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This work compares two approaches for simulating reacting flows using high-order discon-
tinuous Galerkin methods. On the one hand, the double flux method was developed in order
to overcome the well-known issue of pressure oscillations at contact interfaces when variable
thermodynamic properties are used. This quasi-conservative scheme was previously applied
to high-speed inviscid reacting flows but potential issues with lower-Mach flows and viscous
effects were not discussed. On the other hand, the fully conservative formulation, although
inconsistent with pressure equilibrium at contact interfaces, allows a conservative scheme con-
sistent with the sub-cell resolution of high-order schemes. These two approaches are compared
on several test cases and their strength and weaknesses are analyzed.

I. Introduction

High-order finite-element based schemes have become increasingly popular for the simulation of turbulent flows
[1–3]. Attractive features of these schemes include high-order accuracy on arbitrary mesh topologies, compact

stencils with minimal communication, and potential for hp-refinement strategies. Although subject to active research
for aerodynamic applications (including shock-capturing [4], subgrid-scale modeling [5, 6], stabilization [7], and
efficient time-integration schemes [8, 9]), their use for multi-physical flow problems is under active investigation. For
example, the discontinuous Galerkin (DG) scheme has been extended to reacting flows [10], hypersonic flows in dusty
environment [11], and multi-phase flows [12].

The present study focuses on reacting flows. Detailed studies of the potential of the DG scheme for this specific
application are limited even if it has been already used for turbulent reacting flow applications [13, 14]. One issue that
has been identified for the simulation of multi-component flows with temperature dependent thermodynamic properties
is the generation of spurious pressure oscillations at smooth contact interfaces when fully conservative schemes are
used. This issue is not limited to DG schemes or reacting flows but common to conservative schemes and flows with
complex equation of state or involving variable thermodynamic properties and has been extensively studied in the
past. All remedies that have been introduced to preserve pressure equilibrium at contact interfaces result in physical
inconsistencies. This can be in the form of a quasi-conservative scheme [15] or a particular evaluation of pressure
in the convective flux from some function of the specific heat coefficients ratio that is transported in advection form
[16]. Whereas the latter approach can successfully suppress pressure oscillations while being conservative, it cannot be
extended to viscous and/or reacting flows.

In [10], the double flux approach [15] was successfully applied to the simulation of high-speed reacting flows with
shocks. The main focus of the study was inviscid flows even if some viscous cases were also explored. While the
double-flux method has been shown to provide a robust method for multi-species flows, so far, the method has not been
assessed in direct comparison to fully conservative schemes in preserving contact interfaces and quantifying the impact
of energy conservation errors.

In the present study, the advantages and disadvantages of both methods applied to a DG discretization are assessed
for both inviscid and viscous flows. In particular, the application of the double flux approach, originally designed
without considering any viscous effects, will be discussed when considering viscous-diffusive transport.

The remainder of this paper has the following structure. Section II outlines the governing equations as well as the
DG discretization. Then section III introduces the issue of pressure oscillations at contact interfaces followed by the
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description of the double flux and the fully conservative approaches. Numerical experiments are then presented in
section IV. Finally, the paper concludes with a summary of the major findings in section V.

II. Mathematical formulation

A. Governing equations
The governing equations for compressible multi-component reacting flows are written in vector form as

∂tU + ∇ · Fc = ∇ · Fd + S, (1)

where U : R+ × RND → RNU is the vector of conservative variables, Fc : RNU → RNU×ND is the convective flux
vector, Fd : RNU ×RNU×ND → RNU×ND is the diffusive flux vector and S : RNU → RNU is the vector of source terms.
Here NU denotes the number of state variables and ND the number of spatial dimensions. The vectors are written as

U =

©«

ρ

ρu

ρE
ρY1
...

ρYNS−1

ª®®®®®®®®®®¬
, Fc =

©«

ρuT

ρu ⊗ u + pI
(ρE + p)uT

ρY1u
T

...

ρYNS−1u
T

ª®®®®®®®®®®¬
, Fd =

©«

0
τ

−qT + (τ · u)T

− jT1
...

− jT
NS−1

ª®®®®®®®®®®¬
, S =

©«

0
0
ÛωT

Ûω1
...

ÛωNS−1

ª®®®®®®®®®®¬
, (2)

where ρ is the density, u the velocity vector, E the total non-chemical specific energy, Yk the mass fraction of species
k, p the pressure, τ the viscous stress tensor, q the heat flux vector, jk the species mass diffusion flux vector, ÛωT the
volumetric heat release rate, and Ûωk the species net production rate. NS denotes the number of species considered in
the chemical mechanism and I the identity tensor. The viscous stress tensor, the heat flux vector and the species mass
diffusion flux vector are written as

τ = µ

(
∇u + (∇u)T −

2
3
(∇ · u) I

)
, (3a)

q = −κ∇T + ρ
∑
k

hs,kYkVk, (3b)

jk = ρYkVk, (3c)

where µ is the dynamic viscosity, κ the thermal conductivity, hs,k the species sensible enthalpy and Vk the species
diffusion velocity. A mixture-average formulation with correction velocity for the species diffusion coefficients is
adopted such that

Vk = −Dk
∇Yk
Yk
+ Vc, (4a)

Vc =
∑
k

Dk∇Yk, (4b)

where Vc is the correction velocity to ensure mass conservation and Dk is the species diffusion coefficient. The enthalpy
of species k is written as

hk = ∆h0
f ,k(Tref) + hs,k(T) = ∆h0

f ,k(Tref) +

∫ T

Tref

Cp,k(T) dT, (5)

where Tref is the reference temperature, ∆h0
f ,k

the species formation enthalpy and Cp,k the temperature dependent
specific heat capacity. The specific internal energy of species k is defined as

ek = hk −
pk
ρYk

, (6)

where pk is the species partial pressure. Finally, Ûωk is modelled according to the law of mass action with rates constant
obeying the Arrhenius form. The solver is linked to the chemistry library cantera [17] from which all thermodynamic
quantities, mixture-averaged transport properties, and chemical source terms are obtained.
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B. Discontinuous Galerkin discretization
Let Ωh be the union of a non-overlapping discrete partition of the domain Ω into NE non-empty cells Ωe. LetVp

h
be the set of test functions such that

V
p
h
=

{
φ ∈ L2(Ωh) | φ|Ωe ∈ P

p(Ωe), ∀e ∈ {1, . . . ,NE }

}
, (7)

where Pp denotes the space of polynomials of degree at most p. The discrete solution Uh is expanded as follows:

Uh =

NE⊕
e=1

Ue
h, Ue

h =

Np∑
n=1

Ũe
nφ

e
n, (8)

where Ũe
n : R+ → RNU is the vector of the n-th polynomial coefficient and {φen, n ∈ {1, . . . ,Np}} is a basis of Pp(Ωe).

The discrete variational problem reads: find Uh such that ∀φ ∈ Vp
h
,

∂

∂t

∫
Ωh

Uhφ dΩ + Lc(Uh, φ) = Ld(Uh, φ) + Ls(Uh, φ). (9)

The convective part is written as

Lc(Uh, φ) = −

∫
Ωh

Fc(Uh) · ∇φ dΩ +
∫
Ei

F̂c(U+h,U
−
h, n) (φ

+ − φ−) dΓ +
∫
Eb

F̃c(U+h,Ub, n) φ
+ dΓ, (10)

where Ei is the set of interior edges, Eb is the set of boundary edges and n is the outward normal with respect to
cell +. F̂c is the inviscid numerical flux and the HLLC flux [18] is used in the present study. F̃c depends on the type of
boundary and boundary treatment. The viscous part requires to recast the original system into a system of first-order
equations by introducing an auxiliary variable. Here, the auxiliary variable is the discrete representation of Fd. The
final form of the viscous flux discretization reads as

Ld(Uh, φ) = −

∫
Ωh

Fd(Uh,∇hUh) · ∇φ dΩ

−

∫
Ei

{[
(A+ : (Û − U+h ) ⊗ n) · ∇φ+

]
−

[
(A− : (Û − U−h ) ⊗ n) · ∇φ−

]}
dΓ

+

∫
Ei

F̂d · n (φ
+ − φ−) dΓ

+

∫
Eb

F̃dφ
+ dΓ,

(11)

where A = ∂Fd/∂(∇U), and (Û, F̂d) are numerical fluxes associated with the viscous discretization. The BR2 scheme
[19] is used in the present study. Similar to the treatment of inviscid boundary fluxes, F̃d depends on the type of
boundary and boundary treatment. The variational form of the source term can be directly evaluated as:

Ls(Uh, φ) =

∫
Ωh

S(Uh)φ dΩ. (12)

With this, the mass matrix can be formed from the first term in the left-hand side by using the expansion from Eq. 8 and
the semi-discrete form can be discretized using a method of lines. All integrals are computed using Gauss-Legendre
quadrature with order no less than 2p + 1.

C. Temporal integration
A Strang splitting scheme [20] is used to separate the chemistry from other physical processes. The transport is

integrated explicitely using a third-order strong-stability-preserving Runge-Kutta scheme [21]. The source term is
integrated using a variable-step variable-order backward difference scheme [22]. The evaluations of the stiff chemical
source terms can be written as

dt �(ρYk)e = M−1ΦJ(Ωe)W Û̂ωk, (13)
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where �(ρYk)e ∈ RNp is the coefficient vector for the polynomial expansion of ρYk , M ∈ RNp×Np is the mass matrix,
Φ ∈ RNp×Nq is the interpolation matrix of basis functions evaluated at the quadrature points, J(Ωe) the Jacobian
of the transformation from reference to physical elements (assumed constant here for simplicity), W ∈ RNq×Nq the
diagonal matrix of quadrature weights and Û̂ωk ∈ R

Nq the source term evaluated at the quadrature points. Nq denotes the
number of quadrature points. However evaluating at each sub-steps the RHS is expensive and not desirable. Instead the
approach taken in [10] is adopted. The following equations are advanced at the quadrature points

dt �(ρYk)e = Û̂ωk, (14a)

dtT̂ = −
1
ρCv

∑
k

ek Ûωk, (14b)

as a point-wise assembly of 0D homogeneous constant volume adiabatic reactors. The advanced state (ρ,T,Y ) is then
used to recompute ρY and ρE at the quadrature points and Galerkin projection is used to obtain the advanced polynomial
coefficients at the end of the stiff step for these variables. However it is worth noting that both formulations are not
strictly equivalent.

III. The issue of pressure oscillations
It is well known [15] that fully conservative schemes generate spurious pressure oscillations at contact interfaces

when complex equations of state and variable thermodynamic properties are used. In this section, this issue is analyzed
in the context of a DG discretization and remedies are described.

A. The calorically perfect case
Consider a calorically perfect gas with constant heat coefficients ratio γ. A 1D contact problem is considered in

element Ωe =
[
xe− 1

2
, xe+ 1

2

]
. Assume uniform pressure and velocity in elements Ωk, k ∈ {e − 1, e, e + 1}. The constant

value of pressure and velocity will be denoted p and u respectively. For simplicity, a forward Euler time advancement
is chosen and the advanced quantities in time will be denoted by superscript ∆t. The discrete energy variable can be
written

(ρE)h =
p

γ − 1
+

1
2

u2ρh . (15)

This is the case for instance when projecting the exact solution to the discrete solution space. The expansion coefficients
are updated as

ρ̃∆t = ρ̃ + ∆tM−1Rρ, (16a)

(̃ρu)
∆t
= (̃ρu) + ∆tM−1Rρu, (16b)�(ρE)

∆t
=�(ρE) + ∆tM−1RρE, (16c)

where RX denotes the residual for the expansion coefficients of variable X . If the Riemann solver reduces to the upwind
flux in the case of a contact, it can be shown that, because u is constant,

Rρu = uRρ . (17)

In addition, because p
γ−1 is also constant,

RρE =
1
2

u2
Rρ, (18)

such that the pressure at the next time-step can be evaluated consistently

(γ − 1)
©«(ρE)∆th −

(
(ρu)∆t

h

)2

2ρ∆t
h

ª®®¬ = (γ − 1)
(
(ρE)∆th −

1
2

u2ρ∆th

)
= (γ − 1)

(
(ρE)h −

1
2

u2ρh

)
= p. (19)

This analysis breaks down as soon as γ is not constant anymore. It has been shown in [16] in the context of a finite
volume method that for inviscid non-reacting flows, solving an additional equation for 1

γ−1 in non-conservative form
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and computing pressure from (ρE)h = p
(

1
γ−1

)
h
+ (ρu)h2/2ρh allows the preservation of pressure equilibrium without

oscillations, with the only inconsistency being between the advected value of γ and the one computed from the
composition. This results in a fully conservative scheme. In [12], this approach was also used for multi-phase flows
and extended to DG schemes. Unfortunately, this approach is not valid when taking into account viscous effects as
well as chemical reactions in the context of the multi-component reacting Navier-Stokes where γ is a function of both
temperature and local composition.

B. The double flux approach
A general quasi-conservative remedy is the double flux scheme developed first in [15] in the context of a finite

volume discretization and later extended to DG in [10, 23]. The main idea is to recast the equation of state into a
calorically perfect form using frozen element-wise constant auxiliary variables. The formulation of [10] is adopted here
which requires to take the chemical reference temperature Tref at 0 K. This allows to use only one auxiliary variable γ∗
such that

p = (γ∗ − 1)
(
ρE −

1
2
ρu2

)
(20a)

γ∗ =
C∗p

C∗p − R
(20b)

C∗p =
1
T

∫ T

0
Cp(T) dT =

h(T) − h(0)
T

, (20c)

where R is the mixture specific gas constant. The former equations are exact. The approximation comes in when γ∗ is
approximated by an element-wise constant value (regardless of the polynomial order of the discretization). Its value
is determined by element-wise averaging temperature and composition: γ∗ = γ∗(T,Y ). Then consider two adjacent
elements + and −. The flux at the face between these elements for element + is computed using a Riemann solver with
the states U+

h
and U−

h,ghost where only the energy component of the ghost state is modified so that it is consistent with
γ∗+ and p−:

U−h,ghost = U−h,ghost(ρ
−
h, (ρu)

−
h, p
−, γ∗+). (21)

Therefore the flux at this face will not be the same for element + and element − introducing a first source of energy
conservation error. Then, at the end of the time-step, the value of γ∗ is updated in every element. The energy is then
recomputed using the new value of γ∗ and the current value of pressure and then projected back onto the solution space
via a Galerkin projection. This introduces a second source of energy conservation error. This scheme was extensively
studied for inviscid problems in [10] and was shown to perform well. The authors also studied two viscous deflagration
problems. A more detailed analysis of the interaction of this scheme with the viscous operator will be presented.

C. The fully conservative approach
Schemes that verify by construction some exact solutions of the governing equations are highly desirable for accuracy

and robustness since they do not generate spurious numerical effects. Preservation of pressure equilibrium at contact
interfaces is one property exhibited by the exact solution of the Euler system. However it seems necessary to abandon
the conservation property of at least one conservative variable in order to design schemes that do not generate spurious
pressure oscillations when considering the reacting Euler system. Because of this trade-off, it is of interest to determine
which of the fully conservative and quasi conservative approaches performs better. This is likely to be case dependent.
Therefore, the fully conservative approach is also considered in this study.

In this approach, primitive variables that are needed to form the residual are obtained as follows. Velocity and mass
fractions are easily obtained from conservative variables. Temperature is first obtained by solving the implicit equation

e =
1
ρ
(ρE − (ρu2)/2) = e(T,Y ). (22)

Then pressure is obtained from the equation of state. This approach will generate spurious pressure oscillations at
contact interfaces but is fully conservative in all conservative variables.
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IV. Numerical experiments
Numerical experiments are performed in order to compare the fully conservative (FC) and the double flux (DF)

approaches. Unless stated otherwise, figures are obtained by interpolating the polynomial solution onto the set of
equidistant Lagrange nodes in each element.

A. H2/O2 thermal bubble advection
The purpose of this inviscid test case is to assess the magnitude and the effects on the quality of the solution of

spurious pressure oscillations generated due to variable thermodynamic properties when using the FC approach. It
has been used in a previous study [10] to assess the performance of the DF approach. The domain is one dimensional,
Ω = [−25,25) and periodic boundary conditions are used. The pressure and velocity are initially uniform. The system
is made dimensionless using the following quantities: p0 = 1 bar, u0 = 1 m/s, L0 = 1 m, T0 = 300 K and W0 = WH2 .
The initial profile temperature and mass fraction are given as follows:

T(x) =
1
2

[
(1 + θ) + (1 − θ)(tanh(|x | − ∆))

]
, (23a)

YH2 (x) =
1
2

[
1 − tanh(|x | − ∆)

]
. (23b)

The temperature ratio θ = T/T0 and width ∆ of the bubble are respectively set to 7 and 10. Figure 1 shows the initial
conditions for clarity. Note the large variations in density due to the temperature ratio and difference in molecular
weights.

−20 −10 0 10 20

x

1

2

3

4

5

6

7

T

T

p

0.96

0.98

1.00

1.02

1.04

p

(a)

−20 −10 0 10 20

x

0.0

0.2

0.4

0.6

0.8

1.0

Y
H

2

YH2

ρ

0

5

10

15

20

25

ρ
(b)

Fig. 1 Initial conditions for the thermal bubble advection: temperature and pressure (a), mass fraction and
density (b).

First the L2 errors of mass fraction and temperature are computed after one flow period in order to assess the
convergence rate. Figure 2 shows that the optimal convergence rate is recovered when employing the DF approach. This
is in agreement with previous studes. Since the scheme is designed so that pressure equilibrium is preserved at a contact
interface, no oscillation in pressure and velocity is generated for this case. The same results for the FC approach are
presented in Fig. 3. It can be seen that the convergence rate stalls for p = 3 especially for temperature which is strongly
coupled to the pressure. The mass fraction is only weakly coupled through velocity. This convergence stall is explained
by the error introduced by pressure oscillations.

Figure 4 shows the history of pressure oscillations when using the FC approach. ∆p is computed at each time-step
as ∆p = maxx∈Q p(x) −minx∈Q p(x), where Q is the set of quadrature points. The simulation is run until it crashes
which happens for the specific discretization shown in the figure after about ten flow periods. It can be seen that the
magnitude of the oscillations are small during the first two periods but then increases leading eventually to the failure of
the simulation.
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Fig. 2 Convergence of L2 errors for p = 2 (a) and p = 3 (b) using the DF approach. The convergence slope of
−3 and −4 are plotted in black dashed line.
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Fig. 3 Convergence of L2 errors for p = 2 (a) and p = 3 (b) using the FC approach. The convergence slope of
−3 and −4 are plotted in black dashed line.
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0 2 4 6 8 10

t/τ

10−1

100

∆
p(
t)
/p

0,
%

Fig. 4 History of pressure oscillations using the fully conservative approachwith 100 elements and a polynomial
order of 2.

Finally, it is interesting to compare the actual DG solution of the energy variable between the two approaches.
Indeed, since γ∗ is computed using the element-wise average of temperature and composition from its exact expression
consistent with the energy formulation (Eqs. 20), both solutions should converge to the same limit as long as the
same conventions are used for the FC simulation (Tref = 0 K). Figure 5 shows a comparison of the initial projection
of the energy variable between both approaches as well as γ∗ in the region where it varies the most. Both solutions
are obtained using 100 elements and a polynomial order of 2. It can be seen that the element-wise constant nature of
γ∗ affects the energy solution. Indeed, whereas the FC solution exhibits a smooth profile (at the cost of the ability to
recover exactly the pressure at the quadrature points from this solution), the inter-element jumps in γ∗ increases the
inter-element jumps of the energy variable for the DF approach. While this does not affect the solution for this particular
case, it is likely to have a non-desirable effect when diffusion effects are considered.

7 8 9 10 11 12

x

2.6

2.8

3.0

3.2

3.4

ρ
E
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(a)

7 8 9 10 11 12

x

1.365

1.370

1.375

1.380

1.385

1.390

1.395

1.400

1.405

γ
∗

(b)

Fig. 5 (a) Comparison of the initial DG solution of the energy variable using the DF and the FC approach. (b)
Initial profile of the auxiliary variable γ∗.
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B. Multi-component diffusion
The purpose of this test case is to verify the implementation of the diffusion operator. It is a non-reacting case that

has been used for validation in [24]. The domain is Ω = [0,0.05)m and periodic boundary conditions are used. The
pressure is initially uniform at 1 atm at stagnant conditions. The initial conditions for temperature and composition are
prescribed as follows:

Yk(x) = YOx
k + (YF

k − YOx
k )Z(x), (24a)

T(x) = TOx + (TF − TOx)Z(x), (24b)

Z(x) = 1 −
1
2

exp
(
−

( x − x0
d

)2
)
, (24c)

where x0 = 0.025 m and d = 0.0025 m. The species involved are CH4, O2, H2O, N2. The relevant values are provided
in Table 1. The converged results will be compared with the finite volume solver CharLESX [25].

Table 1 Initial parameters for multi-component diffusion.

Fuel side Oxidizer side

TF = 320 K TOx = 1350 K

YF
CH4
= 0.214 YOx

CH4
= 0

YF
O2
= 0.195 YOx

O2
= 0.142

YF
H2O = 0 YOx

H2O = 0.1

If using the same formulation for thermodynamic and transport properties, it is expected that the solutions should
converge to the same results regardless of the numerical scheme, up to errors due to the inherent formulation (for
instance, the non-preservation of pressure equilibrium for an inviscid contact interface). The viscous discretization for
the DG scheme requires the derivation of the fourth-order tensor A (see Appendix A) which involves the derivation of
the Jacobian ∂T/∂U. In a previous study [10], the Jacobian was laid out assuming T = γ∗−1

ρR (ρE − ρu2/2) and frozen
γ∗. However, this generates an error that does not converge to zero with grid refinement:

∂T
∂U

����
γ∗
(Uh) 6−→

h→0

∂T
∂U

����
exact

. (25)

In order to avoid this error, the double flux equations are only used to recover primitives from conservative variables.
Then the same tensors ∂T/∂U and A are used for both approaches. Note that the DF approach is unsuited to this test
case for which internal energy is much larger than kinetic energy and viscous effects are dominant. However it is still of
interest to examine the behavior of this approach and understand its limits.

Figure 6 compares different solutions at t = 0.05 s and t = 0.5 s. The purpose of this comparison is not to assess the
resolution capability of the DG scheme but to compare converged solutions. Therefore the solutions are purposely
over-resolved using a polynomial order of 2 and 1000 elements for the DG solutions and the same number of elements
for the finite volume solution and convergence was verified. It can be seen that whereas the fully conservative solutions
agree with one another, there seems to be an irreducible discrepancy between these and the double flux solutions.

Figure 7 presents the energy solution and temperature field when using the DF approach. It can be seen that the
actual representation of the energy variable is close to a p = 0 DG solution. Indeed, for this case, variations in volumetric
internal energy p/(γ∗ − 1) are entirely due to temperature and composition variations (variations due to pressure are
negligible comparatively). In the DF framework, they are encoded in the auxiliary variable γ∗. Because kinetic energy
is negligible compared to internal energy which is the case for flows at small Mach number, the inter-element jumps in
the latter ∆

(
p

γ∗−1

)
are much larger than any intra-element variations of energy resulting in relatively large discontinuities

between elements. The temperature profile, although smooth at t = 0, also exhibits a discontinuous behavior even if the
resolution is sufficient to resolve its variations. This is likely due to the jumps in the energy variable interacting with the
viscous operator. Indeed, the viscous discretization uses the information from the inter-element jump of the conservative
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Fig. 6 Comparison at two different times: ρYO2 (a) and T (b). DG solutions are obtained using p = 2 and
1000 elements. Square symbols represent the reference finite volume solution obtained using 1000 cells.

variables to stabilize the solution or to form the lifted gradient. Although the exact interaction of the double flux method
with the viscous operator remains unclear, the effects are clearly seen in these figures.
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x, m
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m
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(ρ
E
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(a)
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450

500

550

T
,

K

(b)

Fig. 7 DG solution at t = 0.05 s using the DF approach, a polynomial order of 2 and 100 elements: energy
solution (a) and computed temperature (b).

Finally, Fig. 8 shows the energy conservation error introduced by the DF approach for p = 2 and two different spatial
resolutions. Most of the assessment of the energy conservation error in the literature considered a contact interface
problem for which one can analytically derive the spatial and temporal errors that are introduced. Contrary to these,
the energy conservation error does not decrease with mesh refinement for this case. This also explains the constant
discrepancy between converged solutions of the FC and DF formulations.
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Fig. 8 Energy conservation errors computed as |ρE(t) − ρE(0)| / ρE(0) where · denotes spatial averaging.

C. 1D laminar premixed flame
The purpose of this test case is to validate the fully conservative approach when all physical processes are present.

This is a classical problem used to validate combustion codes. A hydrogen/air premixed flame is simulated for this
purpose. A chemical mechanism [26] comprising 9 species and 40 reactions is used. The temperature, pressure and
equivalence ratio of the fresh gas mixture are set to 300 K, 1 atm and 1 respectively. The solution obtained using
cantera is first interpolated at the quadrature points before initializing the DG solution. The domain is Ω = [0,0.03] m.
The left boundary condition is an inlet providing the fresh gas at the flame speed predicted by cantera. The right
boundary condition is a pressure outlet boundary condition. The flame speed obtained using cantera is 2.27 m/s. The
characteristic time based on the flame speed and the domain length is τ = 13 ms. The simulations are run for 50 ms
and the final solutions are compared by collocating results at the location where T = 400 K. The relative and absolute
tolerances for the stiff temporal integration are set to 10−6 and 10−12 respectively. In order to assess the resolution
capability of the DG scheme, the following ratio is defined

r =
δgrad

hDG
=

min
Q

(
∆Q

maxx |Q′(x)|

)
h

p + 1

, (26)

where ∆Q = Qmax −Qmin. In the above relation, the set of variables Q is taken as temperature and mass fractions. The
numerator is computed from the solution obtained using cantera. δgrad is obtained for Q = YHO2 and δgrad = 39.2 µm.

Figure 9 presents the results using the FC approach where both one level of mesh and polynomial refinement is
performed from a baseline solution obtained with p = 2 and 300 elements (for clarity, profiles are slightly shifted from
one another for visualization purposes). For the base resolution, even if some oscillatory behavior is obtained from
the derived source of OH, good agreement is obtained for mass fractions and temperature with the reference solution
obtained with cantera even for a quite low value of r . Both mesh refinement and polynomial promotion improves the
solution which underlines the potential of DG schemes for adaptive reacting flow simulations. DF results are presented
in Fig. 10. Some noticeable discrepancies are observed for the temperature and OH mass fraction in the burnt gas. The
source term obtained at the Lagrange equidistant nodes of OH shows a highly oscillatory behavior. Since the source
terms are highly non-linear functions of the state, they can be very sensitive to small variations of the thermo-chemical
states. To illustrate this, Fig. 10d shows the jump in temperature at element faces. The DF simulation leads indeed to
much larger discontinuities in temperature across elements compared to the FC formulation. This side-effect of the DF
method was also observed in Fig. 7. These results seem to suggest that when diffusive effects are present, either under
the form of physical diffusive processes or subgrid-scale effects in the context of a large-eddy simulation, it is preferable
to use the fully conservative approach. However when inviscid cases with shocks are considered, fully conservative
schemes are prone to failure and the double flux approach is one possible treatment to remedy these issues.
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Fig. 9 DG solution using the fully conservative approach with (p,N) = (2,300) (a-b, r = 1.18), (p,N) = (2,600)
(c-d, r = 2.35) and (p,N) = (3,300) (e-f, r = 1.57). Square symbols represent the solution obtained using
cantera.
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Fig. 10 DG solution using the double flux approach with (p,N) = (2,600) (r = 1.18). Mass fractions and
temperature profiles (a-b) where (b) provides a complete view to highlight the discrepancy in the burnt gas state.
Source terms profiles (c). Comparison of the jump in temperature at element faces between the DF and FC
approaches (d).
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D. 2D flame-vortex interaction
Preliminary results for multi-dimensional simulations are presented using the FC approach. The configuration

from [27] is reproduced. A pair of counter-rotating vortices is superimposed to a laminar premixed H2/air flame at
equivalence ratio 0.6. The same mechanism [26] is used. The velocity field induced by a counter-clockwise rotating
vortex located at (xc, yc) of radius R is written as

u(x, y) = −C(y − yc) exp
(
−
(x − xc)2 + (y − yc)

2

2R

)
, (27a)

v(x, y) = C(x − xc) exp
(
−
(x − xc)2 + (y − yc)

2

2R

)
. (27b)

In order to match the maximum rotational velocity reported in [27] of 1.82 m/s, the parameter C was set to C = 6001 s−1.
The same boundary conditions as the 1D premixed flame are applied on top and bottom while periodic boundary
conditions are applied on the sides. The mesh size is 175 × 350 and a polynomial order of 2 is used to closely match the
number of degrees of freedom. Figure 11 presents the contour of H2O2 mass fraction which is used as a tracer of the
flame in a similar fashion as in [27]. Good qualitative agreement is obtained.

Fig. 11 Contour plots of YH2O2 at t = 1.8 ms (a), t = 2.2 ms (b), and t = 2.5 ms (c).

V. Conclusions
In this study, the double flux and fully conservative approaches were compared on three one-dimensional test cases.

The results can be summarized as follows:
1) For inviscid flows, the lack of robustness of the FC approach which cannot maintain pressure equilibrium at

contact interfaces can lead to the failure of the simulation. In this context, the DF method provides a satisfactory
remedy and restores the optimal order of convergence for simple contact problems.

2) When the Mach number is small and viscous effects are present, the energy conservation error introduced by the
DF approach does not decrease with mesh refinement and the blending of an element-wise constant auxiliary
variable with the discrete energy variable results in large inter-element jumps which can interact with the viscous
discretization.

3) The simulation of a laminar premixed flame shows that the FC approach can be superior to the DF approach.
The FC formulation was further successfully tested on a two-dimensional flame-vortex interaction case. Future work
will investigate the application of DG schemes to the large-eddy simulations of turbulent reacting flows and associated
modeling and algorithmic challenges.
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Appendix

A. Diffusion discretization
In the present study, a mixture-averaged formulation with correction velocity has been used. The Jacobian of

temperature with respect to state was obtained from the exact relation between internal energy and temperature. Some
useful equations are presented here for completeness. First the temperature is implicitly defined through∫ T

Tref

Cv(T,Y ) dT =
∫ T

Tref

[
NS−1∑
k=1
(Cv,k(T) − Cv,NS (T))Yk + Cv,NS

]
dT

= es,

(28)

where
es =

1
ρ

(
ρE −

(ρu)2

2ρ

)
. (29)

Therefore, T = T(es,Y ) and

∂T
∂Ui
=

∂T
∂es

����
Y

∂es
∂Ui︸︷︷︸

only non zero when Ui=ρ, ρu j or ρE

+

NS−1∑
k=1

∂T
∂Yk

����
es , {Yl,k }

∂Yk
∂Ui︸︷︷︸

only non zero when Ui=ρ or ρYk

. (30)

The partial derivatives are obtained from Eq. 28 and read

∂T
∂es

����
Y

=
1

Cv
, (31a)

∂T
∂Yk

����
es , {Yl,k }

=
1

Cv
(es,NS − es,k). (31b)

The Jacobian thus reads

∂T
∂ρ
=

1
ρCv

(
u2

2
− es,NS

)
, (32a)

∂T
∂ρu

= −
1
ρCv

u, (32b)

∂T
∂ρE

=
1
ρCv

, (32c)

∂T
∂ρYk

=
1
ρCv
(es,Ns − es,k). (32d)

To obtain the A tensor, the diffusive terms are expressed as a function of the state gradient. These reads:

jk = −ρDk∇Yk + ρYk
∑
l

Dl∇Yl

= DkYk∇ρ − Dk∇(ρYk)

− (D − DNS )Yk∇ρ + Yk
NS−1∑
l=1
(Dl − DNS )∇(ρYl),

(33)

∑
k

hs,k jk =

(∑
k

DkYkhs,k − DNS hs,NS

)
∇ρ −

NS−1∑
k=1
(Dkhs,k − DNS hs,NS )∇(ρYk)

− (D − DNS )hs∇ρ + hs
N−1∑
k=1
(Dk − DN )∇(ρYk).

(34)
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