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Polymers at the Interface with Biology

B iology in its broadest sense is an important model and
inspiration for science and technology. In relation to
polymers, biology uses a variety of complex macromolecules to
accomplish a myriad of functions in living systems. These
biopolymers incorporate many unique features that have
inspired the polymer community, including sequence specific-
ity, renewable feedstocks, catalytic activity, self-replication, and
specific recognition. Bioinspired synthetic and biologically
derived polymers are critical components of many innovative
solutions aimed at addressing some of the most pressing
problems related to human health and the environment.
Challenges and opportunities for the polymer science
community at large include both developing synthetic
strategies toward such materials as well as studying and
developing a fundamental understanding of their interactions
with biological systems. Since its inception in 2000,
Biomacromolecules has strived to become the leading forum
for the dissemination of cutting-edge research at the interface
of polymer science and biology. Articles published in
Biomacromolecules contain strong elements of innovation in
terms of macromolecular design, synthesis, and character-
ization or in new applications of polymers to biology and
medicine.

The aims of this Editorial are to review the evolution of
research at the interface of polymer science and biology and to
present a forward-looking view of this field. We do this by
highlighting some areas of research that have been prominently
featured in Biomacromolecules over the past years and by
presenting some emerging topics that we consider of great
relevance and interest to the polymer science community and
the readership of Biomacromolecules. This Editorial is partly
based on a symposium entitled “Polymers at the Interface with
Biology” and an associated “round-table” discussion that took
place during the 2017 American Chemical Society (ACS) Fall
Meeting in Washington, DC. The participants of this
discussion included the Editor-in-Chief and Associate Editors
of Biomacromolecules as well as a group of 13 invited experts.

Research at the intersection of polymer science and biology
has significantly evolved over the past two decades. To
illustrate this, Table 1 provides a collection of the most highly
cited manuscripts published in Biomacromolecules since the
start of the journal in the year 2000. Table 1 only includes
original research papers, i, no review articles. The table
illustrates how the focus of many of the most cited papers in
the field has gradually shifted over time. The focus of highly
cited papers that appeared between 2000 and 2006 was heavily
influenced by natural biopolymers (e.g., cellulose, silk) as well
as electrospinning of polymer fibers. Other highly cited
manuscripts that were published in Biomacromolecules during
this period include seminal work on the development of
reduction-sensitive block copolymer micelles,'” the use of
“click-type” conjugate addition reactions,”'” or DOPA
chemistry'” to produce functional hydrogel materials as well
as the design of antibacterial surface films using surface-
initiated controlled radical polymerization methods.”® By
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comparison, many highly cited papers published in Biomacro-
molecules between 2007 and 2013 report on the preparation,
characterization, and use of cellulose nanofibers. In addition,
this era features work on the preparation of nonfouling
polymer coatings®' and also shows an increased interest in the
design of pH and/or reduction-sensitive polymer nanocarriers
for intracellular drug delivery*”****** as well as further
examples to explore the utilization of DOPA-based chemistries
for the preparation of polymer nanoparticles,”® micro-
capsules,”” and hydrogels.”” Highly cited work from the most
recent period (2014—present day) includes a number of
articles focused on the development of surfaces or scaffolds
designed to enhance tissue regeneration or for cell
culture.***>”! Other examples include self-healing materials,'*®
mussel-inspired pH responsive hydrogels,87 investigation of
how adsorbed proteins influence cellular uptake of nano-
particles,92 and several studies on pH, redox, temperature, and
light-responsive polymer particles desi§ned to facilitate intra-
cellular or intratumoral drug release.”*”***'%" Although the
highly cited papers listed in Table 1 and highlighted above
reflect topics that have generated significant interest, it is also
important to recognize that they, of course, are not exclusively
representative of the content published in Biomacromolecules.
As is evident also from Table 1, research fields continuously
evolve, and Biomacromolecules aims to capture new and exciting
work at the forefront of the field.

One important objective of the “Polymers at the Interface with
Biology” symposium was to develop a forward-looking view of
the field and highlight emerging topics that are of particular
interest to the readership of Biomacromolecules. Many
interesting topics relevant to this theme were presented by
the speakers at the symposium in Washington, DC. One
example is the diverse field of biorelated synthetic polymers,
which includes those based on natural biopolymers, such as
polypeptides, polynucleic acids, and polysaccharides, as well as
those that mimic nature, including polypeptoids and other
peptidomimetics, polymers from biological feedstocks, and
sequence-controlled polymers.

For the field of biosourced sustainable polymers, Prof.
Eugene Chen discussed and emphasized the importance of
enhancing the thermal and mechanical properties of bioderived
synthetic polyesters and also realizing the potential to
chemically recycle these polymers back to their constituent
monomers. He reported catalytic systems capable of preparing
such polyesters with enhanced properties via ring-opening
polymerization of y-butyrolactone and its derivatives, as well as
the methodology that permits their complete depolymerization
back to the original building blocks.'””~""" Polymers
containing functional side-chains and possessing the ability
to respond to different stimuli continue to be developed as
functional and structural mimics of biological polymers and
assemblies. Related to this theme, Prof. Steven Armes
presented the synthesis of pH-responsive triblock copolymers
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Table 1. Overview of Highly Cited Original Research Papers Published in Biomacromolecules Since 2000

Manuscript title Authors Year Ref.

Structural and Rheological Properties of Methacrylamide Modified | Van den Bulcke, Al, Bogdanov, | 2000 1

Gelatin Hydrogels B; De Rooze, N; Schacht, EH;
Cornelissen, M; Berghmans, H

Quaternary Ammonium Functionalized Poly(propylene imine) | Chen, CZ; Beck-Tan, NC; | 2000 2

Dendrimers as Effective Antimicrobials: Structure-Activity Studies Dhurjati, P; van Dyk, TK;
LaRossa, RA; Cooper, SL

New Insight Into Agarose Gel Mechanical Properties Normand, V; Lootens, DL; | 2000 3
Amici, E; Plucknett, KP; Aymard,
P

Multifunctional Epoxy Supports: A New Tool To Improve the | Mateo, C; Fernandez-Lorente, G; | 2000 4

Covalent Immobilization of Proteins. The Promotion of Physical | Abian, O, Fernandez-Lafuente, R;

Adsorptions of Proteins on the Supports before Their Covalent | Guisan, JM

Linkage

Periodate Oxidation of Crystalline Cellulose Kim, UJ; Kuga, S; Wada, M; | 2000 5
Okano, T; Kondo, T

Candida antartica Lipase B Catalyzed Polycaprolactone Synthesis: | Kumar, A; Gross, RA 2000 6

Effects of Organic Media and Temperature

Molecular Basis of Ca*"-Induced Gelation in Alginates and Pectins: | Braccini, I; Pérez, S 2001 7

The Egg-Box Model Revisited

Relation between the Degree of Acetylation and the Electrostatic | Sorlier, P; Denuziére, A; Viton, | 2001 8

Properties of Chitin and Chitosan C; Domard, A

Conjugate Addition Reactions Combined with Free-Radical Cross- | Elbert, DL; Hubbell, JA 2001 9

Linking for the Design of Materials for Tissue Engineering

X-ray Structure of Mercerized Cellulose I at 1 A Resolution Langan, P; Nishiyama, Y; | 2001 10
Chanzy, H

Mechanisms and Kinetics of Thermal Degradation of Poly(e- | Persenaire, O, Alexandre, M; | 2001 11

caprolactone) Degée, P; Dubois, P

Glutathione-Sensitive Stabilization of Block Copolymer Micelles | Kakizawa, Y; Harada, A; | 2001 12

Composed of Antisense DNA and Thiolated Poly(ethylene glycol)- | Kataoka, K

block-poly(L-lysine)

Electrospinning of Collagen Nanofibers Matthews, JA; Wnek, GE; [ 2002 13
Simpson, DG; Bowlin, GL

Electrospinning Bombyx mori Silk with Poly(ethylene oxide) Jin, HJ; Fridrikh, SV; Rutledge, | 2002 14
GC, Kaplan, DL

Disulfide Cross-Linked Hyaluronan Hydrogels Shu, XZ; Liu, Y; Luo, Y; | 2002 15
Roberts, MC; Prestwich, GD

Genetically Encoded Synthesis of Protein-Based Polymers with | Meyer, DE; Chilkoti, A 2002 16

Precisely Specified Molecular Weight and Sequence by Recursive

Directional Ligation: Examples from the Elastin-like Polypeptide

System

Synthesis and Gelation of DOPA-Modified Poly(ethylene glycol) | Lee, BP; Dalsin, JL; Messersmith, | 2002 17

Hydrogels PB

Surface Modification of Polycaprolactone Membrane via Aminolysis | Zhu, Y; Gao, C; Liu, X; Shen, J 2002 18

and  Biomacromolecule  Immobilization  for =~ Promoting

Cytocompatibility of Human Endothelial Cells

Synthesis and Physicochemical Characterization of End-Linked | Lutolf, MP; Hubbell, JA 2003 19

Poly(ethylene glycol)-co-peptide Hydrogels Formed by Michael-

Type Addition.

Rational Design of Cytophilic and Cytophobic Polyelectrolyte | Mendelsohn, JD; Yang, SY; 2003 20

Multilayer Thin Films Hiller, J; Hochbaum, AI; Rubner,
MF

Complex Coacervation of Whey Proteins and Gum Arabic Weinbreck, F; de Vries, R; 2003 21
Schrooyen, P; de Kmuif, CG

Ionic Strength Dependence of Protein-Polyelectrolyte Interactions Seyrek, E; Dubin, PL; Tribet, C; 2003 22
Gamble, EA

Bioactive Coatings of Endovascular Stents Based on Polyelectrolyte | Thierry, B; Winnik, FM; Merhi, 2003 23

Multilayers Y. Silver, J; Tabrizian, M

Synthesis and  Characterization of Injectable  Poly(N- [ Kim, S; Healy, KE 2003 24

isopropylacrylamide-co-acrylic acid) Hydrogels with Proteolytically

Degradable Cross-Links

Porous 3-D Scaffolds from Regenerated Silk Fibroin. Nazarov, R; Jin, HJ; Kaplan, DL 2004 25

Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the | Roman, M; Winter, WT 2004 26

Thermal Degradation Behavior of Bacterial Cellulose

Homogeneous Acetylation of Cellulose in a New Ionic Liquid Wu, J; Zhang, I, Zhang, H; He, I, | 2004 29
Ren, Q; Guo, M

TEMPO-Mediated Oxidation of Native Cellulose. The Effect of | Saito, T, Isogai, A 2004 28
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Table 1. continued

Oxidation Conditions on Chemical and Crystal Structures of the
Water-Insoluble Fractions

Structure and Properties of Silk Hydrogels Kim, UJ; Park, JY; Li, C; Jin, HI; | 2004 29
Valluzzi, R; Kaplan, DL
Permanent, Nonleaching Antibacterial Surfaces. 1. Synthesis by | Lee, SB; Koepsel, RR; Moiley, | 2004 30
Atom Transfer Radical Polymerization SW; Matyjaszewski, K; Sun, Y;
Russell, AJ
Effect of Reaction Conditions on the Properties and Behavior of | Beck-Candanedo, S; Roman, M; | 2005 31
Wood Cellulose Nanocrystal Suspensions Gray, DG
Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose | Sturcova, A; Davies, GR; | 2005 32
Whiskers Eichhorn, SJ
Sustained Release of Proteins from Electrospun Biodegradable | Chew, SY; Wen, J; Yim, EKF; | 2005 33
Fibers Leong, KW
Controlled  Degradation and  Mechanical  Behavior of | Burdick, JA; Chung, C; Jia, X; | 2005 34
Photopolymerized Hyaluronic Acid Networks Randolph, MA; Langer, R
Preparation and Mechanical Properties of Chitosan/Carbon | Wang, SF; Shen, L; Zhang, WD; | 2005 35
Nanotubes Composites Tong, YJ
Characterization of the Surface Biocompatibility of the Electrospun | Zhang, YZ; Venugopal, J; Huang, | 2005 36
PCL-Collagen Nanofibers Using Fibroblasts ZM; Lim, CT; Ramakrishna, S
Homogeneous Suspensions of Individualized Microfibrils from | Saito, T; Nishiyama, Y; Putaux, | 2006 37
TEMPO-Catalyzed Oxidation of Native Cellulose JL; Vignon, M; Isogai, A
Electrospun  Poly(e-caprolactone) Microfiber and Multilayer | Pham, QP; Sharma, U; Mikos, | 2006 38
Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and | AG
Measurement of Cellular Infiltration
Study of Biodegradable Polylactide/Poly(butylene adipate-co- | Jiang, L; Wolcott, MP; Zhang, J 2006 39
terephthalate) Blends
PAMAM Dendrimer-Based Multifunctional Conjugate for Cancer | Majoros, IJ; Myc, A; Thomas, T; | 2006 40
Therapy: Synthesis, Characterization, and Functionality Mehta, CB; Baker, JR
Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated | Zhang, YZ; Wang, X; Feng, Y; | 2006 41
Bovine Serum  Albumin)-Encapsulated  Poly(e-caprolactone) | Li, J; Lim, CT; Ramakrishna, S
Nanofibers for Sustained Release
Superior Solubility of Polysaccharides in Low Viscosity, Polar, and | Fukaya, Y; Sugimoto, A; Ohno, | 2006 42
Halogen-Free 1,3-Dialkylimidazolium Formates H
Enzymatic Hydrolysis Combined with Mechanical Shearing and | Padké, M; Ankerfors, M; | 2007 43
High-Pressure Homogenization for Nanoscale Cellulose Fibrils and | Kosonen, H; Nykinen, A; Ahola,
Strong Gels S; Osterberg, M; Ruokolainen, J;
Laine, J; Larsson, PT; Ikkala, O;
Lindstrém, T
Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of | Saito, T; Kimura, S; Nishiyama, | 2007 44
Native Cellulose Y, Isogai, A
Interactions between Alginate and Chitosan Biopolymers | Lawrie, G; Keen, I, Drew, B; | 2007 45
Characterized Using FTIR and XPS Chandler-Temple, A; Rintoul, L;
Fredericks, P; Grondahl, L
Obtaining Cellulose Nanofibers with a Uniform Width of 15nm | Abe, K; Iwamoto, S; Yano, H 2007 46
from Wood
PEG-SS-PPS: Reduction-Sensitive Disulfide Block Copolymer | Cerritelli, S; Velluto, D; Hubbell, | 2007 47
Vesicles for Intracellular Drug Delivery JA
New Nanocomposite Materials Reinforced with Flax Cellulose | Cao, X; Dong, H; Li, CM 2007 48
Nanocrystals in Waterborne Polyurethane
Cellulose Nanopaper Structures of High Toughness Henriksson, M; Berglund, LA; | 2008 49
Isaksson, P; Lindstrtém, T,
Nishino, T
The Shape and Size Distribution of Crystalline Nanoparticles | Elazzouzi-Hafraoui, S; | 2008 50
Prepared by Acid Hydrolysis of Native Cellulose Nishiyama, Y; Putaux, JL; Heux,
L; Dubreuil, F; Rochas, C
Zwitterionic Polymers Exhibiting High Resistance to Nonspecific | Ladd, J; Zhang, Z; Chen, S; | 2008 51
Protein Adsorption from Human Serum and Plasma Hower, JC; Jiang, S
Fluorescence Study of the Curcumin-Casein Micelle Complexation | Sahu, A; Kasoju, N; Bora, U 2008 52
and Its Application as a Drug Nanocarrier to Cancer Cells
Interaction of fB-Lactoglobulin with Resveratrol and its Biological | Liang, L; Tajmir-Riahi, HA; | 2008 53
Implications Subirade, M
The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and | Iwamoto, S; Abe, K; Yano, H 2008 54
Nanofiber Network Characteristics
Transparent and High Gas Barrier Films of Cellulose Nanofibers | Fukuzumi, H; Saito, T; Iwata, T; | 2009 55
Prepared by TEMPO-Mediated Oxidation Kumamoto, Y; Isogai, A
Cellulose Whiskers versus Microfibrils: Influence of the Nature of | Siqueira, G; Bras, J; Dufresne, A | 2009 56

the Nanoparticle and its Surface Functionalization on the Thermal
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Table 1. continued

and Mechanical Properties of Nanocomposites

Individualization of Nano-Sized Plant Cellulose Fibrils by Direct | Saito, T; Hirota, M; Tamura, N; | 2009 57
Surface Carboxylation Using TEMPO Catalyst under Neutral | Kimura, S; Fukuzumi, H; Heux,
Conditions L; Isogai, A
Elastic Modulus of Single Cellulose Microfibrils from Tunicate | Iwamoto, S; Kai, W; Isogai, A; | 2009 58
Measured by Atomic Force Microscopy Iwata, T
Investigation of the Interaction between Berberine and Human | Hu, YJ; Liu, Y; Xiao, XH 2009 59
Serum Albumin
Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites | Travan, A; Pelillo, C; Donati, I, | 2009 60
with Antimicrobial Activity Marsich, E; Benincasa, M;
Scarpa, T; Semeraro, S; Turco, G;
Gennaro, R; Paoletti, S
Fabrication, Mechanical Properties, and Biocompatibility of | Fan, H; Wang, L; Zhao, K; Li, N; | 2010 61
Graphene-Reinforced Chitosan Composites Shi, Z; Ge, Z; Iin, Z,
Cytocompatibility and Uptake of Halloysite Clay Nanotubes Vergaro, V; Abdullayev, E; Lvov, | 2010 62
YM; Zeitoun, A; Cingolani, R;
Rinaldi, R; Leporatti, S
Nanofiber Composites of Polyvinyl Alcohol and Cellulose | Peresin, MS; Habibi, Y; Zoppe, | 2010 63
Nanocrystals: Manufacture and Characterization JO; Pawlak, JJ; Rojas, OJ
Shell-Sheddable  Micelles Based on  Dextran-SS-Poly(e- | Sun, H; Guo, B; Li, X; Cheng, R; | 2010 64
caprolactone) Diblock Copolymer for Efficient Intracellular Release | Meng, F; Liu, H; Zhong, Z
of Doxorubicin
Fast Preparation Procedure for Large, Flat Cellulose and | Sehaqui, H; Liu, A; Zhou, Q; | 2010 65
Cellulose/Inorganic Nanopaper Structures Berglund, LA
Entire Surface Oxidation of Various Cellulose Microfibrils by | Okita, Y; Saito, T; Isogai, A 2010 66
TEMPO-Mediated Oxidation
Transition of Cellulose Crystalline Structure and Surface | Cheng, G; Varanasi, P; Li, C; Liu, | 2011 67
Morphology of Biomass as a Function of lonic Liquid Pretreatment | H; Menichenko, YB; Simmons,
and Its Relation to Enzymatic Hydrolysis BA; Kent, MS; Singh, S
Bioinspired Polymerization of Dopamine to Generate Melanin-Like | Ju, KY; Lee, Y; Lee, S; Park, SB; | 2011 68
Nanoparticles Having an Excellent Free-Radical-Scavenging | Lee, JK
Property
Strong and Tough Cellulose Nanopaper with High Specific Surface | Sehaqui, H; Zhou, Q; Ikkala, O; | 2011 69
Area and Porosity Berglund, LA
Synthesis of Multiresponsive and Dynamic Chitosan-Based | Zhang, Y; Tao, L; Li, S; Wei, Y 2011 70
Hydrogels for Controlled Release of Bioactive Molecules
Surface Charge Affects Cellular Uptake and Intracellular Trafficking | Yue, ZG; Wei, W, Lv, PP; Yue, | 2011 71
of Chitosan-Based Nanoparticles H; Wang, LY; Su, ZG; Ma, GH
Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire | Liu, A; Walther, A; Ikkala, O; | 2011 72
Retardancy and Gas Barrier Functions Belova, L; Berglund, LA
Immobilization and Intracellular Delivery of an Anticancer Drug | Cui, J; Yan, Y; Such, GK; Liang, | 2012 73
Using Mussel-Inspired Polydopamine Capsules K; Ochs, CJ;, Postma, A; Caruso,
F
Relationship between Length and Degree of Polymerization of | Shinoda, R; Saito, T, Okita, Y; | 2012 74
TEMPO-Oxidized Cellulose Nanofibrils Isogai, A
Modulation of Cellulose Nanocrystals Amphiphilic Properties to | Kalashnikova, I; Bizot, H; | 2012 75
Stabilize Oil/Water Interface Cathala, B; Capron, [
Ultrastrong and High Gas-Barrier Nanocellulose/Clay-Layered | Wu, CN; Saito, T; Fujisawa, S; | 2012 76
Composites Fukuzumi, H; Isogai, A
Photoresponsive Poly(S-(o-nitrobenzyl)-L-cysteine)-b-PEO from a | Liu, G; Dong, CM 2012 77
L-Cysteine N-Carboxyanhydride Monomer: Synthesis, Self-
Assembly, and Phototriggered Drug Release
Transparent Films Based on PLA and Montmorillonite with Tunable | Svagan, AJ;  Akesson, A; | 2012 78
Oxygen Barrier Properties Cardenas, M; Bulut, S; Knudsen,
JC; Risbo, J; Plackett, D
An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single | Saito, T; Kuramae, R; Wohlert, I, | 2013 79
Cellulose ~ Nanofibrils  Revealed via  Sonication-Induced | Berglund, LA; Isogai, A
Fragmentation
Self-Healing Mussel-Inspired Multi-pH-Responsive Hydrogels Krogsgaard, M; Behrens, MA; | 2013 80
Pedersen, JS; Birkedal, H
Self- Assembling Behavior of Cellulose Nanoparticles during Freeze- | Han, J; Zhou, C; Wu, Y; Liu, F; | 2013 81
Drying: Effect of Suspension Concentration, Particle Size, Crystal | Wu, Q
Structure, and Surface Charge
Redox-Responsive, Core-Cross-Linked Micelles Capable of On- | Wang, H; Tang, L; Tu, C; Song, | 2013 82
Demand, Concurrent Drug Release and Structure Disassembly Z; Yin, Q; Yin, L; Zhang, Z;
Cheng, J
Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric | Espinosa, SC; Kuhnt, T; Foster, | 2013 83
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Table 1. continued

Acid Hydrolysis EJ; Weder, C
pH-Triggered Charge-Reversal Polypeptide Nanoparticles for | Huang, Y; Tang, Z; Zhang, X; | 2013 84
Cisplatin Delivery: Preparation and In Vitro Evaluation Yu, H; Sun, H; Pang, X; Chen, X
Dual Responsive Pickering Emulsion Stabilized by Poly[2- | Tang, J; Lee, MFX; Zhang, W, | 2014 85
{dimethylamino)ethyl methacrylate] Grafted Cellulose Nanocrystals | Zhao, B; Berry, RM; Tam, KC
Light-Responsive Micelles of Spiropyran Imitiated Hyperbranched | Somn, S; Shin, E; Kim, BS 2014 86
Polyglycerol for Smart Drug Delivery
Mussel-Mimetic Protein-Based Adhesive Hydrogel Kim, BJ; Oh, DX; Kim, S; Seo, | 2014 87

JH; Hwang, DS; Masic, A; Han,

DK Cha, HJ
Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac | Martins, AM; Eng, G, Caridade, | 2014 88
Tissue Engineering SG; Mano, JF; Reis, RL; Vunjak-

Novakovic, G
Aerogel Microspheres from Natural Cellulose Nanofibrils and Their | Cai, H; Sharma, S; Liu, W; Mu, | 2014 89
Application as Cell Culture Scaffold W; Liu, W; Zhang, X; Deng, Y
PEG-b-PCL Copolymer Micelles with the Ability of pH-Controlled | Deng, H; Liu, J, Zhao, X; Zhang, | 2014 90
Negative-to-Positive Charge Reversal for Intracellular Delivery of | Y; Liu, J; Xu, S; Deng, L; Dong,
Doxorubicin A; Zhang, J
3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate | Markstedt, K; Mantas, A; | 2015 91
Bioink for Cartilage Tissue Engineering Applications Tournier, I; Avila, HM; Hagg, D,

Gatenholm, P
Protein Corona of Nanoparticles: Distinct Proteins Regulate the | Ritz, S; Schéttler, S; Kotman, N; | 2015 92
Cellular Uptake Baier, G; Musyanovych, A;

Kuharev, J; Landfester, K; Schild,

H; Jahn, O; Tenzer, S; Mailander,

A%
Thermogelling Polymer-Platinam(IV) Conjugates for Long-Term | Shen, W; Luan, I; Cao, L; Sun, J; | 2015 93
Delivery of Cisplatin Yu, L; Ding, J
Bioreducible Shell-Cross-Linked Hyaluronic Acid Nanoparticles for | Han, HS; Thambi, T; Choi, KY; | 2015 94
Tumor-Targeted Drug Delivery Son, S; Ko, H; Lee, MC; Jo, DG;

Chae, YS; Kang, YM; Lee, JY;

Park, JH
Tea Stains-Inspired Initiator Primer for Surface Grafting of | Pranantyo, D; Xu, LQ; Neoh, | 2015 95
Antifouling and Antimicrobial Polymer Brush Coatings KG; Kang, ET; Ng, YX; Teo,

SLM
Grafting of Bacterial Polyhydroxybutyrate (PHB) onto Cellulose via | Wei, L; McDonald, AG; Stark, | 2015 96
In Situ Reactive Extrusion with Dicumyl Peroxide NM
In Situ Synthesis of Antimicrobial Silver Nanoparticles within | GhavamiNejad, A; Park, CH; | 2016 97
Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry | Kim, CS
for Wound Healing Application
Halloysite Clay Nanotubes for Enzyme Immobilization Tully, J; Yendluri, R; Lvov, Y 2016 98
Structural Description of the Interface of Pickering Emulsions | Cherhal, F; Cousin, F; Capron, I 2016 99
Stabilized by Cellulose Nanocrystals
Facile Construction of pH- and Redox-Responsive Micelles from a | Li, D; Bu, Y; Zhang, L; Wang, X; | 2016 100
Biodegradable Poly(B-hydroxyl amine) for Drug Delivery Yang, Y; Zhuang, Y; Yang, F;

Shen, H; Wu, D
Enhanced Mechanical Properties in Cellulose Nanocrystal— | De France, KJ; Chan, KIJW; | 2016 101
Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite | Cranston, ED; Hoare, T
Hydrogels through Control of Physical and Chemical Cross-Linking
Optically Transparent Wood from a Nanoporous Cellulosic | Li, Y; Fu, Q; Yu, S; Yan, M; | 2016 102
Template: Combining Functional and Structural Performance Berglund, L
Highly Efficient Supramolecular Aggregation-Induced Emission- | Liow, SS; Zhou, H; Sugiarto, S; | 2017 103
Active Pseudorotaxane Luminogen for Functional Bioimaging Guo, S; Chalasani, MLS; Verma,

NK; Xu, I; Loh, XJ
Amphiphilic and Hydrophilic Block Copolymers from Aliphatic N- | Venkataraman, S; Tan, JPK; Ng, | 2017 104
Substituted 8-Membered Cyclic Carbonates: A  Versatile | VWL; Tan, EWP; Hedrick, JL;
Macromolecular Platform for Biomedical Applications Yang, YY
Facile Access to Multisensitive and Self-Healing Hydrogels with | Guo, R; Su, Q; Zhang, J; Dong, | 2017 105
Reversible and Dynamic Boronic Ester and Disulfide Linkages A; Lin, C; Zhang; J
Controlling Self-Assembling Peptide Hydrogel Properties through | Gao, J; Tang, C; Elsawy, MA; | 2017 106
Network Topology Smith, AM; Miller, AF; Saiani, A
Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic | Luong, D; Sau, S; Kesharwani, P; | 2017 107
Nanoparticles for Simultaneous Magnetic Resonance Imaging and | Iyer, AK
Precise Cancer Cell Targeting
Effects of Xylan Side-Chain Substitutions on Xylan—Cellulose | Pereira, CS; Silveira, RL; Dupree, | 2017 108

Interactions and Implications for Thermal Pretreatment of Cellulosic
Biomass

P; Skaf, MS

designed to self-assemble into framboidal vesicles that were
capable of mimicking the structural features and pH-triggered
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Engineered biorelated polymers, such as recombinant
proteins and polymers produced using biocatalysis, are another
core area for Biomacromolecules. In the symposium, Prof. Jan
van Hest described engineered chimeric proteins composed of
elastin-like segments and cowpea chlorotic mottle virus
subunits and their assembly into nanostructures that form
biomimetic structures capable of responding to pH, temper-
ature, and salt. These assemblies take advantage of the stimuli-
responsive properties of elastin sequences, and the precision
subunit assembly features of viral proteins.''*~"'* Related to
this theme, Prof. Julie Champion discussed the design and
preparation of protein constructs containing segments
composed of coiled-coil and antibody binding motifs that
enable them to assemble into well-defined nanostructures
capable of binding and presenting antibodies. These nano-
carriers are being evaluated for the intracellular delivery of
therapeutic antibodies.'"”

Beyond synthesis and structure, understanding the proper-
ties and dynamics of biorelated polymer assemblies is also
central to the scope of Biomacromolecules. Prof. Monica Olvera
de la Cruz studies how multivalent ions and polymers can
interact with amphiphilic molecules to form different
morphologies with diverse chemical functionality.''®™""’
Modeling of such systems can lead to the discovery of new
functional structures that can mimic biological functions. In
studies aimed at mimicking coacervate formation observed
with intrinsically disordered proteins in membraneless
organelles within cells, Prof. Matthew Tirrell presented studies
on complex coacervation of oppositely charged synthetic
polyelectrolytes where a variety of features, including polymer
stereochemistry, polymer chain length, and solution ionic
strength were found to influence polyelectrolyte complex phase
separation.'”” These insights into protein/polyelectrolyte
complexation show promise for the design of new biomimetic
materials." '

An obstacle that presents a significant hurdle toward the
clinical implementation of polymers and polymer-based
nanomaterials for drug delivery applications is a lack of
reproducible and scalable synthetic protocols. Polymer nano-
particles, as an example, are typically obtained via multiple
formulation and modification steps. To overcome these
challenges, Prof. Jeremiah Johnson described the preparation
of macromolecular prodrugs starting from complex, small
building blocks, which are accessible via organic syn-
thesis.'”*~'** These small building blocks are then assembled
together, for example, using ring-opening metathesis polymer-
ization (ROMP), into the desired nanomaterial, thereby
decoupling synthetic complexity and scalability.

Polymers and polymer nanoparticles are widely acknowl-
edged for their ability to prolong the blood circulation time of
therapeutics and to facilitate targeted delivery (e.g., to a tumor
in cancer therapy). In addition to controlling plasma half-life
and enabling targeted delivery of therapeutics, another pressing
problem, in particular for biologics (such as peptide-, protein-,
or nucleotide-based actives), is their stability during shipping
and storage.'*® This is a fundamental research problem, yet
one with enormous impact in those parts of the world where
an effective and reliable cold chain from the manufacturer to
the patient is absent. Addressing this challenge, Prof. Heather
Maynard emphasized the need for improved polymers for
protein stabilization, especially for prolonged storage, and
presented functional polymer designs, some also degradable,
that enabled protein protection to heat and mechanical
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agitation. The polymers could be conjugated to proteins and
peptides, added as excipients, or used to surround the biologic
as a nanoparticle for potential use in medicine."”’~"**

Considerable research over the past few decades has
accumulated an increasingly robust understanding of the
behavior of polymers and polymer nanoparticles in blood
circulation as well as mechanisms for their cellular uptake.
Fundamental design principles to control properties such as
plasma half-life or to promote cellular internalization have been
established for the preparation of more effective polymer
nanomedicines. However, because the target for many active
compounds is a specific cellular organelle, understanding and
controlling the behavior of polymer nanomedicines at the
subcellular level remains an important challenge. Aimed at
addressing this issue, Prof. Millicent Sullivan and co-workers
developed light-sensitive mPEG-b-poly(5-(3-(amino)-
propoxy)-2-nitrobenzyl methacrylate) polymers to deploy
nucleic acids into cells with “on/off” control over the timing
and amount of delivery and spatial control at cellular length
scales.' 1%

In addition to their utility for drug delivery, polymers and
polymer assemblies also possess great potential for use in the
broad realm of immunotherapy, including the targeted delivery
of immunomodulatory drugs or vaccines to lymphoid organs
or tumors. Prof. Darrell Irvine presented the use of polymer-
based amphiphiles to increase the safety and potency of
immunotherapies. Initially, these polymer amphiphiles were
used to bind antigens and adjuvants to albumin."*”'*" Next,
these amphiphiles were designed to associate with a stimulator
of interferon genes (STING) agonist and assemble into
nanofibers or nanodiscs that may be administered locally or
systemically. Another strategy that underlines the potential of
polymer science to advance immunotherapy was presented by
Prof. Laura Kiessling, who described polymers that target
antigens to dendritic cells."*' These polymers exploit the
features of lectins, which are important for the recognition,
uptake, and processing of antigens.'*> She reported that the
fate of glycosylated antigens in dendritic cells is affected by
their physical properties (e.g, size, length), which can be
altered using controlled polymerization techniques. These
parameters define how polymers can be used to deliver
antigens to dendritic cells to avoid immune detection or to
promote immunity.

In addition to the diagnosis and treatment of human
diseases, another important medical application for polymer-
based materials is in the repair or regeneration of damaged or
lost tissue. A particularly challenging problem in this context is
bone defect generation because it requires polymers that are
exceptionally strong and at the same time can also degrade at
designed intervals. Prof. Matthew Becker presented a class of
a-amino acid based poly(ester urea)s (PEUs) that were
designed for this purpose.”** One of the keys to the successful
development of these materials was optimized step polymer-
ization protocols and functionalization strategies, which
afforded high molecular we'ght materials and provided
excellent synthetic flexibility.'"* In sheep segmental tibia
defect models, the use of scaffolds fabricated from these
PEU polymers allowed near complete defect healing within 16
weeks.

Minimally invasive soft tissue regeneration demands hydro-
gels that provide mechanical protection to cells during
injection that are also able to adapt to accommodate local
cell remodeling of the polymer network."*>'*® One approach
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toward such materials was presented by Prof. Sarah Heilshorn
who described a new class of double-network hydrogels. Prior
to injection, these materials are cross-linked ex situ by the
formation of dynamic covalent hydrazone bonds that result
from mixing a hydrazine-modified elastin-like polypeptide
(ELP) and an aldehyde-modified hyaluronic acid. In situ, after
injection, thermoresponsive aggregation of the ELP reinforces
the network resulting in a hydrogel matrix that possesses
viscoelastic stress-relaxation behavior."*’

These topics presented in Washington, DC highlight some
of the research directions at the forefront of polymer science
and biology and represent areas and communities Biomacro-
molecules aims to serve. These fields are dynamic: new
synthetic methodologies are being developed; more accurate
characterization tools become available, and biology moves to
smaller and smaller length-scales and becomes more
quantitative. With these changes, and as new important
societal challenges arise, Biomacromolecules endeavors to
adapt to include emerging themes and scientific breakthroughs
at the interface of polymer science and biology.
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