SAFETY QUESTIONNAIRE FOR CERTIFICATION
OF X-RAY DIFFRACTION USERS

NAME: ___________________________ DEPARTMENT: _______________ DATE: __________

EMAIL: ______________________________ PHONE #: ________________________

XRD USAGE (Please check all that apply): ☐ McCullough Bldg

☐ Green Earth Sciences

This questionnaire is based on the Extract from the 1989 Radiation Safety Manual found online at http://www.stanford.edu/group/glam/xlab/Safety/SafetyManual.pdf. Please complete the exam then contact Health Physicist, Doug Menke by email at dmenke@stanford.edu or phone at (650) 723-4723 to schedule a visit to complete safety training by watching a 25 minute safety video and having your exam graded. You must answer at least 80% of the questions correctly to pass.

True/False

1. ___ Units of exposure, absorbed dose, and dose equivalent are R, rad, and rem, respectively.

2. ___ Under identical conditions (mA and kV) a copper target would produce a higher intensity X-ray beam than a tungsten target (use Lindell formula).

3. ___ Stanford requires all users of X-ray diffraction machines to wear dosimeters.

4. ___ The average dose equivalent received by personnel in the San Francisco Bay Area from natural background is about 100 mrem per year and from medical exposures is also about 100 mrem per year.

5. ___ The average dose equivalents received by inhabitants of the U.S. for one year for the following categories are as follows:
 - from natural background is about 82 mrem per year
 - from medical exposures is about 92 mrem per year
 - from nuclear weapons fallout is about 5 mrem per year
 - from nuclear energy use is less than 1 mrem per year
 - from TVs and such is about 0.5 mrem/year
 - from air travel (cosmic radiation) is about 0.5 mrem per year

6. ___ On balance the GM (GSM1) survey meter is the best instrument for surveying for small radiation leaks from XRD machines.

7. ___ Below 6 keV photon energy even the thin windows of the “G-M” survey meter and the ion-chamber instruments severely attenuate the readings so they cannot be regarded as being reliable.

8. ___ A cataract can be caused by an absorbed dose of as low as 225 rads.
9. ___ At a distance of 4 feet from a radiation source, a meter reading of 10 mR/hour was observed. At 8 feet neglecting air attenuation and scattering the meter will read 2.5 mR/hour.

10. ___ You may bypass an interlock to complete an experiment.

11. ___ The lead shielding around an XRD machine may be removed or rearranged at any time.

12. ___ Should you notice an unsafe condition or operation you are required to notify the Project Director and Health Physics.

13. ___ Only those procedures specified by the manufacturer should be used, unless an alternate has been approved by Health Physics.

14. ___ State and Federal regulations require that each person working with sources of ionizing radiation be familiar with the hazards to which they may be exposed.

15. ___ Stanford requires that the leakage radiation at the edge of all XRD machine tables as measured with an “GM” detector be less than 0.2 mR/hour.

16. ___ An authorized user wishes to leave a running XRD machine unattended for a while in an empty room. This wish can be fulfilled if all the following conditions are met: (1) a survey has been done showing the leakage radiation to be <0.2 mR/Hr, (2) an entry of its use is made in the log book, and (3) the room is locked.

Fill-in

17. Estimate the exposure rate given the following values of the parameters: (1) 30 kV; (2) 30 mA; (3) copper target Z=29; (4) distance 20 cm.
Answer: ____________ R/sec.

18. At a distance of 6 feet from the radiation source, and exposure rate of 120 mR/hour was measured. Neglecting scattering and air attenuation find the exposure rate at 12 feet.
Answer: ____________ mR/hour.

19. A ionization chamber has an effective end face area of 60 sq. cm. If an incident X-ray beam has an effective area of 10 sq. cm. and reads an exposure rate of 10 mR/hour what is the true rate?
Answer: ____________ mR/hour.

Multiple Choice: Check the best single answer with a check mark

20. Scattered radiation from a sample set up in an XRD unit:
 a. Changes with sample angle
 b. Must be checked with a survey meter after any changes
 c. May require shielding
 d. All of the above
21. The clinical consequences of a local radiation injury, such as hand overexposure, are determined by:
 a. Total dose received
 b. Dose rate
 c. X-ray energy
 d. Radiosensitivity of the tissue
 e. All of the above

22. The minimum legal age for a radiation worker is:
 a. 16 years
 b. 18 years
 c. 21 years
 d. 25 years

23. The “G-M” counter has the following deficiencies for measuring X-radiation:
 a. Its response is strongly energy dependent
 b. It is subject to counting-rate loss
 c. It may jam or become paralyzed
 d. Its calibration at low energy is generally unknown
 e. It has all of the above disadvantages

24. Radiation exposure can be limited by controlling 1) time, 2) distance, and:
 a. Patience
 b. Thoughtful planning
 c. Experimental precision
 d. Shielding
 e. None of the above

25. The temporary loss of hair growth by exposure to X-radiation is regarded as:
 a. No problem
 b. An irreversible effect
 c. A conditional reversible effect
 d. A reversible effect
 e. None of the above

26. A small amount of radiation exposure from work related activities or from medical x-rays is:
 a. Dangerous
 b. Helpful
 c. Unnecessary
 d. Justifiable if accompanied by a reasonable benefit
 e. Something to be avoided at all costs
27. A hypothetical exposure to a finger lasts one second to a X-ray beam 2 cm from the source (50 kV, 20 mA, W target). The exposure is estimated from the Lindell formula to be ________ R.

Which of the following effects is most likely to occur as a result of the exposure?

a. A hole through the finger
b. A reddening of the skin
c. A need for amputation of the finger
d. A wound that would not heal
e. No effect

28. A correction is required for finite X-ray beam size when the beam is:
 a. Smaller than the instrument
 b. Larger than the instrument
 c. The same size as the instrument
 d. Of very low energy
 e. Uniform over the instrument

29. An example of a quantity is distance. The corresponding unit could be mile. Indicate which one of the following items is a unit:
 a. Exposure rate
 b. Absorbed dose
 c. Dose equivalent
 d. Flux density
 e. Rad

30. Pigmentation of the skin after exposure to X-radiation is a sign of:
 a. A reversible change
 b. Cancer
 c. Erythema
 d. Loss of production of sebum
 e. A conditional reversible change

31. An erythema can be produced by an X-ray exposure of as low as:
 a. 5 R
 b. 10 R
 c. 50 R
 d. 500 R
 e. 1000 R

32. Check the most correct statement. The transmissivity of an X-ray beam through an absorber:
 a. Is exp(-u.x) where u is the linear attenuation coefficient (1/cm) and x is the thickness of the absorber in cm
 b. Is the fraction of the photons left in the beam
 c. Is useful to calculate in the evaluation of shielding
 d. All of the above
33. Stanford requires that your film badge and finger rings be returned for processing:
 a. Weekly
 b. Monthly
 c. Quarterly
 d. Semiannually

34. What University department may be contacted for information on radiation safety and regulations on working with radiation?
 a. Environmental Services
 b. Environmental Management
 c. Environmental Health and Safety
 d. Environmental Toxicology

35. The quality factor (QF) for X-rays is usually:
 a. 1
 b. 2
 c. 5
 d. 10
 e. 20

36. Mark the statement which is not true:
 a. The Stanford Guideline limit for whole body exposure of radiation workers is 500 mrem/year
 b. The State limit for whole body exposure of radiation workers is 5000 mrem/year
 c. Small amounts of radiation are regarded as harmless
 d. A unit of dose equivalent is the rem

37. The incident beam intensity is best expressed in units of:
 a. Rads
 b. Rems
 c. Roentgens
 d. MeV/cm2-sec

38. Suppose the average natural background rate in the U.S. for some reason increased from 100 mrem/year to 200 mrem/year. Using the cancer risk factor of 1 per 3000 per rem per person, estimate the increased rate of cancer incidence in a population of 230,000,000 people.
 a. 80 cases
 b. 800 cases
 c. 8000 cases
 d. 80000 cases

39. Each user shall maintain current utilization logs containing the following information:
 a. The name of the operator
 b. The dates of each use
 c. The magnitudes of the voltage and current
 d. The start and stop times
 e. All of the above
40. **An authorized** user of an XRD machine is best described by which of the following statements:
 a. User is certified by Health Physics as having satisfactorily passed a general safety examination on XRD machines.
 b. User has permission to use a particular XRD machine by the project director of the CRA involved.
 c. User customarily wears film badges and finger rings assigned to the project.
 d. User follows posted safety procedures and has read the latest CRA renewal document including machine surveys and compliance of project personnel with safety procedures.
 e. All of the above.

41. The whole body dose limit for one week for a radiation worker according to the Stanford University Guideline is about:
 a. 1 mrem
 b. 2 mrem
 c. 10 mrem
 d. 50 mrem

42. The following action should be taken with the protective end cap of an ionization chamber when surveying an XRD unit.
 a. The cap should be left on to absorb background beta radiation
 b. The cap should be left on to protect the thin end window
 c. No action, because the cap is transparent to X-radiation
 d. Remove the cap, proceed with the survey, making sure that the hand holding the instrument is not exposed to high intensity radiation.

43. The dose limit for whole body exposure of a member of the general public to radiation is which one of the following fractions of a maximum permissible legislated dose for occupational workers?
 a. 1/10
 b. 1/20
 c. 1/50
 d. 1/100

44. The annual severe injury rate per 100 XRD units is about
 a. 0.5
 b. 1
 c. 2
 d. 3

45. An ionization chamber is exposed to a beam of X-rays and reads 2 mR/hr. Which of the following expressions is correct?
 a. If the beam area is equal to the end-face area the exposure rate is 2 mR/hr.
 b. If the beam area is equal to or greater than the end-face area the exposure rate cannot be determined.
 c. The reading could be wrong because of high ionic recombination
 d. If the beam area is less than the end-face area the exposure rate is less than 2 mR/hr
46. Stanford requires all XRD machine users to comply with which of the following:
 a. Wear film badges and finger rings.
 b. Make sure warning signs, emergency procedures, and a copy of the last health physics survey are posted.
 c. Survey the XRD machine for leakage radiation after a new setup.
 d. All of the above.

47. Please mark any incorrect statement(s) in the following regarding the use of personnel dosimeters (film badges and finger rings).
 a. A personnel dosimeter should be processed immediately whenever a serious exposure is suspected.
 b. A personal dosimeter assigned to one individual may be used by another individual.
 c. Failure of employees to wear dosimeters in radiation areas where they are required will result in appropriate disciplinary action.
 d. A personnel dosimeter assigned to an individual may be used to monitor radiation exposure in an area near an X-ray machine when the individual is not actually present in that area.

48. When a projectile electron slams into a metal target, the kinetic energy of the electron is transformed into electromagnetic energy. The electromagnetic energy is called a:
 a. Alpha particle
 b. Beta particle
 c. Gamma ray
 d. X-ray
 e. Neutron

49. Genetic effects of radiation are those that may:
 a. Appear immediately upon exposure
 b. Be passed on to children
 c. Cause reddening of the skin
 d. None of the above
 e. All of the above

50. Which of the following best describes acute radiation exposure?
 a. Low dose of radiation over a long time period
 b. Large dose of radiation over a long time period
 c. Large dose of radiation over a short time period
 d. Low dose of radiation over a short time period
 e. None of the above