first assess whether each digit they report meets a pre-specified standard of precision. Indeed,

as illustrated in Figure 1, the same estimated parameter “1.234 . . .” may be interpreted

differently depending on the available precision.

Numerical
estimate

1.234 . . .

Relevant interpretation
when precision is low

1

Relevant interpretation
when precision is high

1.23

Figure 1: Stylized representation of how to interpret a parameter estimate depending on the
available precision.

For each digit of a parameter estimate, the researchers face the following question: Does

this digit convey meaningful information or is it simply the result of statistical noise?
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This question can be asked iteratively. Specifically, when the estimated parameter is

1.234 . . ., one may first ask: is the first digit of the population parameter value very likely

to be “1” or not? If the answer is yes, then one can turn to the second digit (“2”) and ask:

am I confident that this digit is likely to be a “2” or could it just as well be a “1” or “3”? If

the answer is again that the digit is very likely to be correctly estimated, the same question

can be asked about the third digit (“3”), and so on and so forth.

To implement this procedure, we build on the testing statistical hypotheses of equivalence

literature (Wellek, 2010). The general test of statistical equivalence performs the following

hypothesis test:

H : θ ≤ a or θ ≥ b versus K : θ ∈ (a, b)

where θ is an unknown population parameter value. A typical application of equivalence

tests is clinical trials, where two different drugs are deemed to be “bioequivalent” when

they trigger similar biological responses. In these applications, θ is the population mean

difference in responses and θ̂ is assumed to be normally distributed with unknown mean

θ. Similarity between the responses is assessed by specifying a range (a, b) of acceptable

population differences (typically centered around zero). If the data rejects H, then the two

drugs are considered to be bioequivalent.

Returning to our example of the parameter estimate θ̂ = 1.234 . . . , one can assess whether

its first digit is significant by performing the following equivalence test:

H i=0: |θ − 1.234 . . . | > 1 versus Ki=0: θ ∈ (0.234 . . . , 2.234 . . . )10

We thus introduce a statistical concept of “significant digit” in a parameter estimate as

follows.

Definition 1 (Significant digit) Let θ̂ ≡
∑+∞

i=−∞ di10
i be an estimate of the scalar popu-

lation parameter θ.

We define digit di to be significant at the level α if the following equivalence test ψi rejects

the null hypothesis H i at the level α:

H i: |θ − θ̂| > 10i versus Ki: θ ∈
(
θ̂ − 10i, θ̂ + 10i

)
.

10Note that (0.234 . . . , 2.234 . . . ) is the open interval that does contain either endpoint.
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Continuing our example, suppose that the null hypothesisH i=0 associated with the equiv-

alence test ψ0 is rejected so that the digit d0 = 1 is deemed significant according to Defini-

tion 1. We can then turn to the next digit and perform the equivalence test ψ−1:

H i=−1: |θ − 1.234 . . . | > 0.1 versus Ki=−1: θ ∈ (1.134 . . . , 1.334 . . . )

If the null hypothesis H i=−1 associated with the equivalence test ψ−1 is rejected as well, so

that the digit d−1 = 2 is also deemed to be significant, we can again turn to the next digit

d−2 = 3 and perform the equivalence test ψ−2:

H i=−2: |θ − 1.234 . . . | > 0.01 versus Ki=−2: θ ∈ (1.224 . . . , 1.244 . . . )

Intuitively, this procedure can be iterated until we fail to reject the null hypothesis for

some decimal rank i. In order to ensure that the procedure indeed converges, we make the

following assumption.

Assumption 1 (Monotonicity of equivalence tests) For any rank i, if ψi rejects the

null hypothesis, then the equivalence test ψi+1 also rejects the null hypothesis.

Note that, by a recurrence argument, Assumption 1 is equivalent to stating that if ψi

rejects the null hypothesis, then ψi′ rejects the null hypothesis for all i
′ > i. This assumption

is very unlikely to prove restrictive in practice. In particular, it trivially holds for the

equivalence tests we use below in the context of the normal linear conditional mean model.

We nonetheless state it as an assumption in order to introduce in full generality the following

concept of “last significant digit”.

Definition 2 (Last significant digit) Under Assumption 1, we define the rank i∗(α) of

the “last significant digit” as the smallest value of i such that digit di in Equation (1) is

significant at level α according to Definition 1:

i∗(α) ≡ min
i
{i | di is a significant digit at level α}

Under Assumption 1, it is straightforward to see that, if di is a significant digit, then all

di′ with i
′ > i are also significant digits. Because finite sample sizes necessarily put an upper

9



bound on precision, there exists a threshold rank i∗(α) such that a digit di is significant

if, and only if, i ≥ i∗(α). We call the corresponding digit di∗ the “last significant digit.”

The rank of the last significant digit summarizes the “precision” of the estimated parameter.

According to our definition of “significant,” the value of this parameter can only be precisely

inferred at the order of magnitude 10i
∗
.

It is important to note that i∗(α), the rank of the last significant digit, may be strictly

greater than D(θ̂), the rank of the first non-zero digit of the estimated parameter, which can

be formally defined as:

D(θ̂) ≡ max
i
i1 [di ̸= 0] (2)

where 1 [di ̸= 0] is a dummy variable that is equal to 1 when di ̸= 0 and zero otherwise.

In such cases, the parameter estimate does not have any non-zero significant digit. Even

then, the rank of the last significant digit nonetheless provides useful information about the

“precision” of the estimate. For example, if the estimated parameter is 0.436 and i∗(α) = 0,

our procedure implies that we can rule out a first digit strictly greater than 1 for this value

of α, but the same inference cannot be made if i∗(α) = 1. The “precision” of the estimated

parameter is 100 in the former case while it is only 101 in the latter.

Finally, when the absolute value of a parameter estimate is strictly lower than one, as

in the above example of 0.436, the zero(s) preceding the first non-zero digit provide little

information.11 Under Definition 1, initial zeros are considered to be significant digits as

long as their rank is weakly greater than i∗(α). We therefore introduce the concept of the

“number of sizable significant digits” to refer to the number of precisely estimated digits

when one ignores any zero(s) preceding the first non-zero digit of a parameter estimate.

Definition 3 (Number of sizable significant digits) Let θ̂ ≡
∑∞

i=−∞ di10
i be an esti-

mate of the scalar population parameter θ. Let D(θ̂) equal the largest rank of its non-zero

digits:

D(θ̂) ≡ max
i
i1 [di ̸= 0] (3)

Let i∗(α) equal the rank of the last significant digit of θ̂. We define the “number of sizable

significant digits,” ν(α) as:

11One reason for the use of scientific notation is to avoid reporting such initial zeros.
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ν(α) ≡ max(D(θ̂)− i∗(α) + 1, 0)

The number of sizable significant digits is the number digits that: (i) contribute to

measuring a non-zero coefficient estimate and (ii) can be precisely estimated from the avail-

able data. For example, if the parameter estimate is 1.234 . . ., only the first digit “1” is

precisely estimated when i∗(α) = 0, while all four non-zero digits are precisely estimated

when i∗(α) = −3. Because D(θ̂) = 0 for this example (i = 0 and d0 = 1), the formula in

Definition 3 yields ν(α) = 1 in the former case, and ν(α) = 4 in the latter.

3.2 Equivalence Testing

Definition 1 does not specify which equivalence test should be run in practice. We propose

to adopt the widely used “two one-sided test” (TOST). This test rejects the null hypothesis

H i at the level α if, and only if, the following two one-sided tests reject their null hypothesis

at level α:

H i
a: θ = θ̂ − 10i versus Ki

a: θ > θ̂ − 10i (ψia)

and

H i
b: θ = θ̂ + 10i versus Ki

b: θ < θ̂ + 10i (ψib)

Because both tests ψia and ψib are of size α, it may seem counter-intuitive that the

resulting test ψi is also of size α. Indeed, in standard settings, induced tests for multiple

hypothesis testing have to use a lower significance level for each individual test in order

for the overall test to remain of size α.12 The TOST is a special case of the so-called

“intersection-union tests” (Berger, 1982). The underlying intuition for the lack of need to

adjust the size of individual tests to account for multiple testing is that H i is rejected only

if both H i
a and H i

b are rejected.

Several tests besides the TOST have been proposed in the literature on equivalence testing

(e.g. Brown et al. (1997)). However, because our procedure requires “testing” many digits

for numerous parameter estimates in order to assess their statistical precision, we believe

that the simplicity of implementing the TOST makes it ideally suited to this task.

12For example, the Bonferroni bound implies a size of α
M for each of the M individual tests for an overall

size of α for the joint null hypothesis (see for example Savin (1984)).
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3.3 Results for the Normal Linear Conditional Mean Model

This section presents finite sample results for our procedure for individual elements of the

coefficient vector from the model:

y = Xβ + ϵ (4)

where y is a T × 1 vector of outcome variables, β is a K × 1 vector of coefficients, X is a

T ×K fixed matrix of rank K where K < T , and ϵ is a T ×1 random vector. The conditional

distribution of ϵ given the matrix X is a multivariate normal T × 1 vector with mean zero

and covariance matrix σ2IT , where IT is a T × T identity matrix and σ2 is an unknown

positive scalar.

Under the above assumptions, y is N (Xβ, σ2IT ), where N (µ,Σ) denotes a multivariate

normal distribution with mean vector µ and covariance matrix Σ. In addition, the ordinary

least squares estimate of β, b ≡ (X ′X)−1X ′y, is a K × 1 random vector distributed as

N (β, σ2(X ′X)−1). Define s2 ≡ e′e
T−K

, where e ≡ y − Xb. Under the above assumptions,

s2(T−K)
σ2 is distributed as a χ2 random variable with T −K degrees of freedom.

We now derive expression for i∗(α), the (size α) rank of the last significant digit, as well

as a lower bound for this rank for the case in which we do not know T − K. This lower

bound is useful for our empirical exercise discussed in Section 5 where we do not observe the

number of degrees of freedom. It relies on an large T approximation.

Define ak as a K × 1 vector with zeros in all elements except the kth element which is

equal to one. The inner product of ak with b, yields:

bk = a′kb (5)

the kth element of the vector b. The standard error estimate for bk is equal to:

SE(bk) ≡ s
√
a′k(X

′X)−1ak (6)

As shown in Proposition 1 in Appendix B, a closed-form expression for the level α rank of

12



the last significant digit for bk is:

i∗(α) = ⌈ ln(SE(bk)) + ln(t1−α(T −K))

ln(10)
⌉ (7)

where t1−α(T −K) is the 1− α percentile of a Student’s t-distribution with T −K degrees

of freedom and ⌈x⌉ denotes the ceiling of x (closest integer value from above).13

For a given level of statistical significance, α, computing the rank of the last significant

digit of an estimated coefficient only requires knowledge of the number of degrees of freedom

T − K and the standard error estimate SE(bk). Both quantities are readily available as

outputs of the software routines used to estimate the parameters of linear conditional mean

models. Therefore, any post-processing routine used to generate estimation results tables

can easily compute the rank of the last significant digit of a coefficient estimate.

Because published articles do not always report the number of degrees of freedom asso-

ciated with a coefficient estimate and standard error, it is useful to note that t1−α(T −K) is

a decreasing function of T −K that converges to a finite value t1−α(∞) > 0 as T goes to in-

finity. This observation is just a re-statement of the well-known result that t1−α(∞) = Z1−α,

the 1−α percentile of a N (0, 1) random variable. Therefore, an asymptotic lower bound for

the size α rank of the last significant digit is (see Corollary 1 in Appendix B):

i∗∞(α) = ⌈ ln(SE(bk)) + ln(Z1−α)

ln(10)
⌉. (8)

Our definition of significant digits can be applied to standard error estimates, such as

SE(bk), and more generally to any random scalar for which one can devise a TOST equiva-

lence test. For example, Proposition 2 in Appendix B derives a closed-form lower bound for

the rank of the last significant digit of the standard error estimate, SE(bk), of a coefficient

estimate from normal linear conditional mean model. We make use of this expression in the

examples discussed in Section 4.

13For example, the ceiling of 1.234 is 2 and the ceiling of −1.234 is −1.
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3.4 Other Statistical Models

As shown in the proof of Proposition 1 in Appendix B, the closed-form expression for the rank

of the last significant digit of a coefficient estimate only relies on the fact that the t-statistic

has a Student’s t-distribution with T −K degrees of freedom. Although this property does

not hold exactly for models other than the normal linear conditional mean model discussed

above, it is often a reasonable asymptotic approximation. Because conveying precision is

most relevant in applications with large sample sizes, our previous results are likely to be

a useful approach to determining which digits of an estimated coefficient are statistically

significant.

Deriving a similar asymptotic result for standard error estimates (see Proposition 2 in

Appendix B) from other econometric models is not possible in general. However, the main

purpose of reporting standard error estimates is to give to readers a sense of the precision of

coefficient estimates. Reporting standard errors is therefore to some extent redundant with

the use of significant digits.14.

4 Use of Significant Digits Procedure

This section employs a simple example to illustrate how our procedure for determining

“significant digits” may be used to report empirical results in economics. We draw data

from a known true data generation process to provide greater insight into the properties of

our procedure.

4.1 True Data Generating Process

The outcome variable yt depends on three independent variables X1t, X2t and X3t, and an

error term ϵt. We assume the true data generating process is:

yt = β0 +
3∑

k=1

βkXkt + ϵt (9)

14If the rank of the last significant digit of a given coefficient estimate is i∗(α), the use of significant digits
can already convey the information that the coefficient estimate is precise up to a measurement error of at
most 10i

∗(α)
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where (β0, β1, β2, β3) is the vector of true parameter values. To keep things simple while still

being able to illustrate our main points, we set β0 = β1 = β2 = β3 = 1.

We assume the researcher observes T draws of the following vector indexed by t:

{(yt, X1t, X2t, X3t)}t=1...T

To produce these vectors, we take T independent identically distributed draws of X1t, X2t,

X3t and ϵt, respectively from the following mutually independent normal distributions:

X1t ∼ N (0, 1), X2t ∼ N (0, 5), X3t ∼ N (0, 10), and ϵt ∼ N (0, 5).

For each draw, we use the true data generation process (Equation (9)) and the assumed

values of the model parameters (β0 = β1 = β2 = β3 = 1) to compute a value of yt.

Models Estimated

We take the perspective of a researcher who only observes a sample of size T of the vector

(yt, X1t, X2t, X3t) and seeks to recover an estimate of β1. Assume the researcher estimates

and reports three models:

Model 1: yt = β0 + β1X1t + η1t

Model 2: yt = β0 + β1X1t + β2X2t + η2t

Model 3: yt = β0 + β1X1t + β2X2t + β3X3t + η3t

Note that we include different error terms—η1t, η2t, and η3t—in each model to account for

the omitted regressors.

Model 1 corresponds to the simplest empirical strategy where the researcher tries to

recover β1 by regressing yt on X1t. Model 2 adds X2t as a control variable but not X3t.

Finally, model 3 corresponds to a situation where the researcher is actually estimating the

true data generating process. Note that because the X1t, X2t, X3t and ϵt are independent of

each other and across observations, all three estimates of β1 are unbiased. However, because

X1t has by far the smallest variance among X1t, X2t, X3t and ϵt, we expect it to be difficult

to estimate β1 precisely without including X2t and X3t in the regression.
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4.2 Using Significant Digits to Report Empirical Results

We now discuss a procedure to report parameter estimates that conveys their precision in a

transparent and efficient manner. We first consider a sample of size T = 60.

Panel (a) of Figure 2 shows the current mainstream approach to report empirical results

in economics. The number of digits displayed does not convey any information about their

precision. We simply keep the default settings of a popular software routine that generates

tables of estimation results. As a consequence, many printed digits actually do not provide

any relevant information. For example, the coefficient estimates for X1t in models 1 and 2

are very imprecisely estimated, as expected. Therefore, reporting that the second and third

decimal digits of these statistical zeros are respectively “89” and “84” may be considered as

statistical noise.

Panel (a) Panel (b) Panel (c)

Model 1 Model 2 Model 3

X1 0.689 0.784 0.713
(0.678) (0.623) (0.366)

X2 0.899 1.005
(0.260) (0.153)

X3 1.010
(0.097)

Constant 0.945 0.710 0.840
(0.579) (0.536) (0.315)

Observations 60 60 60
R2 0.017 0.187 0.724

Model 1 Model 2 Model 3

X1 0 0 +0
(0.6) (0.6) (0.3)

X2 +0 1
(0.2) (0.1)

X3 1
(0.0)

Constant 0 0 +0
(0.5) (0.5) (0.3)

Observations 60 60 60
R2 0.017 0.187 0.724

Model 1 Model 2 Model 3

X1 0.7 0.8 0.7
(0.68) (0.62) (0.37)

X2 0.9 1.0
(0.26) (0.15)

X3 1.0
(0.10)

Constant 0.9 0.7 0.8
(0.58) (0.54) (0.32)

Observations 60 60 60
R2 0.017 0.187 0.724

Figure 2: Different possible formats for the table of estimation results. Panel (a): current
mainstream approach in economics (the table was generated using the package “stargazer”
in R (Hlavac, 2022)); Panel (b): reporting only significant digits for α = 0.1; Panel (c):
reporting significant digits for α = 0.1 as well as the first (rounded) non-significant digit.

We propose instead to build on Propositions 1 and 2 in Appendix B to increase the

“signal-to-noise” ratio of the reported results table. Panel (b) of Figure 2 displays the same

results as in Panel (a), but only reports significant digits at the level α = 0.1, both for

coefficients and standard errors. Choosing α = 0.1 instead of say α = 0.01 is a conservative

approach in the sense that the less stringent the equivalence tests are, the more digits they

will consider to be significant. A caveat of this approach is that an estimated coefficient

may be statistically different from zero but have no non-zero significant digit. This situation

occurs for example for the estimate of β1 for Model 3 and the estimate of β2 for Model 2.

One approach to make a distinction between a statistical zero and a positive coefficient with
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no non-zero significant digit could be to report “0” in the former case (the estimate of β1

for Model 1), and “+0” in the latter (the estimate of β2 for Model 2), as shown in Panel (b)

of Figure 2. Another caveat is that such a situation where an estimated number has no

non-zero significant digit can also occur for standard errors, as illustrated by the estimated

standard error for β3 in Model 3.

Therefore, one may prefer to report the first non-significant digit, rounded up or down

depending on the next non-significant digits. This approach is shown in Panel (c) of Figure 2.

Adopting this practice to report empirical results in economics could represent a reasonable

trade-off between Panel (a), where most printed digits are not “significant” according to

Definition 1, and Panel (b), where some coefficients are statistically different from zero but

do not have any non-zero significant digit.

Panel (a) Panel (b) Panel (c)

Model 1 Model 2 Model 3

X1 0.7 0.8 0.7
(0.68) (0.62) (0.37)

X2 0.9 1.0
(0.26) (0.15)

X3 1.0
(0.10)

Constant 0.9 0.7 0.8
(0.58) (0.54) (0.32)

Observations 60 60 60
R2 0.017 0.187 0.724

Model 1 Model 2 Model 3

X1 1.02 1.01 1.00
(0.01817) (0.01573) (0.00906)

X2 0.999 0.988
(0.00706) (0.00406)

X3 0.997
(0.00287)

Constant 1.00 0.99 0.99
(0.01824) (0.01579) (0.00909)

Observations 60,000 60,000 60,000
R2 0.050 0.288 0.764

Model 1 Model 2 Model 3

X1 1.02 1.01 1.00

X2 0.999 0.988

X3 0.997

Constant 1.00 0.99 0.99

Observations 60,000 60,000 60,000
R2 0.050 0.288 0.764

Figure 3: Results tables when reporting digits up to the first non-significant digit for T = 60
(left panel) and T = 60, 000 (middle and right panels).

We next increase sample size to T = 60, 000 to illustrate what happens when precision

increases.15 Figure 3 compares the table of estimation results for T = 60 and T = 60, 000

when reporting digits up to the first non-significant digit. As expected, coefficients are more

precisely estimated and therefore reported with additional digits. Similarly, standard errors

are more precisely estimated and therefore reported with more digits. This latter observation

may be seen as a drawback because it somewhat defeats the purpose of reporting simpler

results tables. Yet, the current practice of truncating standard errors to a fixed number of

decimal digits may not be satisfactory either. For example, truncating standard errors to two

15We chose such a large sample size to provide an example where (i) the rank of the last significant digit
differs across coefficient estimates; and (ii) the standard error estimate of at least one coefficient estimate is
equal to zero when the researchers rule is to always report two decimal digits.
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decimal digits would induce some of the reported standard errors to be 0.00.16 However, the

main purpose of reporting standard errors is to convey the precision of coefficient estimates.

Therefore, reporting coefficient estimates in a way that accounts for precision through our

concept of “significant digits” may also represent a substitute for reporting standard errors

for cases when standard errors are extremely small relative to the coefficient estimates. For

large sample sizes, Panel (c) in Figure 3 could thus be a sensible approach to report estimates

in a reader-friendly way while still accounting for precision.

4.3 Discussion

We now discuss a number of practical considerations when choosing the units of dependent

and independent variables. First, it is important to note that the rank i = 0 plays no

particular role for our concept of significant digits. Equivalently, whether a given digit is

a decimal digit or not is irrelevant. However, the choice of the units of the dependent and

independent variables in a regression may matter in several ways. To discuss such situations,

consider an estimate θ̂ of a parameter:

θ̂ =
D∑

i=−∞

di10
i (10)

where D is the largest rank for non-zero digits (omitting its dependence on θ̂ to simplify

notation). We denote with i†(α) the rank of the last printed digit under the chosen equiva-

lence test size α and reporting rule (either the rank of the last significant digit or the first

non-significant one). Printed digits correspond to all digits whose rank lies between i†(α)

and max(D, 0). A few special cases are worth discussing.

First, the largest rank for non-zero digits may be negative (i.e., D < 0). For example,

a coefficient may be estimated to be 0.023 (i.e., D = −2). Although the above reporting

rules can of course still be implemented, our empirical exercise of Section 5 is sensitive to

the choice of units in such situations. Indeed, even though the two zeros of the estimated

16Although this remark may seem anecdotal, in the dataset we collect in Section 5 we observe this outcome
for almost 1% of the standard error estimates we recover from articles published in the American Economic
Review.
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coefficient may be seen as relatively uninformative, they are considered in our empirical

application as significant digits whenever i∗(α) ≤ −1. For example, if i∗(α) = −2, three

out of the four printed digits of 0.023 are considered to be statistically significant. If the

unit of the explanatory variable were to be divided by 100, the estimated coefficient would

become 2.3 and only one out of the two printed digits would be statistically significant.

From this perspective, our assessment in Section 5 of the share of printed digits that are not

statistically significant may be seen as conservative.

Another practical concern in situations where D < 0 and i†(α) < 0 is that, when re-

searchers print an exogenously fixed number of decimal digits, they may report estimates

with too few non-zero digits. For example, they may report 0.001 when the rank of the last

significant digit is actually i∗(α) = −5. Such rounding practices have been shown to possibly

generate biases in meta-analysis studies (Kranz and Pütz, 2022; Brodeur et al., 2022). In

particular, Elliott et al. (2022) show that p-hacking tests can be sensitive to whether p-values

are rounded or not.

Finally, the rank of the last significant digit may be a positive power of ten (i∗(α) > 0).

For example, a parameter estimate may be 451.23... while the rank of the last significant

digit is i∗(α) = 2. Under the approach consisting in reporting significant digits up to the

first non-significant one, only “4” and “5” would be printed. However, reporting 450 does

not implement this rule because of the terminating “0.” This is because when an estimate

does not have decimal digits and ends with a zero, the reader cannot tell whether this zero is

a significant digit or not. The use of scientific notation would then be required to implement

the reporting rules discussed above.17 Our analysis of Section 5 suggests that the rank of the

last significant digit is a positive number in a small minority of cases in empirical research in

economics. Therefore, changing measurement units is likely to be a more pragmatic approach

to handle these situations than widespread use of scientific notation.

17Appendix A illustrates the use of scientific notation for our example of Section 4.
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5 Significant Digits in Economic Research

This section quantitatively assesses the extent to which the coefficient estimates printed in

published articles in economics consist of significant digits. Our assessment relies on the

asymptotic approximation presented in equation (8) that only requires knowledge of the

standard error estimate of the coefficient estimate.18

5.1 Data Compiled

Our empirical exercise relies on coefficient estimates and associated standard error estimates

retrieved from the universe of articles published in the American Economic Review between

2000 and 2022.19 The choice of this specific outlet is motivated by its prominence in the

economics profession and the state-of-art nature of the articles it publishes. We restrict

attention to the period post-2000 for two reasons. First, downloading full issues is not

possible before 2011, making it very time consuming to retrieve all published articles in

a given year. Second, the practice of systematically reporting coefficient estimates and

standard errors in tables of empirical results is relatively recent.20

5.2 Descriptive Analysis

This section presents a number of trends and key features of our dataset of over 90,000 coef-

ficients with their standard error estimates that may be helpful to interpret our main results.

Trend in the Number of Coefficient Estimates

First, we ask whether the number of coefficient estimates reported in the American Eco-

nomic Review has changed over the two decades we consider. Because, the number of

volumes of the journal has increased from 4 in 2000 to 12 in 2022, simply looking at the

18Facing the same data limitation, Brodeur et al. (2020) take a similar approach, focusing on Z-statistics.
19We exclude the AEA Papers and Proceedings issues over the entire period.
20In their study of empirical articles published in top economics journals during the years 2015 and

2018, Brodeur et al. (2020) note (p. 3639): “Most [test statistics in our sample] (91 percent) are reported as
coefficients and standard errors, others as t-statistics (4 percent), or p-values (5 percent).” Previous practices
were less harmonized, with papers reporting indifferently standard errors, t-statistics or z-statistics. This
absence of standardization in how results are reported would make our routine to extract coefficients and
standard errors more prone to errors and more likely to miss observations (see Appendix C).
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total number of reported coefficients per year would be misleading. Instead, we normalize

the total number of reported coefficient estimates per year by the total number of printed

pages for all articles (both theoretical and empirical) published that year.

Figure 4: Evolution of the ratio of the number of reported empirical estimates in each year
to the number of printed pages for that year.

Figure 4 shows how this ratio has evolved over our period of interest. We find that on

average there is about 1.4 coefficient estimates per printed page. This ratio increased in 2010

through 2013, but fell back down to slightly higher than its pre-2010 average in 2014.

Reported Number of Decimal Digits

We now discuss how many decimal digits researchers typically display during our sample

period. As shown in Figure 5, the majority of estimated coefficients are reported with three

decimal digits. If anything, this practice seems to have become more and more prevalent over

time, mostly at the expense of reporting only two decimal digits. Although this observation

is consistent with a widespread use of the default setting of econometric or post-processing

software routines, it does not necessarily indicate that current practice is significantly at

odds with the significant digit approach we derived in Section 4. It could be the case that

reporting three decimal digits is justified by the greater precision of the resulting parameter

estimates. This interpretation is unlikely because the majority of tables of estimation results

report the same number of decimal digits for all coefficient estimates.
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Figure 5: Evolution over time of the number of decimal digits printed for coefficient estimates.

Order of Magnitude of Coefficient and Standard Error Estimates

Figures 6 and 7 show the distributions of the absolute value of respectively coefficients

and standard errors, broken down by year. Two main observations are relevant.

Figure 6: Box plots of the magnitude of estimated coefficients (absolute value in log10 scale).
Boxes locate the first, second and third quartiles of the distributions. Top whiskers (resp.
bottom whiskers) are drawn at a distance of 1.5 times the interquartile range above the third
quartile (resp. below the first quartile).

First, the vast majority of coefficient and standard error estimates have a magnitude in

absolute value lower than 10. As a result, it is possible in most cases to convey information

about significant digits without having to resort to scientific notation. The few situations

with large estimated numbers and low precision could instead be handled with a change in
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Figure 7: Box plots of the magnitude of estimated standard errors (absolute value in log10
scale). Boxes locate the first, second and third quartiles of the distributions. Top whiskers
(resp. bottom whiskers) are drawn at a distance of 1.5 times the interquartile range above
the third quartile (resp. below the first quartile).

units.

Second, we observe no obvious temporal trend in the absolute value of the magnitude

of reported coefficients and standard errors. In particular, there is no clear evidence that

standard errors have become either significantly smaller (e.g. due to improving empirical

strategies or increasing sample sizes) or larger (e.g. due to a more prevalent use of robust

standard error estimates) over time.

5.3 Main Results

We use our dataset to assess quantitatively the extent to which current practice reports

parameter estimates to reflect their precision. Specifically, we derive, for each coefficient

estimate, an upper bound of the number of printed digits that are statistically significant.

Going back to the example of Section 4, we compare the number of digits that were printed

in the published article (panel (a) of Figure 2) to the number of digits that would be printed

under alternative reporting rules (panels (b) or (c) of this same figure).

Figure 8 shows, for each year, the fraction of printed digits that are not significant

for different values of α. Even for the most conservative level of α = 10%, we find that

less than 40% of printed digits for coefficient estimates are significant digits according to

23



Figure 8: Fraction of the printed digits of estimated coefficients that are not significant digits
at different values of α = 0.1, 0.05, 0.01.

our approach. In other words, over 60% of printed digits for coefficient estimates are not

statistically significant by our definition. In addition, there is no clear evidence that this

share has been significantly decreasing over the past two decades.

Figure 9: Fraction of the printed digits that would not have been printed if results tables
had only reported digits up to the first non-significant digit.

As discussed in Section 4, it may however make sense for empirical papers to also re-
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port the first non-significant digit, the approach in panel (c) instead instead of approach in

panel (b) in Figure 2. Even under the more generous reporting rule that would print digits

up to the first non-significant one, Figure 9 shows that over a third of the digits printed in

published articles would not have been reported under this procedure. In other words, more

than a third of the digits that have been published as part of a coefficient estimate reported

in the American Economic Review between 2000 and 2022 does not meet this criteria.

Our framework also allows us to identify coefficient estimates for which our reporting

rule would have implied printing more digits. For the significance level of α = 0.1, we find

that only about 1% of the coefficients fall into this category.

Finally, we can use our dataset to compute, for each coefficient, an upper bound of

its number of sizable significant digits (see Definition 3). As discussed above, this value

represents the number of digits that (i) contribute to a non-zero effect and (ii) can be

precisely estimated from the available data. For this exercise, we drop observations from

our sample where the printed standard error estimate is zero (1% of coefficients) because we

cannot derive a finite value for the rank of the last significant digit for these observations.

Figure 10: Distribution of the number of sizable significant digits.

Figure 10 shows histograms for the number of sizable significant digits for different levels

of statistical significance. First, we observe that the number of sizable significant digits is

equal to zero for the vast majority of coefficient estimates (60% to 80% depending on the

chosen level of statistical significance, α = 0.1, 0.05, and 0.01). For these coefficient esti-

mates, no non-zero digit is precisely estimated. Our dataset contains all coefficient estimates
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reported in tables of results, which means that it includes coefficient estimates for both the

“main effects”, that are the focus of the different studies, and coefficient estimates for control

variables. It is therefore possible that the “main effects” are actually precisely estimated,

but the coefficient estimates for the control variables are not. We however find little support

for this hypothesis in what follows. Second, comparing Figures 8 and 9 to Figure 10 suggests

that the number of sizable significant digits is more sensitive to the chosen level of statistical

significance than our assessment of the number of printed digits that are significant.21

5.4 Discussion and Robustness Checks

The dataset we collected has two main limitations. First, we restricted attention to a single

outlet, namely the American Economic Review. Second, we retrieved all coefficient estimates

in tables of results and are therefore not able to infer whether or not a given coefficient

corresponds to the main effect of interest in the considered study. As a result, we cannot

rule out that our finding that most coefficients have a number of sizable significant digits

equal to zero (Figure 10) might be driven by a lack of statistical power to precisely estimate

the coefficients associated with control variables. In other words, our results presented thus

far do not necessarily imply that the main coefficients of interest are imprecisely estimated.

To address these limitations, we make use of the dataset collected by Askarov et al.

(2023).22 In this study, the authors retrieved the estimated main effect and corresponding

standard error from over 300 meta-analysis studies. As in Askarov et al. (2023), we restrict

the sample to general interest and field journals in economics. Specifically, we restrict at-

tention to 15 outlets: the “top five” journals,23 four general interest journals,24 and the six

21This observation is consistent with the fact that the majority of printed coefficients are strictly lower
than one. Indeed, the median absolute value of the coefficients in our dataset is 0.2 (see Figure 6). Consider
one such coefficient, say for example 0.436, whose rank for the last significant digit is i∗(α) = −1. In
this example, the number of sizable significant digits is one (corresponding to the digit “4”), that is 25%
of printed digits. However, 50% of the printed digits are deemed as significant in the analysis underlying
Figures 8 and 9 (both the “0” and the “4” are significant digits by Definition 1). Because the “0” is not
the last significant digit, the fact that it is significant is much less sensitive to the chosen level of statistical
significance.

22Their dataset is publicly available at https://github.com/anthonydouc/Datasharing/tree/master/
Python/data/group1 (last accessed on 15 August 2023).

23American Economic Review, Journal of Political Economy, Quarterly Journal of Economics, Review of
Economic Studies and Econometrica.

24Review of Economics and Statistics, European Economic Review, Economic Journal, and Journal of the
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top-field journals included in Askarov et al. (2023) for which we have the largest number

of observations.25 The resulting dataset consists of 18,000+ pairs of coefficient and their

associated standard error estimates. In contrast to the dataset used for our main analysis,

the coefficients included in this dataset correspond to the “main effect of interest” of the

different empirical studies.

We use this complementary dataset to explore (i) the validity of our main results to these

journals, and (ii) whether results for the “main effect” coefficient estimates differ from the

population of printed coefficients. This external dataset however comes with its own limita-

tions. First, in contrast to the dataset we collected, the sample of coefficients for each outlet

is not exhaustive: it is restricted to the main “treatment” effects that where subsequently

tabulated in one of the meta-analyses compiled by Askarov et al. (2023). Second, no partic-

ular effort was made to keep track of how many digits were actually printed in the original

published article. Indeed, in contrast to our dataset where we scraped directly the pdf files

of journal issues and carefully retrieved the exact coefficients and standard errors that have

been printed, the dataset of Askarov et al. (2023) compiles figures from numerous meta-

analyses with different research objectives. As an illustration, Figure A.12 in Appendix A

shows that many coefficients (about 25%) are recorded with 15 decimal digits or more, and

thus do not correspond to the rounded value published in the original article.26

Figure 11 shows, for each journal, the histograms of the number of sizable significant

digits. First, we again find that, for the American Economic Review, the majority of reported

coefficients (70% to 90% depending on the chosen statistical level) do not have any non-zero

significant digit. In other words, we do not find evidence that the main effects of interest

are on average more precisely estimated than coefficients on control variables. Second, this

result holds for virtually all outlets, which suggests a high degree of consistency with our

results for the American Economic Review. Only two journals stand out for reporting,

on average, more precise coefficients, namely Econometrica and Journal of the European

Economic Association. The sample size for these two outlets is significantly smaller than it

European Economic Association.
25Journal of Development Economics, Journal of Money Credit and Banking, Journal of Public Economics,

Journal of Finance, Journal of Financial Economics and Journal of Monetary Economics.
26A possible explanation for this observation is that sequential data manipulations using different software

may numerically introduce additional decimal digits.

27



Figure 11: Histograms of the number of sizable significant digits for the different journals.

is for most other journals, which calls for great caution in interpreting this result.

To summarize, we do not find evidence that the “coefficient of interest” significant digit

results we report in this section differ from those reported for our American Economic Review

sample of all coefficient estimates.

5.5 Proposed Procedure for Reporting Statistical Precision

The example of Section 4 has shown that reporting only significant digits can lead to situa-

tions where an estimate is printed as “0” while simultaneously rejecting the null hypothesis

that it is equal to zero. In addition, Section 5 found that most empirical estimates in eco-

nomics may have no non-zero significant digits. Only printing significant digits would keep

less than half of the digits currently printed, a fraction that includes the initial zeros in

parameter estimates. This approach may therefore be a too drastic a change given the level

of precision that is typically achievable by empirical work in economics.

We instead propose to adopt a rounding rule that reports estimates up to the rank of the

first non-significant digit. Indeed, even such a “relaxed” rule would generally simplify results

tables: in our empirical application to coefficient estimates recovered from the American
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Economic Review, over a third of the published digits would not have been printed under

this reporting rule. Besides improving reader-friendliness, we believe that adopting such

a rule would increase the emphasis put on precision and economic significance relative to

statistical significance.

6 Conclusion

This paper formalizes a statistical concept of “significant digit” that may be used in empirical

work in economics to convey precision through the choice of which digits to print in tables of

coefficient estimates. We derive a closed-form expression for the rank of the last significant

digit for a coefficient estimate in the case of the normal linear conditional mean model. This

expression relies on readily available information from econometric estimation packages and

can be added seamlessly to any existing post-processing routine used in practice to export

empirical results.

We first illustrate our approach on a simple example for which the data generating process

is known. We then assemble a dataset composed of the universe of estimated coefficients

and their associated standard error estimates published in the American Economic Review

between 2000 and 2022 (over 90,000 observations). Applying our framework to this dataset,

we show that over 60% of printed digits are not statistically significant at standard values

of α.

Based on these exercises, we suggest that a compromise solution to current approach to

reporting parameter estimates is to report digits up to the first non-significant one.

Using our concept of significant digits as a basis for reporting parameter estimates in

economics would thus represent a dramatic change relative to current practice. Reporting

digits up to the first non-significant one would be a substantial improvement relative to

current practice for a number of reasons. First, it would increase the information content of

tables of parameter estimates by not reporting digits that lack statistical significance, and

in relatively rare instances, failing to report precisely estimated digits. A greater focus on

the economic significance of the coefficient estimates is likely to ensue. Second, it would

avoid conveying unwarranted precision in parameter estimates which could be an additional
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safeguard against subsequent misuse of empirical results in drawing economic conclusions

from these coefficient estimates.
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A Supplementary Tables and Figures

Table A.1 is identical to Panel (c) in Figure 2 except for the fact that the units of X1, X2

and X3 have been divided by 1,000. As a result, coefficient estimates are multiplied by 1,000.

The use of scientific notation is then required to implement the reporting rule we propose.

Table A.1: Table of results under the approach of reporting digits up to the first non-
significant digit (α = 0.1) when the units for X1, X2 and X3 have been divided by 1,000
(e.g. moving from metric tons to kg).

Model 1 Model 2 Model 3

X1 7e+02 8e+02 7e+02
(6.8e+02) (6.2e+02) (3.7e+02)

X2 9e+02 1.0e+03
(2.6e+02) (1.5e+02)

X3 1.0e+03
(1e+02)

Constant 0.9 0.7 0.8
(0.58) (0.54) (0.32)

Observations 60 60 60
R2 0.017 0.187 0.724

Figure A.12: Histogram of the number of recorded decimal digits for the “effect size” in the
subset of the dataset of Askarov et al. (2023) used in Section 5.
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B Propositions and Proofs

B.1 Rank of the Last Significant Digit for Coefficient Estimates

Proposition 1 (Coefficients) Let t1−α(T − K) denote the critical value of the Student’s

t-distribution with T −K degrees of freedom for the level of significance α. For the normal

linear conditional mean model, the rank of the last significant digit at level α for the estimated

coefficient bk is:

i∗(α) = ⌈ lnSE(bk) + ln t1−α(T −K)

ln 10
⌉

where ⌈x⌉ denotes the ceiling of x (closest integer value from above).

Proof. Let bk ≡
∑D

i=−∞ di10
i be a sample estimate of the population parameter βk, the

k-th element of the vector of independent variables in a normal linear regression model.

Let i be a given integer. In order to determine if di is a significant digit, we apply

Definition 1, using the TOST as our equivalence test.

First, we consider the test ψia:

H i
a: βk = bk − 10i versus Ki

a: βk > bk − 10i

For the ordinary least squares estimate of the normal linear conditional mean model, the

t-statistic has a Student’s t-distribution with T −K degrees of freedom, where T is equal to

the sample size and K is equal to the number of regressors.

Therefore, the null hypothesis of our one-sided test is rejected at level α if, and only if:

bk − (bk − 10i)

SE(bk)
≥ t1−α(T −K)

which may be rewritten as:

10i − t1−α(T −K)SE(bk) ≥ 0

Second, we consider the test ψib:

H i
b: βk = bk + 10i versus Ki

b: βk < bk + 10i

The null hypothesis of our one-tailed test is then rejected at a level α if, and only if:
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bk − (bk + 10i)

SE(bk)
≤ tα(T −K)

By symmetry of the Student’s t-distribution, we have tα(T − K) = −t1−α(T − K) so that

the null hypothesis is rejected at the level α if, and only if:

10i − t1−α(T −K)SE(bk) ≥ 0

Therefore, both tests ψia and ψib reject their null hypothesis if, and only if:

10i − t1−α(T −K)SE(bk) ≥ 0

This condition may be rewritten:

i ≥ lnSE(bk) + ln t1−α(T −K)

ln 10

By Definition 2, the decimal rank i∗(α) such that:

i∗(α)− 1 <
lnSE(bk) + ln t1−α(T −K)

ln 10
≤ i∗(α)

is thus the decimal rank of the last significant digit. This expression is precisely the definition

of the ceiling of lnSE(bk)+ln t1−α(T−K)
ln 10

.

B.2 Asymptotic Bound on Rank of the Last Significant Digit for

Coefficient Estimates

Corollary 1 (Asymptotic bound) If we denote:

i∗∞(α) ≡ ⌈ lnSE(bk) + lnZ1−α

ln 10
⌉

then:

i < i∗∞(α) ⇒ di is not a significant digit at level α

Proof. We have:

i∗∞(α) ≡ ⌈ lnSE(bk) + ln t1−α(∞)

ln 10
⌉ ≤ ⌈ lnSE(bk) + ln t1−α(T −K)

ln 10
⌉ ≡ i∗(α)

where t1−α(∞) ≡ Z1−α, the 1−α percentile of a standard normal distribution. Therefore, if

a digit di is such that i < i∗∞(α), then we also have i < i∗(α). Therefore, by Proposition 1,

di is not a significant digit at level α.
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B.3 Rank of the Last Significant Digit for Standard Error Esti-

mate

Proposition 2 (Standard error estimates) Let χ2
α(T − K) denote the critical value of

the χ2 distribution with T −K > 1 degrees of freedom for the level of significance α. A lower

bound for the rank of the last significant digit at level α for the estimated standard error

SE(bk) is given by:

i∗ = ⌈
lnSE(bk) + ln

(√
T−K

χ2
α(T−K)

− 1
)

ln 10
⌉

where ⌈x⌉ denotes the ceiling of x.

Proof. Let SE(bk) ≡
∑D

i=−∞ di10
i be a standard error estimate whose (unknown) popula-

tion value is sek, and i ≤ D be a given integer.

First, we consider the test ψia:

H i
a: sek = SE(bk)− 10i versus Ki

a: sek > SE(bk)− 10i

The null hypothesis of our one-sided test is thus rejected at the level α if, and only if:

(T −K)
SE(bk)

2

(SE(bk)− 10i)2
≥ χ2

1−α(T −K)

that is:

T −K

χ2
1−α(T −K)

≥
(
1− 10i

SE(bk)

)2

and thus (taking the positive root27 for the right-hand side):√
T −K

χ2
1−α(T −K)

− 1 +
10i

SE(bk)
≥ 0

Second, we consider the test ψib:

H i
b: sek = SE(bk) + 10i versus Ki

b: sek < SE(bk) + 10i

The null hypothesis of this one-sided test is rejected at the level α if, and only if:

27Using the fact that i ≤ D and thus that SE(bk) ≥ 10i. When SE(bk) − 10i < 0, the test ψia becomes
irrelevant since the true standard error is known to be non-negative.
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(T −K)
SE(bk)

2

(SE(bk) + 10i)2
≤ χ2

α(T −K)

that is:

T −K

χ2
α(T −K)

≤
(
1 +

10i

SE(bk)

)2

and thus:

1−

√
T −K

χ2
α(T −K)

+
10i

SE(bk)
≥ 0

Therefore, both tests ψia and ψib reject their null hypothesis if:√
T −K

χ2
1−α(T −K)

− 1 +
10i

SE(bk)
≥ 0 and 1−

√
T −K

χ2
α(T −K)

+
10i

SE(bk)
≥ 0

Hence, a sufficient condition for both tests to reject their null hypothesis is:

min

(√
T −K

χ2
1−α(T −K)

− 1; 1−

√
T −K

χ2
α(T −K)

)
+

10i

SE(bk)
≥ 0

One can however prove the following Lemma (see proof below):

Lemma 1 For all T −K > 1 and α we have:

1−

√
T −K

χ2
α(T −K)

≤

√
T −K

χ2
1−α(T −K)

− 1

A sufficient condition for digit i being to be non-significant is therefore:

1−

√
T −K

χ2
α(T −K)

+
10i

SE(bk)
≥ 0

which may be rewritten:

i ≥
lnSE(bk) + ln

(√
T−K

χ2
α(T−K)

− 1
)

ln 10

Finally, by Definition 2, the decimal rank i∗(α) such that:

i∗(α)− 1 <
lnSE(bk) + ln

(√
T−K

χ2
α(T−K)

− 1
)

ln 10
≤ i∗(α)

is thus a lower bound of the decimal rank of the last significant digit.
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B.4 Proof of Lemma 1

We want to show that, for all k > 1, α:

1−

√
k

χ2
α(k)

≤

√
k

χ2
1−α(k)

− 1 (11)

that is:

2
1√
χ2
α(k)
k

+
1√

χ2
1−α(k)

k

≤ 1

Because the harmonic mean is weakly lower that the geometric mean, we have:

2
1√
χ2
α(k)
k

+
1√

χ2
1−α(k)

k

≤
(
χ2
α(k)χ

2
1−α(k)

k2

) 1
4

Therefore, in order to prove Lemma 1, it is sufficient to show that:

For all k, α,
χ2
α(k)χ

2
1−α(k)

k2
≤ 1

Let f denote the probability distribution function of the chi-squared distribution,28 that is:

f(x) ≡ 1

2
k
2Γ(k

2
)
x

k
2
−1e

x
2

By definition of critical levels, we have:∫ χ2
1−α(k)

χ2
1
2

(k)

f(x)dx =

∫ χ2
1
2

(k)

χ2
α(k)

f(x)dx =
1

2
− α

Using the change of variables t = x/χ2
1
2

(k) (for the left term) and t = χ2
1
2

(k)/x (for the

middle term), we get:

∫ χ2
1−α(k)

χ2
1
2

(k)

1

f(χ2
1
2
(k)t)dt =

∫ χ2
1
2

(k)

χ2
α(k)

1

1

t2
f(
χ2

1
2

(k)

t
)dt =

1

χ2
1
2

(k)

(
1

2
− α

)
(12)

We then define the function ∆(x) for x ≥ 0 as follows:

28We do not explicitly mention the number of degrees of freedom as a parameter to simplify notations.
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∆(x) ≡
∫ x

1

[
f(χ2

1
2
(k)t)− 1

t2
f(
χ2

1
2

(k)

t
)

]
dt

We have:

∆(1) = 0 and lim
x→+∞

∆(x) = 0

where the second equality is obtained by letting α go to zero in Equation 12. In addition:

∆′(x) ≡ f(χ2
1
2
(k)x)− 1

x2
f(
χ2

1
2

(k)

x
)

so that we have:

∆′(x) ≥ 0 if, and only if, r(x) ≡
x2f(χ2

1
2

(k)x)

f(
χ2

1
2

(k)

x
)

≥ 1

Given the expression of the pdf of the chi-squared distribution, we have:

r(x) = xk exp

[
χ2

1
2

(k)

2

(
1

x
− x

)]

Taking the derivative of r(.), and using the facts that (i) the median χ2
1
2

(k) of the chi-squared

distribution is lower than its mean k, and that (ii) k
χ2

1
2

(k)
≤ 2 for k > 1, it is straightforward

to show that:

r′(x) =



> 0 for x ∈

[
1, k

χ2
1
2

(k)
+

√(
k

χ2
1
2

(k)

)2

− 1

[

= 0 for x = k
χ2

1
2

(k)
+

√(
k

χ2
1
2

(k)

)2

− 1

< 0 for x ∈

(
k

χ2
1
2

(k)
+

√(
k

χ2
1
2

(k)

)2

− 1,+∞

)

Since r(1) = 1, the fact that r(.) increases and then decreases implies that there exists a

threshold value x̂ such that:

r(x) ≥ 1 if, and only if, x ≤ x̂

Therefore, we have:
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∆′(x) =

 ≥ 0 for x ∈ [1, x̂]

< 0 for x ∈ (x̂,+∞)

Since ∆(1) = 0 and limx→+∞ ∆(x) = 0, the fact that ∆ first increases and then decreases

imply that:

For all x, ∆(x) ≥ 0

To complete the proof, we note that, from Equation 12, we have:

∆(
χ2
1−α(k)

χ2
1
2

(k)
) =

∫ χ2
1
2

(k)

χ2
α(k)

χ2
1−α(k)

χ2
1
2

(k)

1

t2
f(
χ2

1
2

(k)

t
)dt

Since ∆ ≥ 0 and the integrand of the right-hand-side term is non-negative, we have:

χ2
1−α(k)

χ2
1
2

(k)
≤
χ2

1
2

(k)

χ2
α(k)

and thus:

χ2
1−α(k)χ

2
α(k)

χ2
1
2

(k)2
≤ 1

Finally, since χ2
1
2

(k) ≤ k, we have:

χ2
1−α(k)χ

2
α(k)

k2
≤
χ2
1−α(k)χ

2
α(k)

χ2
1
2

(k)2
≤ 1

which completes the proof.

C Details on Data Extraction

Our input data are issues of the American Economic Review in pdf format. We use the

R package “pdftools” to convert these pdf files into a list of pages, where each pdf page is

broken down into a list of individual strings, defined as any sequence of characters preceded

and followed by a space/tab (a word, a number, etc.). These strings are spatially located on

a 2D Cartesian grid.
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We then apply the following three-step approach to each page in order to extract coeffi-

cient estimates and their associated standard error estimates:

• Step 1: Determine whether the page is likely to contain a table reporting estimation

results;

• Step 2: If it is, then locate and extract candidate coefficient estimates and their

associated standard errors estimates;

• Step 3: Clean the obtained data.

Steps 1 & 2 build on the observation that a coefficient estimate bk and its associated

standard error SE(bk) are reported in a results table as bk (SE(bk)) where the standard

error (SE(bk)) of coefficient bk is located directly below or directly to the right of bk. The

odds of having a number directly followed (either to the right or just below) by a number

into brackets are very low in other context than results tables. If a page contains several

occurrences of such a pattern, it is thus very likely to display a results table. We detail below

how we implement this intuition in practice.

Step 1: Is the page likely to contain a results table?

A given page is deemed likely to contain a results table if the following conditions are met:

1. the page contains the word “Table”;

2. the page contains at least four numbers (i.e. a numeric preceded and followed by either

a tab or a space) and four numbers into brackets;

3. the page contains one of the strings (“Error”, “error”,“(SE)”) OR contains the words

“treatment”/“Treatment” and “effect”/“Effect”.

A page that does not meet these conditions is screened out. Otherwise, the routine

continues to the next step.
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Step 2: Extract coefficients and standard errors

When a given page is deemed in Step 1 to be likely to contain a table of estimation results,

we run a loop on all the strings that compose it. For each string S:

1. we test whether it is a number, that is if “as.numeric(S)” does not return NA (removing,

when relevant, the “,” for thousands and the terminating “*”, “†”, “‡”,“a”, “b” or “c”

indicating statistical significance).

2. if it is, we retrieve:

• the closest neighbor string to the right (if any within a distance of 20 units);

• the closest neighbor string below (if any within a distance of 15 units).

3. for each of the (up to) two neighbors of string S, we check whether it has the format

of a standard error, meaning:

• it includes the regular expression “\\([0-9]*.*[0-9]*\\)”

• it can be converted to a number after removing “(” and “)”, along with any “,”

or“*”, “†” or “‡”.

4. if one of the two neighbor strings meets this format, we store the string S and its

neighbor string as a pair (coefficient estimate, standard error).

Step 3: Data cleaning

Having applied steps 1 and 2 to all pdf pages, we perform several data cleaning steps:

1. we drop the pairs (coefficient estimate, standard error) which are the only observation

found in a given page. A manual check of the corresponding observations indeed

confirms that are false positive.

2. several results tables report coefficients and their standard errors along with statistical

tests and their test values. We remove manually the latter observations we were able

to detect by looking at the obtained dataset (about 300 observations removed).
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3. when columns in results tables are labelled as (1), (2) etc. and the above text label is a

number (e.g. a date), the resulting combination may be mistaken for a coefficient and

its standard error. Similarly, a number of false positives occur when the text around

a result table include reference to model specifications (e.g. “specification (1) shows

that etc.”) or literature references (e.g. “according to John et al. (1900) etc.”). We

remove such outliers by checking manually observations for which the standard error

(in string format) is an integer between 1 and 10 (for specifications) and between 1700

and 2050 (for dates). We remove about 1,100 false positives through this procedure.

4. a number of results tables report p-values or t-values rather than standard errors. We

remove manually the occurrences of such cases we were able to detect by looking at

the obtained dataset (about 500 observations removed).

5. when (manually) identified, tables presenting summary statistics without hypothesis

testing, as well as idiosyncatric formatting (e.g. percentage points given into brackets),

are removed (about 600 observations removed).

6. finally, in all issues between the 4th issue of 2007 and the 4th issue of 2009, the “–”

sign is read as a “2” by our pdf scraper.29 We manually correct the corresponding

coefficients (about 1,100 observations corrected).

Overall, our manual data cleaning corrects the value over 1, 000 coefficients and removes

almost 3, 000 false positives out of 98, 043 initial observations in the raw dataset coming out

of the scraping procedure. While we do not claim that our final dataset is completely error

free,30 our data extraction procedure is entirely automated and transparent. It can therefore

be easily replicated and improved.

29The issue carries over when copy-pasting the numbers from the original, which suggests it may come
from the encoding of the pdf files rather than from our scraper.

30For example, our manual inspections revealed the existence of some false negatives. Such missed obser-
vations however correspond to situations that would be very complicated to scrape using simple automated
routines. For example, square brackets are most often used to report p-values but are sometimes used for
standard errors as well. Such estimates are not recovered by our scraping routine. We however have no
particular reason to believe that false negatives represent a large and selected population.
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