Arches. Photo by Daniel Chia
Jun
29
2010

Lipoic Acid

range

Treatment summary: Lipoic acid is a coenzyme present in the mitochondria of cells. It helps to produce energy by aiding enzymes in breaking down sugar during the Krebs cycle. The body makes enough lipoic acid to fulfill its basic metabolic functions, but the compound can also act as an antioxidant when it is in excess. Lipoic acid is special because it is the only antioxidant that is able to deactivate free radicals that are both fat-soluble and water-soluble. (For more information on free radicals and antioxidants, click here.) Because of its antioxidant properties, lipoic acid is being investigated as a possible treatment for HD.

Lipoic acid can be found in many common foods such as potatoes, carrots, broccoli, yeasts, beets, yams, and red meat. This antioxidant is slowly becoming recognized as having unique properties in the prevention of and therapy for a broad range of diseases. For example, lipoic acid protects the liver from damage caused by alcohol, shields the lungs from damage caused by smoke, and enhances glucose disposal in type II diabetes (and reduces associated neuropathy and cataracts). Since humans are not usually deficient in lipoic acid, no recommended dietary allowance (RDA) has been established, but supplementation may help in some conditions. Few studies have investigated the effects and safety of lipoic acid supplementation in humans.

Research on lipoic acid^

Andreassen, et al. (2001) investigated the effects of lipoic acid supplementation in two mouse models of HD (we’ll call them strain 1 and strain 2). The researchers mixed lipoic acid into the food of 17 strain 1 mice and 11 strain 2 mice. Other mice were not given lipoic acid and were used as a comparison (there were 55 strain 1 mice and 22 strain 2 mice that did not receive lipoic acid). The mice were weighed each week and successful treatment was evaluated based on weight changes and survival.

The strain 1 mice that were given lipoic acid did not lose weight as fast those not given lipoic acid and continually weighed more than the untreated group. However, the weight of the strain 2 mice was not significantly affected by lipoic acid treatment.

Regardless of its effect on weight, both types of mice receiving lipoic acid survived longer than the untreated mice. The strain 2 mice receiving lipoic acid survived an average of a week longer than untreated strain 2 mice, while the strain 1 mice receiving lipoic acid survived an average of about 11 days longer than untreated strain 1 mice.

These results, while positive, are not as significant and extensive as those found for some other supplements such as creatine (For more information on creatine, click here.) Furthermore, these are only the results of one experiment and much more research needs to be done to find out the safety and efficacy of lipoic acid in humans with HD. However, this study does confirm the role of oxidative damage in HD and suggests that lipoic acid may act to slow its progression.

For further reading^

  1. Andreassen, et al. Lipoic acid improves survival in transgenic mouse models of Huntington’s disease. 2001. Neuroreport 12(15):3371-3373. Online.
    This is a scientific article of moderate difficulty reporting the results of a study of lipoic acid in the mouse model of HD.

-K. Taub, 11/21/04