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Towards Data-Informed Motion Artifact Reduction in
Quantitative CT Using Piecewise Linear Interpolation

Emeric Boigné , Dilworth Y. Parkinson , and Matthias Ihme

Abstract—We propose to use piecewise linear interpolation (PLI)
in time to reduce motion artifacts in transmission computed to-
mography (CT). PLI is motivated by the natural occurrence of
piecewise-linear evolution of voxel values during object motion.
The method is specifically examined in the context of high-accuracy
quantitative measurements that are compromised by small mo-
tions, and particularly sub-pixel motion. Compared to existing
methods, the proposed approach offers three advantages: (i) the
flexibility in the interpolation parameters provides a framework
for joint optimization and data-informed dynamic CT, (ii) both
continuous motion and sudden changes in voxel values can be repre-
sented while preserving the continuity of the interpolated solution,
and (iii) the compactness of the interpolation functions reduces the
increase in algorithmic cost. Total variation regularization is used
with a second-order accurate discretization, and the resulting for-
mulation is solved with the Chambolle-Pock proximal algorithm.
The applicability of the method in practical cases is demonstrated
using synchrotron data, with an algorithmic cost of two to four
times that of equivalent static reconstruction algorithms.

Index Terms—4D computed tomography, Advanced Light
Source, dynamic tomography, motion artifact, quantitative
tomography, time interpolation, total variation.

I. INTRODUCTION

MOTION artifacts represent a major source of errors
in quantitative computed tomography (CT) applica-

tions [1]. Standard tomographic reconstruction methods, such as
the Filtered-Back Projection (FBP) algorithm or the Simultane-
ous Iterative Reconstruction Technique (SIRT), assume that the
object remains immobile during acquisition [2]. However, mo-
tion of the sample arises in numerous tomography applications,
thereby resulting in non-physical artifacts after reconstruction.
Sample motion is particularly detrimental for in situ measure-
ments, where the sample dynamics are of primary interest [3],
[4], [5], [6], [7] or in medical imaging, in which patient and organ
motion can compromise medical diagnostics [8], [9], [10].
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The most direct approach to suppress motion artifacts is to
increase the acquisition rate, and certain systems have been
developed to achieve up to 1 kHz CT acquisition rates [11], [12],
[13], [14]. For instance, the fast rotation stage at the TOMCAT
beamline enabled the in situ investigation of a 3D liquid-foam
flow around a sphere [15], and a burning match stick [16]. How-
ever, these fast-acquisition systems are not widely available, and
the reduction in acquisition time comes at the expense of lower
photon count, which may be detrimental for certain applications.
Motion artifacts can also be reduced by modifying the angular
acquisition scheme [17], [18], or by acquiring phase-locked or
ensemble-averaged measurements [6], [19].

In contrast to modifying the acquisition, reconstruction algo-
rithms have been developed to address motion artifacts. These
methods are here classified in three categories. The first category
relies on a priori knowledge of the object motion. For instance,
rigid body models with up to six degrees of freedom can estimate
alignment errors due to imperfect stage rotation in nanotomog-
raphy [20], or represent respiratory motion in emission CT [21]
and head motion in clinical CT [22], [23] using data from optical
tracking systems. Motion models can also be applied during
backprojection [16] or directly in the sinogram space [24], [25].
Image registration models with a large number of kinematic
parameters can handle more complex motion. In particular,
deformation vector fields (DVF) with B-spline interpolation has
successfully reduced artifacts when scanning open-cell foams
under compression [26], [27] or differentiating between motion
changes and true anatomical changes, such as tumor growth [28],
[29]. Data-driven models can also describe sample motion, either
using reference scans [30] or convolutional neural networks [31],
[32].

Even though these methods can successfully attenuate motion
artifacts, they enforce local conservation of Beer-Lambert’s
attenuation, which may not be valid in reacting systems or
multiphase applications in which mass is transported across the
entire sample [7], [33]. In addition, these methods only represent
invertible motions [34], which is not detrimental in most cases as
inversion errors remain below the spatial resolution. However,
in quantitative applications where sub-pixel motion is sufficient
to compromise high-accuracy requirements, the interpolation
errors due to the DVF inversion can become significant. Without
prior assumption of any motion, the second category of methods
instead employs regularization to penalize artifacts. Specifically,
data sparsity in the solution is promoted via compressed sensing,
either by allowing the solution to only take a set of fixed discrete
values, or by minimizing spatial gradients. For instance, total
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variation (TV) regularization promotes smoothness in the solu-
tion while preserving sharp edges, which improves the image
quality, especially in cases with low photon counts and fewer
angles [35], [36]. In the context of motion artifacts, TV regular-
ization can penalize non-smooth streak artifacts, and promote
similarity to artifact-free prior images [37]. Besides, by adding
a gradient penalty with respect to time in the TV regularization,
artifacts can be further reduced [9], [38], [39]. In these methods,
the regularization term is minimized in conjunction with a
data-fidelity term. However, static CT projectors cannot model
motion in the sinogram, and the data-fidelity term is lower for
a solution with artifacts than one without. As a result, while
smooth artifact-free solutions minimize the regularization term,
they do so at the cost of an increase in the data-fidelity term, and
this competition overall limits the artifact reduction.

Methods in the third category address this limitation by using
dynamic CT projectors that better reconstruct the sinograms
of moving objects. Specifically, by modeling voxel values as
a linear combination of a set of M interpolation functions,
smooth artifact-free solutions can minimize both the regulariza-
tion and the data-fidelity terms, thereby improving the artifact
reduction. However, since not all possible time-varying solutions
are spanned, the truncated decomposition will still not exactly
represent the ideal solution field. In addition, because the time-
decomposition increases the number of variables by a factor of
M , the dimensionality of the undersampled ill-posed inverse
problem is significantly increased, and the convergence towards
a satisfactory solution can become challenging. Therefore, on-
going research on time-decomposition methods investigates
whether truncated decompositions can result in artifact-free
solutions, and whether algorithms can converge towards these
solutions.

So far, piecewise constant interpolation (PCI) in time is the
most examined time-decomposition choice in the CT literature.
Early PCI studies primarily focused on developing local and
non-local spatial-temporal regularization and only briefly an-
alyzed the time-decomposition using fixed equidistant break-
points [9], [38], [39]. One study then performed an extensive
comparison between previous methods and a new region-based
SIRT algorithm with PCI in time [40]. A follow-up article
proposed a version of this algorithm that automatizes some
of the underlying segmentation tasks, thereby reducing the
post-processing time and algorithmic cost [41]. Another study
developed a more general PCI formulation that leveraged inter-
laced view sampling and minimized non-convex cost functions
that model Poisson photon-counting statistics, zingers, and the
non-idealities that cause ring artifacts [42].

These studies have shown that PCI can model jumps in
attenuation due to the sudden motion of a material phase inside
or outside of a voxel [40], [41]. However, PCI fails to represent
more continuous voxel changes. For instance, PCI does not
accurately resolve uniform sub-pixel motion, which limits its
performance in high-accuracy quantitative CT. Yet, only few
CT studies have examined alternative interpolations. One study
briefly considered second-order polynomials [43], while a more
recent work used a Fourier-based interpolation [44].

Studies in dynamic Positron Emission Tomography (PET),
with noisier data than CT, have explored additional interpo-
lation choices [45]. For instance, the characteristic response
of PET tracers was parametrized in model-based interpolation
functions [46], whereas several studies used B-splines interpo-
lation [47], [48], [49]. Furthermore, some PET studies have con-
sidered optimizing the interpolation scheme from the data itself.
In particular, one study used singular value decomposition to
construct a set of time-interpolation functions derived to model
4D PET data [50]. Two studies have also examined optimizing
the choice of interpolation jointly with the reconstruction field
during run-time, either iteratively [51] or simultaneously [52].

These PET results suggest that data-informed interpolations
could work for dynamic CT. Besides, augmenting kinetic mo-
tion models with optical tracking data has already improved
results in clinical CT [22], [23], while deep-learning has proved
successful at directly correcting motion-corrupted reconstruc-
tions [53]. In CT time-decomposition methods, the artifact
reduction already achieved by fixing an arbitrary interpola-
tion [40], [44] could be improved by data-informed joint op-
timization. For instance, studies of drainage flows have tracked
changes in successive radiographs to tune the time-interpolation
to specific datasets using a maximum a posteriori expectation-
maximisation (MAP-EM) algorithm [33]. This analysis paved
the way towards data-informed interpolation in CT, but more
work is needed to investigate the performance of these methods
in different CT applications.

Here, we address this research need by using piecewise linear
interpolation (PLI) in time to enable the data-informed recon-
struction of single CT datasets at high accuracy. PLI is chosen
because it can model both slow drifting motions and quasi-
instantaneous events, as suggested by PET studies considering
the more general B-spline interpolation [47], [48], [49]. The
artifact reduction obtained with the proposed PLI approach is
compared to a Fourier decomposition in time [44].

The specific contributions of this work are the following: (1)
While previous CT work explored only fixed time interpola-
tion [9], [38], [39], [40], [41], [42], [43], [44], the proposed
PLI framework provides flexibility in the breakpoint selection.
This flexibility allows to adjust the interpolation parameters to
each dataset, thereby building towards data-informed joint opti-
mization in dynamic CT. (2) Previous studies examined artifacts
generated with little variations in the time-evolution [21], [23],
[30], [40], [43], [44]. In contrast, by considering artifacts created
from a variety of motion-progress profiles, the proposed method
is evaluated on a more exhaustive range of artifacts, showing that
PLI can represent both continuous and sudden motions. (3) The
compactness of the PLI functions reduces the algorithmic cost
associated with the CT forward and backward projections, com-
pared to using non-compact interpolation functions [44]. (4) The
artifact reduction is examined in the context of high-accuracy
CT datasets that are compromised by small motions, a problem
which has received little attention in the literature. In particular,
PLI is motivated by its better representation of sub-pixel motion
compared to PCI [9], [38], [39], [40], [41], [42]. High-accuracy
reconstructions also require high number of iterations, and the
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convergence of the method is characterized for different al-
gorithms. (5) Artifact reduction is demonstrated on single CT
scans as relevant to synchrotron and clinical CT, whereas most
previous studies used time-series of multiple CT datasets. (6)
Similar to [44], the problem is regularized via a spatio-temporal
TV term and the Chambolle-Pock algorithm [54] is employed
to optimize the resulting non-smooth formulation. However, we
also propose a second-order accurate TV discretization, which
is shown to reduce staircase artifacts compared to standard
first-order discretizations [44].

The method is described in Section II and the algorithm and its
implementation are provided in Section III. Section IV presents
a validation of the method using numerical phantoms, and an
analysis of the convergence and TV discretization schemes.
Applications to several experimental synchrotron datasets are
reported in Section V. Conclusions are presented in Section VI.

II. METHODS

A. Static Tomography Formulation

In transmission tomography, a penetrating radiation beam is
directed onto an object to reconstruct the 3D linear attenuation
field f(x, y, z) from Beer-Lambert’s law. To this end, a set of
Na absorption images represented by a vector b are acquired
while rotating the object around the z-axis along an angle θ.
Although the proposed method can be applied in arbitrary 3D
cone or fan beam configurations, a parallel beam is assumed
here, such that the tomography problem can be decomposed
along the z-axis. The sinogram b provides a discrete sampling
of the Radon transform Rf of the attenuation field in the x-y
plane, which is defined as [2]:

Rf(θ, ρ, z)=

∫
f(s sin θ+ρ cos θ,−s cos θ + ρ sin θ, z) ds ,

(1)
where ρ is the distance of the line integral from the origin
in the x-y plane. This sampling data is used to construct an
approximate attenuation field f that is discretized on a uniform
grid of Nx ×Ny ×Nz voxels, with Ni the number of voxels
along the direction i. For simplicity, the 2D case with Nz = 1
and Nx = Ny = N is considered in the following without loss
of generality. In iterative reconstruction methods, the attenuation
field is retrieved by considering an optimization problem in
which the Radon transform is numerically approximated by
a linear operator A ∈ RNaN×N2

. This projection operator is
defined such that Af is a statistical estimate of the sinogram b
acquired experimentally [2]. Specifically, by writing A in the
block form AT = (AT

1 , . . . ,A
T
Na

), Aaf is a statistical estimate
of the experimental absorption line ba ∈ RN acquired at the
viewing angle a ∈ [1, Na].

The CT reconstruction is then formulated using the penalized
weighted least square (PWLS) cost function as [2]

f ∗ = arg min
f

{
1

2
||Af − b||2W + λR(f)

}
, (2)

in which the first term is a data fidelity term using the W-
weightedL2-norm ||p||W = ||W1/2p||2, the second termR(f)

is a regularization term enforcing spatial smoothness of the
solution, and λ is a trade-off parameter between the two. The
weight matrix W is the diagonal matrix defined with the vector
(A1)−1 on the diagonal, where1 is the vector full of ones in RN2

and the inversion is performed element-wise. The minimum of
the data fidelity term corresponds to the maximum likelihood
estimate (MLE) under the assumption of Gaussian noise in the
measurements b [2]. In low-dose tomography, this Gaussian
assumption breaks down, and the Poisson statistics of photon
counts have to be considered [42], which impacts the spatial
resolution in motion-corrected CT [55].

B. Dynamic Tomography Formulation

If the object moves during the acquisition of duration T , then
the attenuation field f also varies as a function of time t. By using
a set of M linearly independent time-interpolation functions
{ψk}Mk=1 on the interval [0, T ], the time-varying attenuation field
can be approximated by [44]

f(x, y, t) ≈ fM (x, y, t) =

M∑
k=1

ψk(t)ϕk(x, y) , (3)

in which ϕ1(x, y), . . . , ϕM (x, y) are the spatial weights of
the time decomposition. These functions are discretized on a
uniform spatial grid as weight vectors Φ1, . . . ,ΦM , which are
vertically concatenated into a single vector Φ ∈ RMN2

writ-
ten as ΦT = (ΦT

1 , . . . ,Φ
T
M ). The time interval [0, T ] of the

acquisition is uniformly discretized such that the Na viewing
angles are acquired at a constant rate, with temporal increment
Δt = T/(Na − 1). The attenuation field f is thus approximated
by a discretized field f defined by

f =

⎛
⎜⎜⎝

f1
...

fNa

⎞
⎟⎟⎠ = PMΦ =

⎛
⎜⎜⎜⎜⎜⎝

M∑
k=1

ψk(0)Φk

...
M∑
k=1

ψk(T )Φk

⎞
⎟⎟⎟⎟⎟⎠

, (4)

where the matrix PM ∈ RNaN
2×MN2

represents the time in-
terpolation operator. The CT problem is then written using a
dynamic estimate BPMΦ of the data b with

Φ∗ = arg min
Φ

{
1

2
||BPMΦ− b||2W + λRt(Φ)

}
, (5)

where Rt is a dynamic regularization operator, and the pro-
jection matrix A is written as the block diagonal matrix B ∈
RNaN×NaN

2
with the sub-matrices (A1,A2, . . . ,ANa

) as di-
agonal blocks.

C. Piecewise Linear Interpolation in Time

Different sets of interpolation functions {ψk} can be consid-
ered for the time interpolation in dynamic CT. In the following,
piece-wise linear interpolation (PLI) is proposed as a natural
option to suppress motion artifacts. To motivate this choice, we
consider the 2D numerical phantom shown in Fig. 1, developed
specifically for this study. This 2D phantom is inspired from
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Fig. 1. (a) Numerical phantom of 250×250 voxels with translation, rotation,
and scaling of six ellipses A–F, (b) FBP reconstruction with artifacts for a uni-
form motion, and (c) table of motion magnitude for the six ellipses. Attenuation
values in AU are indicated in red on (a).

Fig. 2. Comparisons of different time interpolations to approximate the hy-
pothetical time-varying attenuation of a single voxel during (a) slow and (b)
fast motion. The number of interpolation degrees of freedom M is the same for
the different approaches, and the legend indicates the mean square error of the

interpolation in percentage (100×
∫ 1

0
(f(t)− f∗(t))2 dt). The interpolations

are performed by minimizing this value.

the Shepp-Logan phantom, and consists of a superposition of
ellipses with attenuation of 1.0 arbitrary units (AU) that are trans-
lated, rotated, and scaled to simulate motion artifacts. Within the
phantom, an elliptic interface separates the background at the
center (0.18 AU) from its slightly more attenuating surrounding
(0.20 AU). The motions of ellipses A-E are rigid, whereas
ellipse F keeps a constant pixel attenuation value during scaling,
thereby representing a non-rigid motion with mass addition. By
considering the uniform motion of the ellipses over about 5
voxels, the results in Fig. 1 show that the 0.02 AU difference
signal is significantly deteriorated by motion artifacts when
using FBP reconstruction. For reference, the reconstruction
shown in Fig. 1(b) corresponds to the constant linear motion
later examined in Fig. 3(a).

Even though the motions considered remain relatively sim-
ple, these affine deformations replicate the motion expected
in the synchrotron measurements discussed in Section V-
B. Specifically, this phantom is designed to examine how

Fig. 3. Reconstructions of the 2D phantom presented in Fig. 1(a) using the CP
implementation of the dynamic PLI and a Fourier-based interpolation [44], both
with 104 iterations. The values at the bottom left of each image indicate the root
mean square error within the outer ellipse between the true time average of the
phantom and its estimate. The first row indicates the motion-progress evolution
over the time [0◦, 180◦] of the acquisition for each column. The circles on these
curves indicate the location in time of the ideal breakpoints for PLI, for which
the reconstructions are shown in the last row.

the reconstruction of the limited contrast of 0.02 AU is al-
tered by artifacts resulting from the motion of elements with
1.0 AU attenuation, which directly represents the magnitude
of the attenuating porous solid (1.0 /cm) and of the gas-
phase signal of interest (0.02 /cm) in these high-accuracy
measurements.

Let us now consider a fixed voxel in this phantom, initially
located in the central phase with an attenuation value of 0.18 AU,
in which one of the ellipses with attenuation of 1.0 AU moves
during the CT acquisition. The attenuation values of such a voxel
over a uniform motion are presented in the left column of Fig. 2
for a slow and a fast motion. Even if the motion is globally
uniform, the functions that represent the evolution in voxel
values are piecewise linear functions with four non-uniform
breakpoints unique to each voxel, thus motivating the use of
PLI in time. However, without priori knowledge of the ideal
breakpoint locations, the result of an uniform PLI with M
degrees of freedom is not exact, as shown in the central and
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right columns of Fig. 2 in which the PLI is compared to PCI [9],
[38], [39], [40], [41], [42] and Fourier interpolation [44].

Fig. 2 shows that the interpolation using harmonic functions
results in large errors at the extreme of the motion, whereas
PCI and PLI perform better there. However, with PCI the recon-
structed solution is discontinuous, which can result in artifacts
because of discontinuities in the sinogram estimate. Instead, PLI
provides a continuous solution that can represent both gradual
transitions and sharp gradients. Quantitative comparisons of the
mean square error

∫ 1

0 (f(t)− f ∗(t))2 dt between the interpo-
lated voxel value f(t) and its true value f ∗(t) are also given in
the legends of Fig. 2, showing that PLI significantly reduces
the error in certain cases. Finally, PCI and PLI can enable
more flexible interpolation by varying not only the number of
interpolation coefficients M , but also the breakpoint locations.
In the following, we only consider voxel-independent break-
points, even though voxel-dependent breakpoints would ideally
be required to accurately represent motions larger than one voxel
in magnitude.

PLI has already been employed in CT as a technique for the
reduction of large datasets [56]. By representing data from about
100 successive CT acquisitions with a PLI model using only 10
breakpoints, this previous study demonstrated data denoising
and compression by a factor of about 10. However, PLI was
only applied a posteriori on datasets reconstructed through static
formulations similar to (2), such that the temporal resolution
was limited to the acquisition time of an entire rotation and
motion artifacts were not directly addressed. In contrast, PLI is
here performed during reconstruction by solving (5) with PM

chosen by selecting the M interpolation functions ψk from a
linearly independent family of compact hat functions with values
in [0,1]. Specifically, the time interval of the acquisition [0, T ] is
discretized using a set of M breakpoints {τi} with M ≥ 2 such
that ⎧⎪⎨

⎪⎩
τ1 = 0

τi < τi+1, 1 ≤ i ≤M − 1

τM = T

(6)

At any time t ∈ [0, T ], the continuous attenuation field
f(x, y, t) is then estimated by its discretization ft constructed
by linear interpolation. Specifically, using the index k defined
such that τk ≤ t < τk+1, ft is linearly interpolated between the
two closest attenuation fields using weights wt as

ft =
τk+1 − t

τk+1 − τk
Φk +

t− τk
τk+1 − τk

Φk+1

= (1− wt)Φk + wtΦk+1 . (7)

The spatial weight Φk corresponds to the attenuation field ft at
the time of the kth breakpoint t = τk. This interpolation results
in a bidiagonal structure of the matrix PM .

D. Joint Interpolation Optimization Using Variable
Breakpoints

In the previous section, PLI was considered with constant
and equidistant breakpoints τk. Instead of remaining fixed, these
breakpoints can be varied such that the interpolation is adapted to

the specific sample motion of individual dataset. The following
general formulation is thus considered

(Φ∗,P∗) = arg min
Φ,P∈PM

{
1

2
||BPΦ− b||2W + λRt(Φ)

}
, (8)

in which both the solution, and the interpolation operator are
jointly optimized. Such joint formulations have been considered
in the dynamic PET literature, with different attempts to find
optimal interpolations [50], [51], [52]. In CT, one study tracked
changes in the total attenuation of successive radiographs to tune
the location of time-interpolation breakpoints [33]. However,
one limitation of this formulation, is that the cost function is
not jointly convex in (Φ,P), which makes this formulation
challenging to optimize simultaneously [52].

The simplest approach to this problem is to construct a
best-guess projector P, and solve the convex minimization
problem from (5), as done in past studies with different al-
gorithms keeping a fixed projector [33], [50]. The present
analysis instead compares the results obtained by solving (5)
with different choices of breakpoints, such that the projector
is optimized a posteriori. Specifically, in the case of numer-
ical phantoms with a known solution, this analysis is per-
formed quantitatively and an optimal set of breakpoints is
constructed.

This optimization approach represents a first step towards
solving (8). In particular, optimizing the breakpoints a posteriori
provides a lower bound of the extent of artifact reduction achiev-
able by joint optimization methods. With real datasets no quan-
titative errors can be computed, and insights from the phantom
study are instead used to select the breakpoints. Different data-
informed heuristics can guide the interpolation choice, including
the visual or automated identification of specific artifacts [10],
[32], the tracking of sudden changes in the sinogram [33], or the
limitation of M and the number of coefficients by minimizing
L0 norms.

III. ALGORITHM IMPLEMENTATION

A. Total Variation Regularization

In this work, TV regularization is used. The regularization
term Rt(f) in the cost functions defined in (5) and (8) is set to
the space-time TV of the spatial weights Φ. For a continuous
field f(x, y, t), the TV is often written using theL2,1 norm as [9],
[44], [57]

Rt(f) =

∫∫ ∫ T

t=0

√
(∂xf)2 + (∂yf)2 + μ(∂tf)2 dt dx dy ,

(9)
where μ is a time-regularization parameter. Other spatio-
temporal regularizations have been proposed, including TV with
separation between the space and time terms [38], or non-local
patch-based regularization that is less sensitive to noise [39].
In the dynamic case, using (9) to evaluate the discrete TV reg-
ularization with time increments Δt = T/(Na − 1) increases
the number of operations by a factor of O(Na) compared to
the static case, which is prohibitive in practice. Instead, in the
present work, a simplified regularization term is used, which

Authorized licensed use limited to: Stanford University. Downloaded on November 04,2022 at 06:40:17 UTC from IEEE Xplore.  Restrictions apply. 



922 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

only increases the algorithmic cost by a factor ofO(M). Specif-
ically, for the field f(x, y, t) discretized as a vector f = PMΦ
as defined previously, the TV regularization is computed as

Rt(Φ) =

N2∑
p=1

M∑
k=1

√∑Nd

d=1[DdΦ]2p,k

M
=

N2∑
p=1

M∑
k=1

[g(DΦ)]p,k
M

,

(10)
in which the summations are performed over every pixel p
and every breakpoint k. The Nd square matrices Dd are finite-
difference discretizations of the gradient operators ∂x, ∂y, and ∂t
along x, y and t, which depend on the TV scheme considered.
The matrix D ∈ RNdMN2×MN2

is the vertical concatenation
of these matrices D = (DT

1 ,D
T
2 , . . . ,D

T
Nd

)T , and the function

g returns the vector in RMN2
of the local gradient L2-norms,

such that Rt(Φ) = ||g(DΦ)||1/M using the standardL1-norm
for vectors. The matrices Dd are characterized for different TV
discretizations in Section IV-E. For static algorithms, there is
only one static image field, and R from (2) is defined equal to
Rt in (10) with M = 1 and μ = 0 by convention.

Note that if two PLI breakpoints are located close to one
another, the time-gradient between the two corresponding fields
Φk and Φk+1 will increase significantly. However, following
the hypothesis that motion is as likely to occur smoothly or
suddenly, our implementation chooses to equally penalize be-
tween successive fields Φk, independently of the breakpoint
separation. Therefore, in the matrices Dd used to discretize
the gradient operator over time, the coefficients are multiplied
by the time-separation between the breakpoints, such that the
time-difference terms appearing under the square root in (10)
are equal to μ(Φp,k+1 −Φp,k)

2 for the upwind discretization.
Besides, to simplify notations, the time-regularization parameter
is incorporated as

√
μ within the matrices Dd used to discretize

the gradient operator over time.

B. Subgradient Descent Optimization

In order to solve (2) and (5), different optimization algorithms
are considered. Because total variation (TV) regularization is
used, the objective function is not everywhere differentiable
and standard smooth optimization algorithms such as gradient
descent approaches may not converge [58]. However, these
algorithms are easy to implement and remain valuable for devel-
opment and prototyping. For this reason, the subgradient descent
(SD) algorithm is considered first. Iterations of the SD algorithm
for (2) are computed as

fn+1 = fn − γnQ
(
ATW(Afn − b) + λh

)
, (11)

in which the index n is the iteration number, γn is the step size,
Q is a preconditioner matrix, and h is a subgradient of R at fn.
To retrieve the SIRT algorithm in the case γn = 1 and λ = 0 for
which the objective function is smooth, the preconditioner Q is
defined as the diagonal matrix with the vector (AT1)−1 on the
diagonal, where the inversion is performed element-wise [59].
The SD update for solving the dynamic problem from (5) is

similarly written as

Φn+1 = Φn − γnQM

(
CT

MW(CMΦn − b) + λ/MLMh
)
,

(12)
where the matrix CM is defined by CM = BPM , the diagonal
preconditioner QM is prescribed by its diagonal (CT

M1)−1,
h is a subgradient of Rt at PMΦn, and LM is an added
preconditioner prescribed for the regularization. The precon-
ditioner LM ∈ RMN2×MN2

is defined as the block diagonal
matrix with matrices MλkIN2 on the diagonal for k from 1
to M with λk = (τk+1 − τk−1)/(2T ), where by convention
τ0 = 0 and τM+1 = T . This preconditioner is added to enforce a
comparable level of regularization to every Φk for any arbitrary
set of breakpoints.

Although the above SD update is easy to implement, its con-
vergence remains limited compared to the guaranteed O(1/n)
convergence rate of GD for smooth objective functions. In
particular, if the step size is kept constant, convergence with
SD is only guaranteed at a O(1/

√
n) rate and not necessarily

towards the optimal value [58]. However, with a proper reduction
in step size, convergence towards the optimal can be guaranteed.
In practice, SD often convergences faster than the theoretical rate
before reaching a plateau [58]. In this work, SD is employed
both using a constant step size γn = 1, and a decaying step
size for which γn = 1 is kept for n < 100, while the reduction
γn = (100/n)0.5 is used for n ≥ 100. The series of decaying
step sizes is thus square summable but not summable, which
guarantees convergence towards the optimal with a rate of at
least O(1/

√
n) [58].

C. Primal-Dual Optimization

Alternatively to gradient descent methods, splitting methods,
such as the Douglas-Rachford splitting, the alternating direction
method of multipliers (ADMM), or the primal-dual proximal al-
gorithm from Chambolle and Pock (CP) [54] can accelerate con-
vergence for non-smooth cost functions. With the non-smooth
TV regularization considered, artifact reduction is hindered by
the limited convergence of the SD algorithm. Therefore, the
better-converging CP algorithm is preferred, which guarantees
a O(1/n) decrease in the primal-dual gap. The CP algorithm
uses proximal operators to accelerate the convergence where the
objective function is non-smooth. A proximal operator provides
a vector close to the input y that lowers the value of a function
F as defined by

proxΣ
νF (y) = arg min

z

{
F (z) +

1

2ν
||y − z||2

Σ−1

}
, (13)

where || · ||Σ−1 is the L2 norm weighted by a matrix
Σ−1, and ν is a trade-off parameter between function min-
imization and proximity to the argument. To match the
CP formulation [54], the cost function from (2) is re-
written as F1(Af) + F2(Df), where F1(p) =

1
2 ||p− b||2W,

andF2(p) = λ||g(p)||1/M whereM = 1 is used by convention
for the static case. The update rule for the static CP algorithm is
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thus computed as [44], [54]

yn+1
1 = proxΣ1

F ∗
1
(yn

1 +Σ1Af̃n) =
yn
1 +Σ1(Af̃n − b)

1+Σ1W−11

(14a)

yn+1
2 = proxΣ2

F ∗
2
(yn

2 +Σ2Df̃
n
) =

λ(yn
2 +Σ2Df̃

n
)

max(λ,g(yn
2 +Σ2Df̃

n
))

(14b)

fn+1 = fn −T1A
Tyn+1

1 −T1D
Tyn+1

2 (14c)

f̃n+1 = fn+1 + κ(fn+1 − fn) (14d)

in which the divisions indicated by fractions and the maximum
are performed element-wise, F ∗ denotes the Fenchel conjugate
of function F , y1 and y2 are the dual variables, f̃ is the over-
relaxation in the primal variable controlled by the extrapolation
factor κ, and the primal and dual preconditioning matrices Σ1,
Σ2, and T1 are computed as proposed by Chambolle and Pock
with α = 1 using notation from their article [60]. With these
definitions, Σ1 = W such that the denominator in the update of
yn+1
1 simplifies to a scalar division by two. The preconditioners

Σ2, and T1 depend on the TV scheme used. For the explicit
expressions of Σ2 and T1, the reader is referred to the open-
source code available online. In this work, κ is kept equal to 1.
Details on the derivation of the CP algorithm can be found in
previous articles [44], [54], [60].

In the case of the PLI objective of the dynamic problem from
(5), the update from the CP algorithm reads

yn+1
1 = proxΣ3

F ∗
1
(yn

1 +Σ3CM Φ̃n) =
yn
1 +Σ3(CM Φ̃n − b)

1+Σ3W−11

(15a)

yn+1
2 = proxΣ4

F ∗
2
(yn

2 +Σ4DΦ̃
n
) =

λ̃(yn
2 +Σ4DΦ̃

n
)

max(λ̃,g(yn
2 +Σ4DΦ̃

n
))

(15b)

Φn+1 = Φn −T2C
T
Myn+1

1 −T2LMDTyn+1
2 (15c)

Φ̃n+1 = Φn+1 + κ(Φn+1 −Φn) (15d)

in which the divisions indicated by fractions and the maximum
are evaluated element-wise, and λ̃ = λ/M . The primal and
dual preconditioning matrices Σ3 = W, Σ4, and T2 are again
computed as proposed by Chambolle and Pock [60].

In the following, the static SD and CP algorithms, corre-
sponding to the updates given by (11) and (14) respectively,
are initialized using a zero solution field. In contrast, the two
PLI algorithms corresponding to the updates given by (12) and
(15) are initialized by the solution obtained after 200 iterations
of the corresponding static algorithms.

D. Implementation and Scaling

One key benefit of using the linear time decomposition from
(3) is that the current algorithm can leverage already optimized
implementations of the forward and backward CT projections,

TABLE I
AVERAGE TIMES FOR ONE ITERATION OF THE PROPOSED ALGORITHMS

(NORMALIZED BY THE 7.2 S OF ONE SD ITERATION, 4× BIN, M = 1)

represented by the operators A and AT . Therefore, the pro-
posed algorithm is implemented at a modular level in Python to
facilitate its implementation in already optimized lower-level
CT libraries such as TomoPy [61], TIGRE [62], Savu [63],
CIL [64] or ODL [65]. The current implementation is using
the CUDA routines of the ASTRA Toolbox for forward and
backward projections [66].

Compared to previously proposed approaches using non-
compact interpolation functions, PLI reduces the number of
floating-point operations. Specifically, because of the bidiagonal
structure of PM , the algorithmic cost associated with the CT
projection at every iteration of the dynamic algorithm is only
twice that of the equivalent static algorithm for all values of
M , compared to an increase by a factor O(M) when using
non-compact interpolation functions such as harmonic func-
tions [44]. Indeed, each spatial weightΦk is only projected at the
angles acquired between times τk−1 and τk+1, instead of over
the entire half-rotation. However, the global algorithmic cost
associated with computing updates for the regularization term
is still increased by a factor of M compared to the equivalent
static algorithm, since a TV update is computed for each spatial
weight Φk at every iteration.

The code was implemented to be compatible with both CPU
and GPU. The multithreading available in Numpy was used
for the CPU implementation, while the GPU version was de-
veloped using the CUDA convolutions and operations from
PyTorch [67]. The TV routines for 4D data on CPU and GPU are
provided in the package PyTV-4D (https://github.com/eboigne/
PyTV-4D). Note that the choice of using separate Python li-
braries for the CT and TV calculations comes at the cost of an
added transfer between host and device per iteration.

To accommodate large datasets, the implementation is directly
parallelized along the z-direction by performing the operations
successively on chunks of multiple slices at every iteration. For
a parallel beam, the CT problem is purely separable along the
z-direction and no specific considerations are required for this
parallelization. In contrast, computing the TV update for slices
z1 to z2 requires access to the data from slices z1 − 1 to z2 + 1,
and this one slice overlap is accounted for in the implementation.

For a fixed number of angles Na, the code execution time is
expected to scale in O(NzMN2). To confirm this scaling, Ta-
ble I reports the time of one iteration of the SD and CP algorithms
for varying data size and values of M . These calculations are
done with the second dataset discussed in Section V-B which
is of size Nz ×N ×Na. It is reconstructed into a volume of
size Nz ×N ×N , while keeping Na = 2101 constant for all
binnings. M = 1 correspond to the static algorithms given by
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(11) and (14). The calculations are performed using single pre-
cision on a node equipped with a GeForce GTX TITAN X GPU
and an Intel Xeon E5-2697 v2 CPU with 24 cores. The results
show that the code scales reasonably well, with both algorithms
performing better than the asymptotic scaling suggest in most
cases. However, the CP algorithm with M = 2 is almost twice
slower than expected, showing the limitations of a high-level
Python wrapper. The present implementation can be improved
by using a compiled language to accelerate the code, as done in
the implementations of other time-decomposition methods [44].
Alternatively, as explored in previous CT studies [42], [68], the
convergence may be accelerated by binning down the data and
up-scaling it during the iterations, although this approach was
not tested here.

IV. VALIDATION

A. Ideal Phantom Results

In order to validate the proposed algorithm and to evaluate the
capacities of the method to reduce motion artifacts, a numerical
phantom analysis is first performed. The focus of this analysis
is to quantitatively retrieve the limited contrast in the linear
attenuation from the phantom shown in Fig. 1, while consid-
ering artifacts from the motion of highly attenuating elements.
A range of different time histories of the sample motion is
analyzed to further investigate the robustness of the method to
different types of motions. Indeed, analytical studies of motion
artifacts clearly showed that artifacts are heavily dependent on
the time history of the motion, with characteristic patterns for
continuous motion [69] and quasi-instantaneous events [70].
In the following, the time variable is expressed in units of
degrees corresponding to the value of the rotating angle, such
that the first half-rotation is acquired over the time interval
[0◦, 180◦].

The phantom images considered are squares of 250 vox-
els per side, which are projected with a parallel beam on a
detector of 250 pixels over 200 equidistant angles covering
a half-rotation of 180◦. To construct the sinograms, the 2.0.0
version of the TomoPhantom toolbox is employed [71]. The use
of the analytical Radon transform in TomoPhantom ensures that
the constructed sinograms are free of aliasing errors arising from
the discretization scheme employed in the tomography projector
A [72]. Specifically, the analytical sinogram is constructed by
evaluating the Radon integrals at the central pixel location, as-
suming a zero-width pixel and accounting for sub-pixel motion.
TomoPhantom also constructs a time-series of the corresponding
discretized phantom, which is however implemented without
sub-pixel interpolation. Therefore, in order to create a time-
series phantom that accounts for sub-pixel motion, the phantoms
are generated in TomoPhantom from over-sampling by a factor
of eight in the number of pixels, and then down-sampling using
a 2D bilinear interpolation. The construction of the analytical
sinogram b and the reconstruction results are not affected by
this procedure. Indeed, the phantom time-series in only used to
evaluate the RMS error between the reconstructed phantoms and
the ideal solutions, which barely change when over-sampling by
a factor of more than eight.

In a first analysis, four different time-history profiles of the
motions are considered. Represented in Fig. 3, these motions
describe either (a) continuous motion, (b) instantaneous motion
event, (c) more intermittent motion, or (d) periodic motion.
The sinograms reconstructed with the PLI method proposed
in this work are compared with two reference algorithms: one
that does not involve any time interpolation, and one time-
interpolation method based on a Fourier decomposition [44].
The regularization parameters used in the PLI and Fourier-based
implementations are chosen as λ = 2−4 and μ = 2−2, and both
algorithms are run for 104 iterations. The implementation of
the Fourier-based method is the one made available publicly in
the original article [44], in which the initial guess is the FBP
reconstruction.

Time-averaged reconstructed solution fields f are presented
in Fig. 3, along with the root mean square errors to the ideal
time-averaged phantom evaluated over the distribution of pixels
contained within the outer ellipse. The static reconstructions
highlight the large impact of the time history on the resulting
artifacts. With a continuous motion (a), some elements feature
only limited artifacts (ellipses A and E, as labeled in Fig. 1),
while with a sudden motion (b), sharp visible streaks align along
the angle corresponding to the time of the discrete event. This
direct relation between the streak alignment and the time of the
discrete event has been investigated in past analytical work [70],
and is used in the present study to tune the breakpoints of the
PLI.

With M = 2, PLI achieves significant artifact reduction in
the case of the linear motion of type (a). This result is relatively
unexpected: PLI with two breakpoints is not able to accurately
represent the time-evolution of all voxels, because of the partial
volume effect and the extent of the motion over 5 voxels. Yet, the
delocalized streaks are still significantly reduced and remnant
artifacts are localized in the vicinity of the moving elements.
For the other time histories (b)-(d), PLI with M = 2 primarily
removes the streaks aligned along the vertical direction of the
first angle of projection, but the extent of the overall artifact
reduction remains limited.

As M is increased to 3 and 4, the artifact reduction becomes
more significant in all cases (a)-(d). For motion (a), significant
artifact reduction is achieved with PLI for M ≥ 3, whereas the
results with M = 4 are comparable to using a Fourier-based
interpolation for motions (b) and (c). However, by considering
four non-equidistant PLI breakpoints and instead fixing them to
their ideal values, the PLI algorithm retrieves solutions that are
almost entirely free of artifacts in cases (b) and (c). Finally, as
expected, the Fourier-based method does particularly well for
a periodic motion (d), even though promising results are also
achieved with PLI and M = 5.

This phantom study is ideal as there is no noise in the sinogram
data, and the motion considered are monotonic despite being
diverse. Under these ideal conditions, the results demonstrate
the potential of the proposed algorithm to converge towards
artifact-free solutions. In particular, this analysis shows that the
flexibility in the PLI breakpoints is a major advantage over fixed
interpolations when attempting to model a variety of motions.
However, we note that both PLI and the Fourier-based methods
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Fig. 4. Reconstructions of a noisy sinogram of the 2D phantom presented in
Fig. 1(a) using the CP implementation of the dynamic PLI and a Fourier-based
interpolation [44], both with 104 iterations. The grayscale, root mean square
error values, and ideal PLI breakpoints are defined as in Fig. 3.

produce results with a broadening of the solid elements, which
is attributed to the failure of the truncated time-decomposition
to exactly represent the underlying evolution for all voxels. Even
though this broadening is relatively over-represented in Fig. 3 by
the narrow grayscale window in attenuation values, it remains
a limitation of these methods. Finally, even though the motion
of ellipse F is non-rigid, these 2D phantoms do not account
for the unique types of motion artifacts that can be generated
in 3D. Evaluating PLI on 3D motion is investigated with the
synchrotron datasets discussed in Section V.

B. Impact of Realistic-Data Irregularities

Additional phantom results are discussed in this section to
analyze how robust the method is to the presence of noise, and
how it performs when the motion is non-monotonic or spatially-
varying. First, Fig. 4 shows results similar to Fig. 3 when pixel-
noise is added to the sinogram data. The noise added is sampled
from a mean-zero Gaussian distribution with standard deviation
of 1.0, assuming of a voxel size of 1.0. These results show that
the performances of both PLI and the Fourier interpolation are
similarly reduced, with slightly more remnant artifacts present
in the reconstructions.

To illustrate the time-resolving capabilities of the PLI method,
Fig. 5 compares the solution fields Φk reconstructed with PLI
andM = 4 at the different breakpoints in the case of the sudden
motion from Fig. 4(b). The results show that the streak artifacts
are entirely eliminated at all times with the ideal breakpoints,
whereas they dominate the solution fields in the case of equidis-
tant breakpoints. The broadening of the solid elements is visible,
but it remains clear that the algorithm retrieves the rotations of
ellipses D and E.

Fig. 6 shows results examining how PLI performs when more
realistic motions are considered. In the case of (a) a single sudden
motion with vibrations, the artifact correction is reduced, and the
performance gap between PLI and the Fourier-based method is
cut down. In the second case (b) considering two sudden motions
occurring at different times, the artifact reduction with M = 4

Fig. 5. Time-resolved results of the spatial weights Φk obtained with the PLI
algorithm for M = 4, compared to the original phantom for the sudden discrete
motion shown in Fig. 3(b). For the phantom and PLI with ideal breakpoints τ2 =
81.0◦ and τ3 = 81.9◦, whereas for PLI with equidistant breakpoints τ2 = 60◦
and τ3 = 120◦. The grayscale and the noisy sinogram used are the same as in
Fig. 4.

Fig. 6. Reconstructions of two complex motions of the 2D phantom presented
in Fig. 1(a) using the CP implementation of the dynamic PLI and a Fourier-based
interpolation [44], both with 104 iterations. The time histories for both motions
are indicated in the first line plot. In the two left columns (a), a sudden motion
occurs near 81◦ along with random vibrations, while in the two right columns
(b), the motion is spatially variant: the upper half of the phantom suddenly
moves at 81◦, while the lower half moves at 135◦. The grayscale levels, the
noisy sinogram, and the root mean square error values are defined as in Fig. 4.
The ideal PLI breakpoints in the first case (a) for M = 4 are [0◦, 72◦, 90◦,
180◦], while in the second case (b) for M = 6 they are [0◦, 81◦, 81.9◦, 135◦,
135.9◦, 180◦].

remains limited. This trend is consistent with the fact that PLI
with M = 4 and global voxel-independent breakpoints fail to
capture such spatially-varying motions. Specifically, the artifacts
corresponding to the first and second motions can be reduced
independently with M = 4. However, reducing artifacts from
both motions simultaneously requires at least M = 6 global
breakpoints.
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Fig. 7. Optimization of the PLI breakpoints using the root mean square error
to the true time-averaged phantom for some of the results shown in Figs. 3,
4, and 6. In (a) M is increased with equidistant breakpoints for M ≥ 3, while
in (b)-(d) the two inner breakpoints are varied for M = 4. In (a), for M = 3
the abscissa is equal to the second-breakpoint τ2. For M = 4, the results are
plotted along the mid-point between the two inner breakpoints (τ3 + τ2)/2 for
diverse distances between these breakpoints Δτ = τ3 − τ2. The first and last
breakpoints remain fixed: τ1 = 0◦ and τM = 180◦.

These results indicate that although the performance of
PLI will suffer from irregularities in more realistic data, the
flexible-breakpoint PLI method still arguably outperforms the
fixed Fourier interpolation. Results in the case of spatially-
varying motion also indicate that adding breakpoints could
improve the artifact reduction. In particular, using voxel-specific
breakpoints could improve future results, where coarse spa-
tial parametrization would capture local motion while limit-
ing the increase in the number of parameters, similar to the
coarse B-spline interpolations used to represent DVFs [26], [27],
[28], [29].

C. Analysis of Optimal Breakpoints

As shown in Figs. 3, 4, and 6, the improved performance of
PLI over a fixed interpolation is largely due to the flexibility
to select an ideal set of breakpoints. To quantitatively analyze
the impact of the selection of breakpoints on the reconstruction
quality, Fig. 7 reports the RMS error to the ideal phantom for
different motions and sets of breakpoint. In the case of (a) a
constant linear motion, the quality of the reconstruction is rather
independent to the choice ofM . In addition, as long as the inner
breakpoints for M ≥ 3 are not too close to the beginning or the
end of the acquisition, the performance does not suffer from
varying the breakpoints.

However, in the case of (b) a more sudden motion, there
is a clear optimal selection of breakpoints. Specifically, it is
necessary to have two breakpoints close to the time of the
discontinuity, with a sharp reduction in the PLI performance
if the center between these breakpoints is only placed a few
degrees away from the characteristic angle of the motion. In
contrast, the performance is rather insensitive to the separa-
tion between these two inner breakpoints, with only limited
performance changes for separations Δτ < 30◦. The addition
of (c) vibrations to the motion reduces the sensitivity to the
breakpoint location as the motion-progress is more continu-
ous, while (d) pixel-noise barely impact these performance
curves.

Fig. 8. Convergence of the normalized cost function from the dynamic CT for-
mulation of (5) for different optimization algorithms. These results corresponds
to the phantom shown in Fig. 3(a) with M = 2.

D. Optimization Algorithm and Convergence

In most CT applications, a few hundred iterations are suffi-
cient to reach satisfactory convergence. In contrast, more itera-
tions are necessary for quantitative CT results that guarantee
errors below 1%. In addition, the use of TV regularization
results in a non-smooth objective function for which standard
gradient descent methods may fail to converge. However, despite
the recognized importance of regularization in reducing motion
artifacts [44], only few studies report on the convergence of the
methods that are proposed. In this study, the maximum artifact
reduction is achieved using the CP algorithm with at least 104

iterations, whereas only a limited artifact reduction is observed
with the SD algorithm.

The convergence of the cost function c normalized with
respect to its initial value c0 and optimal value c∗ is presented in
Fig. 8 over 104 iterations for SD with fixed and decaying step
size, and for the CP algorithm. The optimal value c∗ corresponds
to the value achieved with the CP algorithm after 105 iterations.
These results confirm that SD reaches a plateau in which the
algorithm oscillates due to a too large step size, whereas CP
convergences with a rate of almost O(1/n2). With SD, reducing
the step size slightly improves the convergence. Note that c = c0
only when the number of iterations is equal to 0 which does not
appear in this log-log graph, and explains why all values shown
are below 1.

Fig. 9 shows a comparison of the reconstructions of the
time-averaged solution field f obtained after 104 iterations for
the different algorithms. The results prove that, although the SD
convergence only plateaus after about 3000 iterations, the better
convergence of CP is directly related to a further reduction in
streak artifacts. In particular, the red arrows in Fig. 9 identify
regions where artifacts visible in the SD results are eliminated
with CP. In addition, even though reducing the step size with SD
eliminates the checkerboard artifacts visible in Fig. 9, it does not
provide the artifact reduction achieved by the CP algorithm. For
the CP algorithm, the results achieved with 105 iterations do not
yield any visible changes in the solution field compared to 104

iterations. However, visible changes are observed when com-
paring the solutions reconstructed with less than 104 iterations.
In particular, the results achieved with CP after 500 iterations
resemble those achieved with SD after 104 iterations.

Therefore, this analysis indicates that algorithm convergence
should be carefully examined when evaluating artifact reduction,
particularly for high-accuracy reconstructions. In the present
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Fig. 9. Comparisons of the reconstructions obtained with the different algo-
rithms after 104 iterations. The phantom case is the same as considered in Fig. 8,
and corresponds to the motion shown in Fig. 3(a) with M = 2. The second row
is a zoom into the results from the first row. The two colorbars indicate the
attenuation in AU for the first and second rows.

work, the focus is on high-accuracy measurements and high
number of iterations is required. In addition, although gradient
descent approaches such as SD are faster to implement and
convenient for prototyping, the present results confirm that
gradient descent methods fail to converge when non-smooth TV
objectives are considered. As a result, these methods should be
avoided when high-accuracy reconstructions are desired. The
better-performing CP algorithm with 104 iterations is thus used
in the remainder of this study.

E. TV Discretization Scheme

In this work, TV regularization is used to drive the con-
vergence towards artifact-free solutions. One limitation of TV
regularization is the “staircase” effect, in which over-regularized
images are recovered with undesirable regions of piecewise-
constant values. This effect appears in the results obtained in
this work, and a new method is considered to reduce their
impact. Several approaches have been proposed to minimize
the staircase effect, such as using higher order derivatives [2],
[57], a general form of the total variation [73], or non-local
regularization [39], [74]. Alternatively, the solution can be reg-
ularized by explicitly minimizing motion artifacts metrics, such
as image entropy and positivity that quantify the magnitude of
artifacts [10].

To reduce staircase artifacts in this study, a different approach
is taken. Instead of considering higher-order derivatives in the
definition of the TV [2], [57], higher-order approximations of the
squares of the first-order derivatives in (9) are considered. This
approach is motivated by recognizing that although the standard
TV defined by (10) is invariant to rotation, its discretization using
finite differences may not be. Indeed, the spatial gradients are
typically evaluated using a first-order finite difference scheme
such as

(∂xf)i,j = fi+1,j − fi,j , (∂yf)i,j = fi,j+1 − fi,j , (16)

TABLE II
NUMERICAL TV SCHEMES CONSIDERED IN THIS WORK, ILLUSTRATED FOR

THE 2D CONTINUOUS FIELD f(x, y) DISCRETIZED AS fi,j

in which the indexes i and j of the 2D discrete field fi,j are along
the x and y-axis of the 2D continuous field f . This discretization
can be intepretated as the upwind discretization used to numeri-
cally solve partial differential equations with unit step size. This
scheme is commonly used in TV calculations because it provides
satisfactory results in most applications while remaining simple
to implement [2]. However, the TV discretized using this scheme
is not rotation-invariant in the following sense: at an image
invariant by rotation f , a subgradient h of the TV function R
from (10) is not itself invariant by rotation. Instead, second-order
approximations of (∂xf)2i,j and (∂yf)

2
i,j result in a discretized

TV function satisfying this property.
In the literature, the idea of considering higher order neighbor-

hood has been discussed (Chapter 1 of [2]), and a few studies
have used schemes with better than first-order accuracy [36],
[75], [76]. However, only limited research has considered how
higher-order discretization can minimize staircase artifacts, par-
ticularly in the context of dynamic CT. Four different TV dis-
cretization schemes are here compared, including a new hybrid
discretization that is proposed to reduce staircase artifacts. The
discretization of (∂xf)2i,j for these four schemes are explicitly
defined in Table II. The discretization of (∂yf)2i,j is similarly
defined by permuting the i and j indices. Extensions to the 3D
and 4D cases are also performed by extension along the z and
t-axis.

Fig. 10 compares the reconstructions retrieved with the differ-
ent TV discretizations after 104 iterations of the CP algorithm.
With all schemes, the sharp solid edges are preserved. However,
the upwind and downwind schemes both feature staircase arti-
facts, whereas these artifacts are absent with the proposed hybrid
discretization scheme. The central scheme is also second-order
accurate, but the difference between direct neighbor voxels is
never computed in this scheme, which results in the checker-
board pattern visible in the results. Because of the key role
of TV regularization in penalizing streak artifacts and nudging
the convergence towards smooth reconstructions, overall better
results are achieved with the hybrid scheme. Therefore, this
hybrid scheme is used in all the results shown in this study
except those of Fig. 10.

V. APPLICATION TO EXPERIMENTAL DATA

A. Application to a Bone Tissue Experiment

Synchrotron measurements of the wettability of bone tissue
scaffolds acquired at the SYMREP beamline from Elettra have
been shared on TomoBank [77], [78]. This dataset is used here,
and consists of a 180◦ tomography acquisition of a scaffold
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Fig. 10. Comparisons of the reconstructions obtained after 104 iterations of
the different TV discretization schemes. The phantom case is the sudden discrete
motion shown in Fig. 3(b) with M = 2 and the CP algorithm. Images (e)-(h)
are zoom into the red rectangle shown in (a), and the error values specified in
the captions indicate the root mean square error within the outer ellipse between
the true time average of the phantom and its estimate.

embedded with liquid water. The wettability of the bio-structure
is such that air bubbles form within the scaffolds. Over the course
of the acquisition, some of these air bubbles move, shrink, or
coalesce, thus resulting in artifacts in the form of incomplete
bubble contours, as well as streaks aligned with parts of the
moving scaffolds and bubbles.

These artifacts are visible in Fig. 11 showing the reconstruc-
tions obtained with the static CP algorithm, a Fourier-based
dynamic reconstruction [44], and the PLI interpolation with
M = 2 andM = 4. Without time interpolation, artificial streaks
deteriorate the attenuation field within the water, which would
otherwise be homogeneous. The vertical alignment of these
streaks suggests a continuous drift of the solid, similar to what
is shown in Fig. 3(a). With the dynamic PLI algorithm and
M = 2, these streaks are largely eliminated, especially far away
from the moving scaffold or bubbles. The bubble contours are
more sharply defined, although some artifacts are still present.
However, switching from M = 2 to M = 4 with PLI barely
changes the results. This trend is consistent with the numerical
results from Fig. 3(a), and is explained by the fact that a uniform
motion is equally modeled with M = 2 and M = 4. Varying
the breakpoints withM = 4 did not visually improve the results
with this dataset. With the Fourier-based reconstruction, the ver-
tical streaks are slightly less attenuated than with PLI. However,
the Fourier-based reconstruction eliminates small artifacts near
the scaffold struts that are not very affected by PLI. It is not
clear what these artifacts are due to, and overall qualitative com-
parisons suggest that both methods arguably perform similarly
on this dataset. Note that compared to the phantom analysis

Fig. 11. Algorithm comparisons on bone scaffold data [77] for 104 iterations
with λ = 21 andμ = 2−4. For the caseM = 4, the breakpoints are equidistant.
The colorbar indicates the linear attenuation in cm−1. For the Fourier-based
reconstruction [44]: λ = 21 and μ = 2−3.

in which similar regularization parameters λ and ν were used,
different values are necessary with these larger datasets in order
to retrieve comparable levels of regularization in the images,
which is attributed to the use of two different implementations.

B. Application to Gas Measurements Inside a Ceramic Foam

The proposed method is applied to a second set of data
from in situ experiments performed at the 8.3.2 beamline of
the Advanced Light Source (ALS) at the Lawrence Berkeley
National Laboratory (LBNL). These measurements investigate
the topology of flames stabilized inside open-cell foams of
silicon carbide. The quantity of interest is the X-ray attenua-
tion of the gas-phase within the solid matrix pores, which is
augmented using Krypton, a high-attenuation inert gas. The
measured attenuation signal in the pores is proportional to the
gas-phase densityρ, which is inversely related to the temperature
T according to the ideal gas law T ∝ 1/ρ ∝ 1/f . The temper-
ature can therefore be retrieved from the attenuation f , even
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Fig. 12. Algorithm comparisons for the interstitial flame datasets acquired
at the ALS. Reconstructions are performed using 104 iterations with λ = 2−6

and μ = 2−5. The colorbar indicates the linear attenuation in cm−1. For the
Fourier-based reconstruction [44]: λ = 2−6 and μ = 2−3.

though the signal remains of relatively low magnitude. These
experiments therefore require high-accuracy quantitative mea-
surements to characterize the flame structure within the pores of
ceramic foams [79], [80]. However, under the thermal load of
the flame, the foam expands and slowly drifts, thereby resulting
in motion artifacts that compromise the gas-phase temperature
measurements. In addition, sudden motion of the foam can occur
because of strut buckling and cracking during the acquisition.
The presence of both continuous and sudden motions in these
experiments motivated the development of the proposed flexible
PLI formulation.

Fig. 13. Algorithm comparisons for the third interstitial flame dataset acquired
at the ALS. Reconstructions are performed using 104 iterations with λ = 2−4

and μ = 2−5. For M = 4, the breakpoints are either equidistant [0◦, 60◦, 120◦,
180◦] or manually tuned [0◦, 124◦, 125◦, 180◦]. The colorbar indicates the
linear attenuation in cm−1. For the Fourier-based reconstruction [44]: λ = 2−4

and μ = 2−3.

Figs. 12 and 13 compare the artifact reduction obtained with
Fourier-based reconstruction [44] and the proposed PLI method.
Three datasets are reported, in which a methane-air mixture con-
taining 50% Kr per volume is flown through different ceramic
foams placed inside a quartz tube. Each dataset consists of 2101
images acquired at a rate of 25 fps during a 180◦ rotation of the
sample.

The first dataset, shown in Fig. 12(a) is a reference dataset
with a non-ignited mixture. In this case, no motion artifacts are
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visible, as there is no flame within the static foam. The constant
attenuation value of 0.021 cm−1 in the gas-phase corresponds
to the Kr-attenuation at a temperature of 300 K.

Fig. 12(b) shows results from a second CT scan acquired while
the mixture is ignited and a flame is stabilized inside the ceramic
foam. The gas-phase attenuation is significantly lower because
of the higher gas temperature T as per f ∝ 1/T , and motion
artifacts due to the moving solid foam are observed. Similar
to the scaffold data shown in Fig. 11, the vertical alignment
of the streaks suggests a continuous solid motion. Comparing
successive CT scans indicates that the amplitude of this motion
is lower than one voxel (10 μm) per scan, which is however
sufficient to compromise temperature measurements.

Whereas with the bone scaffold dataset, PLI and Fourier
interpolation performed similarly, the results with this ALS
dataset show that a significantly higher artifact reduction is
achieved with PLI. Specifically, the impact of the artifacts on
the gas-phase measurements in the middle of the pores is sig-
nificantly reduced with PLI. Analogous to the results shown in
Fig. 11, the PLI reconstructions with M = 4 and equidistant
breakpoints barely differ from the case M = 2, and are thus
not shown. These results confirms that PLI with M = 2 is
particularly effective and robust at eliminating streaks that are
aligned with the direction of the first angle of projection.

The third dataset shown in Fig. 13 features major streaks
aligned at a specific angle, resembling the artifacts from Fig. 3(b)
for a sudden motion. As supported by analytical results [70], this
streak alignment indicates that the solid suddenly moved by less
than a voxel when the angle 125◦ was acquired. The artifact
reduction achieved using PLI for M = 2 and M = 4 with
equidistant breakpoints remains limited. However, by setting
the PLI breakpoints right before and after the sample motion,
the artifacts are largely reduced. Specifically, in coherence with
the breakpoint analysis of Fig. 7, the artifact reduction is barely
sensitive to the breakpoint separation, whereas it is very de-
pendent on the mean value between the two inner breakpoints,
which is tuned by visually comparing results obtained with 1◦ in-
crement. The data-informed breakpoint selection demonstrated
with numerical phantom in Fig. 3(b) can thus also work with
real datasets.

The Fourier interpolation performs similarly to PLI in this
third dataset, although certain streaks that are still observed in
the Fourier results are largely reduced with PLI (upper arrow
in Fig. 13). Overall, these comparisons show that PLI performs
better on the second dataset but similarly on the third dataset.

VI. CONCLUSIONS AND DISCUSSION

A new approach for reducing motion artifacts using Piecewise
Linear Interpolation (PLI) in time is proposed, validated with
numerical phantoms, and demonstrated on datasets from two
synchrotron experiments. The method relies on decomposing
the solution in time using M breakpoints to model the time
variations of each voxel and reduce motion artifacts. The im-
plementation leverages the compactness of the PLI functions to
reduce the algorithmic cost, and the code used to produce results
from this article is shared online (https://github.com/eboigne/

PyRAMID-CT). A second-order accurate discretization of the
TV regularization is also proposed to reduce staircase artifacts,
representing a potential alternative to TV implementations using
higher order derivatives [2], [57].

PLI appears particularly natural for sub-pixel motion as varia-
tions in voxel values are piecewise-linear during uniform motion
because of the partial volume effect. With ideal phantoms,
our analysis show that by optimizing the PLI breakpoints, the
method can eliminate artifacts created from a variety of mo-
tions, outperforming a Fourier interpolation approach from the
literature [44]. The breakpoint optimization is done a posteriori
on a per-case basis, which may be limiting for certain applica-
tions, but illustrates the extent of artifact reduction that could
be achieved by jointly optimizing for the interpolation basis.
Interestingly, even when insufficient breakpoints are used to
exactly model the evolution of all voxel values, the artifacts can
still be greatly attenuated and localized near the moving objects.

The method also achieves large artifact reduction in syn-
chrotron data, notably enabling quantitative gas-phase experi-
ments compromised by sub-pixel motion. In these experiments,
the performance achieved is slightly lower than with ideal
phantoms, but comparable to what is obtained with non-ideal
phantoms modeling noise and irregularities in the motion. In
contrast, when applied to the less quantitative measurements of
a bone scaffold dataset featuring larger motion, the PLI method
performs similarly to Fourier interpolation. PLI therefore ap-
pears particularly appropriate for high-accuracy quantitative CT
applications that are compromised by small motions. For such
high-accuracy applications, our convergence study indicates that
a large number of iterations is required, whereas 500 to 1000 iter-
ations will likely be sufficient for less quantitative applications.

In addition, our analysis of a variety of motion profiles
highlights the enhanced performance achieved by considering
a flexible interpolation instead of a fixed one [44]. The para-
metric flexibility of the proposed PLI formulation is a first
step in this direction, demonstrating that data-informed joint
optimization of the interpolation could work in CT, similarly
to that proposed in dynamic PET [51], [52]. In the future,
the choice of interpolation could be guided by data-driven
approaches, such as the identification of characteristic arti-
facts by convolutional neural networks [32], [81]. The time
decomposition could also be varied spatially using coarse local
parametrizations, to model more complex motions than with the
global voxel-independent breakpoints considered in the present
study.

Finally, while most artifact-reduction methods are evaluated
on time-series of multiple CT rotations, the proposed PLI
method is demonstrated to work on single CT datasets. This
result may be particularly relevant to synchrotron CT with
limited beamtime access prohibiting extensive dynamic studies,
and clinical CT for which minimal X-ray exposure is critical. In
clinical CT, PLI is likely most promising for head and breast CT
or gated chest CT with limited motion, whereas a Fourier time-
interpolation would be more suited for non-gated chest CT with
periodic motion. In particular, even though time-decomposition
approaches remain expensive compared to direct reconstruction
algorithms (FBP, FDK), their cost scales linearly with M and
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they are only a few times slower than iterative methods (SIRT,
CGLS, MLEM), and may thus soon be relevant to clinical CT.
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