
Stress and Texture



Strain

Two types of stresses:

 microstresses – vary from one 
grain to another on a microscopic 
scale.

 macrostresses – stress is uniform 
over large distances.

Usually:

 macrostrain is uniform –
produces peak shift

 microstrain is nonuniform –
produces peak broadening
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Applied and Residual Stress

Plastic flow can also set up residual stress.

Loaded below elastic limit

Loaded beyond elastic limit

Unloaded

Shaded areas show regions plastically strained



Methods to Measure Residual Stress

X-ray diffraction.

 Nondestructive for the measurements near the surface: t < 2 m.

Neutron diffraction.

 Can be used to make measurements deeper in the material, but the 
minimum volume that can be examined is quite large (several mm3) due 
to the low intensity of most neutron beams.

Dissection (mechanical relaxation).

 Destructive.



General Principles

Consider a rod of a cross-sectional area A 
stressed in tension by a force F.
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L0 and Lf are the original and final lengths of the bar.
The strain is related to stress as:
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General Principles

This provides measurement of the 
strain in the z direction since:
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Then the required stress will be:
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Diffraction techniques do not measure stresses 
in materials directly

• Changes in d-spacing are measured to give strain
• Changes in line width are measured to give 

microstrain
• The lattice planes of the individual grains in the 

material act as strain gauges



General Principles

we do not know d0 !








 


0

0

d

ddE n
y






Elasticity

In general there are stress components in two or three directions at right 
angles to one another, forming biaxial or triaxial stress systems.

 Stresses in a material can be related to the set of three principal stresses 1, 
2 and 3.

To properly describe the results of a diffraction stress measurement we 
introduce a coordinate systems for the instrument and the sample. These 
two coordinate systems are related by two rotation angles  and f.

By convention the
diffracting planes are
normal to L3

Li – laboratory coordinate system
Si – sample coordinate system



Elasticity

In an anisotropic elastic material stress tensor ij is related to the strain 
tensor ekl as:

klijklij C e 

where Cijkl is elastic constants matrix.

Similarly:

klijklij S e 

where Sijkl is elastic compliance matrix.

For isotropic compound:
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where ij is Kroenecker’s delta, “kk” indicates the summation 11 + 22 + 33



Elasticity

Or we can write it as:
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Elasticity

Lets relate emn in one coordinate system to that in another system 
through transformation matrix:
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Elasticity

In terms of stresses:
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Biaxial and Triaxial Stress Analysis

Biaxial stress tensor is in the form:
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For our tensor lets define:
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The sin2 Method

Stress 33 is zero, but strain e33 is not zero. It has finite value given by the 
Poisson contractions due to 11 and 22:
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The sin2 Method

We make ingenious approximation (by Glocker et al. in 1936):

 dn, di and d0 are very nearly equal to one another,

 (di – dn) is small compared to d0,

 unknown d0 is replaced by di or dn with negligible error.
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• The stress in a surface can be determined by measuring the  d-spacing as a function 
of the angle  between the surface normal and the diffracting plane normal

• Measurements are made in the back-reflection regime (2  180°) to obtain 
maximum accuracy



The sin2 Method
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The sin2 Method

Lets assume that stresses in zx plane are equal. This is referred to as 
an equal-biaxial stress state. We can write sample frame stress as:
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The sin2 Method
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Diffractometer Method
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Diffractometer Method

The effect of sample or -axis displacement can be minimized if a 
parallel beam geometry is used instead of focused beam geometry.



Measurement of Line Position

Sample must remain on the diffractometer axis as  is changed (even if the 
sample is large)

Radial motion of the detector to achieve focussing must not change the 
measured 2

L-P factor may vary significantly
across a (broad) peak

Absorption will vary when   0

Measurement of peak position
often requires fitting the peak
with a parabola:
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Measurements of Stress in Thin Films

Thin films are usually textured. No difficulty with moderate degree 
of preferred orientation.

Sharp texture has the following effects:

 Diffraction line strong at  = 0 and absent at  = 45o.

 If material anisotropic E will depend on direction in the specimen. 
Oscillations of d vs sin2.



Measurements of Stress in Thin Films

In thin films we have a biaxial stress, so:
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Texture Analysis

The determination of the lattice preferred orientation of the crystallites 
in a polycrystalline aggregate is referred to as texture analysis.

The term texture is used as a broad synonym for preferred 
crystallographic orientation in a polycrystalline material, normally a 
single phase.

The preferred orientation is usually described in terms of pole figures.

{100} poles of a cubic crystal



The Pole Figures

Let us consider the plane (h k l) in a 
given crystallite in a sample. The 
direction of the plane normal is 
projected onto the sphere around the 
crystallite.

The point where the plane normal 
intersects the sphere is defined by 
two angles: pole distance a and an 
azimuth b.

The azimuth angle is measured 
counter clock wise from the point X.



The Pole Figures

Let us now assume that we project the plane normals for the plane (h k l) 
from all the crystallites irradiated in the sample onto the sphere.

Each plane normal intercepting the sphere represents a point on the 
sphere. These points in return represent the Poles for the planes (h k l) in 
the crystallites. The number of points per unit area of the sphere 
represents the pole density.

Random orientation Preferred orientation



The Pole Figures



The Stereographic Projection

As we look down to the earth                           The stereographic projection



The Stereographic Projection



The Pole Figures



The Pole Figures



The Pole Figures

We now project the sphere with its pole density onto a plane. This 
projection is called a pole figure.

 A pole figure is scanned by measuring the diffraction intensity of a given 
reflection with constant 2 at a large number of different angular orientations 
of a sample.

 A contour map of the intensity is then plotted as a function of the angular 
orientation of the specimen.

 The intensity of a given reflection is proportional to the number of hkl planes 
in reflecting condition.

 Hence, the pole figure gives the probability of finding a given (h k l) plane 
normal as a function of the specimen orientation.

 If the crystallites in the sample have random orientation the contour map will 
have uniform intensity contours.



The Pole Figures
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The Pole Figures
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Texture Measurements

Requires special sample holder which allows rotation of the 
specimen in its own plane about an axis normal to its surface, f, 
and about a horizontal axis, c.

Reflection Transmission



Schulz Reflection Method

In the Bragg-Brentano geometry a divergent x-ray beam is focused on 
the detector.

This no longer applies when the sample is tilted about c.

Advantage: rotation in around 
c in the range 40o < c < 90o

does not require absorption 
correction.



Field and Merchant Reflection Method

The method is designed for a parallel incident beam.



Defocusing Correction

As sample is tilted in c, the beam spreads out on a surface.

At high c values not all the beam enters the detector.

Need for defocusing correction.

Change in shape and orientation of the irradiated spot 
on a sample surface for different sample inclinations as 
a function of tilt angle a and Bragg angle 2. The 
incident beam is cylindrical.

Intensity correction for x-ray pole figure determination in reflection geometry. 
Selected reflections for quartz.

U.F. Kocks, C.N. Tomé, and H.-R. Wenk, “Texture and Anisotropy” 2000.



Absorption Correction

Diffracted intensities must be corrected for change in absorption due to change 
in a.
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a – volume fraction of a specimen containing particles having 
correct orientation for reflection of the incident beam.
b – fraction of the incident energy which is diffracted by unit 
volume



Pole Figure Measurement

Pole figure diffractometer consists of a four-axis single-crystal 
diffractometer.

Rotation axes:

, w, c, and f



Example: Rolled Copper

 Texture measurements were performed on Cu disk Ø = 22 mm, t = 0.8 mm.
 Four pole figures (111), (200), (220) and (311) were collected using Schulz reflection method.
 Background intensities were measured next to diffraction peaks with offset 2 =  4o.
 Defocusing effects were corrected using two methods:

• measured texture free sample
• calculated (FWHM of the peaks at = 0o is required – obtained from -2 scan.

• X’Pert Texture program was used for quantitative analysis.



Example: Rolled Copper

• Measure -2 scan in order to determine the reflections used for the pole figure measurements.
• Use FWHM of the peaks to calculate the defocusing curve.



Example: Rolled Copper

 Pole figure intensities include background.
 Correction for background radiation is performed by 

measuring the intensity vs. -tilt next to the diffraction 
peak.

Background Correction



Example: Rolled Copper

 Experimental pole figures are corrected for background intensities.
 Either experimental or theoretical defocusing correction curve is applied.

Corrections

Measured and calculated defocusing corrections for Cu(220) pole figure



Example: Rolled Copper

 2D representation of Cu(220) pole figure as (a) measured and (b) corrected.
 The most noticeable effect is at higher -tilt angles.

Corrections

(a) (b)



Example: Rolled Copper

 Four pole figures have been measured.
 Symmetry of rolling process is obtained 

from the pole figures:
• pole figure is symmetrical around 

f = 0o and f = 90o.
 The symmetry is called orthorhombic 

sample symmetry.

Pole Figure Measurements



Example: Rolled Copper

 X’Pert Texture calculates ODF
 When ODF is available X’Pert Texture can 

calculate pole figures and inverse pole figures 
for any set of (hkl).

Orientation Distribution Function Calculation

Measured                            Calculated



Inverse Pole Figures



Inverse Pole Figures



Engineering Cu surfaces for the electrocatalytic
conversion of CO2

X-ray pole figures for:

(A) Cu on Al2O3(0001); Cu(200) 

intensities are shown.

(B) Cu on Si(100); Cu(111) 

intensities are shown. 

(C) Cu on Si(111); Cu(111) 

intensities are shown.

(D) Inverse pole figure shows 

highest intensities for the (751) 

plane, indicating that Cu on 

Si(111) is predominantly 

oriented in the [517] direction 

out-of-plane. 

Cu(200) Cu(111)

Cu(111)



TaN Thin Film
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TaN Thin Film

f-scan of TaN (202) and MgO (202) reflections.



TaN Thin Film

TEM reveals additional structure.



TaN Thin Film

XRD 002 pole 
figure of TaN 
film



TaN Thin Film

54



TaN Thin Film

Atomic Force Microscopy images of TaN films prepared under 
different N2 partial pressure

pN=2 mTorr pN=2.5 mTorr pN=4 mTorr


