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Discontinuous Galerkin methods struggle to efficiently represent high-gradient features
without spurious oscillations due to their polynomial basis. This paper discusses the devel-
opment of an enriched basis discontinuous Galerkin method to better resolve high-gradient
features in compressible flows. The standard polynomial basis is augmented with problem-
specific non-polynomial enrichment functions to represent underresolved features. The enrich-
ment functions are incorporated into the basis using a partition of unity to keep themethodology
consistent. The method was tailored for shock capturing and wall-modeling of turbulent flows.
The performance is evaluated with shock tube problems and Reynolds-averaged Navier-Stokes
turbulent channel simulations. The results show this methodology allows for sharp represen-
tation of shocks within elements and for larger elements and fewer degrees of freedom to be
used in the near wall region of turbulent channel flows.

I. Introduction
Throughout fluid mechanics, high-order discontinuous Galerkin (DG) methods have shown advantages over

conventional second-order finite volume schemes [1]. Some such advantages of DG schemes are geometric flexibility,
high spatial order of accuracy, a high degree of scalability, and flexibility for representing the solution via hp-adaptability.
DG methods have demonstrated success in a wide range of areas such as aerodynamics [2], turbulence [3], combustion
[4], and hypersonic reentry [5].

While DG methods have had success in many areas, they struggle to efficiently represent shocks and other
high-gradient features, such as boundary layers, contacts, or reaction fronts. This is a consequence of the polynomial
basis on which DG methods are developed, which is subject to spurious oscillations and instabilities. For shocks, a
number of different techniques, such as limiters [6] [7], artificial viscosity [8], and mesh optimization methods [9],
have been developed, but none have presented a clear solution to the issues presented because they can cause a loss
of accuracy, smoothing of shocks, and a great increase in computational cost. In order to resolve turbulent boundary
layers, meshes in which wall normal resolution scales with Re2

τ in the near-wall region must be used [10]. There has
been work done to develop wall-models for DG methods following the work in the finite volume and finite difference
communities, but these methods become insufficient for application to higher Reynolds number flows [11] [12] or
require modifications to the DG algorithm [13].

In this paper, we present another type of method to better represent shocks and boundary layers in DG methods
using basis enrichment. In this method, problem dependent, non-polynomial enrichment functions that represent
high-gradient features are added to the solution basis. This method does not require that the enrichment functions are
used in the solution representation, but allows the method to choose these degrees of freedom to represent the solution if
they improve the solution. The theoretical details of this methodology were developed for continuous finite elements
in the partition-of-unity method (PUM) [14] and have been developed further in the extended finite element method
(XFEM) and the generalized finite element method (GFEM) [15]. While these methods were originally developed for
crack propagation and solid mechanics applications, they have since been applied to high-gradient convection-diffusion
equations [16] and Stokes flows [17]. Additionally, this framework was combined with DG methods for high Péclet
number advection-diffusion problems [18], two-phase flows [19], immersed boundary methods [20], and recently for
RANS [21] and hybrid RANS/LES simulations of incompressible, wall-bounded turbulent flows [22]. However, to our
knowledge, there has been little work done to apply enriched basis methods to compressible flows. By addressing this
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issue, we have adapted basis enrichment methods from the finite element community to a DG framework to improve
the resolution of shocks and boundary layers in compressible flow simulations. This study serves as an initial test of
the potential of enriched basis methods for shock-capturing and wall-modeling of compressible flows. As such, an
emphasis was placed on simplicity of the methods developed and further steps will be taken to optimize the methods for
the chosen applications in the future.

II. Mathematical Formulation
This section describes the governing equations, discontinuous Galerkin discretization, and enriched basis discontin-

uous Galerkin framework.

A. Compressible Flow Governing Equations
The first set of governing equations considered in this study is the compressible Navier-Stokes equations with the

equations for conservation of mass, momentum, and total internal energy written as

∂t ρ + ∇ · (ρu) = 0, (1)
∂t (ρu) + ∇ · (ρu ⊗ u + pI ) = ∇ · τ, (2)
∂t (ρE) + ∇ · (u(ρE + p)) = ∇ · (u · τ) − ∇ · q, (3)

where t is time, ρ is density, u is velocity, p is pressure, E is total energy, τ is the Reynolds stress, and q is the heat flux.
The ideal gas law is used to relate pressure to total energy as

p = (γ − 1)
(
ρE −

ρ

2
|u |2

)
, (4)

where γ is the ratio of specific heats, which is set to a constant value of 1.4 in this study. The Reynolds stress and heat
flux are defined as

τ = µ(∇u + (∇u)T −
2
3
(∇ · u)I ), (5)

q = k∇T, k =
Cpµ

Pr
, (6)

where µ is the dynamic viscosity, T is the temperature, Cp is the specific heat at constant pressure, and Pr is the Prandtl
number. The Euler equations are the simplified case of the compressible Navier-Stokes equations when µ = 0.

The second set of governing equations is the Reynolds-Averaged Navier-Stokes (RANS) equations closed with the
Spalart-Allmaras (SA) turbulence model [23], where we consider the Eqs. (1)-(3) with the additional transport equation
for the turbulent working variable, ν̃:

∂t (ρν̃) + ∇ · (ρuν̃) = ∇ ·
( η
σ
∇ν̃

)
+

cb2ρ

σ
∇ν̃ · ∇ν̃ + P − D . (7)

For the RANS equations, Reynolds stress and heat flux are

τ = (µ + µt )(∇u + (∇u)
T −

2
3
(∇ · u)I ), (8)

q = (k + kt )∇T, kt =
Cpµt

Prt
, (9)

where the eddy viscosity, µt , is defined as

µt =

{
ρν̃ fv1 ν̃ ≥ 0
0 ν̃ < 0

, fv1 =
χ3

χ3 + c3
v1
, χ =

ν̃

ν
. (10)

The SA working variable has a viscosity given by η/σ where

η =

{
µ(1 + χ) χ ≥ 0
µ(1 + χ + χ2) χ < 0

. (11)
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The production and destruction terms, P and D, are given by

P =

{
cb1S̃ρν̃ χ ≥ 0
cb1Sρν̃gn χ < 0

, S̃ =


S + S̄ S̄ ≥ −cv2S

S +
S(c2

v2S + cv3S̄)

(cv3 − 2cv2)S − S̄
S̄ < −cv2S

, (12)

D =


cw1 fw

ρν̃2

d2 χ ≥ 0

−cw1
ρν̃2

d2 χ < 0
, (13)

where S =
√
ω · ω is the vorticity magnitude, the vorticity is ω = ∇ × u, and

gn = 1 −
1000χ2

1 + χ2 , S̄ =
ν̃ fv2

κ2d2 , fv2 = 1 −
χ

1 + χ fv1
, (14)

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r6 − r), r =
ν̃

S̃κ2d2
. (15)

Finally, the closure coefficients are σ = 2/3, κ = 0.41, Prt = 0.9, cb1 = 0.1355, cb2 = 0.622, cw1 =
cb1

κ2 +
1 + cb2
σ

,
cw2 = 0.3, cw3 = 2, cv1 = 7.1, cv2 = 0.7, and cv3 = 0.9.

Equations (1)-(3) and (7) can be written in vector form as

∂tU + ∇ · F = ∇ ·Q + S, (16)

where U(x, t) : RNd × R→ RNU is the conservative state vector, F(U) : RNU → RNU×Nd is the inviscid flux vector,
Q(U) : RNU → RNU×Nd is the viscous flux vector, S ∈ RNU is the source term vector, x ∈ RNd is the spatial coordinate
vector, NU is the number of state variables, and Nd is the number of spatial dimensions.

B. Discontinuous Galerkin Discretization
In a discontinuous Galerkin framework, the problem is posed on a computational domain, Ω with a boundary ∂Ω.

Ω is partitioned into Ne non-overlapping discrete elements such that Ω = ∪Ne

e=1Ωe. The boundary of element Ωe is
denoted by ∂Ωe. The global space of test functions is defined as

V = ⊕
Ne

e=1Ve, Ve = span{φen(Ωe)}
N e

b

n=1, (17)

where φen is the nth basis function on element e and Ne
b
is the number of basis functions on element e. The global

solution U is approximated by U , where

U = ⊕Ne

e=1U
e, Ue ∈ Ve . (18)

For a traditional DG method, the basis functions for each element are Pth order polynomials. The local solution
approximation on an element e, Ue is given by

Ue(x, t) =
N e

b∑
m=1

Ũe
m(t)φ

e
m(x), (19)

where Ũe
m(t) is the vector of basis coefficients at time t. The local weak form of the governing equations is created by

multiplying Eq. (16) by the nth test function and integrating over the element∫
Ωe

φen∂tUe dΩe +

∫
Ωe

φen∇ · F dΩe =

∫
Ωe

φen∇ ·Q dΩe +

∫
Ωe

φenS dΩe, ∀φen, n = 1, ..., Ne
b . (20)
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Then, the weak form is discretized to solve for the basis coefficients. The LHS of Eq. (20) is discretized by letting F be
an approximation to F and integrating Eq. (20) by parts to yield∫

Ωe

φen∂tUe dΩe +

∫
Ωe

φen∇ · F dΩe =

∫
Ωe

(
φen∂tUe − ∇φen · F

)
dΩe +

∮
∂Ωe

φenF · n̂ dΓe (21)

≈

N e
b∑

m=1
dtŨe

m(t)
∫
Ωe

φenφ
e
m dΩe −

∫
Ωe

∇φen · F dΩe +

∮
∂Ωe

φe+n F̂ dΓe, (22)

where n̂ is the outward pointing normal on ∂Ωe and the notation (·)+ and (·)− refer to the interior and exterior information
about element Ωe, respectively. F̂ is the inviscid numerical flux used to couple adjacent elements, which is chosen to be
the Roe flux [24] in this study.

The discretization of the viscous flux is described by letting Qi ∈ R
Nd be the linearized diffusion flux of the ith state

variable such that

Qi = Di : ∇U (23)

=

NU∑
k=1

Dik∇Uk, (24)

where D ∈ RNU×NU×Nd×Nd is a fourth-order tensor for the first-order differentiation of the viscous flux with respect to
the solution gradient. Then for simplicity, Qk

i = Dik∇Uk is discretized and then summed to compute its contribution to
Eq. (20). Note that for every i and k, Qk

i ∈ R
Nd , Dik ∈ R

Nd×Nd , and ∇Uk ∈ R
Nd . Approximating Q and D as Q and

D respectively, the discretization of ∇ ·Qk
i is∫

Ωe

φen∇ ·Qk
i dΩe = −

∫
Ωe

∇φen · (Dik∇Uk) dΩe +

∮
∂Ωe

φenQk
i · n̂ dΓe (25)

=

∫
Ωe

Uk∇ ·

(
DT
ik∇φ

e
n

)
dΩe −

∮
∂Ωe

Uk

(
DT
ik∇φ

e
n

)
· n̂ dΓe +

∮
∂Ωe

φenQk
i · n̂ dΓe (26)

≈

∫
Ωe

Uk∇ ·

(
DT

ik∇φ
e
n

)
dΩe −

∮
∂Ωe

Ûk

(
DT

ik∇φ
e
n

)+
· n̂ dΓe +

∮
∂Ωe

φe+n Q̂k
i dΓe (27)

= −

∫
Ωe

∇φen ·
(
DT

ik∇Uk

)
dΩe +

∮
∂Ωe

(
U+k − Ûk

) (
DT

ik∇φ
e
n

)+
· n̂ dΓe +

∮
∂Ωe

φe+n Q̂k
i dΓe . (28)

The three terms from the left to the right on the RHS of Eq. (28) represent interior diffusion, dual consistency, and
inter-element viscous effects. In this study, Û = {U}, where the operator {·} B 1

2 [(·)
+ + (·)−] is the mean value across

element faces, and the definition of Q̂i is the well-known BR2 scheme [25].

C. Enriched Basis Discontinuous Galerkin Method
In order to better represent unresolved features, such as shocks and boundary layers, and to avoid oscillations around

discontinuities, the polynomial basis was enriched by adding non-polynomial enrichment functions to the basis through
the use of the partition of unity [14]. The partition of unity consists of a set of Nm polynomials, ϕn. For this study, both
the polynomial basis and the partition of unity are chosen to be the same set of Lagrange polynomials, but in general
this is not necessary. With the additional enrichment functions, the approximation of the solution becomes

Ue(x, t) =
N e

p∑
m=1

Ũe
m(t)φ

e
m(x) +

N e
m∑

n=1
ãen(t)ϕ

e
n(x)ψ

e(x) =

N e
b∑

m=1
Ṽ e
m(t)Φ

e
m(x), (29)

where Ne
p is the number of polynomial basis functions in element e, ψe(x) is the local enrichment function in the

element e, and Ṽ e
m and Φe

m are the combined coefficients and basis functions:

Φ
e = [φe1, ..., φ

e
N e

p
, ϕe1ψ

e, ..., ϕeN e
m
ψe], (30)

Ṽ e = [Ũe
1 , ..., Ũ

e
N e

p
, ãe1, ..., ã

e
N e

m
]. (31)
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Note that now Ne
b
= Ne

p+Ne
m. The enrichment function is defined locally, because it can be chosen to be a global function

that enriches each element differently or a local function that enriches every element the same. Adding enrichment
functions only modifies the basis on each individual element, so the coefficients are found using the discretized weak
solution similar to Eq. (20):

N e
b∑

m=1
dt Ṽ e

m(t)
∫
Ωe

Φ
e
nΦ

e
m dΩe +

∫
Ωe

Φ
e
n∇ · F dΩe =

∫
Ωe

Φ
e
n∇ · Q dΩe +

∫
Ωe

Φ
e
nS dΩe, ∀Φe

n, n = 1, ..., Ne
b . (32)

As in the standard DG method, the variational form is integrated by parts and a numerical flux is used to couple the
elements.

The choice of enrichment function is problem specific and it is chosen to be a function that includes a feature that the
polynomial basis cannot represent. For example, for a turbulent boundary layer problem, the law of the wall could be
used in the elements at the wall. For a shock, a Heaviside function or hyperbolic tangent could be used. The enrichment
modes in the solution basis do not enforce that the solution uses these modes, but rather give the method the option to
use them when the Galerkin procedure determines them optimal. Hence the formulation remains consistent.

The enriched DG method only changes the basis, so the algorithm is exactly the same as classical DG but with
non-polynomial basis functions. Because the enrichment functions and enriched basis functions are not polynomials,
the standard 2P + 1 Gauss-Legendre quadrature points, where P is the polynomial order of the basis functions, are no
longer sufficient when integrating the weak form. Hence additional quadrature rules must be designed for the chosen
enrichment functions. In this study, all elements are tensor-product elements with the chosen enrichment functions
defined as piecewise functions aligned with one of the reference directions. To numerically integrate these functions, the
reference space is split along the piecewise interval boundaries in the direction of the enrichment function, a sufficient
number of Gauss-Legendre quadrature points is used to integrate each interval, and the results are summed:∫ 1

−1
ψ(ξ) dξ =

∫ ξ1

−1
ψ(ξ) dξ +

∫ ξ2

ξ1

ψ(ξ) dξ + ...
∫ 1

ξk

ψ(ξ) dξ, (33)

where k is the number of pieces in the enrichment function. The specific enrichment orders and segments for the
enrichment functions will be detailed along with the definition of the enrichment functions in the discussions of the
results.

In the case of a discontinuous enrichment function, the formulation of the discretized equations must be modified
to account for the discontinuity. We will consider an enrichment function ψe(x) = ge(x)H(L(x,J e)) where ge is a
continuous function on element e, H is the Heaviside step function, and L(x,J e) is a signed distance level set function
from a surface J e that defines where the discontinuity occurs in element e. The signed distance level set function is
defined as:

L(x,J e) = sign(n̂ · (x − x∗)) min
x∗∈Je

‖x − x∗‖, (34)

where n̂ is the unit normal to J e. Using split quadrature around the discontinuity will accurately integrate the
discontinuous enrichment function. However, when integrating Eq. (32) by parts for the enriched basis functions, the
gradient of the Heaviside function is a delta function which cannot be resolved with numerical integration over the
element. The discontinuity within the element is equivalent to a cut-cell and thus is treated with a numerical flux that is
integrated across the surface J e:∫
Ωe

ϕenψ
e∇ · F dΩe =

∫
Ωe

ϕeng
eH(L(x,J e))∇ · F dΩe (35)

= −

∫
Ωe

∇ · (ϕeng
e)H(L(x,J e))F dΩe −

∮
Je

ϕeng
eF̂ dJ e +

∮
∂Ωe

(ϕeng
eH(L(x,J e)))+F̂ dΓe .

(36)

In this study, discontinuous enrichment functions were only used with the Euler equations, so only the inviscid flux is
considered. For the case of a 1-D problem with an enrichment function ψe(x) = ge(x)H(x − xe∗), where xe∗ is the
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location of discontinuity, the notation simplifies to∫
Ωe

ϕenψ
e ∂

∂x
F dΩe =

∫
Ωe

ϕeng
eH(x − xe∗)

∂

∂x
F dΩe (37)

= −

∫
Ωe

∂

∂x
(ϕeng

e)H(x − xe∗)F dΩe −

[
ϕeng

eF̂
] ����
x=xe∗

+

∮
∂Ωe

(ϕeng
eH(x − xe∗))+F̂ dΓe . (38)

III. Numerical Results
In this section, we will present numerical results from two different types of tests: 1-D shock tube problems and

RANS simulations of turbulent channel flows. The problem is defined, the choice of enrichment function and quadrature
rule is discussed, and numerical results are presented in comparison with conventional methods.

A. Stationary Shock Problem
The polynomial basis of standard DG methods makes them unable to represent the discontinuity that occurs at

a shock without smoothing the shock or causing oscillations in the solution. The enriched basis serves as a way to
introduce a step function into the basis to better capture the discontinuous profile of the shock and reduce the oscillations.
First, a stationary shock tube problem was studied. The shock is initialized at x = 0.51 with the left and right states
defined as

ρL = 1 uL = 1 PL = 0.044642, (39)
ρR = 4.5714 uR = 0.21875 PR = 0.82589, (40)

and the left and right boundaries set to the appropriate initial state. These conditions create a Mach 4 shock that stays
stationary in its initial location due to uniform fluxes across the shock. The domain of x ∈ [0, 1] was discretized with 50
P = 1 Lagrange polynomial elements, which puts the shock in the center of the center element. The Heaviside step
function defined at the center of the element in reference space was used as the enrichment function in each element:

ψ(ξ) = H(ξ) =

{
0 if ξ < 0
1 otherwise

, ξ ∈ [−1, 1]. (41)

For this enrichment function, the quadrature must be split at the discontinuity and a numerical flux must be computed at
ξ = 0 as detailed in Eq. (38). Because the enrichment function is constant on each side the discontinuity, the standard
2P + 1 quadrature points can be used on each subdomain:

Nq =

{
2P + 1 for ξ ∈ [−1, 0]
2P + 1 for ξ ∈ [0, 1]

. (42)

4th-order Runge-Kutta was used for time integration and the solution was advanced until time t = 5.
The results in Figure 1 show that the method is able to nearly exactly reproduce the exact solution and maintain

it as the solution is evolved in time. The standard DG method is unstable for this problem due to undershoots in the
polynomial solution causing unphysical quantities. Thus, the enriched DG method can improve the representation of
shocks by creating a discontinuous solution at the location of the shock which can stabilize the solution of high Mach
number problems that standard DG cannot handle without the addition of limiters or artificial viscosity.

B. Sod Problem
While the stationary shock problem showed that applying enrichment at the exact location of the shock shows great

improvement in the solution, the Sod problem examines how the method performs with a moving shock that is not
always aligned with the enrichment functions. The Sod shock tube problem is a 1-D shock tube problem with the
diaphragm at x = 0 and the left and right states defined as

ρL = 1 uL = 0 PL = 1, (43)
ρR = 0.125 uR = 0 PR = 0.1, (44)
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Fig. 1 Mach 4 stationary shock solution with 50 P = 1 elements enriched by a Heaviside step function at the
center of each element. The shock is located at x = 0.51. Undershoots in standard DG cause unphysical solution
for this case.

and a domain x ∈ [−0.5, 0.5]. The left and right boundary conditions fix the solution at the appropriate initial state. The
spatial discretization employs 20 P = 1 Lagrange polynomial elements. The enrichment function is the Heaviside step
function defined at the center of each element as in the previous case. 4th-order Runge-Kutta was used to integrate in
time until t = 0.15.

The results in Figure 2 show that the enriched method is able to represent a sharper shock than the standard DG
method of the same polynomial order. Because the enrichment function is applied in the center of every element and the
shock is moving through the domain, the enrichment function will not always align with the shock in the solution, so one
would not expect as good of agreement as was seen in the stationary shock case. However, we still see fewer oscillations
in the post-shock region compared to standard DG. Hence, the enriched method shows both a better shock representation
and fewer oscillations, despite the misalignment between the shock and enrichment functions. Future work will include
developing robust methods to track the location of shocks and modify the enrichment basis in time in order to apply the
enrichment function at the exact location of the shock throughout the time advancement of the simulation.

Fig. 2 Sod problem density and pressure with 20 P = 1 elements comparing standard DG solution with DG
enriched by a Heaviside step function in the center of each element. Solution is shown at time t = 0.15.

C. RANS Turbulent Boundary Layer
For turbulent boundary layers, enrichment allows the use of larger elements to represent the boundary layer. Normally,

in order to fully resolve the momentum boundary layer, grid resolution on the order of Re2
τ is necessary to accurately

predict the mean velocity profile. To avoid the added computational costs associated with this mesh refinement, we
enrich the wall-adjacent elements with a law of the wall enrichment function. The law of the wall is a self-similar
solution for the wall-parallel velocity in the near wall region. It is formed by considering the friction velocity uτ =

√
τw
ρ
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with τw = µ du
dy where y is the wall-normal direction. When nondimensionalizing the wall parallel velocity and wall

normal distance with the friction velocity, we obtain u+ = u
uτ

and y+ =
yuτ
ν . The law of the wall is characterized by

three different regions: the viscous sublayer, 0 < y+ < 5, where u+ = y+, the buffer layer, 5 < y+ < 30, where there is
no similarity solution, and the log layer 30 < y+ where u+ = 1

κ log(y+) + β. In order to represent this steep profile with
large elements, an enrichment function containing the law of the wall is defined as

ψ(x) = ψw(x) =

{
y+ if y+ ≤ y+∗

1
κ log(y+) + β if y+ > y+∗

, (45)

where y+∗ corresponds to the point where the viscous sublayer and the log layer profiles are equal, so the enrichment
function is continuous. In this enrichment function, κ, β, uτ , and ν are set using a priori knowledge and are kept constant
throughout the simulation. Other law of the wall functions could be chosen as the enrichment function, but this function
was chosen because of its simplicity. Due to the kink in the enrichment function at y+ = y+∗, split quadrature must
be used to accurate integrate this enrichment function and its derivative. Using tensor-product elements, the standard
2P + 1 quadrature points was used in the wall-parallel directions and split quadrature was used in the wall normal
direction. The quadrature in the wall normal direction is defined as

Nq =

{
2(P + 1) + 1 for ξ ∈ [−1, ξy+∗ ]
2(P + 5) + 1 for ξ ∈ [ξy+∗, 1]

, (46)

where ξy+∗ is the reference space location of y+∗. Two additional quadrature points are needed to exactly integrate
the linear region. 10 additional quadrature points was experimentally determined to integrate the log-layer well. To
effectively use this enrichment function, the entire law of the wall region (y+ < 40) must be contained in a single
element. If too small of elements are enriched, the polynomial modes will span a similar space to the enriched modes
and the mass matrix will be ill-conditioned. Also, only the wall-adjacent elements will be enriched, because outside of
the near-wall region, the solution is sufficiently smooth so the enrichment is not necessary.

For this case, we have chosen to apply this law of the wall enrichment to RANS simulations of a turbulent channel.
The SA model was chosen to model the unclosed terms in the equations, due to its simplicity and use in DG contexts
[26]. The domain of size [0, 2π] × [0, 2] was discretized with N uniform quadrilateral elements in each direction. The
polynomial bases were order P uniform Lagrange polynomials. The solution was advanced in time using BDF2 for 25
flow through times. The boundary conditions are periodic in x and isothermal cold walls in y are used with a Mach
number of M = 0.1. The channel is forced with a constant pressure gradient of 1, the initial density is set to ρ = 1, and
the viscosity is kept constant. As a result, the steady-state solution gives uτ = 1, so Reτ = 1

µ and the dynamic viscosity
determines the resulting friction Reynolds number. The enrichment functions were chosen to be ψw with κ = 0.41,
β = 5.2, uτ = 1, and ν = 1

Reτ
and were used only in the wall adjacent elements. Reτ = 200, 590, and 2000 were tested.

The results for the case with Reτ = 200 illustrated in Figure 3 show that both the standard DG methods with N = 8
and N = 16 P = 3 elements show good agreement with the law of the wall. However, the enriched method is able to
produce greater accuracy in the viscous sublayer and similar accuracy in the log-layer with only 4 elements in each
direction. Comparing the number of degrees of freedom for each state variable, the enriched method with only 384
degrees of freedom has comparable results to a standard method with 1024 degrees of freedom. For Reτ = 590, Figure
4 shows that the standard DG method with N = 16 and P = 3 underpredicts the law of the wall. The enriched method is
able to produce similar levels of accuracy as DG N = 16 and P = 4 with only N = 4 and N = 8 P = 3 elements. The
ratio of degrees of freedom between standard and enriched DG is 10:1. For Reτ = 2000, Figure 5 shows the enriched
method is able to predict the law of the wall with only 16 P = 3 elements in each direction while the DG solutions
underpredict the law of the wall with N = 64 and P = 3. The enriched method has 14 times fewer degrees of freedom
and can better resolve the law of the wall.

In all three cases, the enriched method outperforms the standard method. In the coarsest enriched solutions for each
case, the first element spans up to y+ = O(100), which highlights the ability of the enriched method to represent the law
of the wall with coarse elements. Additionally, the comparison of degrees of freedom show that for larger Reynolds
numbers, the enriched method can produce similar or better results with less than 10 times fewer degrees of freedom.
The reduction in degrees of freedom is due to the fact that only the wall-adjacent elements are enriched, so the number
of added degrees of freedom is much smaller than the number of degrees of freedom in the rest of the domain. As Reτ
increases, the standard DG methods fail to capture the law of the wall and the advantages of the enriched DG methods
are shown. Hence the enrichment functions greatly increase the resolution capabilities of the DG method. The next step
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Fig. 3 Reτ = 200 RANS turbulent channel with N × N uniform elements and P order basis polynomials.
Enriched solutions use a law of the wall enrichment function in the wall-adjacent elements.

Fig. 4 Reτ = 590 RANS turbulent channel with N × N uniform elements and P order basis polynomials.
Enriched solutions use a law of the wall enrichment function in the wall-adjacent elements.

is to extend this method to handle more complex wall-bounded flows than simple channel flows. One key step in this
process is incorporating a method to adapt the enrichment function to the local τw . Additionally, other enrichment
functions can be explored, since this law of the wall was chosen for simplicity. Finally, the method can be applied to
fully compressible flows by using a different enrichment function in the energy equation to capture the thermal boundary
layer.

IV. Conclusion
In conclusion, we have developed an enriched basis high-order discontinuous Galerkin method for compressible

flows. This method involves incorporating problem-specific non-polynomial enrichment functions that mimic the desired
behavior into the solution basis. With this, the solver can take advantage of these basis functions to better represent
high-gradient features, such as shocks and boundary layers. Since the method only requires a modification of the basis
functions, for continuous enrichment functions the only change that is needed in the standard DG algorithm is to use a
different quadrature rule in the numerical integrations to fully incorporate the non-polynomial basis functions. In this
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Fig. 5 Reτ = 2000 RANS turbulent channel with N × N uniform elements and P order basis polynomials.
Enriched solutions use a law of the wall enrichment function in the wall-adjacent elements.

study, we have found that splitting the reference space in enriched elements along the locations of piecewise interval in
the enrichment function and then applying an appropriate number of quadrature points to be an effective quadrature rule.
In the case of discontinuous enrichment functions, an additional numerical flux is added to the discretization of the
inviscid flux in order to account for the discontinuity.

We have demonstrated the enriched basis discontinuous Galerkin method’s potential on 1-D shock tube problems
and RANS simulations of turbulent channel flow where it has shown the ability to better represent shocks and represent
fully developed boundary layers with much larger elements than traditional methods. Even the simple implementation
of constant enrichment functions at fixed locations was able to improve the solutions of these problems, showing the
potential for better resolution of the targeted features with more complex schemes, such as updating the enrichment
function in time. Ongoing work for enriched methods for shock-capturing involves developing methods to locate and
update the location of shocks in the enrichment function. These developments will better resolve 1-D shock tube
problems and will help the method handle more complex shock-based problems, like supersonic flows over a cylinder.
Ongoing work for turbulent wall-modeling with basis enrichment involves developing the method for large-eddy
simulations of wall-bounded turbulent flows by adapting the enrichment functions based on the local shear stress to
capture local flow features and exploring other near-wall functions.
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