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The development of organoid cultures has propelled the fields
of cell biology, tissue engineering, and regenerative medicine
forward. These cultures better mimic in vivo tissue structure
and function compared to 2D cell culture; however, organoids
are limited in size and do not inherently allow precise control
over tissue architecture and cell heterogeneity. Hand-wrought
organoid biofabrication approaches enable the production of
larger and more complex tissues, but they still lack reproducible
control of spatiotemporal tissue patterns. In contrast, bioprinting
is a collection of machine-wrought technologies that are
emerging as powerful tools in tissue engineering and disease
modeling, but have not yet been widely applied to organoids.
When combined with advances in biomaterials science,
bioprinting offers the possibility to control spatiotemporal
cellular and microenvironmental features. The interactions be-
tween biomaterial inks, support baths, and embedded cells
provide the opportunity to guide the maturation and functionality
of engineered tissues. This review describes how recent ad-
vances in organoid technology, bioprinting, and biomaterials
science can be integrated to achieve spatiotemporal patterning
of four aspects of the microenvironment: matrix structure and
mechanics, matrix ligands and morphogens, co-culture of
multiple cell types, and incorporation of vasculature. These in-
sights underscore the potential for organoid bioprinting to
advance the fabrication of in vitro tissue mimics for applications
in drug screening, disease modeling, and regenerative
medicine.
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Introduction
Organoids are three-dimensional (3D) in vitro cultures
derived from stem cells (pluripotent, embryonic, or
adult), or patient-derived cells (progenitor or differ-
entiated, healthy or diseased) that self-organize into
tissue-like structures [1]. Compared to two-dimensional
(2D) cultures, organoids better mimic the biological,
structural, and functional complexity of human tissues
[2]. Hence, they are a promising tool to advance
personalized medicine, drug screening, and regenerative
medicine [1].

Despite their advantages, organoids cannot grow beyond
the millimeter length-scale, which hinders the acquis-
ition of macroscopic features present in life-size organs.
Moreover, organoids are typically grown within homo-
geneous microenvironments that do not recapitulate the
spatiotemporal features present in vivo [3]. Further-
more, organoids frequently suffer from large batch-to-
batch variability. Organoid bioprinting has recently
emerged as a strategy to overcome both of these limi-
tations, guiding tissue morphogenesis of complex

structures across more physiologically relevant size
scales [4]. Printing organoids offers tremendous poten-
tial for tissue engineering, since it allows for spatial and
temporal organization of microenvironmental cues,
including biochemical and physical signals from the
extracellular matrix (ECM) [5], morphogens [6], in-
clusion of multiple cell types [7], and patterning of
vasculature [8], all of which assist in the formation of
larger tissue constructs.

In organoid bioprinting, there are two generally recog-

nized categories: continuous bioprinting, which includes
extrusion and volumetric bioprinting, and pick-and-
place bioprinting, which includes aspiration and mag-
netic bioprinting [3,9]. Extrusion-based bioprinting is
currently the most common approach for tissue engi-
neering applications, in which cells (or organoids) are
loaded into a syringe and extruded in a layer-by-layer
pattern to build a construct [10].

Extrusion-based bioprinting can be direct or embedded.
As its name indicates, direct bioprinting allows for direct

deposition of a printed construct in air, usually over
a glass slide or a mold of defined geometry. Through
direct bioprinting, filament and cell alignment can be
achieved in many constructs, such as printed heart tis-
sues [11]. On the other hand, embedded bioprinting
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2 Micro-environments for organoids and multi organ systems
makes use of a support bath to enable printing of three-
dimensional structures with free-form printing [10].
Embedded bioprinting methods are often designed to
be a form of additive manufacturing, but this processing
can also be subtractive, where material is removed to
create, for example, hollow networks [12,13].

Volumetric bioprinting involves the use of light to cure

centimeter-scale constructs in seconds [14]. Aspiration
bioprinting enables manipulation of organoids or cell
spheroids by vacuum pressure to precisely position them
into a construct [15]. Depending on the cell type and
size of the organoids, the application of vacuum may
cause plastic deformation and degradation of the orga-
noids [9]. To avoid this, organoids temporarily coated
with magnetic nanoparticles can be positioned using
a magnetized 3D printer into larger tissue constructs [9].

For most of these organoid bioprinting techniques, the

process typically includes both a printable ink and
a support bath, into which the ink is printed. Both inks
and support baths are commonly yield-stress materials
(i.e., they fluidize upon the application of force) that
can recover their shape after printing. Engineering inks
and baths that present these mechanical properties have
been one of the main limitations of bioprinting. More-
over, when the ink and/or support bath contains a living
cellular component, scalability constitutes another key
limitation. Producing sufficient volumes of living ma-
terials becomes even more challenging when cells are

used at a high density, especially if they are derived from
stem cells or patient samples. Organoids (or individual
cells capable of forming organoids) can be included
either in the ink material and/or the support bath. When
living cells are included within the ink, this is termed
a bioink [16,17]. Ideal bioinks can shield cells from the
potential detrimental effects of the bioprinting process
(e.g., exposure to shear stress, ultraviolet light, or
chemical crosslinking reagents) [17]. Furthermore, after
printing, bioinks must undergo a cell-compatible solid-
ification process to maintain their prespecified geometry
[17]. In some cases, the printed inks are sacrificial in

nature, meaning they are removed after printing.
Alternatively, support bath materials can be used to
provide temporary structural support to the printed
construct. Yield-stress fluids are extensively used as
support baths because their rapid solideliquid transi-
tion induced by mechanical movement of the print head
enables the free-form deposition of a variety of inks,
including bioinks and sacrificial inks [18]. In organoid
bioprinting, the structural, chemical, and biophysical
environment provided by both the ink and support bath
components can be considered as an engineered

extracellular matrix (eECM), opening up new avenues
for microenvironment patterning.

While several clever strategies have been reported to
fabricate organoids into tissue-like structures with
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microenvironmental control, these have typically
employed hand-wrought methods that lack microscale
resolution (Figure 1, left). In contrast, biomaterials and
3D bioprinting offer opportunities for more accurate
microenvironment recapitulation, although this family
of precise machine-wrought technologies is still in its
early stages of development and frequently does not
include organoids. This review aims to explore recent

advancements in bioprinting and designer biomaterials
for applications in organoid bioprinting, focusing on
strategies for engineering microenvironmental cues to
enhance tissue functionality. Specifically, we will discuss
recent advances in eECM structure and mechanical
properties, the incorporation of cytokines and ligands
into the microenvironment, as well as the combination
of different cell types and vascular channels into the
printed structure (Figure 1, right). This work serves as
a forward-looking perspective meant to inspire the field
and encourage the further development of novel orga-

noid bioprinting strategies.
eECM structure and mechanics
The endogenous ECM is a complex fibrous protein and
proteoglycan network, whose specific composition and

post-translational modifications vary among tissues (e.g.
ECM mineralization in teeth and bones [19]). The
ECM presents a highly organized nano- and micro-
structure that provides mechanical and biochemical
support to cells within tissues, helping to guide cell
spreading, differentiation, migration, and proliferation.
Due to its essential role in cell and tissue functionality,
the majority of hand-wrought biofabrication approaches
involve the use of an eECM, commonly employing
harvested biopolymers, such as collagen, hyaluronic acid,
alginate, and Matrigel [20].

Compared to most hand-wrought biofabrication tech-
niques, where the properties of eECMs are modulated
in bulk with limited spatiotemporal control, organoid
bioprinting opens future opportunities to pattern the
structural and mechanical features of the eECM to
guide tissue morphogenesis. The library of biomaterials
that have been utilized as ink components in 3D
bioprinting can generally be divided into naturally
derived polymers (e.g., gelatin, alginate, fibrin) [21,22]
and synthetically derived polymers (e.g., polyethylene
glycol (PEG), Pluronic) [21,22], each of which can be

chemically modified to control the eECM structural and
mechanical properties. For instance, a tetra-culture
model of glioblastoma was printed with a mixture of
gelatin methacryloyl (GelMA) and glycidyl
methacrylate-HA (GMHA), which provided a micro-
environment with mechanical stiffness relevant to the
disease model [23]. Bioprinting has also been used to
recapitulate the mechanical properties of healthy tis-
sues. In a recent example, a neuron-laden bioink was
printed into a soft astrocyte-laden GelMA support bath
www.sciencedirect.com
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Figure 1

Comparison of hand-wrought and machine-wrought approaches to patterning organoid microenvironments, demonstrating the potential of
organoid bioprinting. Microenvironment properties that impact organoid growth include morphogen presentation, mechanical properties, inclusion of
different cell types, inclusion of multiple organoid types, and vascularization of cultures. While many hand-wrought protocols (left) are being developed
to control these microenvironment properties, they typically lack the spatial resolution that can be achieved with machine-wrought bioprinting ap-
proaches (right).

Organoid bioprinting: microenvironment patterning Zhang et al. 3
matrix, mimicking the soft nature of healthy brain
tissue [24].

While these bioprinting examples showcase the poten-
tial of eECM engineering to mimic the mechanical
microenvironment, further improvements in ink reso-
lution, shape fidelity, and dynamic control are still
required. Achieving high-resolution during printing is
www.sciencedirect.com
crucial to fabricating complex, large-scale, heterocellular
constructs. Two-photon polymerization is the bioprint-
ing approach that offers the highest resolution, with
features smaller than 100 nm; however, its characteristic
dimension is limiting for tissue engineering [25].
Decreasing the printed layer thickness, pixel size, or
single line size are different approaches that can help
increase print resolution, with the final resolution
Current Opinion in Biomedical Engineering 2025, 35:100607
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4 Micro-environments for organoids and multi organ systems
commonly depending on the ink viscoelastic properties,
the selected printing parameters, and the kinetics of the
crosslinking or curing process [25]. An ongoing goal
within the bioprinting field is to finely tune the
spatiotemporal features of eECMs to closely replicate
the properties of the physiological ECM. Below, we
highlight recent approaches to control eECM nano- and
microstructure and mechanics.

Controlling the structure of printed cell-laden inks en-
ables the regulation of cell function. Introducing pores
of defined sizes into the eECM provides physical spaces
that assist tissue functionality through mechano-
transduction [26]. In one demonstration, nanoparticle
colloidal hydrogels were designed to form pores that
promoted cell spreading and migration through a flexi-
ble GelMA hydrogel network better than in macro-
porous or homogeneous GelMA hydrogels. When
chondrocytes were grown in these scaffolds with larger

pores, they were observed to increase their proliferation
and production of cartilage matrix [26] (Figure 2a).
GelMA has also been fabricated in the form of microgels
photocrosslinked through volumetric bioprinting to
create microporous gels [27]. When microgels are used
as a support bath for extrusion bioprinting, the choice of
printing speed can be tuned to introduce micropores
into the printed ink, due to mixing between the support
bath and ink. In a demonstration with collagen inks,
porosity was regulated through the ratio between the
ink’s shear viscosity and the microgel support bath’s

zero-shear viscosity [28].

Besides porosity, topographical guidance can direct cells
to enhance anisotropic tissue formation. Many tissues in
the human body present structural and cellular aniso-
tropy that ultimately improves tissue functionality,
including skeletal muscle, skin, and bone [29,30]. For
example, in skeletal muscle, the alignment of muscle
fibers has downstream effects on the global synchrony of
muscle contraction [31]. Moreover, loss of anisotropy is
a frequent feature of disease; for example, changes in
tissue anisotropy have been reported in cancerous le-

sions of the uterus, bladder, kidney, liver, and colon [29].
Cell alignment within engineered tissues has been
recently achieved through a variety of innovative
bioprinting techniques. One strategy is Filamented
Light (FLight) biofabrication, which creates hydrogels
composed of unidirectional microfilament networks,
aiding the maturation of engineered heart tissue [32]. In
a different approach, applying mechanical load during
the printing process can align hydrogel fibers and the
cells printed with them, as demonstrated with
norbornene-modified hyaluronic acid and GelMA inks

[33]. In another study, combining embedded printing of
collagen and myoblasts within a PEG solution with
uniaxial mechanical loading generated fully aligned
fibers that supported muscle regeneration [34]. Finally,
volumetric bioprinting offers the ability to define
Current Opinion in Biomedical Engineering 2025, 35:100607
microscale features within centimeter-scale constructs,
as demonstrated with hepatic organoids printed into
GelMA. This method produced liver mimics featuring
cyst-like structures with inner hollow lumens surroun-
ded by a cell monolayerdcharacteristics typically absent
in constructs derived from monodispersed cells [14].

Just like porosity and topography, the mechanical

properties of eECMs are vital to creating structures that
are functional and biologically relevant (Figure 2).
Because matrix-induced mechano-signaling can direct
cell and organoid behavior [35,36], many strategies are
being developed to control the spatiotemporal pattern-
ing of eECM mechanics. In one non-printed example,
patterning of PEG hydrogel mechanics enabled the
predictable construction of intestinal organoids with
controlled shapes and sizes (Figure 2b) [30]. Specifi-
cally, a photo-degradation reaction was used to locally
soften the matrix and hence bias the location of crypt

formation [30]. In complementary work with alginate-
based eECMs, the stress-relaxation rate of the matrix
was shown to impact crypt formation in intestinal
organoids [37]. In another non-printed example with
alginate-based eECMs, a stress-relaxing matrix induced
loss of symmetry for breast tissue spheroids and forma-
tion of invasive finger-like protrusions [38] (Figure 2c).
Recent bioprinting efforts are opening the door towards
spatiotemporal control of eECM mechanics. For exam-
ple, spatial mechanical gradients have been formed by
printing two inks, fully carboxylated agarose and native

agarose, into one construct with human embryonic
kidney cells (HEK-293) [39].

In another study, after printing of GelMA/hyaluronic
acid-methacrylate (HAMA) matrices, they were subse-
quently exposed to enzymatic digestion to achieve dy-
namic softening to match tissue stiffness, changing the
spreading behavior of encapsulated neural progenitor
cells [40] (Figure 2d).

To date, most examples of dynamically changing the
mechanical cues of an eECM have involved softening of

the matrix [40]. In contrast, in numerous physiological
tissues, stiffening of the matrix is commonly experi-
enced during aging [41] and disease progression, such as
cancer [42]. Thus, future efforts to design inks that
reversibly stiffen on demand would have tremendous
value for the bioprinting of human organoid disease
models.
Matrix ligands and morphogens
In addition to different tunable structures and me-
chanics, matrix inks also have tailorable biochemical
properties with the potential to influence cell pheno-
type when applied to organoid culture. Biochemical
signaling in organoid culture is often applied through
bulk morphogen exposure with molecules that drive the
www.sciencedirect.com
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Figure 2

The structural and mechanical properties of the matrix modulate cell behavior in machine- and hand-wrought constructs. (a) Matrix porosity.
(From left to right) Schematic of the formation of a nanocolloidal gelatin methacryloyl (GelMA) and Pluronic hydrogel. Fluorescence 3D reconstruction of
the hydrogel structure, with fluorescently labeled GelMA (in green). Chondrocytes at day 5 post-printing within 3D-printed tissue constructs fabricated
with GelMA formulated to be nanocolloidal, porous, or homogeneous. Reproduced with permission. Copyright 2024, Wiley-VCH GmbH. (b) Matrix
mechanics patterning. (From left to right) Mechanical characterization of RGD– and laminin-1–containing PEG–based hydrogels with atomic force
microscopy reveals that there is a reduction in the Young’s modulus (e) after light exposure, corresponding to conversion of photocleavable ortho-
nitrobenzyl (oNB) moieties within the photosensitive PEG. Composite image showing the intestinal stem cell marker expression (Lgr5-GFP expression
in green) in a symmetric colony and photopatterned matrix immediately after spatially restricted light exposure (0 h). In brightfield, spatially defined
crypts form within photopatterned gels 24 h and 48 h after light-induced patterning. Enterocytes (L-FABP in red) are found in the central regions of the
organoids. Scale bars 30 mm. Reproduced with permission. Copyright 2022, The American Association for the Advancement of Science. No claim to
original U.S. Government Works. (c) Matrix viscoelasticity. (From left to right) schematic showing that alginate molecular weight and extent of
crosslinking allow for modulation of alginate viscoelasticity. Quantification of the storage modulus and stress relaxation half time for two different alginate
formulations. Spreading of a breast epithelial cell line (MCF10A) is more prominent in viscoelastic matrices; F-actin cytoskeleton (phalloidin, cyan),
nuclei (Hoechst, magenta). Reproduced with permission. Copyright 2022, Springer Nature Limited. (d) Bioprinted matrix stiffness. (From left to right)
enzymatic digestion of a bioprinted GelMA/hyaluronic acid-methacrylate (HAMA)-matrix with hyaluronidase (Hase) results in HA degradation, reducing
matrix stiffness, and enhancing cell spreading. Parameter map of matrix moduli depending on GelMA concentration, Hase concentration, and digestion
time. Fluorescence micrographs of neural progenitor cells cultured in GelMA/HAMA matrix without or with Hase digestion (nestin neural stemness
marker in red, Ki67 proliferation marker in green, nuclei in blue). Reproduced with permission. Copyright 2022, Springer Nature Limited.
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6 Micro-environments for organoids and multi organ systems
development of the organoids of interest. Since true
ECM biochemical signaling in the body is finely tuned
to occur with exact spatial and temporal specificity,
spatiotemporally controlling the exposure of cells to
biochemical signaling cues is often more physiologically
relevant. Spatiotemporal patterning of morphogens has
not been thoroughly explored in either organoid culture
or the bioprinting field. However, several recent exam-

ples in designer biomaterials suggest that future dem-
onstrations will become common for both fields. This
section will specifically highlight works that control the
patterning of morphogens in biomaterials, with an
outlook towards applying these methods for organoid
bioprinting work on the horizon.

Mixing morphogens into culture medium does not
always induce the desired signaling pathway, since
activation of some receptors requires physical forces that
are only possible upon interaction with an immobilized

ligand. Immobilizing proteins within hydrogel scaffolds
can address this limitation, allowing for controlled
organoid morphogenesis. For example, immobilizing
full-length proteins like Jagged1 onto chemically
modified eECMs can induce Notch cell signaling in
organoids [43] and has been a popular way to include
biochemical signaling in matrices. However, permanent
immobilization of factors through bulk mixing does not
allow for time-dependent control or spatial patterning
control over their presentation to organoids, hindering
the reproduction of complex, native tissue dynamics.

Since organoids have the potential to mimic the
biological complexity of human organs, spatiotemporal
patterns of gene expression are highly desired. For
example, the intestinal stem cell niche is maintained
with differential expression of WNT, BMP, and other
cues [44]. One non-printed example of an effort to
generate patterned organoids with time-controlled
activation includes the usage of optogenetics to locally
induce Sonic Hedgehog (SHH) signaling. This work
aimed to study the contribution of SHH to gene regu-
lation in neurodevelopment, and the tools they

employed successfully resulted in patterned activation
of the pathway [45]. Similarly, light patterning can also
be employed to induce spatiotemporal patterning of
morphogens within an eECM. For example, light-based
volumetric printing was used to spatially pattern
vascular endothelial growth factor (VEGF) using thiol-
ene click chemistry within the hydrogel, allowing for
region-specific adhesion of endothelial cells (ECs) [46].
This work highlights the precise, spatially
controlled biochemical editing afforded by light-based
printing techniques. In addition to spatial patterning,

temporal control has also been explored in designer
eECM materials. In one work, photocaged, immobilized
proteins were uncaged on demand to control cell fates in
breast cancer and lung cancer models [47], exhibiting
the potential for temporal control of morphogens
Current Opinion in Biomedical Engineering 2025, 35:100607
important in inducing cell fate (Figure 3a). Combining
the goal of spatial and temporal selectivity, one example
showed the utilization of two-photon patterning for
selective, on-demand anchoring of nerve growth factor
(NGF) in a hydrogel to guide axon extensions [6]
(Figure 3b).

Although spatiotemporal control of matrix-bound factors

in organoid culture has not been explored extensively,
the bioprinting field has introduced several versatile
methods with the potential to be applied to organoid
culture. In particular, bioprinted tissue-engineered
constructs for transplantation often have engineered
parameters for controlled growth factor or drug release
due to the short lifetime of these bioactive molecules
and the need for persistent exposure to elicit desired
effects. Depending on the type of tissue and biological
process, the length-scale of morphogen and ligand
patterning could be subcellular or span more than a few

hundred micrometers in length. Similarly, the time scale
of applied cues can range from relatively short to more
durable in time [48].

Methods to slow down and spatially control the release
of bioactive factors have been developed to improve the
recruitment, support, and differentiation of cells in
transplantable constructs. The release of growth factors,
ions, and drugs have all been explored in different
biological applications. Examples of morphogen release
for vascular applications include layer-by-layer assembly

of growth factors onto bioprinted blood vessels, allowing
for increased myofibroblast recruitment to the con-
structs post-transplantation, improving functionality
[49]. An osteochondral application example is the uti-
lization of coreeshell bioprinting methods to spatially
segregate sustained delivery of growth factors to adja-
cent bone and cartilage zones in osteochondral con-
structs [5] (Figure 3c). Bioprinting has also been
employed for spatiotemporal control of factors in coupled
angiogenesis and osteogenesis [50].

Bioprinting also enables the copatterning of construct

topology together with spatial release of bioactive fac-
tors. For example, nerve conduits that slowly released
factors isolated on microgrooved channels allowed for
enhanced neurogenic differentiation [51]. In addition to
controlling the organization of growth factors, controlled
release of other biomolecules has also been explored in
biomaterials design and bioprinted constructs. For
example, bioprinting of a vascular construct that
achieved a slow, sustained release of heparin resulted in
improved support of ECs and an antithrombotic envi-
ronment compared to high doses of heparin [52]. Finally,

spatiotemporal patterning of bioactive factors is not
limited to organic molecules. For example, the
bioprinting of a vertical gradient of calcium phosphate
has been used to control the extent of osteogenic dif-
ferentiation of mesenchymal stem/stromal cells (MSCs)
www.sciencedirect.com
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Figure 3

Spatial and temporal patterning of matrix ligands and morphogens. (a) (left) Temporally controlled activity of epidermal growth factor (EGF) can be
achieved by transient photocaging within a methylfuran-modified hyaluronic acid (HAmf) hydrogel and photo-uncaging with ultraviolet (UV) light. (right)
MDA-MB-468 breast cancer cells seeded on top of HAmf hydrogels undergo cell death in the presence of photo-uncaged EGF (nuclei in blue, F-actin
cytoskeleton in red, epidermal growth factor receptor (EGFR) in green). Reproduced with permission. Copyright 2021, American Chemical Society. (b)
(left) A hydrogel displaying photocaged Sortase A glycine donor peptides (SAG) can be spatially patterned with two-photon microscopy. Sortase A (SA)
mediates ligation of SAG to SAT-labeled avidin, followed by docking of biotinylated nerve growth factor (NGF). (right) Neurite guidance from chick dorsal
root ganglia (DRG) into transglutaminase crosslinked hyaluronan matrix with spatially patterned NGF (NGF in blue, bIII-tubulin in red, phalloidin staining
of F-actin cytoskeleton in green). Reproduced with permission. Copyright 2024, Advanced Materials. (c) (left) Coaxial extrusion enables core–shell
bioprinting of human mesenchymal stromal cells within two distinct bioinks containing either bone morphogenetic protein-2 (BMP-2) or transforming
growth factor-b3 (TGF-b3) within the core. Over time, protein release results in differentiation into either chondrogenic (hChon) or osteogenic (hOB)
cells. Photographs show bioprinting of the biphasic construct. Microscopy characterization shows the interface between the two distinct cell layers at
day 21. Reproduced with permission. Copyright 2022, IOP Publishing.

Organoid bioprinting: microenvironment patterning Zhang et al. 7

www.sciencedirect.com Current Opinion in Biomedical Engineering 2025, 35:100607

www.sciencedirect.com/science/journal/24684511


8 Micro-environments for organoids and multi organ systems
[53]. In addition to affecting cell fate, the inclusion of
calcium phosphate can also alter the stiffness of the
matrix [54].

To date, many of the methods used to pattern ligands
and morphogens have relied on ultraviolet/visible light
or diffusion of enzymes. In engineered tissues with high
cellularity, both of these strategies will be challenged by

limited penetration depth. Looking ahead, new strat-
egies to modulate biochemical features of the matrix
across physiologically relevant length scales are needed.
For example, ultrasound-induced chemistry [55] and
infrared light-induced photochemistry [56], both of
which can penetrate several millimeters into tissue, are
promising strategies. Applying these biomaterials tech-
nologies to organoid cultures has the potential to
improve reproducibility by mimicking the spatial and
temporal dynamics that occur in native tissue during
development.
Patterning of multiple cell types
In addition to the spatial organization of morphogens,
bioprinting also allows for the opportunity to spatially
organize different cell types. Several cell types, includ-
ing fibroblasts, immune cells, and ECs, have been
cultured alongside organoids in order to uncover
important cellematrix and cellecell communications. A
common approach in organoid co-culture is to simply
mix the cell types together and rely on cellular self-

assembly. In a recent example that used this strategy,
the establishment of endometrial organoids co-cultured
with stromal cells allowed for specific cellecell crosstalk
analyses in the context of applied hormone changes [7].
While mixing of cell types is straightforward, the com-
plex spatial positioning of cells cannot be easily
controlled. For example, spontaneous cell segregation
frequently relies on differential cell adhesion to form
patterns with minimized interfacial energy [57]. In
contrast, bioprinting offers a method to spatially organ-
ize different cell types within one model. This section

will highlight recent organoid bioprinting examples as
well as bioprinting methods that could be applied in the
future to increase cell type complexity in organoid co-
culture models.

Spatial arrangement of co-cultures may spontaneously
arise in a “bottom-up” fashion or be experimentally
controlled through “top-down” methods. Current
“bottom-up” approaches to control spatial arrangements
of cells are reliant on controlling discrete cell properties,
and the underlying mechanisms are still being discov-

ered [58]. When these methods are applied at the scale
of real tissues, the work may become unwieldy. Thus,
the application of “top-down” methods through
bioprinting may be more efficient in larger constructs.
As a demonstration of self-assembly, co-aggregation of
MSCs and ECs to form bone marrow organoids resulted
Current Opinion in Biomedical Engineering 2025, 35:100607
in spontaneous organization of ECs into an inter-
connected vessel-like network surrounded by MSCs
[59]. Within the field of organoid biology, co-culture of
two or more organoids, spheroids, or dispersed cell
types, combined, has been popularized, and recent de-
velopments include spatially arranging organoids by
hand to better recapitulate interactions between
different tissue regions. For example, to study the cell

dynamics at the foregut-midgut boundary, anterior and
posterior gut spheroids were separately derived and
then fused to study morphogenesis [60].

Bioprinting represents a promising approach to spatially
pattern distinct cell types (including organoids) into
multicellular co-culture models. While examples of
bioprinting organoids in co-culture are limited,
bioprinting of single cell suspensions has been used to
spatially organize different cell types to study cellecell
dynamics, which could be readily extended to organoid

applications. For example, embedded bioprinting was
used to print a murine melanoma cell ink within
a microporogen-structured collagen matrix embedded
with antigen-specific cytotoxic T-cells, where T-cells
migrated to the cancer sites and caused cell death [61].
A stromal co-culture example included the 3D
bioprinting of islands of pancreatic cancer cells
surrounded by rings of cancer-associated fibroblasts,
which mimics the desmoplastic stroma that surrounds
these tumors. The spatially patterned co-culture
induced both cell types to make dynamic alterations

to their differentiation and secretory profiles compared
to mono-cultures [62]. 3D bioprinting also enables
studies of cell migration across specific geometries,
exemplified by an assay that patterned human umbilical
vein endothelial cells (HUVECs) and MSCs at different
distances and found that angiogenesis is deeply influ-
enced by crosstalk between these two cell types [63].
These examples highlight the potential for bioprinting
as a tool for probing cellecell interactions in a spatially
relevant manner.

While exerting spatial control on organoid co-cultures

allows for the study of mechanistic cell behavior,
combining bioprinting with organoid co-culture can also
enable the creation of more physiologically relevant
tissue engineered constructs, with applications towards
pharmaceutical testing or personalized medicine. In one
case, combining pancreatic cell progenitors, ECs, and
MSCs in different formations within a microgel support
bath yielded vascularized exocrine and endocrine
pancreatic lineages, which enabled complex recapit-
ulation of pancreatic tissue for disease modeling [64].
Another example used bioprinting to create a cardiac

model from a triculture of induced pluripotent stem cell
(iPSC)-derived cardiomyocytes, MSCs, and ECs on
printed constructs with adjustable curvature, which
demonstrated successful myocardial maturation [65].
Both studies foreshadow future studies with multicell-
www.sciencedirect.com
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type bioprinted constructs for personalized medicine
drug screening.

Another promising application for multi-cell-type
bioprinted tissue constructs is regenerative medicine,
which is currently at the preclinical stage of development.
In one bioprinting example, human epidermal keratino-
cytes were seeded onto encapsulated human dermal fi-

broblasts to form a full-thickness skin model that
demonstrated successful wound closure in a rat model
[66]. As a demonstration of an even larger engineered
tissue, a bioprinted autologous auricular cartilage
construct was fabricated with a prevascularized dermo-
epidermal skin substitute. When transplanted onto
immunocompromised rats, the fabricated tissue success-
fully connected with the recipient vascular system [67].

The combination of organoid culture and bioprinting
will enable the fabrication of more spatially relevant

models for capturing multitissue interactions. To date,
few bioprinting examples have included the spatial or-
ganization of multiple organoid types. One example is
a pick-and-place bioprinting platform to spatially control
the construction of neural assembloids from different
types of neural organoids using magnetic forces [9]. In
another notable example, bladder assembloids were
created through extrusion bioprinting of bladder tumor
organoids mixed with cancer-associated fibroblasts and
ECs [68]. These two demonstrations of bioprinting
organoid co-cultures highlight the immense potential

for growth in the field of multi-cell-type organoid
bioprinting.

Advancements in techniques to pattern organoids at
high density are currently limited by the lack of scal-
ability in organoid production. The cost and time
needed to culture enough cells at such high density
prove to be a barrier in creating physiologically relevant
tissue prints. This is especially challenging when
printing large volumes of organoids derived from patient
samples. Moving forward, the field will require new
strategies to lower the cost [69] and increase the

throughput of organoid biomanufacturing to realize the
promise of organoid bioprinting. Such strategies may
include the use of automated cell culture robots [70],
engineered cell culture supplements, and artificial in-
telligence to identify optimized cell culture conditions.
Vasculature and perfusion
As organoid cultures begin to include more cell types
and larger constructs, it becomes increasingly important
to perfuse them to ensure cell survival. Methods to
vascularize organoid cultures have included adding ECs
through bulk mixing [71] or genetic programming [72].
These approaches rely on the spontaneous organization
of ECs to form capillary-sized structures. In contrast,
native vasculature is a hierarchical structure that spans
www.sciencedirect.com
multiple length scales. Thus, bioprinting can enable the
patterning of larger-sized vessels to facilitate the anas-
tomosis of organoid models with external vessels, either
in vitro or in vivo. In this section, we highlight examples
of bioprinted vasculature spanning several orders of
magnitude in size that may be utilized in organoid
models in the future.

A recent innovation in the genetic programming
approach is the development of a one-pot protocol to
orthogonally induce cell differentiation and spatially
pattern multicellular organoids through transcription
factor overexpression [73]. Spatial organization of cell
types within cortical organoids was achieved through
stepwise aggregation of inducible neuronal and endo-
thelial human iPSCs, which yielded coreeshell cortical
organoids. While coreeshell organoids have radially
symmetric spatial organization, bioprinting has the po-
tential to yield more complex spatially organized

vasculature. These same preprogrammed cells were also
used as high-cell-density bioinks to fabricate a layered
architecture of multiple cell types post-differentiation
(Figure 4a). This demonstration certainly calls attention
to the spatial patterning benefits that bioprinting
methods could offer to genetically programmed organoid
cultures. Spatial patterning can also be used to guide the
spontaneous self-assembly of ECs into vascular-like
networks. In one demonstration, bioprinting of ECs
was used to fabricate vascular and avascular regions
within a single bioprinted construct [8].

A complementary strategy to relying on the self-
organizing capacity of ECs, which results in small
capillary-like channels, is the bioprinting of perfusable,
hollow structures using sacrificial bioinks, which results
in larger channels. For example, a sacrificial Pluronic ink
can be printed into a microgel suspension and then
removed to reveal hollow structures that can be seeded
with HUVECs to create vascular linings [74]. Further
innovation for printing hollow structures includes pro-
gramming delayed dissolution of the sacrificial ink to
better recapitulate the dynamic nature of tissues [75]

(Figure 4b). Hollow structures can also be built by
depositing supporting templating bioink next to matrix
bioinks layer-by-layer [76], allowing for the future
endothelialization of more complex hollow structures.

Bioprinting methods to vascularize engineered tissue
are particularly critical for applications in implantable
tissues. Implantable constructs must be well vascular-
ized in order to maintain viability and proper function-
ality after implantation. This is especially true for the
fabrication of thick tissues in which diffusion alone is

insufficient to maintain appropriate oxygen and nutrient
levels, concerns that are also common within the orga-
noid biology community. Thus, we envision that
bioprinting advances to achieve vascularized, implant-
able tissues could be readily applied to the
Current Opinion in Biomedical Engineering 2025, 35:100607
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Figure 4

Multimaterial bioprinting enables the formation of complex tissue mimics. (a) (left) Doxycycline (Dox)-induced overexpression of transcription
factors in engineered human-induced pluripotent stem cells (hiPSCs) allows for spatial patterning of different cell types by bioprinting. (right) Multi-
material bioprinting exhibits clear separation of different cell layers after 6 days of culture (Tuj1 neuronal marker in green, UEA1 lectin marker in red,
Sox2 neural stemness marker in blue). Reproduced with permission. Copyright 2023, Springer Nature. (b) (left) Delayed dissolution of an extruded
sacrificial bioink allows for spatiotemporal introduction of microchannels within hydrogel constructs fabricated by volumetric bioprinting. (right) While
mesenchymal stromal cells (labeled in red with aSMA marker) and human umbilical vein endothelial cells (labeled in green with CD31 marker) are
randomly distributed in instant dissolution constructs after 10 days of culture, endothelial cells align along the microchannels in constructs with delayed
sacrificial templates. Reproduced with permission. Copyright Advanced Functional Materials, 2023. (c) (left) Fabrication of implantable, perfusable,
vascularized tissues includes inserting a printed synthetic polymer scaffold (shown in white) into a bioprinted vascularized tissue made of recombinant
human collagen methacrylate. After gel compaction due to cellular forces, the scaffold is seeded with endothelial cells (ECs). (right) Fluorescent mi-
croscopy of the vascularized scaffold after culture shows network formation of the printed ECs (green) and lumen formation of the seeded ECs (red).
Reproduced with permission. Copyright Advanced Materials, 2021.
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vascularization of organoid models in the future. Often,
these advanced bioprinting strategies rely on the crea-
tive use of multiple, specialized biomaterial inks. For
example, a vascularized construct with bioinstructive
microchannels was fabricated by coating sacrificial algi-
nate cores with multiple layers of chitosan and cell-
adhesive biomaterials. Exposure to a calcium chelating
solution then caused the alginate cores to dissolve away,

revealing perfusable channels with cell-adhesive sur-
faces for ECs [77].

Finally, an emerging research area in bioprinted vascu-
lature is the combination of “top-down” and “bottom-
up” approaches to achieve networks with both large and
small vessels, respectively. For example, the bioprinting
of a basement membrane-like biomaterial promoted the
adhesion and self-organization of ECs into capillary beds
between larger, bioprinted vessels [78]. Such complex
networks that combine micro- and mesoscale vessels can

also be designed to promote anastomosis with the host
vasculature upon implantation. In an exemplary
demonstration, bioprinted self-assembled microvascular
networks were connected to a larger vascular scaffold,
enabling the microvessels to receive nutrients from the
larger vessel (Figure 4c) [79]. Upon in vitro maturation,
the construct formed a fully vascularized tissue flap that
was successfully anastomosed with a rat femoral artery,
showcasing the ability of bioprinted vasculature to
perfuse large tissue constructs. The application of these
newly emerging biomaterials and bioprinting methods to

organoid cultures will allow for the construction of more
complex, physiologically relevant organoid models with
multiscale vascular networks.

In addition to current efforts to merge the different, hi-
erarchical length scales required for true vasculature
within organoids, another area of focus for future work is
the ability to support active perfusion. Currently, engi-
neered vasculature is either perfused through passive
diffusion or is driven by an external pump. In the future,
vascularized organoid-based tissues could be designed to
include contractile cell types that actively pump, allowing

for the creation of closed-loop circulatory systems [80].
Conclusion
The advent of organoids has advanced the complexity of
tissue mimics, offering a more accurate representation

of human tissue than 2D cultures [2]. Organoids can be
interrogated for mechanistic studies in tissue develop-
ment and disease modelling, as well as applications in
drug discovery, personalized medicine, and regenerative
medicine [1]. Despite their advantages, organoids are
limited by their small size, their patient-to-patient
variability, and the lack of methods to control their
spatiotemporal features [3]. To overcome these limita-
tions, emerging technologies like 3D bioprinting are
rapidly gaining traction. By using organoids as building
www.sciencedirect.com
blocks, 3D bioprinting allows the creation of more
intricate, physiologically relevant structures.

The implementation of organoid bioprinting is still in its
infancy, although recent examples already suggest the
tremendous potential that this strategy offers for
controlling the organoid microenvironmente a complex,
dynamic 3D space. Exerting control over micro-

environmental features will facilitate the fabrication of
constructs more representative of in vivo conditions.
Here, we highlighted recent efforts to pattern
complexity into the cellular microenvironment, select-
ing case studies from organoid bioprinting where they
exist. We also described exciting advances in organoid
culture (without printing) and cellular printing (without
organoids), when those studies could be readily applied
to organoid bioprinting in the future. As cutting-edge
biomaterials strategies become integrated with
advanced bioink design, we envision that organoid

bioprinting will be able to achieve on demand, spatio-
temporal patterning of the matrix microstructure [27],
topographical features [32], and mechanical properties
[39,40] at cellular resolution. Similarly, advances in light-
based biomaterials techniques and controlled release of
soluble factors will allow for spatiotemporal patterning of
matrix ligands and morphogens [46,47] for organoid
bioprinting. Another emerging strategy to enhance
engineered tissue complexity is the patterned co-culture
of multiple cell types, although demonstrations with
organoid bioprinting remain largely on the horizon. Work

in this space will likely be inspired by current examples
of coprinting different single-cell types [61e63]. Finally,
as the complexity and size of these engineered tissues
grow, efforts to pattern the vasculature and introduce
perfusion will become increasingly important [77e79].
Early applications of organoid bioprinting will include
the fabrication of human models of development and
disease, especially for those tissues where animal models
have significant limitations, such as neurodevelopment.
For example, the improved reproducibility of organoid
bioprinting will enable high-throughput testing for the
identification of novel drug targets and assessment of

potential drug efficacy and toxicity. Longer term, orga-
noid bioprinting will be applied in the fabrication of
transplantable tissues for regenerative medicine,
including self-contractile constructs [79,80] and even-
tually whole organs, where hand-wrought methods
would be too laborious and cumbersome. Overall, the
development and use of machine-wrought bioprinting
technologies is poised to transform our ability to control
the organoid microenvironment, enabling the produc-
tion of physiologically relevant tissue models.
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