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ScienceDirect
Stem cell delivery by local injection has tremendous potential

as a regenerative therapy but has seen limited clinical success.

Several mechanical challenges hinder therapeutic efficacy

throughout all stages of cell transplantation, including

mechanical forces during injection and loss of mechanical

support post-injection. Recent studies have begun exploring

the use of biomaterials, in particular hydrogels, to enhance

stem cell transplantation by addressing the often-conflicting

mechanical requirements associated with each stage of the

transplantation process. This review explores recent

biomaterial approaches to improve the therapeutic efficacy of

stem cells delivered through local injection, with a focus on

strategies that specifically address the mechanical challenges

that result in cell death and/or limit therapeutic function

throughout the stages of transplantation.
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Introduction
Stem cell transplantation through systemic or local injec-

tion is a promising regenerative approach for injury and

disease treatment. Despite the relative clinical success of

systemic stem cell delivery, this strategy often relies on

cell homing to the injury or disease site for increased

efficacy. While local injection strategies do not require

cell homing, the clinical application of this therapy is

limited by low cell viability and poor cell function.

Locally transplanted cells face several challenges at each

stage of the transplantation process. This review explores

the design of hydrogel systems for improving the thera-

peutic potential of locally injected stem cells with a focus

on the role of mechanics throughout the transplantation

process.
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In their native environment, mammalian cells are sur-

rounded by an extracellular matrix (ECM), which acts as a

structural support and provides biochemical and bio-

mechanical signals to regulate cell function. Cells are

known to respond to mechanical cues in their microenvi-

ronment by altering their proliferation rate [1,2], migra-

tion speed [3,4], differentiation potential [5], and

secretory function [6]. Similarly, the behavior of locally

injected stem cells is influenced by interactions with their

microenvironment. This microenvironment can include

the native, host ECM as well as an engineered biomate-

rial. In injured or diseased tissues, the host ECM often

becomes dysfunctional and may not be sufficient to

support healing and therapeutic efficacy of transplanted

stem cells. Engineered biomaterials have the potential to

modify the local environment, as well as improve cell

viability and function during the transplantation process.

Cell transplantation through local injection can be divided

into three stages: injection, acute post-injection, and long-

term survival and function. At each stage of transplanta-

tion, cells experience mechanical and structural challenges

that can result in cell death and compromise cell function.

For example, during the injection process, cells may

experience mechanical forces that can damage the cell

membrane, while post-injection, cells may experience a

loss of structural support and hence an absence of me-

chanical cues. The relative importance of these different

challenges can vary dramatically depending on the specific

clinical application [7]. Consequently, engineered bioma-

terial strategies have been developed to address the spe-

cific mechanical challenges at each delivery stage. While

all cell therapies (whether transplantation of stem, pro-

genitor, immature or terminally differentiated cells) expe-

rience these same mechanical challenges, stem and

progenitor cell therapies have the additional consideration

that mechanical cues can influence their differentiation

and maturation. Hydrogels have received significant in-

terest as ECM mimics due to their high water content and

water-swollen networks that allow for facile transport of

water-soluble biomolecules [8,9]. Additionally, these

materials have tunable mechanical properties that span

the range of physiological tissues [10]. While several

injectable hydrogels have shown significant benefits in

stem cell transplantation, there is no current material that

is able to address all of the mechanical challenges of each

transplantation stage in succession.

In the first section of this review, we discuss the chal-

lenges for each stage of the transplantation process with a
Current Opinion in Chemical Engineering 2017, 15:15–23
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16 Biological engineering – Stem cell engineering
focus on the mechanical requirements that can be

addressed by biomaterials. Several studies have demon-

strated that hydrogel mechanics play a critical role in

successful cell transplantation, and careful consideration

of the distinct mechanical features of the selected bio-

material can significantly improve therapeutic efficacy. In

the second section we discuss biomaterial design strate-

gies for stem cell transplantation focusing on several new

materials designed to address distinct mechanical chal-

lenges at different stages of the transplantation process.

We end with future directions for the design of injectable

hydrogels focusing on materials that change their proper-

ties during the stages of stem cell transplantation.

Mechanical challenges to successful stem cell
transplantation
Stem cells face several distinct mechanical challenges

during transplantation that have the potential to drasti-

cally reduce their viability and therapeutic efficacy.

Current protocols for local injection generally result in

poor cell viability, often with as few as 1–20% of cells

surviving the transplantation process [11–14]. In this

section, the transplantation process is divided into three

distinct stages: injection, acute post-injection and long-

term survival and function to better elucidate the specific
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mechanical and structural challenges stem cells face

throughout transplantation (Figure 1a).

Injection
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age and significant loss of acute viability. Current clinical

protocols using low viscosity fluids such as saline for local

injection through a syringe needle have been shown to
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sized that this cell death is primarily caused by membrane

rupture that occurs as cells are exposed to extensional

flow within the syringe needle, although shear stress and
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matrix to promote the survival of adherent cells [16] and

prevent cell dispersal. In contrast, during injection into

dense tissue, such as intramuscular injections, the host

tissue may provide mechanical support and promote cell

survival. However, injection into dense tissue requires

higher injection pressures and can still result in cell

leakage at the transplantation site [17]. Additionally, cells

may be confronted with several other survival challenges

during the acute post-injection stage that are not inher-

ently mechanical in nature, including hypoxia, low nutri-

ent transport, and the immune and inflammatory response

[18–20]. However, these challenges may be exacerbated

or diminished by the mechanical microenvironment. For

example, cells can alter their growth factor secretion in

response to mechanical cues [21], which may assist in

surviving hypoxia or inflammation.

Long-term survival and function

Long-term stem cell therapeutic efficacy can be attained

by two means: support of endogenous tissue regeneration

through paracrine effects [22,23] or integration of trans-

planted cells with host tissue [24]. Much of this success is

dependent on long-term stem cell retention, prolifera-

tion, migration, and/or differentiation. All of these pro-

cesses are known to be influenced by the mechanical

microenvironment in vitro [21,25] suggesting that modi-

fication of the mechanical microenvironment in vivo may

be a strategy to promote long-term transplanted cell

survival and function. In therapies that rely on paracrine

secretion for therapeutic efficacy, multiple cell doses over

time may be necessary to maintain a sufficient level of

cell-secreted therapeutic factors, thereby complicating

clinical translation [26–29]. In therapies that require

transplanted cell integration into the host tissue, poor

differentiation into specialized cell types may limit new

tissue formation and function [30] and can lead to the

formation of teratomas [24,31�,32]. Overcoming these

challenges may require the use of structural biomaterial

supports that provide instructive mechanical cues to the

transplanted cells.

Material approaches to address mechanical
requirements of cell transplantation
The different stages of the transplantation process each

have unique mechanical requirements that can be

addressed using biomaterial design strategies to improve

stem cell transplantation efficacy. In this section, we will

outline methods currently employed to provide the me-

chanical support and cues needed throughout the stages

of transplantation (Figure 1b).

Injection

Microcarriers

Several new biomaterial approaches have been utilized

to limit cell death that results from membrane damage

during the injection stage of transplantation. One cur-

rent approach is the use of hydrogel microcarriers, in
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which cells are encapsulated within small particles,

typically spheres, that can be injected through a syringe

needle. Cells encapsulated in microcarriers are pro-

tected from damaging mechanical forces exerted during

injection, which can improve their acute survival by as

much as two-fold, and thus increase their therapeutic

potential [33]. Furthermore, delivering stem cells with-

in microcarriers enables high local cell densities, which

can promote paracrine signaling and enhance differen-

tiation that may be important for later stages of the

transplantation process. Thus, many studies with

microcarriers load a high concentration of either single

cell suspensions or cell aggregates [34,35]. The micro-

carrier droplets can be produced using a number of

techniques including ionic crosslinking [36–38], micro-

fluidic droplet production [39,40�], water-in-oil emul-

sion [33,41,42], photocrosslinking [39,41], and thermal

crosslinking [34]. In addition, many of these techniques

can be combined to produce more complex microcar-

riers. For example, injectable gelatin-methacrylate

(GelMA) microcarriers have been designed using

microfluidic platforms to generate droplets of control-

lable sizes, which are then crosslinked with ultraviolet

light [39,43]. Furthermore, due to their small size,

microparticles have the ability to act as porous space

fillers upon injection into defects, which can aid in host

tissue integration [40�].

Shear-thinning hydrogels

An alternative approach to microcarrier encapsulation is

the use of shear-thinning hydrogels, which allow for

encapsulation of stem cells through weak dynamic

interactions (e.g. hydrogen bonding, hydrophobic inter-

actions, electrostatic attractions, and host–guest inter-

actions) between the polymer chains prior to cell

delivery [44–47]. When exposed to shear stress, as

experienced during injection, these associations disas-

semble, resulting in a significant decrease in viscosity.

Often this crosslink disassembly only occurs at the

interface of the hydrogel and the syringe, resulting in

‘shear banding’ at the interface [46,47]. This allows the

rest of the hydrogel to remain intact and undergo ‘plug

flow’, thereby protecting encapsulated  cells from mem-

brane damaging forces [15]. Several shear-thinning

hydrogels have demonstrated improved cell survival

post-injection including alginate hydrogels [15], pro-

tein-assembled hydrogels [45,48], supramolecular be-

ta-hairpin hydrogels [49�], and hyaluronic acid-based

hydrogels [50��,51,52�]. Using protein-assembled hydro-

gels, acute survival of iPSC-derived endothelial cells

increased two-fold compared to saline-delivered cells

[48], while encapsulation in hyaluronic acid-based

hydrogels lead to an �1.2-fold increase in survival of

injected iPSC-derived neural progenitors [52�]. These

methods aim to improve survival of transplanted cells

during the initial stage of transplantation, potentially

improving overall cell engraftment.
Current Opinion in Chemical Engineering 2017, 15:15–23



18 Biological engineering – Stem cell engineering
Acute post-injection

Several new biomaterial strategies have focused on im-

proving cell survival and minimizing cell dispersion at the

injection site and providing a cell-adhesive scaffold to

promote acute cell retention within the host tissue.

Three-dimensional mechanical support of transplanted

cells helps prevent cell death due to anoikis (i.e. anchor-

age-dependent apoptosis) and can prevent cell dispersal

from the site of local injection. One approach to providing

acute mechanical support after injection involves the

control of hydrogel gelation kinetics. This can be accom-

plished through strategies including triggered gelation, or

the use of shear-thinning hydrogels that are also rapidly

self-healing.

Triggered gelation

Ideally, gelation should be fast enough to promote ho-

mogenous cell distribution and acute cell retention at the

transplant site, yet slow enough to prevent gelation within

the syringe or catheter. Several systems have been

designed to deliver cells in a viscous pre-polymer solution

that will be triggered to gel in situ using biological stimuli,

such as temperature [53], pH [54], ion concentration [55],

or applied stimuli, such as light [56,57]. Temperature-

triggered gelation has been used for a number of stem cell

transplantation strategies through the incorporation of

thermoresponsive polymers with a characteristic lower

critical solution temperature (LCST) behavior. For ex-

ample, thermoresponsive poly(N-isopropylacrylamide)

(PNIPAM) has been routinely used to trigger in situ
gelation in a number of hydrogel systems due to its LCST

phase transition at approximately 328C. This results in

rapid gelation at physiological temperature (378C), pro-

viding an effective approach to enhance cell retention

[58�,59]. Another material that can undergo temperature-

triggered gelation is decellularized matrix hydrogels de-

rived from native tissue [14,60,61]. In addition, the use of

ECM-derived hydrogels capitalizes on the presence of

tissue-specific biochemical cues and ligands to anchor

adherent cells and improve cell survival. These materials

have been used in several preclinical studies for stem cell

transplantation based on their rapid in situ gelation. For

example, the delivery of MSCs encapsulated in hydrogels

derived from porcine lung tissue demonstrated increased

cell retention at 24 hours following intratracheal delivery

in a rat model [62�].

Photopolymerization (and other mechanisms of triggered

gelation using an applied stimulus) can lead to spatially

controlled formation of crosslinked hydrogels at physiolog-

ical pH and temperature. The incorporation of diacrylate or

methacrylate functional groups has been shown to facilitate

crosslinking and photo-triggered gelation in response to

UV or visible light [56,57]. UV light has been used to

crosslink diacrylate-modified polyethylene oxide solutions

in situ resulting in increased stem cell retention following

transdermal photopolymerization [63]. Similarly, other
Current Opinion in Chemical Engineering 2017, 15:15–23 
polymers including chitosan [64,65], alginate [55,66], gela-

tin [67,68], and hyaluronic acid (HA) [57] have all been

modified with methacrylate functional groups to trigger

gelation. For example, transdermal photopolymerization of

methacrylated-gelatin has been shown to deliver and

improve the integration of MSCs and endothelial-colony

forming cells with host tissue for vascular therapies com-

pared to non-photocrosslinked hydrogels [68].

Self-healing hydrogels

Shear-thinning, self-healing hydrogels have been used in

a number of preclinical studies to provide protection

during the injection stage and also promote acute cell

retention post-transplantation. These materials undergo

viscous flow when subjected to an applied shear stress and

time-dependent recovery and reassembly of the hydrogel

network upon relaxation [44]. When designed appropri-

ately, these materials can demonstrate fast self-healing

kinetics at the site of injection, thereby resulting in high

levels of cell retention [31�,50��]. For example, an in-

jectable hyaluronan/methylcellulose hydrogel demon-

strated improved transplanted cell retention of iPSCs

for retinal and spinal cord therapies [30,31�]. In another

design, hyaluronan modified to undergo rapid host–guest

self-assembly was shown to improve endothelial progeni-

tor cell retention after myocardial infarct [50��]. Engi-

neered protein-based self-assembly systems have also

been shown to promote acute survival post-injection,

resulting in a more than 2-fold increase in stem cell

retention compared to saline-mediated delivery [48,69].

Long-term survival and function

Influencing stem cell differentiation

A large body of mechanotransduction research has stud-

ied the role of 2D and 3D hydrogel mechanics on stem

cell differentiation and function, with substantial empha-

sis placed on MSC differentiation. Numerous studies

have shown that substrate stiffness heavily influences

stem cell fate, with compliant materials generally promot-

ing soft tissue lineages (e.g. neural and fat cells) and stiffer

materials leading to hard tissue lineages (e.g. bone cells)

[25,70–73]. Substrate stiffness has been shown to play a

role in stem/progenitor cell differentiation [51,74] and

progenitor cell function [75]. For example, when cultured

over a specific stiffness range, cardiac progenitors have

enhanced electrical and contractile function [70,76,77].

Little of this work has been translated in vivo as these

materials have been designed specifically for in vitro
mechanotransduction studies. Complicating their direct

application into clinical therapies, the mechanical cues

experienced by transplanted cells may include both the

mechanical properties of any engineered matrix, as well as

that of the endogenous tissue. Furthermore, the mechan-

ical cues of endogenous tissue may include aberrant

signaling due to matrix stiffening (e.g. fibrosis) or matrix

weakening (e.g. unchecked proteolysis) [78,79]. One

recent study using injectable alginate hydrogels suggests
www.sciencedirect.com
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that bulk matrix stiffness differentially promotes osteo-

differentiation of transplanted MSCs and new bone for-

mation in a cranial defect model [80��], similar to results

predicted by in vitro models [81]. In complementary

work, improved differentiation and integration of trans-

planted muscle stem cells was observed when cells were

transplanted on hydrogel constructs with an ideal stiffness

range [74].

In addition to material stiffness, hydrogel degradation and

matrix remodeling can play a significant role in stem cell

behavior and differentiation [1]. MSC spreading and

survival have been shown to depend on the degree of

hydrogel degradation [82], which can influence stem cell

fate [83]. For example, MSC-mediated degradation of a

3D matrix influences differentiation by altering the abili-

ty of cells to generate traction within the microenviron-

ment [84]. Tuning of hydrogel degradation has been used

to promote MSC differentiation toward chondrogenic

lineages, resulting in improved deposition of neocartilage

ECM, which may prove beneficial toward long-term

integration of transplanted cells [85].

Beyond the intrinsic mechanical properties of the matrix,

the dynamic mechanical microenvironment is also known

to impact cell differentiation and maturation processes

[86,87]. For example, several in vitro studies have dem-

onstrated that mechanical loading of stem cells through

compression, tension, or shear can lead to differentiation

into osteogenic [88–90], myogenic [91–93], or vasculo-

genic [94–96] phenotypes. These studies suggest that

dynamic in vivo mechanical cues must be considered

for specific clinical applications.

Influencing stem cell secretome

For many potential regenerative medicine therapies, the

transplanted cells may not directly participate in regen-

erating the damaged tissue, but instead function through

the secretion of paracrine signals that promote host tissue

regeneration [22,97]. Therefore, several studies have

shifted focus to the therapeutic potential of stem cells

based on their secretion of pro-survival and pro-regener-

ative factors [22,23,26,97]. Recent work has demonstrated

the use of hydrogel design strategies to enhance the

secretory profile of growth factors, chemokines, and cyto-

kines from stem cells, also known as their secretome

[21,98–101].

Hydrogel mechanical properties, such as stiffness and

degradation, have been suggested to influence stem cell

secretion. For example, substrate stiffness has been

shown to regulate MSC secretion of paracrine signals,

with intermediate and stiffer substrates (10–40 kPa) lead-

ing to increased levels of pro-angiogenic factors interleu-

kin 8, vascular endothelial growth factor, and angiogenin

compared to more compliant substrates (E � 0.5–2 kPa)

[21,99]. Similarly, hydrogels with intermediate elasticity
www.sciencedirect.com 
were found to significantly increase the secretion of pro-

angiogenic factors from adipose-derived stem cells [102�].
Unfortunately, increasing hydrogel stiffness and cross-

linking density often results in slower hydrogel degrada-

tion kinetics [85,103]. With a decrease in hydrogel

degradation, there may be an associated decrease in

the diffusion of secreted soluble factors, thus limiting

the therapeutic benefit of transplanted stem cells [104].

Future directions
Currently no universal material fulfills all of the mechan-

ical needs to improve stem cell survival and functionality

during all three stages of transplantation. While some

material mechanical properties may be needed for en-

hanced long-term retention and differentiation, these

same mechanical properties may limit success in the

earlier transplantation stages. Therefore, a promising

future research direction is the development of bioma-

terials that can alter their mechanical properties over time

to achieve diverse mechanical requirements throughout

the multiple stages of transplantation.

One approach to modify biomaterial properties over time

is the use of dual-stage or multi-stage crosslinking strate-

gies. For example, several shear-thinning and self-healing

hydrogels have been designed to undergo a second stage

of crosslinking, and hence mechanical stiffening, in re-

sponse to various stimuli. Temperature is a common

stimulus to induce secondary crosslinking in situ, since

many self-assembling hydrogels can be modified to in-

clude a thermoresponsive element [30,58�,105,106]. In

this approach, cell viability is improved during the injec-

tion stage due to the shear thinning mechanical proper-

ties, acute cell retention is improved during the acute

post-injection stage due to the rapid self-healing kinetics,

and the temperature-triggered secondary crosslinking

increases long-term cell survival due to the decreased

degradation rate [58�]. Alternatively, covalent crosslink-

ing can be used as a secondary crosslinking mechanism to

reinforce and strengthen injectable hydrogels [67,107�].
For example, HA can be modified to undergo a first-stage

of guest–host self-assembly followed by a second-stage of

covalent crosslinking to prolong material retention and to

improve integration with host tissue [107�].

A second approach to modulating biomaterial mechanics

and structure over time is to engineer complex degrada-

tion patterns into the hydrogel. For example, composite

alginate hydrogels were created with regions that were

fast degrading surrounded by a slower degrading material

for use in MSC transplantation [80��]. In situ, the fast-

degrading regions created voids that enhanced cell sur-

vival through increased nutrient transport and cell migra-

tion across the host-transplant interface [80��].
Meanwhile, the slow-degrading regions provided long-

term mechanical support to promote osteogenic differen-

tiation.
Current Opinion in Chemical Engineering 2017, 15:15–23
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In the future, it is expected that creative biomaterials

chemistry will be combined with novel microfabrication

techniques to design a broad array of biomaterials that can

stiffen and/or weaken over time at the length-scales and

time-scales required to support all stages of stem cell

transplantation. For example, a rich array of photoactive

chemistry has already been employed in the design of in
vitro biomaterials that exhibit this so-called ‘4D’ control

of mechanical properties [108,109��].

Conclusion
In conclusion, a wide range of hydrogels with tunable

mechanical properties are being developed to overcome

the different mechanical challenges facing stem cells

during each stage of transplantation: injection, acute

post-injection, and long-term survival and function.

While no universal material is currently capable of addres-

sing all of the mechanical requirements, a promising

future direction is the development of biomaterials that

can adjust their mechanical properties for multiple trans-

plantation stages. Thus, while current injectable bioma-

terials are already demonstrating that they can

significantly improve transplanted stem cell viability

and function, future innovation in biomaterials design

is expected to even further enhance the therapeutic

efficacy of transplanted stem cells.
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