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This work discusses the development, verification and performance assessment of a dis-
continuous Galerkin solver for the compressible Navier-Stokes equations using the Legion
programming system. This is motivated by (i) the potential of this family of high-order numer-
ical methods to accurately and efficiently realize scale-resolving simulations on unstructured
grids and (ii) the desire to accommodate the utilization of emerging compute platforms that ex-
hibit increased parallelism and heterogeneity. As a task-based programmingmodel specifically
designed for performance portability across distributed heterogeneous architectures, Legion
represents an interesting alternative to the traditional approach of using Message Passing In-
terface for massively parallel computational physics solvers. Following a detailed discussion
of the implementation, the high-order convergence of the solver is demonstrated by a suite of
canonical test cases and good strong scaling behavior is obtained. This work constitutes a first
step towards a research platform that is able to be deployed and efficiently run on modern
supercomputers.

I. Introduction

Scale-resolving simulations constitute a promising way towards improving the accuracy of computational fluid
dynamics (CFD) tools for turbulent flows of industrial relevance involving complex geometries [1–3]. The modeling

limitations of Reynolds-averaged Navier-Stokes (RANS) approaches for unsteady turbulent flows motivate research
in order to make large-eddy simulations (LES) more accurate, robust and affordable. Numerical schemes play an
important part in that effort as evidenced by recent advances in high-order methods that are compatible with unstructured
mixed irregular grids, such as the discontinuous Galerkin (DG) method [4]. They are characterized by a high-order
convergence regardless of the shape of the elements, a compact stencil and have potential for sophisticated adaptation
strategies. Their dissipation/dispersion characteristics when combined with upwind numerical fluxes mimic to some
extent the physical sub-grid scale dissipation which lead to their use in the context of implicit LES [5–7]. Other works
explored a low dissipation approach combined with an explicit sub-grid scale model [8, 9]. Although these methods
demand more floating-point operations per degree of freedom compared to a typical formally second-order finite volume
method for general grids and are affected by more stringent time-step restrictions with explicit time-stepping, several
studies have shown that the cost-to-accuracy ratio can be in their favor when unstructured meshes are employed [10, 11].

DG implementations are characterized by a higher arithmetic intensity and the use of standard linear algebra
operations making them well suited for application to modern computing hardware such as graphics processing
units (GPU). Several studies have shown the possibility and the performance benefits obtained by porting computational
kernels to accelerators [12–14]. Meanwhile the increasing heterogeneity within new high-performance computing nodes
and between supercomputers makes the development of performance portable solvers increasingly challenging. The
PyFR code [12] is one example that achieves performance portability across hardware types by using a domain-specific
low-level code generation system from a single template. It uses the Message Passing Interface (MPI) programming
system for memory transfers, which requires explicit communication directives. While MPI remains the most popular
parallel programming system used by CFD codes, guaranteeing correctness and good performances on different
architectures is a potential burden due to its explicit nature. In order to overcome this, recent developments by the
computer science community have shown the potential of using runtimes to manage the extraction of parallelism and
memory operations.

In this paper, the design and development of a DG method to solve the compressible Navier-Stokes equations
using the Legion programming system [15] is presented. Legion is a runtime-based alternative to MPI for applications
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targeting distributed heterogeneous systems. The mathematical framework is presented in section II. The Legion
implementation is detailed and discussed from the perspective of an application developer in section III. Section IV
presents a complete verification of the solver. Code performance is assessed in section V. The paper finishes with
conclusions and discusses future work in section VI.

II. Mathematical formulation

A. Governing equations
The compressible Navier-Stokes equations are solved and are written in vector form as

mCU + ∇ · F2 = ∇ · F3 , (1)

where U : R+ × R#� → R#* is the vector of conservative variables, F2 : R#* → R#*×#� is the convective flux and
F3 : R#* × R#*×#� → R#*×#� is the diffusive flux. Here, #* denotes the number of state variables and #� is the
number of spatial dimensions. The vectors can be expanded as

U =
©«

d

du

d�

ª®®¬ , F2 =
©«

du)

du ⊗ u + %I
(d� + %)u)

ª®®¬ , F3 =
©«

0
3

−q) + (3 · u))

ª®®¬ , (2)

where d is the density, u is the velocity vector, � is the total specific energy, % is the pressure, I is the identity tensor, 3
is the viscous stress tensor and q is the heat flux vector. 3 and q are written as

3 = `

(
∇u + (∇u)) − 2

3
(∇ · u) I

)
, (3a)

q = −^∇), (3b)

where ` is the dynamic viscosity, ^ is the thermal conductivity and ) is the temperature. The equations are closed with
the calorically perfect gas equation of state which relates thermodynamic variables as

% = d'), (4a)

d� =
%

W − 1 +
1
2
du2 (4b)

where ' is the specific gas constant and W = 1.4 is the ratio of specific heat capacities, both of which are assumed
constant. Extensions to thermally perfect gases and non-equilibrium systems are topics of future work.

B. Discontinuous Galerkin discretization
LetΩℎ be the union of elements of a non-overlapping discrete partition of the physical domainΩ into #� non-empty

cells Ω4, 4 ∈ {1, . . . , #� }. LetV ?

ℎ
be the set of test functions

V ?

ℎ
=

{
q ∈ !2 (Ωℎ)

��� q|Ω4 ∈ P ? (Ω4), ∀4 ∈ {1, . . . , #� }}, (5)

where P ? denotes the space of polynomials of degree at most ?. The discrete solution Uℎ is expanded as follows:

Uℎ =
#�⊕
4=1

U4ℎ with U4ℎ =
#?∑
==1

Ũ4=q=, (6)

where Ũ4= : R+ → R#* is the vector of the =-th polynomial coefficient of the discrete solution in element 4 and
{q=, = ∈ {1, . . . , #?}} is a basis of P ? (Ωref) where Ωref is the reference element. For details regarding the formulation
of reference-space DG discretizations, the reader is referred to [16]. The discrete variational problem reads: find Uℎ
such that ∀q ∈ V ?

ℎ
,

3

3C

∫
Ωℎ

Uℎq 3Ω + L2 (Uℎ , q) = L3 (Uℎ , q). (7)
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The convective part is written as

L2 (Uℎ , q) = −
∫
Ωℎ

F2 (Uℎ) · ∇q 3Ω +
∫
E8

F̂2 (U+ℎ ,U
−
ℎ , n) (q

+ − q−) 3Γ +
∫
E1

F̃2 (U+ℎ ,U1 , n) q
+ 3Γ, (8)

where E8 is the set of interior faces, E1 is the set of boundary faces, the + and − signs denote respectively each side
of a face and n is the outward normal vector with respect to cell +. F̂2 is the inviscid numerical flux and the HLLC
flux [17] is used in the present study. F̃2 depends on the type of boundary and boundary treatment. The viscous part
can be treated with a mixed formulation where the original system is recast into a system of first-order equations by
introducing an auxiliary variable. Here a flux-based formulation is used for which the auxiliary variable is the discrete
representation of F3 . The final form of the viscous flux discretization reads

L3 (Uℎ , q) = −
∫
Ωℎ

F3 (Uℎ ,∇ℎUℎ) · ∇q 3Ω

−
∫
E8

{[
(A+ : (Û − U+ℎ) ⊗ n) · ∇q+

]
−

[
(A− : (Û − U−ℎ) ⊗ n) · ∇q−

]}
3Γ

+
∫
E8

F̂3 · n (q+ − q−) 3Γ

+
∫
E1

(˜̃F3 · ∇q+ + F̃3 · nq+
)
3Γ,

(9)

where A = mF3/m (∇U) is the homogeneity tensor and {Û, F̂3} are numerical fluxes associated with the viscous
discretization. The symmetric interior penalty scheme [18] is used in the present study. Similar to the treatment of
inviscid boundary fluxes, ˜̃F3 and F̃3 depends on the type of boundary and boundary treatment.

With this, the mass matrix can be formed from the first term in the left-hand side by using the expansion from Eq. 6
and the semi-discrete form can be discretized using the method of lines. A third-order explicit strong-stability-preserving
Runge-Kutta scheme [19] is used for temporal integration. All integrals are computed in reference space using quadrature
rules that exactly integrate all polynomials of order less than or equal to 2(?sol + ?geo) where ?sol is the highest
polynomial order of the basis functions and ?geo is the highest polynomial order to represent the mapping from reference
to physical space.

III. Legion implementation

A. The Legion runtime
Legion [15] designates both a task-based programming model and its implementation into a C++ runtime targeted

for applications running on distributed heterogeneous systems. It provides abstractions to the programmer to describe
data and their usage in order for the runtime to reason about the program, extract available parallelism, understand
dependencies, and perform all memory allocations, communications and synchronizations required to guarantee the
correct behavior of the program thus achieving portability. In contrast to the MPI programming system, explicit data
transfers for distributed execution are, in most cases, not needed, mitigating the challenging task of ensuring a correct
execution when running on architectures with complex memory hierarchies. In order to achieve performance portability
across clusters, one core idea in the Legion system is the separation of the logical description of the program and its
actual execution pattern on a given architecture. These two components are clearly separated in the source code allowing
the developer to maintain different execution policies for different architectures with the same core application code.
This is clarified in more details in the next sections.

At runtime, Legion constructs a dependency graph of tasks, the units of work in the Legion system, based on the
information provided through its programming interface. This task graph is the basis for orchestrating their asynchronous
execution. The throughput and the overhead of the runtime analysis are optimized via task parallelism while conforming
to the underlying dependencies of the program.

Legion has been successfully used for several production-grade computational physics solvers [20, 21], to improve an
existing MPI-based implementation [22] or as a possible backend for higher-level runtimes [23]. The latter application
is unstructured while the former ones are structured.
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B. Data description: regions and partitions
As a data-centric system, the first building block of a Legion program is the description of the program data. They

are encoded in the form of regions which are potentially multi-dimensional containers of fields, similar to arrays of
structs in a language like C. However the placement and the layout of regions are not fixed: regions are automatically
copied and their layout transformed as required by the description of the tasks executed by the program. In the Legion
nomenclature, regions are created from an index space (which describes their dimensionality) and a field space (which
describes the set of fields they contain).

Data parallelism is achieved by partitioning the regions into sub-regions. A typical pattern for launching tasks is
to execute as many copies of the same task as sub-regions, each copy being assigned and working on one sub-region.
Several partitions can be created for a given region as illustrated in Fig. 1. Three different partitions for the same
region are illustrated. Each color represents a sub-region. The characterization of the nature of the partitions is another
key component for the dependence analysis. For instance, the top partition is said to be complete (the union of the
sub-regions recovers the entire region) and disjoint (no pair of sub-regions intersects). The middle partition is also
disjoint but incomplete. Finally the bottom partition is complete and aliased (not disjoint) because sub-regions overlap
with one another. Elements filled with several colors belong to several sub-regions. This kind of partition is typical for a
computational fluids code where data from direct neighbors need to be read in order to advance the solution in time. It
is apparent that two identical tasks that write the same fields in the orange and blue sub-regions respectively cannot be
executed concurrently (at least in the most general context and without any specific treatment) since the behavior for
elements in the intersection would be undefined.

Fig. 1 Example of different partitions associated with a region. A color represents a sub-region in a partition.
The top partition is complete-disjoint, the middle partition is incomplete-disjoint, and the bottom partition is
complete-aliased.

C. Kernels description: tasks
Units of work in the Legion system are called tasks. A task implementation is comprised of (i) the declaration of the

regions it requests access to with associated privileges, (ii) its registration where specific layouts can be enforced for these
regions and (iii) its body which contains its functional behavior. For example, a task T can enforce a structure-of-array
layout on a region R and request fields f1 and f2 with read-only and read-write privilege respectively. Several different
versions of a task for specific target hardware can be implemented. For instance, a task can exist in a CPU and a GPU
version and Legion will use the right version for the actual hardware where it gets executed. A better alternative for
software maintainability is to choose a machine-portable paradigm to implement one single body that can run on many
hardware types. Based on the regions a task accesses and the associated privileges, Legion constructs the underlying
dependency graph and schedules the execution of tasks accordingly. The task body can assume that dependencies are
satisfied and layout constraints enforced. For example, if a given task writes to a sub-region, that change becomes visible
to any subsequent (in the sense “depends on”) task that accesses any other sub-regions that overlap with the former.
This does not mean that for every task each sub-region gets its own distinct allocation, rather that if two sub-regions
logically overlap, copies will be triggered if needed.

D. Performance portability: mapper
Legion achieves performance portability across supercomputers through its mapping interface. A mapper is a

component of a Legion program which implements methods that the runtime queries for mapping decisions. The
Legion library is also equipped with generic mappers with reasonable default behaviors. Mapping is the process of (i)
choosing a processor (in the sense of a machine that can do computations like a CPU or a GPU) for every task where it
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is going to be executed and (ii) creating/choosing physical instances in memory with expected layout for every field of
every region that tasks request. It becomes clear that the optimal set of decisions strongly depends on the nature of
the application and the machine it runs on. While these decisions generally interfere with the core application code
when explicit approaches such as MPI are employed, the mapper is a piece of code that is entirely separate from task
bodies. This allows for a very flexible and non-intrusive performance tuning and many different mapping policies
can be experimented in a productive way without affecting code correctness. An application can thus be ported to a
new architecture, assuming task implementations exist for the hardware, and good performance can be obtained by
implementing a new mapper without changing task bodies.

E. DG algorithm implementation
The implementation presented in this work focused on building the general infrastructure as well as the independent

modules necessary for a DG solver such as classes related to basis functions or the physics. Emphasis was put on
correctness and rapid development of a working solver. Therefore we do not use all aspects of Legion in an optimal
manner yet and the full potential of a Legion implementation is discussed in the next section. Future work will emphasize
on optimizing performance, demonstrating performance portability and taking advantage of all features offered by the
Legion system.

The DG method is naturally amenable to a task-based representation and fits the Legion framework well. In this
section the implementation is described using the Legion nomenclature as well as some specifics that makes it different
from a traditional MPI implementation. For ease of presentation, a fully periodic domain will be considered noting that
boundary faces can be treated as a separate region.

Two one-dimensional index spaces I4 and I5 are first created with size corresponding to the number of elements
and the number of faces respectively. The field space associated with I4 contains all relevant data such as the solution
coefficients that are solved for. The field space associated with I5 contains meta-data such as pointers to the left and
right elements. From these, regions for the elements R4 and faces R 5 are created. Then the regions are partitioned.

In order to understand this procedure, some terminology is introduced first. Globally, given a partition (in the
traditional sense, i.e. disjoint and complete) from a mesh partitioner such as METIS [24], an element can either be
private or shared. Private elements’ direct neighbors are contained within the same sub-region while shared elements
are a neighbor to at least one element owned by another sub-region. For a given sub-region, ghost elements which are
elements owned by other sub-regions but are neighbors to the current sub-region need to be considered. Fig. 2 gives an
example of these different element types. When computing the residual, data from shared elements need to be sent
while data from ghost elements need to be received. The point of making this separation is that private elements don’t
need to move unless performing load balancing across distributed memories. From the output of a mesh partitioner,
Legion dependent partitioning functions [25] are used to create the private, shared and ghost partitions following a
specific sequence of calls, the first two being disjoint while the third one being aliased.

The main tasks are associated with the volume integrals and the face integrals in Eq. 7. The volume integral task
is purely local and only involves sub-regions that are disjoint. The task computing the face integrals needs to access
ghost element information and thus requires this data to be communicated prior to execution. This requirement is
automatically discovered by Legion which can overlap the volume residual task with communication. The current
default execution pattern consists of creating as many sub-regions as compute nodes and using OpenMP for intra-node
parallelism. This provides good performance for compute nodes made of multi-core processors while coarsening the
task granularity compared to a core-level partition of the computational domain, which mitigates the overhead due to
the runtime.

F. Discussion
All Legion programs benefit from the automatic memory management by the runtime which reduces the likelihood

of bugs due to missing or misplaced communication directives. The mapping interface also eases the process of
performance optimization and portability. Finding the best mapping policies often entails finding the strategy that
keeps the machine as busy as possible. A key ingredient in order for Legion to achieve this goal is to expose sufficient
task parallelism while keeping the task granularity relatively coarse so that the latency associated with a task launch
can be hidden. We recognize that the current implementation does not expose sufficient task parallelism to take full
advantage of Legion (three tasks per Runge-Kutta stage: one for the volume integrals, one for the face integrals and one
for the update of the unknowns). This is not an issue for perfectly balanced simulations with homogeneous compute
nodes but will prevent optimization in the presence of load unbalance or hardware heterogeneity. It is worth noting that
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Fig. 2 Private (blue), shared (green) and ghost(red) elements for a given set of owned elements (blue & green).
Shared elements are ghost to owners of the red elements. Shared and ghost elements are globally shared.

an all-GPU mapping is not necessarily the optimal choice and using the host CPU for a subset of tasks can result in
improved throughput [22]. Reformulating the decomposition of the DG algorithm tasks with finer granularity is the
subject of future work.

One motivation for the Legion implementation is load balancing. Load unbalance can stem from different sources.
For example, localized shock-capturing methods increase the cost at so-called troubled elements where a specific
treatment needs to be applied. Similarly, for reacting flow simulations, additional cost occurs for elements where chemical
reaction source terms are stiff (typically at flame fronts). This results in load unbalance when the time integration is
realized via operator splitting and several internal steps need to be taken for integrating the chemistry. A general and
easy way for achieving load balancing in the context of runtime-based implementations is over-decomposition [26].
By partitioning the domain into more pieces than the number of available processors, lightly-loaded sub-regions are
continuously scheduled for execution while a sub-set of processors work on highly-loaded sub-regions. This improves
the overall machine utilization. For very localized and unsteady sources of load unbalance, this strategy might however
be sub-optimal due to the required fine granularity which increases the overhead of the runtime relative to the time it
takes to complete a task. This is part of ongoing investigations.

An attractive feature of high-order methods is their flexibility for adaptation. Based on some indicator, ℎ-adaptation
locally refines or coarsens the mesh while ?-adaptation adjusts the polynomial order. Both adaptation strategies create
load unbalance. Dynamic ?-adaptation is easier to handle implementation-wise due to the fact that the mesh remains
the same. Several remarks can be made regarding its implementation:

• In order to overcome the load unbalance that originates from having different polynomial orders in the domain, it
is common to re-partition the mesh after every adaptation cycle and to weigh every element with its associated
order [27]. This operation is quite expensive and involves substantial memory transfers. Such approach is only
interesting if the cost of setting up a new partition is small compared to the rest of the cycle which seems to be the
case in the context of implicit time-stepping even when performed at every time-step. The cost of setting up new
partitions with Legion has not been assessed so far with this application but will be addressed in future work.

• The goal of adaptation is to increase efficiency. In particular, dynamic ?-adaptation implies changing the amount
of data associated with the solution in a given element. When implemented with a linked-list data structure [28],
it is straightforward to resize the memory allocation for adapted elements. However this prevents the use of
collective linear algebra operations (at least without requiring to copy data from the collectively treated elements
into a contiguous memory location) which could impact performances on accelerators for which vendor-provided
libraries are usually suited for large matrices. Legion by default does not use a per-element approach to materialize
physical instances of the regions. Thus resizing the field space for specific elements of the index space is not
idiomatic and not likely to be efficient. Of course one could over-allocate for the highest requested order but this
entails a large memory overhead. It also does not suppress the need of re-ordering elements according to their
order if a collective treatment is sought for (the operator matrix for quadrature evaluation for instance is a function
of polynomial order).

The objectives of making these remarks are two-fold. First the gain in efficiency with dynamic ℎ?-adaptation is closely
linked to the base and adaptive implementations. Second, although Legion is designed for load-balancing, implementing
dynamically adaptive methods in the Legion programming system presents its own challenges.
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Finally, Legion naturally incurs some overhead in order to perform the dependence analysis during runtime. Moreover
some resources need to be dedicated to the runtime (typically 2-3 threads on the host CPU) including those responsible
for memory transfers. For unstructured applications, the ghost partition is in general very sparse in the index space
when computed from the output of a general graph partitioning library. Due to the desire of using a collective treatment
for linear algebra operations, both the private and the shared elements are allocated contiguously in memory. At first
approximation, allocations for sub-regions in the ghost partition then use substantially more memory than needed
because Legion uses the bounds in index space to construct them. Support for sparse instances has been recently added
and discussions with the Legion developers team to find the optimal strategy in order to reduce the memory usage are
ongoing.

IV. Verification
The solver is verified using three canonical cases. Case 1 is the advection of an isentropic vortex in a periodic domain

which verifies the numerics and the implementation of the Euler equations. Case 2 is a manufactured-solution for the
Navier-Stokes equations which verifies the discretization of viscous terms. Case 3 is a three-dimensional Taylor-Green
vortex case and demonstrates the ability of the solver to converge to direct numerical simulations of turbulent flows.

A. Case 1: advection of an isentropic vortex
This is a canonical case used to verify numerical schemes and has been studied as a way to verify high-order

methods [29]. The Euler equations in two dimensions are solved in dimensionless form. Quantities used to make
the system dimensionless are the domain size !0, the background density d0, the background temperature )0 and the
background speed of sound 20. With this the domain size is [0, 1]2 with periodic boundary conditions at all sides. The
initial perturbations are prescribed in primitive form as

XD = − H1
A
Ω, (10a)

XE =
G1
A
Ω, (10b)

X) = −W − 1
2

Ω2, (10c)

where

G1 = G − 0.5, H1 = H − 0.5, (11a)

Ω = V exp

(
− 1
2f2

G21 + H
2
1

A20

)
, (11b)

V = Ma0
5
√
2
4c

40.5, (11c)

where Ma0 = 1 is the background Mach number, A0 = 1/20 is the vortex size and f = 1 is a parameter. The initial
conditions become

D = Ma0 + XD, (12a)
E = XE, (12b)

% =
1
W
(1 + X))

W

W−1 , (12c)

d = (1 + X))
1
W−1 . (12d)

Contours of initial density and G-velocity are illustrated in Fig. 3 at C = 0.
In order to assess the convergence with mesh refinement, the !2 error against the analytical solution of the problem

is computed after one advection period for all conservative variables using different polynomial orders. Three types of
meshes are considered. The baseline bilinear quadrilateral mesh is composed of five elements in each direction and five
levels of refinement are performed by doubling the resolution in every direction. A set of linear triangular meshes is
generated by splitting every element of the former meshes along one diagonal. Quadratic quadrilateral meshes are also
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considered and are constructed by perturbing the nodes of the baseline mesh randomly by a maximum of 20% of the
unperturbed element length. Then the perturbed mesh is refined uniformly in reference space. An example of such a
mesh is illustrated in Fig. 4.

Figure 5 presents the obtained convergence rates for the density variable. A rate of at least ? + 1 is obtained in
all cases in the asymptotic range. It is worth noting that this case can exhibit a super convergence behavior for longer
integration times as reported for instance in [12].
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Fig. 3 Case 1. Initial conditions for the isentropic vortex: (a) density and (b) G-velocity contours.

Fig. 4 Case 1. Example of a quadratic perturbed
quadrilateral mesh.
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Fig. 5 Case 1. Convergence rates for the isen-
tropic vortex case for the density variable. Solid,
dashed and dash-dotted lines correspond to bilin-
ear quadrilateral elements, linear triangular el-
ements and quadratic quadrilateral elements re-
spectively.
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B. Case 2: manufactured solution for the Navier-Stokes equation
The test case MS-3 from [30] is used to verify the implementation of the viscous discretization. This uses the

method of manufactured solution which drives the solution to a steady solution by prescribing the appropriate analytical
forcing term. The initial and target solution is restated here for completeness.

The domain size is [0, 1]2 and the solution is described with primitive variables as follows

d = d0 + dG sin(0dGcG) + dH cos(0dHcH) + dGH cos(0dGHcG) cos(0dGHcH), (13a)
D = D0 + DG sin(0DGcG) + DH cos(0DHcH) + DGH cos(0DGHcG) cos(0DGHcH), (13b)
E = E0 + EG cos(0EGcG) + EH sin(0EHcH) + EGH cos(0EGHcG) cos(0EGHcH), (13c)
% = %0 + %G cos(0%GcG) + %H sin(0%HcH) + %GH cos(0%GHcG) cos(0%GHcH). (13d)

The choice of parameters is not straightforward to obtain a challenging problem that would uncover implementation
errors while converging appropriately with mesh refinement at the expected rate [30]. The parameters for this particular
case are provided in Table 1. Contours of the analytical solution of G-velocity and pressure are illustrated in Fig. 6
ensuring that the conditions from [30] are reproduced. A dynamic viscosity of ` = 0.01 and a Prandtl number of
Pr = 0.7 are used. A bilinear quadrilateral base mesh with 10 elements in each direction is considered with 3 levels of
refinement. The finest mesh has 80 elements in each direction. The simulations are advanced in time until a steady error
level is obtained for all variables. Figure 7 presents the convergence rate of the !2 error for the G-momentum variable.
Optimal convergence rates of ? + 1 are obtained for the last level of refinement.

(·) (·)0 (·)G (·)H (·)GH 0 ( ·)G 0 ( ·)H 0 ( ·)GH

d 1.0 0.1 -0.2 0.1 1.0 1.0 1.0
D 2.0 0.3 0.3 0.3 3.0 1.0 1.0
E 2.0 0.3 0.3 0.3 1.0 1.0 1.0
% 10.0 1.0 1.0 0.5 2.0 1.0 1.0

Table 1 Case 2. Parameters for the manufactured Navier-Stokes problem

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

1.38

1.68

1.98

2.27

2.57

2.87

(a)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

8.97

9.62

10.26

10.91

11.55

12.20

(b)

Fig. 6 Case 2. Manufactured solution: (a) G-velocity and (b) pressure contours.

C. Case 3: Taylor-Green vortex
The three-dimensional Taylor-Green vortex is a canonical problem of homogeneous isotropic turbulence. Starting

from a laminar state, the flow progressively transitions to a turbulent state through vortex breakdown as illustrated in

9

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

Se
pt

em
be

r 
24

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

01
40

 



20 40 80√
Nelem

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
on

ve
rg

en
ce

ra
te

p = 1

p = 2

p = 3

Fig. 7 Case 2. Convergence rates for the manufactured Navier-Stokes problem for the G-momentum variable.

Fig. 8. It has been used in numerous studies and is being considered as a benchmark for high-order methods as well [4].
The goal of this investigation is to verify that turbulent flows can be accurately represented with resolutions close to a
direct numerical simulation (DNS). This problem is solved in dimensionless form. The reference quantities are !0 the
domain size divided by 2c, d0 the background density, D0 the background velocity and )0 the background temperature.
With this the domain size is [0, 2c]3 and the initial conditions are given in primitive form as

d = 1, (14a)
D = sin(G) cos(H) cos(I), (14b)
E = − cos(G) sin(H) cos(I), (14c)
F = 0, (14d)

% =
1

WMa20
+ 1
16

[
cos(2G) + cos(2H)

] [
(cos(2I) + 2

]
, (14e)

where the pressure condition mimics the incompressibility condition. For consistency, the dimensionless specific gas
constant needs to be chosen as 1

WMa20
. The parameters of the simulation are the Mach numberMa0 = 0.1, the Reynolds

number Re0 = 1600 from which the dimensionless dynamic viscosity `0 = 0.625 × 10−3 is obtained and the Prandtl
number is set to Pr = 0.71.

Three ℎ?-resolutions are considered and summarized in Table 2. The domain integrated quantities are the density
weighted kinetic energy and enstrophy

� =
1
(2c)3

∫
Ω

1
2
du2 3Ω, (15a)

Z =
1
(2c)3

∫
Ω

1
2
d82 3Ω, (15b)

where 8 is the vorticity vector. Direct kinetic energy dissipation are obtained by using a central difference scheme on
the kinetic energy data. Results are compared against a reference DNS [31] in Fig. 9. The DG simulations converge with
increasing resolution towards the reference DNS for these mean quantities. Another well-known fact about high-order
methods is observed as well: at approximately equal number of degrees of freedom, smooth flows are more accurately
represented with high orders. This shows the potential of high-order methods to enable more efficient simulations of
turbulent flows. The wall-times for the two resolutions with approximately 2563 degrees of freedom were comparable.
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(a) (b)

Fig. 8 Case 3. Iso-surfaces of I-vorticity colored by enstrophy at (a) C = 0 and (b) C = 10.

Number of elements Polynomial order Number of degrees of freedom

643 2 1923

643 3 2563

863 2 2583

Table 2 Case 3. Resolutions used for the Taylor-Green vortex simulations.

0 5 10 15 20

t

0.000

0.002

0.004

0.006

0.008

0.010

0.012

−
d
E
/d
t

643 - p = 2

863 - p = 2

643 - p = 3

εDNS

(a)

0 5 10 15 20

t

0

2

4

6

8

10

ζ

643 - p = 2

863 - p = 2

643 - p = 3

εDNS/2µ0

(b)

Fig. 9 Case 3. Volume integrated (a) density weighted kinetic energy dissipation and (b) enstrophy.
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V. Performance assessment
Performance of the solver is assessed by conducting three-dimensional simulations of the Navier-Stokes equations in

a triply periodic box on NASA’s Pleiades supercomputer [32]. In particular, the Ivy Bridge nodes composed of two
ten-core Intel Xeon E5-2680v2 processors are used.

Strong scaling results are presented in Fig. 10. For single-node scaling, the number of threads is varied between 1
and 16 (recall that some threads need to be dedicated to the runtime which results in a maximum number of usable
threads for the application of 17 on these nodes) and small meshes are used in order to test the limits of scalability.
In particular, the 43 and 83 meshes result in 4 and 32 elements per thread at 16 threads respectively. Good scaling
characteristics that improve with polynomial order are observed. Specifically, with 512 elements to process, a speed-up
of 14.7 and 15.5 is observed for ? = 2 and ? = 3 respectively. For the multi-node strong scaling, the 643 mesh is used
with different polynomial orders and simulations are performed up to 256 compute nodes for a total of 5,120 cores.
Good scaling behavior is observed overall.

The performance index (PID) used in [33] is also computed. This can be defined as

PID =
gwall#cores

#DOF#steps#stages
, (16)

which represents the time required to integrate one degree of freedom normalized by the number of cores. In the
saturated regime, PIDs of 9 µs for ? = 1 and 6-7 µs for ? = 2 and ? = 3 were obtained. For comparison, [33] reports a
PID of 1 µs for ? = 6. Differences can be explained by the polynomial order, the absence of sum-factorization type
optimization for tensor-product basis in the present work as well as the use of a modal basis instead of a co-located
approach (Lagrange basis with nodes located at the quadrature points). Naturally, less time was spent so far optimizing
our application in comparison.

1 2 4 8 16

Number of threads

1

2

4

8

16

S
p

ee
d

-u
p

N = 43 - p = 2

N = 43 - p = 3

N = 83 - p = 2

N = 83 - p = 3

(a)

20 80 320 1280 5120

Number of cores

1

4

16

64

256

S
p

ee
d

-u
p

p = 1

p = 2

p = 3

Ideal

(b)

Fig. 10 (a) Single node and (b) multi-node strong scaling.

VI. Conclusions and future work
A DG solver was developed and implemented using the Legion programming system. Specific details concerning

the Legion model and programming interface were discussed with emphasis on the potential features of Legion for
further enhancement of the efficiency of the solver. Good strong scaling characteristics were observed on compute
nodes made of multi-core processors. Future work will focus on the following aspects:

• the formulation of the DG algorithm into tasks will be redesigned in order to expose more task parallelism so as to
broaden the space of mapping strategies when running on heterogeneous nodes;

• improving the solver in order to scale at much higher core count;
• machine portability will be sought for by using the Kokkos model [34] for task bodies;
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• cases with load unbalance and/or hardware heterogeneity will be investigated in order to assess the benefits of
using Legion for this application.

This work is a first step of a continuing effort to develop a research platform for high-order numerical methods that fully
exploits modern compute architectures. The code is available upon request and can be provided by contacting the lead
author.
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