
Organoids are 3D cell culture systems that are formed 
through cell differentiation and self-​organization of 
pluripotent stem cells or tissue-​derived progenitor 
cells, which can contain supporting stromal elements. 
The foundation of tissue culture was laid in 1907, when 
Harrison et al. cultured dissected frog neural tubes1. 
Cell culture studies were continued throughout the 
20th century to describe the embryonic development of 
organs by observing tissue reorganization after disso-
ciation2,3 (Fig. 1), which led to the identification of cell 
sorting and cell-​fate specification during organogenesis 
and the powerful innate ability of cells to spontaneously 
organize into complex structures in vitro. Organoids are 
a class of microphysiological systems that provide plat-
forms to model the features of organs and tissues in an 
in vitro setting4. The terminology in the field remains 
to be universally defined5 and terms such as organoid, 
organotypic culture, spheroid, enteroid and assembloid 
are used by different communities for different 3D cell 
culture systems. For example, for gastrointestinal tis-
sues, the term organoid has been suggested for cultures 
that contain both epithelial and mesenchymal or stro-
mal components, whereas the term enteroid has been 
used for 3D cultures that contain only epithelial cells6. 
By contrast, spheroid has been used to describe either 
aggregates of cells or region-​specific brain organoids7. 
In this Review, the term organoid is used to describe all 
of these complex, multicellular systems.

Microphysiological systems usually contain two or 
more interacting cell types, which are in contact with 
each other and embedded in a matrix (either cell-​
secreted or externally introduced) or in a device with the 
aim to partially mimic cellular interactions and/or func-
tions of a tissue or organ in vitro. These systems repre
sent an important intermediary between conventional  
2D cell culture systems and animal models, allowing the 
precise and reproducible investigation of the effects of 
experimental conditions on cell and tissue behaviour. 
Organoid cultures have great potential to transform 
drug development and disease research, as drug tests and 
disease studies have traditionally mostly relied on 2D 
in vitro cell culture assays or animal models. 2D cell cul-
ture models are simple and have a high throughput but 
they fail to capture the physiological complexity of entire 
tissues and organisms8,9. In particular, the modelling of 
brain development remains challenging, as this process 
requires months to years in humans and other primates, 
which is difficult to recreate in 2D in vitro cultures10. 
Animal models are important for basic and applied 
research but are time consuming, expensive and often 
limited by species-​specific anatomy and physiology, 
which can make them less relevant for the investigation 
of human biology and pathology11,12. Advances in cell 
biology, biomaterials design and imaging techniques 
have enabled the investigation of increasingly complex 
biological questions; however, a gap remains between 
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single-​cell-type culture systems and actual tissues. 
Therefore, more sophisticated and physiologically rele-
vant in vitro tissue models are required to study human 
biology and medicine13–15.

Organoids have the advantage of being based on 
human cells cultured in a physiologically meaningful 
context, that is, multiple interacting cell types with spa-
tial organization. In contrast to other microphysiological 
platforms, such as organ-​on-a-​chip culture systems, in 
which cellular organization is externally imposed and 
nutrient supply and physiological levels of shear forces 
are achieved by using microfluidic chambers16, orga-
noids are typically cultured in static 3D conditions, in 
which cells self-​assemble into multicellular entities with 
an architecture similar to real tissues. By contrast, in 
organ-​on-a-​chip systems, differentiated cells are usually 
placed at specific regions within a device, which does not 
allow higher-​level cell sorting or ordering16,17. However, 
organ-​on-a-​chip platforms and organoid cultures both 
strive to accurately model physiological behaviours that 
require multicellular interactions, and they can be com-
bined by incorporating cellular spheroids and organoids 
into organ-​on-a-​chip systems18–21.

Organoid cultures typically arise from stem cells 
that undergo proliferation, differentiation and self-​
organization22,23. Organoid generation can, in principle, 
be scaled up, making high-​throughput testing possi-
ble24,25; however, organoids are in an early stage of develop
ment and need more robust and dependable culturing  
practices. Therefore, to realize the full potential of orga-
noids, technologies are required that improve organoid 
generation and reliability and that allow the develop-
ment of key tissue-​specific features26. The exploitation 
of specific stem-​cell signalling pathways that are respon-
sible for driving organoid formation require a precise 
extracellular environment. In vivo, changes in extracellu-
lar matrix (ECM) properties can have a profound influ-
ence on cellular phenotype, and abnormal ECMs are 
often considered a driver of disease27,28. In the absence of 
externally added matrices, organoids self-​organize and 

secrete and develop their own ECM29, which has not yet 
been fully characterized. The development and applica-
tion of well-​defined 3D biomaterials that support and 
promote organoid formation, and that mimic the prop-
erties of healthy or diseased tissue, is an exciting research 
area that has the potential to greatly improve the repro-
ducibility and human relevance of organoids. In par-
ticular, synthetic biomaterials can provide a chemically 
defined matrix that enables the precise tuning of matrix 
properties to influence and guide cellular decisions.

In this Review, the development of organoid cultures 
is discussed, with a focus on biomaterial properties that 
are crucial for 3D cell culture systems. We highlight 
state-​of-the-​art engineered material systems for cultur-
ing organoids and discuss opportunities for the develop
ment of next-​generation materials systems designed  
with the aim to establish organoid cultures as powerful 
research platforms.

Organoid culture systems
From single cells to organoids
The formation of organoids requires the proliferation 
and reorganization of single cells, or small cell clus-
ters, into complex and organized cell structures that 
mimic some of the structural and functional features 
of a specific organ. The generation of these structures 
occurs by a number of mechanisms, including physi-
cal rearrangement, spatial distribution of gene expres-
sion, cell sorting and fate specification30. A variety of 
organoid types and combinations have been explored 
thus far, including the optic cup31,32, intestine33,34, kid-
ney35,36, lung37, pancreas38,39, thymus40 and various types 
of brain tissues7,41–44. Although individual organoid 
protocols vary and are idiosyncratic, shared culturing 
considerations have been developed.

Organoids can be derived from primary tissue or 
differentiated from pluripotent stem cells (Fig. 2a). For 
example, embryonic stem cells (ESCs) or induced pluri-
potent stem cells (iPSCs) can be used as a cell source22. 
iPSCs, which are often reprogrammed from fibroblasts, 
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have the advantage of being easy to obtain and patient 
specific45,46. ESCs and iPSCs are pluripotent and can 
differentiate into nearly any tissue type46. The resulting 
heterogeneity of cell types within a pluripotent stem-​
cell-derived organoid culture can be an advantage when 
trying to mimic the complexity of native tissues47–49. 
However, unintentional heterogeneity of pluripotent 
stem-​cell-derived cultures50–52 and incomplete know
ledge about specific differentiation signals may have 
undesired downstream consequences for the resulting 
organoids. For example, single-​cell transcriptomics 
studies have shown that iPSC-​derived and ESC-​derived 

kidney organoids include 10–20% non-​renal cells, such 
as brain and muscle cells53. Furthermore, pluripotent 
stem-​cell-derived organoids can exhibit gene expression 
patterns that are more reminiscent of fetal tissues than 
of their adult counterparts15,54,55. Alternatively, excised 
organ tissue, which contain adult stem cells, can serve as 
a precursor cell source for organoids. For example, intes-
tinal organoids can be generated through the expansion 
of biopsies of intestinal tissue, which contains intestinal 
stem cells34. These organoids provide a patient-​specific 
cell culture of the intestinal area sampled by the biopsy, 
allowing the investigation of intestine pathophysiology 
and of potential treatments.

The precise organoid formation process varies for 
each tissue type but generally follows the pattern of 
proliferation, differentiation, cell sorting, lineage com-
mitment and morphogenesis, resulting in a 3D organoid 
structure (Fig. 2b). Organoid formation is usually guided 
by culturing cells in medium that contains factors that 
promote or inhibit specific signalling pathways, direct-
ing the culture towards the cell lineages of interest23. 
Some protocols also use an undirected differentiation 
approach that deliberately omits inductive signals41. 
Given that ectoderm is the default stem-​cell fate, such 
protocols generate many cell types found in the brain41. 
Variation in the proliferation and differentiation of 
stem cells leads to a heterogeneous collection of cells.  
In directed-​differentiation approaches, small mole-
cules and growth factors are used to restrict cell fates, 
for example, for the generation of brain-​region-specific 
organoids7. These cultures can undergo further morpho
genesis to form late-​stage organoids, which contain 
specialized cell types that give rise to organotypic struc-
tures and functions. For example, intestinal organoids 
show a crypt and villi-​like morphology and contain 
specialized epithelial cells, such as goblet, Paneth and 
enteroendocrine cells33, which often secrete mucus  
into the lumina of the structure34. By contrast, optic-​
cup organoids display characteristic inward folding31. 
These later-​stage processes can occur over hundreds of 
days7,56. For example, astrocytes only begin to appear 
in directed brain organoids after 100 days in culture, 
and they switch to a postnatal gene expression profile 
only after 280 days in culture57. Organoids can also be 
combined with other organoids or cell types to generate 
assembloids. For example, dorsal and ventral forebrain 
organoids can be assembled to model the migration and 
functional integration of γ-​aminobutyric acid (GABA)
ergic interneurons and to identify defects associated with 
epilepsy and autism spectrum disorders58.

Organoid culture protocols
Once the cell source is selected (either primary tissue 
or pluripotent stem cells that have been provided with 
initial differentiation cues), the subsequent culture pro-
tocols are largely similar. Organoid culture protocols 
typically use a homogenous culture medium without any 
intentionally applied gradients of nutrients or gases and 
require the cells to be suspended or encapsulated in a 
3D environment that permits the cells to freely grow and 
remodel their environment, and engage in self-​directed 
cell sorting without any top-​down, investigator-​imposed 
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The physiological relevance and complexity of organoids can be improved by various 
biofabrication techniques.
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guidance on spatial cell patterning. Uninhibited growth 
can be accomplished by culturing cells in low attach-
ment conditions or in a naturally derived hydrogel, 
such as a reconstituted, decellularized ECM (for exam-
ple, Matrigel). In low attachment conditions, stem cells, 
either dissociated31,59,60, in the form of colonies7 or as 
preaggregated clusters56, are transferred to plates with 
surfaces that prevent cell adhesion. Forced to float in 
suspension, these clumps of cells differentiate and pro-
liferate in 3D, forming an organoid. Additionally, motion 
and shear forces can be applied using devices such as 
spinning bioreactors61.

Matrices are often used as a 3D culture environment 
that mimics the scaffolding support provided by the 
native ECM of the tissue, for example, hydrogels made 
of reconstituted decellularized ECM. The Engelbreth–
Holm–Swarm (EHS) matrix, which is a reconstituted 
basement membrane harvested from mouse sarcoma62 
and known by the trade names Matrigel, Geltrex and 
Cultrex BME, has been pivotal in the development of the 
organoid field. The EHS matrix is a mixture of many dif-
ferent ECM components and other biological factors62, 
which provide a complex environment for embedded 
cells (Box 1). This matrix has sufficient natural, cell-​
adhesive domains to promote cell attachment and can 
be degraded and remodelled by enzymes expressed in 
the developing organoid. However, the EHS matrix suf-
fers from batch-​to-batch variability, is not suitable for 
clinical translation and cannot be easily tailored to meet 
the diverse requirements of unique organoid niches.

Cell–matrix interactions
Understanding how cells sense and respond to their 
surrounding matrix is crucial for the development 
of engineered materials for organoids. Thus far, cell–
matrix interactions have mainly been investigated for 
single-​cell-type cultures seeded on or within a matrix63. 

Although these homogeneously dispersed, single-​cell-
type cultures are simpler than organoid cultures, they, 
nonetheless, provide important lessons for designing 
matrices to direct cell behaviour in 3D.

Cell-​adhesive ligand presentation, mechanical prop-
erties, matrix geometry and matrix remodelling are 
the key parameters impacting cell culture63 (Fig. 3a,b). 
Although often discussed and studied individually, 
these properties are intrinsically intertwined. The rela
tive influence of individual matrix properties on a cell 
is determined, in part, by the greater context of the 
entire system64. Furthermore, how the modification of  
a specific property impacts cell behaviour cannot neces
sarily be predicted a priori without considering other 
matrix features.

Owing to their clinical relevance and easy accessi-
bility, mesenchymal stem cells or mesenchymal stro-
mal cells (MSCs) have been extensively investigated in 
single-​cell-type cultures in or on engineered matrices. 
Referring to MSCs as stem cells remains controversial 
and is likely a historical misnomer65; however, studies 
with this cell type have greatly enriched the under-
standing of cell–matrix dynamics and provide useful 
information for the de novo design of matrices for 
organoids. Interestingly, although many organoids are 
formed by epithelial, as opposed to mesenchymal, stem 
or progenitor cells, lessons learned from MSC–matrix 
interaction studies could be directly applied for the 
development of designer matrices for intestinal epithelial 
organoids66,67. It will be interesting to specifically evalu-
ate potential differences in epithelial and mesenchymal 
cell–matrix interactions.

Presentation of cell-​adhesive ligands
The biopolymers within natural ECMs contain a multi-
tude of cell-​adhesive ligands, which provide sites for cell 
attachment68,69. Cell–ligand binding results in changes of 
the cellular cytoskeleton, which can lead to cell spread-
ing and migration70,71. Cells can also actively pull on their 
surrounding environment through cell-​adhesive ligands, 
leading to rearrangement of the ECM and clustering 
of cell-​surface receptors. These clusters of cell-​surface 
receptors are sites of intracellular signalling, often ini-
tiating changes in gene expression in the nucleus72,73. 
The extent of clustering of cell-​surface receptors and 
cell-​adhesive ligands impacts cellular behaviours, such 
as cell motility74, cell spreading75, cell differentiation and 
angiogenesis76. Therefore, the clustering of cell-​adhesive 
ligands is a key consideration in biomaterial design77,78.

Peptides can be incorporated in engineered bioma-
terials to provide cell-​adhesive ligands and to influence 
cell phenotype; for example, the fibronectin-​derived 
peptide sequence RGD79, the collagen-​derived peptide 
GFOGER80 or the laminin-​derived peptides IKVAV81 
and YIGSR82 bind to integrins and other cell-​surface 
receptors. The concentration77,83, spacing84–86, presenta-
tion (including nuanced differences such as the identi-
ties of flanking amino acid residues)87,88, patterning89–91 
and timing of ligand presentation92 impact the behav-
iour of cultured cells. For example, RGD ligands that 
are displayed as pendant groups from a polyethylene 
glycol (PEG) matrix lead to statistically significant 

Box 1 | the trouble with Matrigel

the engelbreth–Holm–swarm (eHs) matrix is widely used in the organoid field. 
However, relying on an eHs matrix likely hinders more precise studies of organoid–
microenvironment interactions and creates issues with culture reproducibility and 
clinical translation. an eHs matrix is made of several extracellular matrix components, 
primarily laminin, collagen type iv and nidogen, secreted by eHs cells in mice62. 
analysis of different batches of eHs matrices has identified over 1,500 unique 
peptides and proteins168, making careful chemical characterization of the material 
impractical for most users. additionally, batch-​to-batch variation of eHs matrices  
limits reproducibility243. within the complex mixture of proteins in an eHs matrix,  
only ~53% are found consistently in each lot168. thus, eHs matrices offer no direct 
control over the concentration and identity of cell-​binding ligands. in addition, 
this complex component mixture can influence cell cultures in unexpected ways.  
For example, an eHs matrix contains growth-​factor-binding proteins, which could 
lead to growth-​factor sequestration and a heterogeneous cellular response168. eHs 
matrices are soft materials with stiffnesses of ~20–450 Pa (refs244,245) compared with 
tissues, which typically have stiffnesses of ~100–100,000 Pa. Moreover, the physical 
properties of EHS matrices cannot be tuned. The mouse tumour origin of the material 
also excludes the use of eHs matrices for organoids intended to be transplanted into 
the body, limiting the translational potential of eHs-​matrix-based cultures246. the eHs 
matrix is an important material for organotypic cultures that do not grow in other well-​
defined materials; however, the minimal matrix requirements for organoid growth and 
development need to be characterized to inform the design of a more reliable, tunable 
and clinically translatable alternative.
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improvements in MSC viability compared with RGD 
peptides that are constrained within the matrix87. 
The timing of RGD presentation is also important 
for MSC behaviour. For example, in a PEG hydrogel, 
MSCs require RGD for survival early during 3D cul-
ture; however, the removal of RGD ligands at later time 
points does not decrease viability but, rather, improves 
differentiation92.

The influence of receptor–ligand interactions has 
often been studied for individual receptor–ligand pairs. 
However, in vivo, matrices contain many different 
ligands with varying downstream effects on adherent 
cells. Moreover, cell receptor–ligand interactions are 
usually promiscuous and ligands (for example, RGD) 
can interact with various cell-​surface receptors, trigger-
ing different cellular signalling pathways93. Therefore, 
the precise control over ligand binding is important for 
directing cellular behaviour in vitro. For example, scaf-
folds enabling α3β1 and α4β1 integrin binding rather 
than αvβ3 integrin binding promote endothelial cells to 
form a mature vasculature in vitro94. Biomaterials can 
also be engineered to present multiple cell-​adhesive 
ligands95–100. Interestingly, the combination of two or 
more different ligands can result in non-​additive and 
unintuitive changes in cellular behaviour and, thus, 
requires experimental optimization for individual cell 
types and cultures. For example, the optimal concen-
tration of RGD, YIGSR and IKVAV to promote neural 
progenitor cell differentiation into mature neurons can 
be determined using response surface methods and 
multiple experimental iterations95, and a similar experi-
mental approach will likely be required for engineering 
environments with cell-​adhesive ligands for organoids.

Mechanical properties
The mechanical properties of a tissue or a biomaterial 
also impact cell behaviours, such as cell differentiation. 
Many engineered surfaces and hydrogels used for cell 
culture are elastic, that is, the application of force on the 
material results in a spontaneous proportional deforma-
tion and, upon removal of the force, the material returns 
to its original shape and size. However, the majority of 
natural tissues are viscoelastic76,101, possessing properties 
of both an elastic solid and a viscous liquid. The mechan-
ical properties of tissues play a key role in guiding cellu
lar behaviour102,103, which needs to be considered in the 
design of biomaterials for cell culture and organoids.  
In particular, material stiffness, stress relaxation rate 
and stress stiffening all are known to have an impact on 
stem-​cell cultures.

Stiffness. The stiffness of tissue microenvironments in 
the body ranges from compliant (often termed soft by the 
biomaterials community) to stiff. For example, brain and 
lung tissue are more compliant than bone104. Changes in 
tissue stiffness have been correlated with ageing105 and 
aberrant tissue stiffness can be both a driver and indicator 
of disease27,28,106,107. Cell culture has long relied on tissue  
culture plastic dishes with a stiffness in the gigapascal 
range, which is much stiffer than native tissues (~0.01 kPa  
to 100 kPa)104 and, thus, can influence cell behaviour 
in vitro. For example, 2D matrix elasticity has been shown  
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example, stiffness) and by the degradability of the matrix. b | The 3D geometry of the 
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Fibrous matrices, for example, natural extracellular matrix and biomaterials such 
as collagen, have a pore size on approximately the scale of cells. Highly crosslinked 
hydrogels, such as polyethylene glycol hydrogels, have mesh sizes much smaller 
than the scale of a cell, which can inhibit cell growth and migration in the absence 
of degradability. Macroporous materials have large pores that can be on the scale of  
a cell or larger. c | Viscoelastic materials, for example, native extracellular matrix, 
display stress-​relaxation behaviour. Upon application of stress to the matrix, the 
molecules rearrange to dissipate the stress over time. By contrast, elastic materials 
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material remains the same regardless of the applied stress, whereas the modulus  
of a stress-​stiffening material increases once σ > σc.
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to be sufficient to direct MSC differentiation towards 
tissue-​specific lineages108. The cell fate of neural stem 
cells109,110, muscle stem cells111 and 3D cultures of MSCs112 
has also been shown to be stiffness dependent in vitro. 
Stiffness further impacts cell proliferation110,113 and 
motility111,114–117.

Stress relaxation. Physiological ECM is viscoelastic76,101. 
Viscoelastic materials dissipate the energy of an applied 
stress through time-​dependent processes that result in 
the reorganization of the material (Fig. 3c). Therefore, 
stress relaxation is governed by the kinetics of matrix 
reorganization. Viscoelastic materials can be charac-
terized by their stress-​relaxation half-​lives, that is, the 
time required to relax 50% of the applied stress. By con-
trast, elastic materials cannot dissipate the energy of an 
applied stress and, thus, the stress remains constant over 
time. Inspired by the viscoelasticity of native ECM, the 
influence of time-​dependent mechanical properties on 
cellular behaviour has been explored75,76,101,118–120. MSCs 
cultured in 2D118,119 or 3D75,76,120 are sensitive to stress 
relaxation rates. In fast-​relaxing, 3D hydrogels, MSCs 
show increased spreading, proliferation and osteogenic 
differentiation compared with slower relaxing matrices, 
independent of material stiffness76. These cellular effects 
may be attributed to changes in RGD ligand clustering 
caused by relaxation of the material; therefore, some cell 
types may be more responsive to stress relaxation than 
to stiffness in certain culture conditions.

Stress stiffening. Fibrous ECM biopolymers often display 
a stress-​stiffening response121,122, that is, they become 
stiffer once the stress applied exceeds a critical stress 
value (Fig. 3d). Below the critical stress value, stress on the 
material is compensated by the rearrangement or unrav-
elling of bundled fibre networks. At the critical stress 
value, the material cannot undergo further structural 
rearrangement and the additional stress is distributed 
throughout the fibrous matrix. Most synthetic hydrogels 
are not stress stiffening in the biologically relevant stress 
regime (~0–10 Pa)122,123. However, tissue stress stiffening 
can be recreated in helical oligo(ethylene)glycol poly-
isocyanopeptide hydrogels, which can be engineered 
with specific stiffness and bundling characteristics123–126. 
Interestingly, MSCs cultured in hydrogels with an ini-
tial stiffness that usually promotes adipogenic cell fate 
in elastic materials preferentially undergo osteogenesis, 
which is normally triggered by matrices with high stiff-
ness124, demonstrating that the cells can sense the high 
stiffness because of the stress they apply on the material. 
The cellular response in these hydrogels is also mediated 
by RGD ligand engagement124.

Matrix geometry
Cell-​adhesive ligand presentation and cell-​perceived 
mechanical material properties are affected by the 
geometric structure of the material. Therefore, it is often 
challenging to identify individual mechanisms that are 
responsible for changes in cell behaviour in response 
to the material structure. Native ECM is composed of 
a fibrous network with pore sizes approximately on the 
scale of cells. The dimensions and structure of the void 

volume of a matrix are crucial parameters impacting 
cell migration, cell–cell interactions and the transport 
of growth factors and nutrients.

Materials used as matrices for 3D cell culture can be 
categorized by their geometric structure (Fig. 3b). Fibrous 
matrices, such as ECM and hydrogels composed of 
fibrous proteins, have pores with void volumes approx-
imately on the size of a cell. Many highly crosslinked 
hydrogels have a mesh-​like structure and the distance 
between crosslinks dictates the mesh size, which leads to 
void volumes that are typically much smaller than cells. 
By contrast, macroporous materials have pores that can 
be larger than the size of a cell and they are often formed 
through the dissolution of sacrificial porogens embed-
ded within a highly crosslinked matrix with a very small 
mesh size.

The alignment and diameter of fibres within a mate-
rial influence cell behaviour. For example, fibre align-
ment promotes fate determination in human tendon 
stem cells as compared with randomly aligned fibres127. 
Interestingly, in contrast to tendon stem cells, MSCs 
are more strongly directed towards tendon cell fate by 
fibre diameter than by fibre alignment128. However, 
these differences could also be caused by the differences 
in cell type or material chemistries. Aligned YIGSR-​
functionalized nanofibres promote rapid differentiation 
of mouse embryonic stem cells into neurons, while also 
guiding the direction of neurite outgrowth129. Similarly, 
neural stem-​cell-fate determination is sensitive to fibre 
diameter130. Most fibrous matrices (such as the ECM) 
have pores that are of a similar length scale as a typical 
cell diameter (∼1–10 µm), whereas highly crosslinked 
hydrogels (for example, PEG and alginate) have mesh 
sizes much smaller than a typical cell (commonly in the 
nanometre length scale). In the absence of degradation 
or other forms of material remodelling, this small mesh 
size can prohibit cell proliferation and movement131. 
Hydrogels can also be designed as macroporous envi-
ronments by adding porogens. In response to a stimulus, 
porogens form pores, which are often an order of magni-
tude greater than typical cell diameters (~100 µm). Such 
macroporous hydrogels can promote neonatal bovine 
chondrocyte spreading and ECM deposition compared 
with hydrogels without macropores132. Human MSCs 
cultured in hydrogels composed of annealed hyalu-
ronic acid microparticles, which enable the formation 
of highly controlled macropores, form interconnected 
cellular networks, owing to high cell infiltration and 
migration within the matrix; by contrast, chemically 
identical, non-​porous gels prohibit MSC network for-
mation133. Similarly, microribbons can be crosslinked  
into macroporous scaffolds to generate large macropores 
(~300 µm), which allow human adipose-derived stem 
cell (ADSC) spreading similar to that observed in 2D 
culture; by contrast, in scaffolds with small macropores 
(<100 µm), cells engage multiple microribbons at once 
and more direct cell–cell contacts are formed, similar to 
that in 3D non-​porous hydrogels134.

Hydrogels are often thought of as structurally homo-
geneous; however, many hydrogel systems, in particular, 
fibrous hydrogels, have different phases and micro
domains. Hydrogel systems with rapid gelation kinetics 
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can also contain regions of high and low concentrations 
of crosslinking, owing to the difficulty in achieving suf-
ficient mixing of the hydrogel precursor components135. 
The presence of heterogeneity within hydrogels can be 
explored to direct cell behaviour136,137. For example, local-
ized differences in stiffness within a material can result in 
heterogeneous MSC migration and fate determination138.

Matrix degradation and remodelling
Natural ECM is constantly remodelled by highly reg-
ulated, cell-​mediated processes of degradation and 
production of ECM components27. Cells produce 
ECM-​digesting enzymes and rearrange their microen-
vironment by expressing new biopolymers. Disruption 
of ECM homeostasis can lead to cellular dysregulation 
and disease27. Biomaterials can be designed to provide a 
matrix that allows degradation and remodelling at a rate 
desirable for embedded cells139.

The degradation profile of a material is characterized 
by the degradation mechanism, kinetics and products 
of degradation. Degradation of biomaterials can occur 
through a single or a combination of mechanisms, 
which can be broadly categorized as cell-​mediated or 
cell-​independent degradation. Cell-​mediated degrada-
tion is facilitated by enzymes, for example, proteases, 
which are produced by encapsulated cells and break 
down the matrix through cleavage at specific amino 
acid sequences. To enable cell-​mediated degradation by 
proteases, enzyme-​sensitive peptide motifs can be incor-
porated in the material as crosslinkers or within the pol-
ymer backbone. Matrix metalloproteinases (MMPs) are 
commonly exploited for enzymatic degradation because 
they are produced by a wide range of cell types140. Several 
non-​protein natural biopolymers can also be enzymati-
cally degraded by cell-​produced enzymes; for example, 
hyaluronic acid is enzymatically degraded by hyaluro-
nidases141. Cell-​independent material degradation can 
occur through the hydrolysis of chemical bonds within 

the material and disruption of physical crosslinks. For 
example, the biopolymer alginate is ionically crosslinked 
by calcium ions142, and the removal of calcium can be 
used to disrupt and degrade the alginate matrix143.

The rate at which a biomaterial degrades can greatly 
influence cell behaviour. The degradation rate can be 
tuned by combining different protease-​degradable 
motifs with distinct cleavage kinetics within a bioma-
terial scaffold144. However, the influence of degradation 
products on cell behaviour also has to be considered in 
the design of degradable materials. For example, hyalu-
ronic acid is relatively inert in the form of a crosslinked 
matrix or as a high-​molecular-weight polymer, but 
acts as a signalling molecule once degraded into low-​
molecular-weight fragments145. The chemical environ-
ment can also change during matrix degradation, for 
example, in PEG-​poly(lactic acid) hydrogels146. These 
materials promote the proliferation of neural cells owing 
to the radical scavenging activity of lactic acid generated 
during degradation. All aspects of the degradation pro-
file of a matrix should be considered for their potential 
impact on cell behaviour because matrix degradation 
leads to substantial changes in the cellular microenvi-
ronment139, for example, changes in the presentation of 
cell-​adhesive ligands92,147,148, mechanical properties149,150 
and geometry151. Loss of matrix because of degradation 
can also cause an increase in void space within the scaf-
fold, enabling cellular proliferation152,153, matrix depo-
sition154,155 and an increase in cell–cell interactions156. 
Cell–cell contacts are particularly important for mul-
ticellular cultures (Box 2) and, therefore, scaffolds for 
organoids and organotypic systems need to be designed 
to support cellular contacts.

Engineered organoid matrices
Engineered matrices are an important alternative to con-
ventional organoid culture scaffolds, such as the EHS 
matrix, because they provide better tunability, are fully 
chemically defined and can be easily produced with 
conventional synthetic methods and minimal batch-​
to-batch variability. Therefore, a variety of engineered 
materials are being explored for human-​derived and 
animal-​derived organoid cultures (Table 1), including 
organotypic cultures157–160.

Intestinal organoids
The use of engineered matrices has, thus far, been mostly 
explored for intestinal organoid cultures, in particular to 
provide better control of important cell niche cues. The 
development of intestinal organoids has greatly benefited 
from an in-​depth understanding of the key stem-​cell 
populations and culture conditions that are necessary 
for intestinal organoid formation33. In the absence of 
mesenchymal cells, the generation of intestinal orga-
noids requires activation of the Wingless/integrated 
(Wnt) signalling pathway and can be initiated from single 
Wnt/R-​spondin-responsive stem cells expressing leucine-​
rich repeat-​containing G-​protein-coupled receptor-5 
(Lgr5)33. Cell–matrix interactions are important for con-
trolling intestinal organoid morphology, and the removal 
of ECM cues causes the organoids to ‘flip’ into an apical-​
out morphology in a β1-integrin-​dependent process13.  

Box 2 | Cadherin engagement in materials

Cell–cell adhesions are key regulators of the morphology and function of multicellular 
tissues in vivo and in vitro247. Numerous cell-​surface proteins mediate the junctions 
formed between cells, of which cadherins are the best characterized248,249. Cadherins 
are a family of homophilic (and, in some cases, heterophilic) cell-​surface proteins250,251. 
although there are many types of cadherins, the influence of e-​cadherin, P-​cadherin, 
N-cadherin and ve-​cadherin has been investigated in the most detail. Cells displaying  
a specific cadherin tend to adhere to other cells expressing the same cadherin owing  
to homophilic binding202, although heterophilic binding is possible in some cases250,251. 
this preferential cadherin binding is important in the development to drive cell junction 
formation and cell sorting during tissue maturation247. the identity and distribution of 
cadherin subtypes changes over time as the cell matures. Furthermore, cadherins play  
a signalling role in cells. the intracellular domain is linked to the actin cytoskeleton  
and has been implicated in mechanosensing252–254 and stemness maintenance156. thus, 
cadherin engagement is a crucial consideration for organoid engineering. Cadherin 
signalling can be modified by increasing the degradability of an organoid matrix to 
permit cadherin-​mediated cell–cell contacts, for example, to maintain stemness in 
neural progenitor cells156. alternatively, synthetic cadherin interactions can be achieved 
through the use of engineered materials that display cadherin-​mimetic peptides.  
For example, a hydrogel functionalized with N-​cadherin-mimetic peptides promotes 
chondrogenesis of human mesenchymal stromal (or stem) cells and cartilage matrix 
deposition255. Methods to spatially and dynamically regulate cadherin interactions  
and to optimize the cell–cell binding within engineered biomaterials may improve the 
control over organoid morphogenesis.

Nature Reviews | Materials

R e v i e w s



In these reversed-​polarity organoids, the luminal surface, 
which is usually enclosed within the organoid, becomes 
accessible, making these organoids powerful models  
for studying host–pathogen interactions.

A variety of materials have been explored for intes-
tinal organoid cultures, including decellularized tissue 
matrices, single-​component natural biopolymer matri-
ces, synthetic polymer hydrogels, protein-​engineered 
hydrogels and combinations thereof (Table  1). 
Interestingly, organoid cultures often require a period 
of growth and preformation in an EHS matrix prior to 
reseeding in an engineered material, possibly owing 
to specific cues present in the EHS matrix, highlighting 
the lack of understanding of the niche cues required for 
early organoid development.

Natural biopolymer materials. Matrices composed 
of naturally derived, single-​component biopoly-
mers used  for intestinal organoid culture include 
protein-based (for example, collagen34,161–163) and 
polysaccharide-​based (for example, hyaluronic acid164 
and alginate165) materials. These materials are chemi-
cally defined compared to an EHS matrix and provide 
opportunities to control the material properties through 
chemical and physical modifications142,166,167. Moreover, 
natural biopolymer materials do not suffer as much from 
batch-​to-batch variability as EHS matrices168, permitting 
more robust experimentation.

Collagen I hydrogels exposed to an air–liquid interface  
can support long-​term (>365 days) cultures of murine 
intestinal organoids34 with intrinsic stromal fibroblasts 

Table 1 | Materials systems for organoids

Material class Material Organoid tissue Cell origin refs

Decellularized 
tissues

EHS matrix Intestine Murine Lgr5+ cells 33

Brain Human ESCs and iPSCs 41

Prostrate Murine prostate epithelial cells 256

Gastric Human ESCs and iPSCs 55

Brain (midbrain-​like) Human ESCs and iPSCs 257

Lung Human iPSCs 258

Decellularized liver Liver HUVECs and human fetal  
liver cells

259

Decellularized lung Lung Human ESCs and iPSCs 37

Decellularized intestine Intestine Human iPSCs 260

Natural biopolymers Collagen Intestine Murine intestinal tissue 34,162

Intestine Human intestinal epithelium 161

Collagen vitrigel Intestine Human colon carcinoma 163

Cell-​Mate3D (hyaluronic 
acid, chitosan and dextrose)

Brain Human iPSCs 164

Alginate Intestine Human iPSCs 172

Alginate beads Pulmonary Human fetal lung fibroblasts, 
HUVECS, iPSCs

165

Tubular silk sponge Intestine Human jejunum tissue 173

Hyaluronic acid Kidney Murine kidney tissue 261

Fibrin–laminin Intestine, pancreas, 
liver

Murine intestinal tissue, 
human biopsy tissue

262

Protein-​engineered 
materials

Elastin-​like protein Intestine Murine intestinal tissue 178

synthetic polymers PEG and natural 
biopolymers

Intestine Isolated murine crypts/
intestinal stem cells

66

Brain (neural-​tube-like) Mouse ESCs 26

PEG Pancreas Murine embryonic pancreatic 
progenitor cells

263

PEG-4MAL Intestine Human iPSCs 67

Amikagel Pancreatic islets Human ESCs 179

Cell foam (tantalum 
precipitate)

Thymus Murine thymic stromal cells and 
human bone-​marrow-derived 
progenitor cells

40

PGA and PLL A Intestine Human iPSCs 247

EHS, Engelbreth–Holm–Swarm; ESCs, embryonic stem cells; HUVECs, human umbilical vein endothelial cells; iPSCs, induced 
pluripotent stem cells; Lgr5+, leucine-​rich repeat-​containing G-​protein-coupled receptor-5-positive; PEG, polyethylene glycol; 
PEG-4MAL , PEG with four thiol-​reactive maleimides; PGA , polyglycolic acid; PLL A , poly-​l-lactic acid.
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and immune components en bloc with epithelium 
without the need for reconstitution169,170, highlighting 
the importance of gas transport for organoid cultures, 
which is often an underappreciated parameter171. Gas 
transport is especially important in thick 3D cultures, 
which have substantial barriers to gas diffusion. Using 
an air–liquid interface culture rather than a conventional 
submerged culture improves oxygen transport and leads 
to improved organoid maturation, as measured by spon-
taneous contractility162. Organoid contractility depends 
on material density and geometry within collagen gel, 
with a narrow optimal range of approximately 20% 
porosity and a stiffness of 30 Pa. Importantly, such air–
liquid interface cultures allow en bloc culture of large 
tissue aggregates, which maintain native in vivo spatial 
relationships between epithelial cells and non-​epithelial 
stromal cells, including fibroblasts and immune 
cells169,170. Alginate gels without modification with cell-​
adhesive ligands can support the growth of human 
iPSC-​derived intestinal organoids in vitro for at least 
90 days172, suggesting that mechanical support in the 
absence of other ECM cues is sufficient for some orga-
noid cultures, possibly owing to the fact that organoids 
make their own niche within the culture.

Organoids can also be used as building blocks within 
single-​component, biopolymer-​based hydrogels (and 
other materials) to create complex structures173. For 
example, a combination of silk fibroin and collagen can 
be used to investigate the innate immune response of 
an intestinal organoid system in response to bacterial 
infection. The cylindrical silk scaffolds are first moulded 
with an internal channel, which is then seeded with pri-
mary human intestinal, organoid-​derived epithelial cells. 
Intestinal myofibroblasts encapsulated within a collagen 
gel are then added to the porous bulk. The resultant cul-
ture forms an intestinal epithelium in the internal chan-
nel and bacteria, such as Escherichia coli, can be added 
to model pathogen attack on the intestine. The bacterial 
challenge leads to an upregulation of the expression of 
genes associated with the innate immune response to 
infection, including many genes implicated in inflamma-
tory bowel disease. This approach is an excellent demon-
stration of how organoids can be used for the study of 
disease mechanisms, such as pathogen–host biology.

Synthetic polymer materials. Matrices based entirely on 
synthetic polymers permit almost limitless possibilities 
in terms of material properties. PEG-​based hydrogels are 
particularly useful because they resist biofouling caused 
by non-​specific protein adsorption, which can compli-
cate data interpretation174; they are inexpensive; they 
are commercially available in a range of structures (for 
example, linear or multi-​arm star versions) and mole
cular weights, enabling different matrix designs; and they 
can be easily chemically functionalized to incorporate  
biological ligands, signalling molecules and points for 
crosslinking, allowing the precise tuning of physical 
and biochemical niche properties175. For example, a 
PEG hydrogel system with dynamic mechanical prop-
erties can support primary mouse intestinal organoid 
formation at early and late stages66. At early stages of cul-
ture, gels with high stiffness (~1.3 kPa) promote mouse 

intestinal stem-​cell expansion. As the culture matures, 
the hydrogels become softer owing to matrix degrada-
tion, promoting intestinal stem-​cell differentiation and 
organoid formation, which is only observed in gels with 
a narrow, low stiffness range (~190 Pa). This mechano
sensitivity of intestinal stem-​cell organoid cultures is 
mediated by yes-​associated protein 1 (YAP) signal-
ling. Interestingly, matrix softening is not sufficient to 
enable murine organoid formation in the presence of 
only the RGD ligand; budding requires both RGD and 
laminin-111. Therefore, hydrogel systems with dynamic 
biochemical and mechanical properties may be needed 
to provide the dynamic niche requirements for the 
different stages of organoid development.

A modular hydrogel made of PEG with four thiol-​
reactive maleimides (PEG-4MAL) can also be used as 
a scaffold for organotypic and organoid formation67,176. 
Using PEG-4MAL functionalized with RGD enables 
the formation of human pluripotent stem-​cell-derived 
organoids with similar organoid survival rates as in an 
EHS matrix67; however, the organoids first need to be 
formed in an EHS matrix. Replacing RGD with other 
cell-​binding ligands, such as GFOGER and IKVAV, 
leads to statistically significant decreases in the survival 
rate of the organoids. Additionally, hydrogels with a 
polymer density ranging from 3.5% to 4% PEG-4MAL 
support early-​stage to late-​stage organoid transforma-
tion, whereas higher polymer density hydrogels greatly 
decrease culture viability. The mechanical properties of 
the hydrogel are the key determinants of YAP signalling-​
based mechanotransduction. The PEG-4MAL hydrogel 
has been explored as a delivery vehicle for in vivo orga-
noid engraftment and colonic wound closure. Delivery 
of organoids within the hydrogel show statistically signi
ficant effectiveness in colonic wound closure compared 
with control therapies, in which only organoids or only 
hydrogels are delivered.

Protein-​engineered hydrogels. Recombinant protein-​
based hydrogels are composed of engineered proteins, 
often with specially designed sequences inspired by native 
proteins. Such hydrogels are easy to produce by recombi-
nant protein expression177. Recombinantly expressed pro-
teins are chemically well defined and have many desirable 
properties of natural-​protein biomaterials, including 
cell-​adhesive domains. For example, a matrix composed 
of a recombinant elastin-​like protein can promote adult 
murine intestinal organoid formation178. These elastin-​
like proteins possess RGD in addition to a structural 
elastin-​derived domain. Moreover, the stiffness and 
RGD ligand concentration can be independently tuned. 
More compliant matrices (~180 Pa stiffness) with higher 
RGD ligand concentrations (3.2 mM) more efficiently 
support organoid formation than stiff matrices with low 
RGD concentrations. Strikingly, the softest (~180 Pa) 
elastin-​like protein hydrogel shows comparable organoid 
formation efficiency as collagen I hydrogels, although it 
is an order of magnitude stiffer than collagen. Matrix 
degradation by MMPs is an important requirement for 
organoid cultures in elastin-​like protein gels. The pres-
ence of an MMP inhibitor prevents organoid growth 
independent of elastin-​like protein matrix mechanics, 

Nature Reviews | Materials

R e v i e w s



an effect that is most pronounced in stiffer matrices 
(~1,220 Pa), highlighting the importance of determin-
ing the degradative and mechanical requirements of  
matrix–organoid systems.

Other organoid cultures
Although engineered materials have mostly been used 
for intestinal organoids thus far, they can also be applied 
to other organoid systems owing to the possibility to 
tune and optimize their biochemical modification, bio-
mechanical properties and geometric structural features, 
which is not possible using an EHS matrix. For exam-
ple, to optimize materials for brain organoid cultures, 
high-​throughput screening of multiple 3D cell micro
environments has been performed to identify the fac-
tors that promote neural-​tube-like morphogenesis from 
mouse ESCs26. PEG-​based hydrogels with intermediate 
matrix stiffnesses (~2–4 kPa) most strongly promote 
apicobasal polarity and dorsal-​ventral patterning as 
compared with hydrogels with higher (~8 kPa) or lower 
stiffness (~0.5 kPa). Notably, this stiffness is greater than 
the stiffness achievable in an EHS matrix. Interestingly, 
non-​degradable matrices promote apicobasal polar-
ity and dorsal-​ventral patterning, whereas degradable 
matrices do not support dorsal-​ventral patterning. The 
addition of laminin, which is a major component of EHS 
matrices, has the most beneficial impact on the genera-
tion of neural tubes compared with the addition of other 
ECM components. Importantly, mouse ESCs cultured in 
the PEG matrices optimized for mechanical properties, 
degradability and presence of ECM components gene
rate more homogenous cultures of polarized neuro
epithelial colonies than ESCs cultures in an EHS matrix, 
demonstrating that organoid cultures can be improved 
by carefully designing the properties of matrices.

Human iPSC-​derived brain organoids spontaneously 
form after approximately 10 days of culture in electro-
statically crosslinked hyaluronate and protonated chi-
tosan hydrogels164. The organoids have rosettes and 
neural-​tube-like structures, and display physiologi-
cal changes in intracellular calcium concentration in 
response to the neurotransmitters glutamate and potas-
sium. Using this approach, viable organoids could be 
formed using iPSCs from healthy or adrenoleukodystro-
phy patients, suggesting that this platform may be used 
for the modelling of neurological diseases.

In contrast to neural tissue, lung tissue has more 
voids, which presents a unique challenge for designing 
lung organoid matrices. To mimic such an environment, 
collagen-​coated alginate beads can be mixed with 
human lung fibroblasts and iPSC-​derived mesenchymal 
cells165. The surface of the alginate beads can be func-
tionalized with collagen I to aid in cellular adhesion. 
Cells and beads can then be cultured in a bioreactor and 
rotated to coat the beads with cells. Aggregation of the 
alginate beads leads to the formation of a close-​packed 
structure. This architecture restricts cellular attachment 
and proliferation to the interstitial space between the 
beads, which causes the formation of acellular regions 
within the culture, mimicking the alveolar architecture 
of lungs. This organoid system can be used to model 
idiopathic pulmonary fibrosis by treating the organoid 

with transforming growth factor β, which leads to the 
formation of myofibroblasts, which are thought to be 
responsible for an increase in fibrosis in diseased lungs.

The PEG-4MAL matrices that have been success-
fully applied for intestinal organoids can also be used 
to support human pluripotent stem-​cell-derived lung 
organoids67. For example, human lung organoids, first 
formed in an EHS matrix, can be encapsulated within 
the PEG-4MAL system and cultured for 7 days. These 
organoids display the morphological organization of 
a lumen with lung epithelium and airway basal cells, 
suggesting that the PEG-4MAL system may provide a 
platform for a variety of human organoid types.

Synthetic biomaterials are also applicable for pancre-
atic islet organoids179 based on human pluripotent stem 
cells. Efficient production of insulin-​producing pancre-
atic islets, which are lost in patients with type 1 diabetes, 
is a pressing need for the treatment of this disease. 
Human ESC-​derived pancreatic progenitor cells can 
be seeded together with human endothelial cells on 
top of Amikagel, which is a hydrogel composed of ami-
kacin hydrate crosslinked with PEG-​diglycidyl ether 
(PEGDE). Cells seeded on top of stiff (Young’s mod-
ulus of ~300 kPa) hydrogels, formed with a high ratio 
of PEGDE to amikacin hydrate, form multicellular 
organoids. Compared with cultures seeded on top of 
an EHS matrix, Amikagel cultures show a substantial 
increase in the expression of the pancreatic transcription 
and maturation factors PDX-1 and NKX6.1, as well as 
glucose-dependent production of insulin.

In summary, engineered matrices can support several 
different types of organoid cultures. Although mainly 
applied for intestinal organoids thus far, various other 
tissue types have already been explored. Interestingly, 
engineered materials have almost exclusively been 
applied to organoids derived from pluripotent stem-​
cell sources or primary rodent tissue rather than from 
primary human tissue. However, pluripotent stem-​cell- 
derived organoids often have limited maturity compared 
with tissue-​derived organoids15,54 and they can include a 
substantial amount of contaminating cell types50–53. For 
the application of organoids in precision medicine and 
personalized drug screening, the use of primary patient-​
derived organoids will be essential. There are inherent 
differences in the niche cues required for pluripotent 
cells, primary rodent cells and primary human cells, 
which may necessitate different matrix designs, pre-
senting an immense opportunity for the engineering of 
biomaterials for primary patient-​derived organoids.

Opportunities for material design
Instead of naturally derived, chemically undefined 
matrices, well-​defined, reproducible synthetic materials 
can be used for organoid culture. However, reproducible  
morphogenesis and sufficient functional maturation 
remain key challenges, impeding the clinical application of  
organoids22. To control the emergent self-​organization 
of organoids, approaches from stem-​cell biology have 
been explored, for example, change of media supple-
ments over time23. Alternatively, dynamic biomate-
rials may provide niche cues capable of directing and 
responding to organoid development, for example, to 
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achieve spatially restricted lineage commitment and 
cellular self-​organization, which are key parameters for 
morphogenesis and physiologically relevant function180. 
Although not yet applied for organoids, various dynamic 
biomaterials have been developed that may be adapted 
for organoid culture.

Spatially restricted lineage commitment
Improving the reproducibility of stem-​cell differentiation 
and lineage commitment is crucial for the generation 
of organoids with reproducible emergent properties23. 
Biomaterials can be engineered for the spatiotempo-
ral delivery of biochemical cues, for example, growth 
factors, to direct progenitor cell-​fate decisions (Fig. 4a). 
Numerous matrix-​based delivery approaches have been 
explored for drug delivery181, including passive drug 
release, cell-​responsive (for example, proteolytic) 
drug release and user-​controlled drug release. The affin-
ity between the cargo and the biomaterial scaffold182–184 
can be exploited for the simultaneous passive release of 
multiple growth factors, which improves the differenti-
ation efficiency of encapsulated stem cells185. However, 
this approach lacks the possibility to precisely control 
the timing of delivery, which requires cell-​triggered or 
user-​triggered release strategies. Cell-​mediated release 
can be achieved by using protease-​cleavable peptides 
to tether signalling molecules to a material186. Peptide 
substrates have already been identified for a variety of 
proteases and have been used in 3D materials187–190; how-
ever, cell-​mediated release in organoid systems requires 
thorough knowledge of the timing and specificity of pro-
tease expression, which have yet to be characterized in 
detail. Supporting the spatiotemporally restricted lineage 
commitment of emergent organoid subpopulations may 
require direct spatial patterning of signalling molecules 
in addition to temporal release. Photochemistry can 
be used to spatially pattern peptides within 3D mate-
rials191–197 and to trigger the attachment or release of 
factors from a scaffold, which can be examined for user-​
controlled release. Thus far, fluorescent molecules or 
cell-​adhesive peptide ligands have mostly been explored 
as model cargos for user-​controlled release, although the 
controlled release of growth factors and the simultane-
ous, orthogonal patterning of multiple growth factors192 
within scaffolds have also been investigated.

A relatively unexplored area is the delivery of mor-
phogens to establish developmentally relevant concen-
tration gradients198. In 2D human intestinal organoid 
monolayer cultures, it has been shown that morpho-
genetic signalling circuits play a key role in regulating 
intestinal epithelium development199, and efforts have 
been made to incorporate inducible morphogenetic 
‘organizers’ into organoid cultures200. Creating soluble 
concentration gradients within hydrogels could be used 
to mimic such morphogenetic gradients during organoid 
development201 and could enable efficient, reproducible 
lineage commitment in addition to morphogenesis.

Controlling cell migration and sorting
As cells commit to specialized lineages in an organoid, 
their spatial arrangement drastically changes owing to 
cell migration and self-​sorting. The self-​sorting of cells is 

crucial to developmental and in vitro morphogenesis180; 
however, the details and mechanisms of this cellular 
‘sorting’ process are still being investigated202–205. Using 
engineered materials to direct self-​sorting by guiding 
cellular migration could improve the functional matura-
tion and reproducibility of organoids (Fig. 4b). For exam-
ple, cell-​adhesive islands with defined size and shape 
can improve organoid self-​organization into physiolo
gically relevant structures, such as neural rosettes206,207. 
Similarly, placing cell-​adhesive ligands at specific areas 
in a material can flip the polarity of epithelial orga-
noids13, demonstrating that cell–ECM contacts play 
an important role in cell and tissue reorganization208. 
Spatial patterning of a cell-​adhesive ligand, for exam-
ple, the RGD peptide209,210, has been applied for a variety 
of 3D materials to guide the migration of diverse cell 
types211,212. Such approaches could be modified to create 
ligand profiles that foster organoid self-​sorting and mor-
phogenesis (Fig. 4c). Furthermore, systems with both spa-
tial and temporal control of cell-​adhesive ligands could 
dynamically react in response to the progressive stages 
of a developing organoid.

Spatially varying the mechanical properties of 
a material has been widely used in 2D cell culture to 
reliably control cell spreading and the exertion of trac-
tion forces, which often precede migration213–216. Such 
strategies could also be adapted to 3D systems (Fig. 4d). 
In addition, user-​responsive materials can be designed 
to alter 3D matrix mechanics over time217. Physical 
and mechanical cues are important parameters for 
biomimetic organoid morphogenesis and function. 
For example, the spatial patterning of mechanical cues  
enables asymmetric cyst formation in a model of amnio
genesis218,219. Similarly, physical confinement of develop
ing organoids can induce a wrinkled morphology in 
brain organoids, which are otherwise relatively smooth 
in non-​confining matrices. Notably, myosin disruption 
reduces the degree of wrinkling, demonstrating that 
the emergent morphology is a result of cellular phys-
ical forces20. Brain organoids can also be cultured on 
polymer microfilaments in a droplet of EHS matrix to 
generate an elongated organoid220. Thus, using materials 
science tools that enable spatial and temporal control 
of the mechanical properties of a material could be a 
promising avenue to promote organoid self-​organization 
and user-​defined morphologies.

Tuning the material-​degradation profile may also be 
a strategy to promote organoid maturation (Fig. 4e). For 
example, proteolytic degradation could be harnessed 
to coordinate cellular migration131 and physiologically 
relevant rearrangement221,222. In particular, this may 
be a promising approach for organoids with a diverse 
expression of multiple cell-​type-specific proteases. 
Alternatively, light-​mediated material degradation 
could enable user-​defined organoid morphologies. 
Photoablation has been used to guide multicellular 
migration of encapsulated cell aggregates in 3D223, for 
example, the migration of motor neurons from encapsu-
lated embryoid bodies224. Furthermore, material designs 
with a combinatorial, programmable approach to matrix 
degradation225 could support the dynamic requirements 
of maturing organoids.
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Fig. 4 | Dynamic organoid niches. Engineered materials may enable the control of lineage commitment of stem  
and progenitor cells in time and space. a | The release profile of matrix-​immobilized growth factors can be designed 
to sequentially deliver signals through growth factor–material affinity or proteolytic release, providing the appropriate 
biochemical cues for maturing organoids. b | Materials can be patterned with growth factors to spatially control 
lineage commitment and, thus, the development and maturation of organoids. c | Materials can be patterned with 
cell-​type-specific adhesive ligands to guide cell self-​sorting of early cell clusters and organoids. d | The mechanical 
properties of a material impact cellular migration. e | Material degradation can be designed to control cellular 
migration and morphogenesis of the developing organoid. f | Biofabrication techniques provide opportunities to 
produce spatially controlled, engineered matrices for organoid culture. Bioassembly could be used to spontaneously 
form microtissues with zonal organization of region-​specific organoids. g | Bioprinting enables the rapid fabrication  
of complex tissue architectures, for example, vascularized constructs. h | Organoids can also be incorporated  
into organ-​on-a-​chip platforms. These platforms can provide powerful models of clinically relevant multi-​organ 
interactions256–270.
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Building organoids by biofabrication
Organoids can also serve as the starting material for 
the biofabrication of larger, more complex biomimetic 
systems and tissues226–228. Bioassembly attempts to cre-
ate complex functional structures from preformed, 
cell-​containing building blocks, such as organoids10,229 
(Fig. 4f). For example, bioassembly can be used to assem-
ble two preformed organoids with subdomain-​specific 
forebrain identity into a single, fused structure, termed 
an assembloid58. This in vitro model allows the inves-
tigation of the migration of wild-​type and diseased 
interneurons in a process that mimics fetal development. 
Assembloids could also be combined with engineered 
materials that enable the predictive, programmed 
assembly of preformed microgels. 3D bioprinting can 
be applied to pattern ‘inks’ composed of cells and/or 
materials230–233 (Fig. 4g); for example, scaffold-​free print-
ing of cell aggregates similar to organoids234,235, printing  
of biomaterials inks with organoids as functional units or  
printing of an acellular ink followed by seeding with 
organoids. The latter strategy has been used to seed 
ovarian follicles on 3D-​printed, microporous scaffolds. 
These printed ovarian follicles could restore ovarian 
function in a sterilized mouse model, leading to live 
birth of offspring236. Organoids also have the potential to 
be used in organ-​on-a-​chip devices, which often attempt 
to model inter-​organ interactions4,18,237–239 (Fig. 4h).  
For example, high fluid flow rates through an organ-​
on-a-​chip device promote the vascularization of kidney 
organoids adherent to a biomaterial coating19. Organoids 
in combination with these devices could be applied 

for high-​throughput drug screening and personalized  
medicine18,240–242.

Conclusions
Organoids provide a great opportunity to study human 
physiology in vitro. The maturation of organoid cultures 
relies on the propensity of stem cells to form highly organ-
ized structures during differentiation. Although each 
organoid type has unique characteristics, organoid mat-
uration shares common developmental stages and niche 
needs, including an ECM, which greatly influences orga-
noid development. Engineered matrices with reproduci-
ble properties have the potential to improve the efficiency 
and consistency of organoid cultures compared with 
natural materials, such as an EHS matrix. Many mate-
rial properties, including the presentation of cell-​binding 
ligands, matrix mechanics, structural geometry and deg-
radability, impact stem-​cell activity and are crucial design 
parameters for organoid matrices. Engineered organoid 
matrices have already been explored for various orga-
noid systems used for disease modelling and regenerative  
medicine. The possibility to design materials that can 
spatially and dynamically control the organoid microen-
vironment and the surrounding stromal matrix will 
allow the control of organoid maturation and function, 
as well as the inclusion of heterologous stromal cell types. 
Moreover, the combination of organoids with advanced 
materials will advance the development of biofabricated 
tissues for personalized medicine and drug screening.
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