## Geometry of Crystals

Crystal is a solid composed of atoms, ions or molecules that demonstrate long range periodic order in three dimensions

## The Crystalline State



## Crystal Lattice

Lattice constants

- Not only atom, ion or molecule positions are repetitious - there are certain symmetry relationships in their arrangement.


Crystalline structure

## Crystal Lattice



One-dimensional lattice with lattice parameter a


Two-dimensional lattice with lattice parameters $a, b$ and $\gamma$

## Crystal Lattice



## Crystal Lattice

- Lattice vectors, lattice parameters and interaxial angles


| Lattice vector | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ |
| :---: | :---: | :---: | :---: |
| Lattice parameter | $a$ | $b$ | $c$ |
| Interaxial angle | $\alpha$ | $\beta$ | $\gamma$ |

## Crystal Lattice

Lattice

Not a lattice

## Crystal Lattice

- Unit cell content
- Coordinates of all atoms
- Types of atoms
- Site occupancy
- Individual displacement parameters



## Crystal Lattice

- Usually unit cell has more than one molecule or group of atoms
- They can be represented by symmetry operators

rotation



## Symmetry

- Symmetry is a property of a crystal which is used to describe repetitions of a pattern within that crystal.
- Description is done using symmetry operators


Translation

- $m$

R $\quad$ я

Mirror reflection


$$
\begin{aligned}
& \alpha=360^{\circ} / n \\
& \text { where } n \text { is the fold of the axis } \\
& n=1,2,3,4 \text { or } 6 \text { ) }
\end{aligned}
$$

Inversion

## Two-dimensional Symmetry Elements

(1)
R


bromochlorofluoroethene

1. One-fold axis (no symmetry)
2. Vertical mirror line
(2)

G| $\underbrace{R}_{m}$


cis-difluoroethene




2 mm
ethene
(4)


(5)


## Two-dimensional Symmetry Elements

6. Tree-fold axis + vertical mirror line
7. Four-fold axis
8. Four-fold axis + mirror lines
9. Six-fold axis
10. Six-fold axis + mirror lines

## 10 two-dimensional

 crystallographic or plane point groups(6)


(8)

 4 mm
tungsten oxyfluoride
(9)


(10)



## The Five Plane Lattices <br> R



## Two-dimensional Symmetry Elements



## Two-dimensional Symmetry Elements



Lattice type: $p$ for primitive, $c$ for centred.
Symmetry elements: $m$ for mirror lines, $g$ for glide lines, 4 for 4 -fold axis etc.


Design by M.C. Escher


## Bravais Lattices and Crystal Systems

- In three dimensions: point symmetry elements and translational symmetry elements.
- For point symmetry elements:
- centers of symmetry
- mirror planes
- inversion axes
- For translational symmetry elements:
- glide planes
- screw axes

We end up with 230 space groups (was 17 plane groups) distributed among 14 space lattices (was 5 plane lattices) and 32 point group symmetries (instead of 10 plane point symmetries)

## The 14 Space (Bravais) Lattices

The systematic work was done by Frankenheim in 1835. Proposed 15 space lattices.

- In 1848 Bravais pointed that two of his lattices were identical (unfortunate for Frankenheim).
- Today we have 14 Bravais lattices.
(P)



Rhombohedral


相
(F)
 cubic


Body-centered tetragonal
(I)

cubic


Hexagonal
(P)

(C)

(C)

Base-centered monoclinic

(P)


Triclinic
$a, b, c$ - unit cell lengths; $\alpha, \beta, \gamma$ - angles between them

## Crystal Symmetry

| Centering of <br> the lattice | Lattice points <br> per unit cell | International <br> symbol | Lattice translation(s) due to centering |  |
| :--- | :---: | :---: | :--- | :--- |
| Primitive | 1 | P | None |  |
| Base-centered | 2 | A | $1 / 2(\mathbf{b}+\mathbf{c})$ |  |
| Base-centered | 2 | B | $1 / 2(\mathbf{a}+\mathbf{c})$ |  |
| Base-centered | 2 | C | $1 / 2(\mathbf{a}+\mathbf{b})$ |  |
| Body-centered | 2 | I | $1 / 2(\mathbf{a}+\mathbf{b}+\mathbf{c})$ |  |
| Face-centered | 4 | F | $1 / 2(\mathbf{b}+\mathbf{c}) ; 1 / 2(\mathbf{a}+\mathbf{c}) ; 1 / 2(\mathbf{a}+\mathbf{b})$ |  |
| Rhombohedral | 3 | R | $1 / 3 \mathbf{a}+2 / 3 \mathbf{b}+2 / 3 \mathbf{c} ; 2 / 3 \mathbf{a}+1 / 3 \mathbf{b}+1 / 3 \mathbf{c}$ |  |

## The 14 Space (Bravais) Lattices



[^0]
## Crystal Symmetry

- 7 axial systems +32 point groups $\rightarrow 230$ unique space groups
- A 3-D crystal must have one of these 230 arrangements, but the atomic coordinates (i.e. occupied equipoints) may be very different between different crystals

| Crystal Class | Non-centrosymmetric <br> Point Group | Centrosymmetric <br> Point Group | Minimum Rotational <br> Symmetry |
| :---: | :---: | :---: | :---: |
| Triclinic | 1 | $\overline{1}$ | One 1-fold |
| Monoclinic | $2, m$ | $2 / m$ | One 2-fold |
| Orthorombic | $222, m m 2$ | $m m m$ | Three 2-folds |
| Tetragonal | $4,422, \overline{4}, 4 m m, \overline{4} 2 m$ | $4 / m, 4 / m m m$ | One 4-fold |
| Trigonal | $3,32,3 m$ | $\overline{3}, \overline{3} m$ | One 3-fold |
| Hexagonal | $6,622, \overline{6}, 6 m m, \overline{6} m 2$ | $6 / m, 6 / m m m$ | One 6-fold |
| Cubic | $23,432, \overline{4} 3 m$ | $m \overline{3}, m \overline{3} m$ | Four 3-folds |

## The Symmetry of Bravais Lattices

Point group symmetry


- Nine mirror planes
- Three four-fold axes
- Four three-fold axes
- Six two-fold axes

Point group symmetry of the orthorhombic cell


- Three mirror planes
- Three two-fold axes

Crystal Axes and the Reciprocal Lattice

## Crystal Lattice \& Directions



One-dimensional lattice with parameter a


Two-dimensional lattice with parameters $a$ and $b$

## Lattice Directions

For the lattice points $u, v, w$ :

$$
\mathbf{r}=u \mathbf{a}+v \mathbf{b}+w \mathbf{c}
$$

For the points in space $u^{\prime}, v^{\prime}, w^{\prime}$ that are not lattice points:

$$
\begin{aligned}
\mathbf{r} & =u^{\prime} \mathbf{a}+v^{\prime} \mathbf{b}+w^{\prime} \mathbf{c} \\
& =\left(n+u_{1}\right) \mathbf{a}+\left(p+v_{1}\right) \mathbf{b}+\left(q+w_{1}\right) \mathbf{c} \\
& =(n \mathbf{a}+p \mathbf{b}+q \mathbf{c})+\left(u_{1} \mathbf{a}+v_{1} \mathbf{b}+w_{1} \mathbf{c}\right)
\end{aligned}
$$

$n, p, q$-integers
$u_{1}, v_{1}, w_{1}$ - fractions

## Indexing Lattice Directions

- Direction must pass through the origin
- Coordinates of point $P$ (in fractions of $a, b$ and $c$ ) are $1,1 / 2,1 \Rightarrow[212]$
- For point Q coordinates are $1 / 2,1 / 4,1 / 2 \Rightarrow[212]$

[212] - defines direction for OL
For OS - the direction is [110]

$$
\begin{aligned}
& \mathbf{r}_{102}=2 \mathbf{a}+1 \mathbf{b}+2 \mathbf{c} \\
& \mathbf{r}_{110}=1 \mathbf{a}+1 \mathbf{b}+0 \mathbf{c}
\end{aligned}
$$

## Indexing Lattice Directions

- Specific direction $\Rightarrow[u v w]$

Family of directions $\Rightarrow<u v W\rangle$

Example:


## Indexing Lattice Directions

- Directions related by symmetry are called directions of a form.


We have: $[111],[-111],[-1-1-1],[11-1], \ldots$


Specific direction $\Rightarrow[\omega v W]$
Family of directions $\Rightarrow$ <uvW>

## The Crystallographic Planes



## Definition of the Miller Indices

- Let's draw a plane at $2 \times a, 5 \times b, 2 \times c$.

|  | a | b | c |  |
| :--- | :---: | :---: | :---: | :---: |
| The intercepts | 2 | 5 | 2 |  |
| The reciprocals | $1 / 2$ | $1 / 5$ | $1 / 2$ |  |
| Multiply by 10 | 5 | 2 | 5 |  |
| The Miller indices | $(525)$ |  |  |  |



## Definition of the Miller Indices

- For plane $\mathrm{A} a / 2, b / 2$, and $1 c \Rightarrow 2,2,1 \Rightarrow$ plane is (221)
- For plane $\mathrm{B} 1 a, 1 b$, and $2 c \Rightarrow 1,1,1 / 2 \Rightarrow 2,2,1 \Rightarrow$ plane is (221)
- For plane C $3 a / 2,3 b / 2$, and $3 c \Rightarrow 2 / 3,2 / 3,1 / 3 \Rightarrow 2,2,1 \Rightarrow$ plane is (221)
- For plane D $2 a, 2 b$, and $4 c \Rightarrow 1 / 2,1 / 2,1 / 4 \Rightarrow 2,2,1 \Rightarrow$ plane is (221)

- By the set of crystallographic planes $h k /$, we mean a set of parallel equidistant planes, one of which passes through the origin, and the next nearest makes intercepts $a / h, b / k$, and $c / /$ on the three crystallographic axes.
- The integers $h k /$ are usually called the Miller indices.



## Miller Indices



## Miller Indices and Zone Axis Symbols

## Closures for crystallographic indices

[ $u v w]$ = square brackets designate a direction in the lattice from the origin to a point. Used to collectively include all the faces of a crystals whose intersects (i.e., edges) parallel each other. These are referred to as crystallographic zones and they represent a direction in the crystal lattice.
<uvw> - designate family of directions.
$(h k l)=$ parenthesis designate a crystal face or a family of planes throughout a crystal lattice.
$\{h k /\}=$ "squiggly" brackets or braces designate a set of faces that are equivalent by the symmetry of the crystal. The set of face planes results in the crystal form. $\{100\}$ in the isometric class includes (100), (010), (001), (-100), (0-10) and (00-1), while for the triclinic $\{100\}$ only the (100) is included.
d-spacing is defined as the distance between adjacent planes. When X-rays diffract due to interference amongst a family of similar atomic planes, then each diffraction plane may be reference by it's indices $\mathrm{d}_{h k l}$

## Miller Indices and Zone Axis Symbols

For cubic crystal:

- Direction symbols
- <100> $\Rightarrow$ [100], [-100], [010], 0-10], [001], [00-1]
- <111> $\Rightarrow$ [11-1], [-1 -11$],[1-11],\left[\begin{array}{lll}-11 & -1],[-111],\left[\begin{array}{lll}1 & -1 & -1\end{array}\right],[111],\left[\begin{array}{lll}-1 & -1 & -1\end{array}\right]\end{array}\right.$
- $\langle 110\rangle \Rightarrow 12$ combinations
- Miller indices
- $\{100\} \Rightarrow(100),(-100),(010),(0-10),(001),(00-1)$



## Lattice Plane Spacings

- For crystal with orthogonal axes:

$$
O A \cos \alpha=O N \rightarrow(a / h) \cos \alpha=d_{h k l} \rightarrow \cos \alpha=\left(\frac{h}{a}\right) d_{h k l}
$$

- For angles $\beta$ and $\gamma$ :

$$
\begin{aligned}
& \cos \beta=\left(\frac{k}{b}\right) d_{h k l} \\
& \cos \gamma=\left(\frac{l}{c}\right) d_{h k l}
\end{aligned}
$$

- Since for orthogonal axes:


Lattice plane - (hk)
ON - interplanar spacing

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

- We write:

$$
\left(\frac{h}{a}\right)^{2} d_{h k l}^{2}+\left(\frac{k}{b}\right)^{2} d_{h k l}^{2}+\left(\frac{l}{c}\right)^{2} d_{h k l}^{2}=1
$$

- For a cubic crystal $a=b=c$, hence

$$
\frac{1}{d_{h k l}^{2}}=\frac{h^{2}+k^{2}+l^{2}}{a^{2}}
$$

## Lattice Plane Spacings

Cubic:

$$
\frac{1}{d^{2}}=\frac{h^{2}+k^{2}+l^{2}}{a^{2}}
$$

Tetragonal:

$$
\frac{1}{d^{2}}=\frac{h^{2}+k^{2}}{a^{2}}+\frac{l^{2}}{c^{2}}
$$

Hexagonal:

$$
\frac{1}{d^{2}}=\frac{4}{3}\left(\frac{h^{2}+h k+k^{2}}{a^{2}}\right)+\frac{l^{2}}{c^{2}}
$$

Rhombohedral:

$$
\frac{1}{d^{2}}=\frac{\left.\left(h^{2}+k^{2}+l^{2}\right) \sin ^{2} \alpha+2(h k+k l+h l) \cos ^{2} \alpha-\cos \alpha\right)}{a^{2}\left(1-3 \cos ^{2} \alpha+2 \cos ^{3} \alpha\right)}
$$

Orthorhombic: $\quad \frac{1}{d^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}$
Monoclinic:

$$
\frac{1}{d^{2}}=\frac{1}{\sin ^{2} \beta}\left(\frac{h^{2}}{a^{2}}+\frac{k^{2} \sin ^{2} \beta}{b^{2}}+\frac{l^{2}}{c^{2}}-\frac{2 h l \cos \beta}{a c}\right)
$$

Triclinic:

$$
\frac{1}{d^{2}}=\frac{1}{V^{2}}\left(S_{11} h^{2}+S_{22} k^{2}+S_{33} l^{2}+2 S_{12} h k+2 S_{23} k l+2 S_{13} h l\right)
$$

$\left\{\begin{array}{l}V=\text { volume of unit cell } \\ S_{11}=b^{2} c^{2} \sin ^{2} \alpha, \\ S_{22}=a^{2} c^{2} \sin ^{2} \beta, \\ S_{33}=a^{2} b^{2} \sin ^{2} \gamma, \\ S_{12}=a b c^{2}(\cos \alpha \cos \beta-\cos \gamma), \\ S_{23}=a^{2} b c(\cos \beta \cos \gamma-\cos \alpha), \\ S_{13}=a b^{2} c(\cos \gamma \cos \alpha-\cos \beta) .\end{array}\right.$

## Special Case: Trigonal \& Hexagonal Lattices

( $1-10$ ), (100), and (010) are indices different in type but describe crystallographically equivalent lattice planes.

- Introducing the fourth axis - U. We have Miller-Bravais indices (hkil).
- All indices of the planes are of the same form - \{10-10\}.

$$
h+k+i=0 \Rightarrow i=-(h+k) \Rightarrow\{h k . /\}
$$



(a)

(b)

## The Reciprocal Lattice



## The Reciprocal Lattice

## The Reciprocal Lattice




Monoclinic unit cell planes $\{h 0$ /)


Reciprocal lattice vectors

Reciprocal lattice unit cell

$$
\mathbf{a}^{*}=\mathbf{d}_{100}^{*} \text { and }\left|\mathbf{a}^{*}\right|=1 / d_{100} ;
$$



$$
\mathbf{c}^{*}=\mathbf{d}_{001}^{*} \text { and }\left|\mathbf{c}^{*}\right|=1 / d_{001}
$$



## The Reciprocal Lattice



## The Reciprocal Lattice

- Consider a real space unit cell with real lattice basis vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$
- We define a set of reciprocal lattice basis vectors by:

$$
\mathbf{a}^{*}=\frac{1}{V}(\mathbf{b} \times \mathbf{c})=\frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})} \longleftarrow \quad \text { volume of real space }
$$

$$
\mathbf{b}^{*}=\frac{1}{V}(\mathbf{c} \times \mathbf{a})
$$

$$
\mathbf{c}^{*}=\frac{1}{V}(\mathbf{a} \times \mathbf{b})
$$

c* $\perp$ a-b plane


## The Reciprocal Lattice

- Just like we can define a real space lattice in terms of our real space lattice vectors, we can define a reciprocal space lattice in terms of our reciprocal space lattice vectors:

$$
\mathbf{r}^{*}=\mathbf{d}_{h k l}^{*}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
$$

The real and reciprocal space lattice vectors form an orthonormal set:

$$
\left.\begin{array}{l}
\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{*} \cdot \mathbf{c}=0 \\
\mathbf{a} \cdot \mathbf{a}=1
\end{array}\right\} \quad \text { similar for } \boldsymbol{b}^{*} \text { and } \boldsymbol{c}^{*}
$$

We can define a reciprocal unit cell with volume $\boldsymbol{V}^{*}$ :

$$
V^{*}=\mathbf{a}^{*} \cdot\left(\mathbf{b}^{*} \times \mathbf{c}^{*}\right) \quad V^{*} \cdot V=1
$$

- Now we can write:

$$
\begin{aligned}
& \mathbf{r}_{u v w}=u \mathbf{a}+v \mathbf{b}+w \mathbf{c} \\
& \mathbf{d}_{h k l}^{*}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
\end{aligned}
$$

## The Reciprocal Lattice



Plan of a cubic $I$ crystal $\perp z$-axis


Reciprocal lattice points

## The Reciprocal Lattice



Cubic $F$ reciprocal lattice unit cell of a cubic $I$ direct lattice


Cubic $I$ reciprocal lattice unit cell of a cubic $F$ direct lattice

## The Reciprocal Lattice

- d-spacing of lattice planes

$$
\begin{aligned}
& \mathbf{d}_{h k l}^{*}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*} \\
& \mathbf{d}_{h k l}^{*} \cdot \mathbf{d}_{h k l}^{*}=\frac{1}{d_{h k l}^{2}}=\left(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right) \cdot\left(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right)
\end{aligned}
$$

for orthorombic, tetragonal, cubic: $\quad \mathbf{a}^{*} \cdot \mathbf{b}^{*}=0$
therefore:

$$
\frac{1}{d_{h k l}^{2}}=h \mathbf{a}^{*} \cdot h \mathbf{a}^{*}+k \mathbf{b}^{*} \cdot k \mathbf{b}^{*}+l \mathbf{c}^{*} \cdot l \mathbf{c}^{*}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}
$$

$$
\left(\mathbf{a}^{*} \cdot \mathbf{a}^{*}=\frac{1}{a^{2}}\right)
$$

- Angle $\rho$ between plane normals $\left(h_{1} k_{1} l_{1}\right)$ and $\left(h_{2} k_{2} h_{2}\right)$
the angle between two vectors is $\cos \rho=\frac{\mathbf{a} \cdot \mathbf{b}}{a b}$
therefore: $\quad \cos \rho=\frac{\mathbf{d}_{h k_{1} k_{1}}^{*} \cdot \mathbf{d}_{k_{2} k_{2} l_{2}}^{*}}{\left|\mathbf{d}_{k_{1} k_{1} l_{1}}^{*}\right| \mathbf{d}_{k_{2} k_{2} l_{2}}^{*} \mid}$


[^0]:    * Also called trigonal.

