Arches. Photo by Daniel Chia
Nov
16
2011

Weight Loss: Demystifying a Medical Mystery

While Huntington’s disease is traditionally thought of as a disease of the brain, its effects are much more widespread: many people with HD lose a dangerous amount of weight, complicating a disease that is already complicated enough. Although weight loss is one of the most serious non-neurological problems of HD, scientists don’t fully understand why it occurs. This medical mystery has driven scientists deep into the biology underlying weight loss in HD. Researchers have recently turned up a few potential explanations, and our increased understanding of this symptom is leading scientists to look at possible new ways of treating the disease.

Weight Loss in HD^

People with HD tend to weigh less than those without the disease. A group of researchers from the Huntington Study Group followed 927 people with early-stage HD. For a description of the stages of HD, please click here. The investigators found that people with early-stage HD weighed an average of 10 kilograms (22 pounds) less than age-matched controls, which are people of the same age who don’t have the disease. Another study found that people with HD lose an average of 0.9 pounds per year, which stands in stark contrast to the average American, who gains 0.4-2 pounds yearly.

Unfortunately, while 0.9 pounds doesn’t seem like much, that’s just an average; some people with HD lose so much weight that their health is impacted. Weight loss worsens other aspects of the disease as underweight patients become malnourished and weak. Underweight patients are more susceptible to infection, and take longer to recover from illness, operations, and wounds. Weight loss also increases the likelihood of developing pressure ulcers, commonly known as bedsores, as bedridden patients have less fat tissue to cushion them from pressure. Patients who lose the most weight report a lower quality of life, and are more likely to feel apathetic and depressed. In the late stages of the disease, some patients lose so much weight that they need a feeding tube to stay healthy, as described here. On the other hand, people who start out heavier fare better; people who have a high body-mass index (BMI) when symptoms begin progress more slowly through the disease. Visit this website for an explanation of BMI and a for BMI calculator.

A Medical Mystery^

While weight loss is one of the most serious non-neurological problems associated with HD, doctors don’t understand why it happens. Many suggestions have been put forth, but most of them have been disproved, forcing researchers to dig deeper to understand this phenomenon.

Chorea^

Doctors once believed that weight loss was due to chorea, the uncontrolled movements characteristic of HD. Doctors thought that people with HD lost weight because they burned extra energy as a result of the involuntary movements of chorea. However, three experiments indicate that chorea can’t be fully responsible for weight loss.

The first piece of evidence comes from looking at the early stages of the disease. People who have just been diagnosed with HD – and therefore have very mild symptoms – already weigh less than people without the disease. As mentioned earlier, people in early-stage HD weigh an average of 10 kg less than those who are not affected by the disease. Another group of researchers arrived at similar results; a study of 361 people with early-stage HD found that they have BMIs an average of 2 points lower than those without the disease, even if the patients had just been diagnosed with HD within that year and hadn’t yet begun to experience choreic movements. Researchers concluded that chorea alone could not explain why people with HD have lower BMIs, and that other factors are at play.

Other studies suggest that chorea may not have as much of an impact as doctors once thought. Pratley et al. measured how much movement chorea caused, in an attempt to quantify how much weight patients lose due to choreic movement. After measuring the movements of 17 people with mild to moderate HD for a week, they found that chorea caused people with HD to move more than people without the disease when sedentary: people with HD moved 14% more than people without HD while sitting or lying down. However, people with HD do less voluntary activity. Study participants with HD walked around and exercised less than people without the disease. In the end, Pratley et al. were surprised to discover that sedentary over-activity balanced out voluntary under-activity: people in the early and middle stages of HD don’t actually move more than people without the disease.

A similar study by the European Huntington’s Disease Initiative Study Group (EHDI) measured weight loss in 517 people with HD, and found no correlation between the amount of weight people lost and the severity of their motor symptoms; people with good scores on tests measuring motor symptoms (such as the UHDRS) were just as likely to lose weight as those with bad motor scores. For more information on diagnostic tests like the UHDRS, click here.

The final strike against the chorea theory comes from observations of people with late-stage HD. Weight loss is most drastic in the final stages of HD, despite the fact that chorea has usually ceased and patients are largely bedridden. So while chorea contributes to weight loss in HD, it cannot stand as the sole explanation.

Reduced Food Intake^

Others suggest that people with HD lose weight because they have trouble eating; as the disease progresses, it becomes increasingly difficult to perform the complicated series of movements needed to eat, chew, and swallow.

However, this theory is also not enough to fully explain the weight loss. Studies have shown that people with HD actually tend to eat more than people without the disease; a study of 25 people with HD found that they ate an average of almost 400 calories more each day than people without the disease. Others report that they’ve had patients who eat up to 5000 calories a day – over twice the average daily caloric intake – just to maintain their weight.

So two popular explanations for weight loss in HD – chorea and insufficient diet – cannot entirely explain why people with HD lose so much weight.

Possible Biological Causes^

Though the reasons for the mysterious weight loss are unclear, scientists are currently testing a few ideas.

Abnormalities in Energy Metabolism^

One leading idea has to do with metabolism, the way the body burns calories to produce energy. HD researchers have long suspected that the disease-causing form of huntingtin (hereafter described as mutant huntingtin) interferes with energy metabolism, as described here. Results from a recent study suggest that this interference might contribute to weight loss.

After discovering that weight loss is not correlated with motor symptoms, scientists from the EHDI Study Group looked for other factors that might be to blame. They found that weight loss could be partially predicted by the number of CAG repeats on a patient’s copy of the mutant huntingtin gene; for every additional CAG repeat a patient had, they lost on average an extra 0.136 BMI points (0.8 pounds) over the course of the three year period that the study was conducted. For an explanation of CAG repeats, please click here.

The same holds true in mouse models of HD. The EHDI Study Group found that the more CAG repeats an HD mouse had, the more it tended to eat. Yet paradoxically, the mice with the most CAG repeats lost the most weight. So people and mice with more CAG repeats lose more weight.

The EHDI investigators suspect that this is due to the long tail of the mutant huntingtin protein. People with more CAG repeats produce mutant huntingtin with a longer tail, as described here. The EHDI investigators suggest that the mutant huntingtin protein interferes with the way cells make energy, and that longer-tailed proteins cause more problems. Mutant huntingtin has been shown to disrupt proteins that are needed to make energy and can damage mitochondria, the “energy factory” of our cells, as described here. In support of the theory that proteins with longer tails are more problematic, scientists at the MacDonald lab in Boston studied cells engineered to express mutant huntingtin. They found that cells with more CAG repeats made less ATP, the energy currency of the cell. So it seems possible that the more CAG repeats individuals have, the less efficient their cells are at converting calories to energy.

Hormonal Shifts^

A second school of thought suggests that weight loss is due to hormonal disturbances in people with HD. Hormones are the body’s chemical messengers, and are important for regulating physiological processes, like hunger. The hypothalamus secretes many hormones, so when HD causes cells in the hypothalamus to malfunction and die, hormone production is disturbed.

Some of the hormonal signals that the hypothalamus sends out go to the gut and fat tissue, and direct processes like eating and burning energy – processes that are very important in maintaining a healthy weight. Therefore, some scientists think that cell death in the hypothalamus causes hormonal changes that might contribute to weight loss and other problems such as sleep disturbances, as described here.

Dysfunctional Digestion^

Further insights have come from studying the way mutant huntingtin interacts with the digestive system. Certain symptoms of HD have hinted that the disease might affect the gut; apart from weight loss, people with HD often experience nutritional deficiencies, cramps, and wasting of skeletal muscles. People with HD are also prone to gastritis, a disease where the stomach lining becomes irritated or swollen.

Despite these symptoms, many HD researchers have traditionally thought that mutant huntingtin only affected the brain – a belief that struck some as strange because the protein is made and found throughout the body. However, results from a recent study suggest that mutant huntingtin in the gut might interfere with important digestive processes, thus contributing to weight loss.

In the study, van der Burg and colleagues looked at R6/2 mice, which are mouse models of HD described in greater detail here. They noticed several physiological changes that could all impact digestion. First, they noticed that the small intestines of HD mice were 10-15% shorter than those of normal mice, and that they had smaller villi, the tiny finger-like projections in the gut that take up nutrients. On top of that, scientists noticed that the mucus lining of the gut of the HD mice was 20-30% thinner. Since all of these structures are needed for nutrient absorption, these findings suggest that HD mice can’t take up nutrients as efficiently as normal mice.

Furthermore, the group found that the HD mice were missing a few key hormones that control the speed at which food passes through the body. This caused an increase in ‘transit time’: the food passed more slowly through the gut. Longer transit time might foster bacterial growth; if food takes longer to pass through the gut, harmful bacterial have more time and a better opportunity to flourish. This could make the small intestine irritated and inflamed, which could cause malabsorption of nutrients, chronic diarrhea, nausea, bloating, flatus, and weight loss. Those bacteria might also use up nutrients that the body would have otherwise taken up.

To see whether these physiological differences actually have an impact on digestion, researchers then compared the feces of HD mice to those of normal mice. They found that HD mice excreted more of what they ate, suggesting that they absorbed fewer calories and nutrients from their food. Notably, the mice that were the worst at absorbing nutrients from their food lost the most weight.

Van der Burg et al. had a few ideas as to what mutant huntingtin might be doing to interfere with digestion. Since the protein is present in gut cells, it could interfere with cell function and nutrient absorption. They also thought that mutant huntingtin might affect transcription, the process by which DNA is converted into protein as described here. If mutant huntingtin affects transcription in gut cells, it could cause a decrease in levels of important proteins needed for cells to survive and function properly.

While findings in HD mice don’t always translate to humans, these results indicate that scientists might benefit from studying the way HD affects digestion in people. Van der Burg et al. suggest that such research might help doctors improve their understanding of nutritional supplements for HD, and might even change the way we think about how people with HD metabolize and react to medicine.

Solutions^

Weight loss in HD has long puzzled doctors, patients, and caretakers alike. Two popular explanations of the phenomenon – chorea and reduced food intake – have been debunked as major contributors to weight loss. However, scientists have made new in-roads in recent years. By discovering that mutant huntingtin might disrupt energy metabolism, digestion, and hormones in HD mice, scientists have enhanced our understanding of HD, which may pave the way to new treatments and therapies. For example, the hypothesis that weight loss is linked to abnormalities in energy metabolism suggests that energy-boosting drugs – namely creatine and Coenzyme Q10 – are strong candidates to fight HD, as described in these articles here. Each further discovery about HD leads to a greater understanding of the disease, and brings hope for patients and families.

Sources^

1.     Aziz NA, van der Burg JM, Landwehrmeyer GB, Brundin P, Stijnen T; EHDI Study Group, Roos RA. Weight loss in Huntington disease increases with higher CAG repeat number. Neurology. 2008 Nov 4;71(19):1506-13.

This medium-difficulty study describes how people with more CAG repeats lose more weight – and provides some theories as to why that might be the case.

2.     Djoussé L, Knowlton B, Cupples LA, Marder K, Shoulson I, Myers RH. Weight loss in early stage of Huntington’s disease. Neurology. 2002 Nov 12;59(9):1325-30.

This medium-difficulty article describes weight loss in people with early-stage HD

3.     Hamilton JM, Wolfson T, Peavy GM, Jacobson MW, Corey-Bloom J; Huntington Study Group. Rate and correlates of weight change in Huntington’s disease. J Neurol Neurosurg Psychiatry. 2004 Feb;75(2):209-12.

This medium-difficulty article describes weight loss in people with early-stage HD

4.     Kremer HP, Roos RA. Weight loss in Huntington’s disease. Arch Neurol. 1992 Apr;49(4):349.

This short, medium-difficulty column suggests that cell death in the hypothalamus could contribute to weight loss

5.     Petersén A, Björkqvist M. Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci. 2006 Aug;24(4):961-7. Epub 2006 Aug 21. Review

This technical article describes how hormonal changes in people with HD might lead to weight loss

6.     Pollard J, Best R, Imbrigilo S, Klasner E, Rublin A, Sanders G, Simpson W. A Caregiver’s Guide for Advanced-Stage Huntington’s Disease. Huntington’s Disease Society of America, 1999.

This easy-to-read handbook is a very helpful resource for caregivers taking care of people in late-stage HD

7.     Pratley RE, Salbe AD, Ravussin E, Caviness JN. Higher sedentary energy expenditure in patients with Huntington’s disease. Ann Neurol. 2000 Jan;47(1):64-70

This study measured movements of people with HD, and found that their total energy expenditure was the same as that of people without the disease, and is somewhat technical

8.     Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M, Gusella JF, Laramie JM, Myers RH, Lesort M, MacDonald ME. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet. 2005 Oct 1;14(19):2871-80. Epub 2005 Aug 22.

This technical article describes how huntingtin interferes with energy metabolism in a CAG-dependent fashion

9.     Trejo A, Tarrats RM, Alonso ME, Boll MC, Ochoa A, Velásquez L. Assessment of the nutrition status of patients with Huntington’s disease. Nutrition. 2004 Feb;20(2):192-6.

This medium-difficulty paper discusses the result of the study on 25 HD patients that ate an average of 400 calories more than controls each day.

10. van der Burg JM, Winqvist A, Aziz NA, Maat-Schieman ML, Roos RA, Bates GP, Brundin P, Björkqvist M, Wierup N. Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiol Dis. 2011 Oct;44(1):1-8. Epub 2011 May 23.

This technical article describes the impact of huntingtin on digestion in HD mice

M. Hedlin 11.16.11